CINXE.COM
Search results for: natural dyestuff
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: natural dyestuff</title> <meta name="description" content="Search results for: natural dyestuff"> <meta name="keywords" content="natural dyestuff"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="natural dyestuff" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="natural dyestuff"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5759</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: natural dyestuff</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5549</span> Comparison of Two Artificial Accelerated Weathering Methods of Larch Wood with Natural Weathering in Exterior Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Sterbova">I. Sterbova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Oberhofnerova"> E. Oberhofnerova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Panek"> M. Panek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pavelek"> M. Pavelek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With growing popularity, wood of European larch (Larix decidua, Mill.) is being more often applied into the exterior, usually as facade elements, also without surface treatment. The aim of this work was to compare two laboratory tests of artificial accelerated weathering of wood with two ways of natural weathering in the exterior. To assess changes in selected surface characteristics of larch wood, accelerated weathering methods in the Xenotest and UV chamber were used, both in combination with temperature cycling, for 6 weeks. They were compared with natural weathering results at exposition under 45° and 90° in the exterior for 12 months. The changes of colour, gloss, contact angle of water and also changes in visual characteristics were evaluated. The results of wood surfaces changes after 6 weeks of accelerated weathering in Xenotest are closer to 12 months of natural weathering in the exterior at an angle of 90° compared to the UV chamber testing. The results, especially the colour changes, of the samples exposed at an angle of 45° in the exterior were significantly different. Testing in Xenotest more closely simulates the weathering of façade elements in the exterior compared to the UV chamber testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=larch%20wood" title="larch wood">larch wood</a>, <a href="https://publications.waset.org/abstracts/search?q=wooden%20facade" title=" wooden facade"> wooden facade</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20accelerated%20weathering" title=" wood accelerated weathering"> wood accelerated weathering</a>, <a href="https://publications.waset.org/abstracts/search?q=weathering%20methods" title=" weathering methods"> weathering methods</a> </p> <a href="https://publications.waset.org/abstracts/107885/comparison-of-two-artificial-accelerated-weathering-methods-of-larch-wood-with-natural-weathering-in-exterior-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5548</span> Russian pipeline natural gas export strategy under uncertainty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koryukaeva%20Ksenia">Koryukaeva Ksenia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinfeng%20Sun"> Jinfeng Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Europe has been a traditional importer of Russian natural gas for more than 50 years. In 2021, Russian state-owned company Gazprom supplied about a third of all gas consumed in Europe. The Russia-Europe mutual dependence in terms of natural gas supplies has been causing many concerns about the energy security of the two sides for a long period of time. These days the issue has become more urgent than ever considering recent Russian invasion in Ukraine followed by increased large-scale geopolitical conflicts, making the future of Russian natural gas supplies and global gas markets as well highly uncertain. Hence, the main purpose of this study is to get insight into the possible futures of Russian pipeline natural gas exports by a scenario planning method based on Monte-Carlo simulation within LUSS model framework, and propose Russian pipeline natural gas export strategies based on the obtained scenario planning results. The scenario analysis revealed that recent geopolitical disputes disturbed the traditional, longstanding model of Russian pipeline gas exports, and, as a result, the prospects and the pathways for Russian pipeline gas on the world markets will differ significantly from those before 2022. Specifically, our main findings show, that (i) the events of 2022 generated many uncertainties for the long-term future of Russian pipeline gas export perspectives on both western and eastern supply directions, including geopolitical, regulatory, economic, infrastructure and other uncertainties; (ii) according to scenario modelling results, Russian pipeline exports will face many challenges in the future, both on western and eastern directions. A decrease in pipeline gas exports will inevitably affect country’s natural gas production and significantly reduce fossil fuel export revenues, jeopardizing the energy security of the country; (iii) according to proposed strategies, in order to ensure the long-term stable export supplies in the changing environment, Russia may need to adjust its traditional export strategy by performing export flows and product diversification, entering new markets, adapting its contracting mechanism, increasing competitiveness and gaining a reputation of a reliable gas supplier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Russian%20natural%20gas" title="Russian natural gas">Russian natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=Pipeline%20natural%20gas" title=" Pipeline natural gas"> Pipeline natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=Uncertainty" title=" Uncertainty"> Uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=Scenario%20simulation" title=" Scenario simulation"> Scenario simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Export%20strategy" title=" Export strategy"> Export strategy</a> </p> <a href="https://publications.waset.org/abstracts/183502/russian-pipeline-natural-gas-export-strategy-under-uncertainty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5547</span> Free Convection in a Darcy Thermally Stratified Porous Medium That Embeds a Vertical Wall of Constant Heat Flux and Concentration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Neagu">Maria Neagu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the heat and mass driven natural convection succession in a Darcy thermally stratified porous medium that embeds a vertical semi-infinite impermeable wall of constant heat flux and concentration. The scale analysis of the system determines the two possible maps of the heat and mass driven natural convection sequence along the wall as a function of the process parameters. These results are verified using the finite differences method applied to the conservation equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title="finite difference method">finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20analysis" title=" scale analysis"> scale analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stratification" title=" thermal stratification"> thermal stratification</a> </p> <a href="https://publications.waset.org/abstracts/41763/free-convection-in-a-darcy-thermally-stratified-porous-medium-that-embeds-a-vertical-wall-of-constant-heat-flux-and-concentration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5546</span> Simulation of Natural Ventilation Strategies as a Comparison Method for Two Different Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fulya%20Ozbey">Fulya Ozbey</a>, <a href="https://publications.waset.org/abstracts/search?q=Ecehan%20Ozmehmet"> Ecehan Ozmehmet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Health and living in a healthy environment are important for all the living creatures. Healthy buildings are the part of the healthy environment and the ones that people and sometimes the animals spend most of their times in it. Therefore, healthy buildings are important subject for everybody. There are many elements of the healthy buildings from material choice to the thermal comfort including indoor air quality. The aim of this study is, to simulate two natural ventilation strategies which are used as a cooling method in Mediterranean climate, by applying to a residential building and compare the results for Asian climate. Fulltime natural and night-time ventilation strategies are simulated for three days during the summertime in Mediterranean climate. The results show that one of the chosen passive cooling strategies worked on both climates good enough without using additional shading element and cooling device, however, the other ventilation strategy did not provide comfortable indoor temperature enough. Finally, both of the ventilation strategies worked better on the Asian climate than the Mediterranean in terms of the total overheating hours during the chosen period of year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asian%20climate" title="Asian climate">Asian climate</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Mediterranean%20climate" title=" Mediterranean climate"> Mediterranean climate</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20ventilation%20simulation" title=" natural ventilation simulation"> natural ventilation simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/85415/simulation-of-natural-ventilation-strategies-as-a-comparison-method-for-two-different-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5545</span> Study on Biodeterioration of Proteinous Objects in Museums and Toxic Efficacy of Myristica Fragrans and Syzygium Aromaticum Oils against the Larvae of Anthrenus verbasci</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Faheem">Fatma Faheem</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Abduraheem"> K. Abduraheem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Museums are custodians of natural and cultural heritage. Objects like tribal dresses, headgears, weapons, musical instruments, manuscripts and other ethnocultural materials housed in museums are prized possessions of intellectual and cultural property of people. Tropical countries like India have a favorable climatic condition for biodeterioration. Organic materials such as leather and parchment objects which form a substantial part of natural history collections of museums across the world are promptly infested by insects like dermestid beetles, tenebrionides, silver fishes, cockroaches and other micro-organisms. The environmental problems caused due to the overuse of pesticides and other non-degradable chemicals have been the matter of serious concern for both the scientists and public in recent years. Synthetic pesticides are very expensive and also highly toxic for humans and its environment. Due to its high health risk factor government has taken severe initiatives on policy of banning it. In order to overcome the problems of biodeterioration, natural biocides should be applied. In this paper, comparative study has been done to investigate the toxic efficacy of Myristica fragrans and Syzygium aromaticum oil in variation with contact and stomach toxicity against larvae of Anthrenus verbasci. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodeterioration" title="biodeterioration">biodeterioration</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20toxicity" title=" contact toxicity"> contact toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20heritage" title=" cultural heritage"> cultural heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20biocides" title=" natural biocides"> natural biocides</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20heritage" title=" natural heritage"> natural heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=stomach%20toxicity" title=" stomach toxicity"> stomach toxicity</a> </p> <a href="https://publications.waset.org/abstracts/68296/study-on-biodeterioration-of-proteinous-objects-in-museums-and-toxic-efficacy-of-myristica-fragrans-and-syzygium-aromaticum-oils-against-the-larvae-of-anthrenus-verbasci" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5544</span> Biobased Facade: Illuminated Natural Fibre Polymer with Cardboard Core</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ralf%20Gliniorz">Ralf Gliniorz</a>, <a href="https://publications.waset.org/abstracts/search?q=Carolin%20Petzoldt"> Carolin Petzoldt</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Ehrlich"> Andreas Ehrlich</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Gelbrich"> Sandra Gelbrich</a>, <a href="https://publications.waset.org/abstracts/search?q=Lothar%20Kroll"> Lothar Kroll</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building envelope is integral part of buildings, and renewable resources have a key role in energy consumption. So our aim was the development and implementation of a free forming facade system, consisting of fibre-reinforced polymer, which is built up of commercial biobased resin systems and natural fibre reinforcement. The field of application is aimed in modern architecture, like the office block 'Fachagentur Nachwachsende Rohstoffe e.V.' with its oak wood recyclate facade. The build-up of our elements is a classically sandwich-structured composite: face sheets as fibre-reinforced composite using polymer matrix, here a biobased epoxy, and natural fibres. The biobased core consists of stuck cardboard structure (BC-flute). Each element is manufactured from two shells in a counterpart, via hand lay-up laminate. These natural fibre skins and cardboard core have adhered 'wet-on-wet'. As a result, you get the effect of translucent face sheets with matrix illumination. Each created pixel can be controlled in RGB-colours and form together a screen at buildings. A 10 x 5 m² area 'NFP-BIO' with 25 elements is planned as a reference object in Chemnitz. The resolution is about 100 x 50 pixels. Specials are also the efficient technology of production and the possibility to extensively 3D-formed elements for buildings, replacing customary facade systems, which can give out information or advertising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biobased%20facade" title="biobased facade">biobased facade</a>, <a href="https://publications.waset.org/abstracts/search?q=cardboard%20core" title=" cardboard core"> cardboard core</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibre%20skins" title=" natural fibre skins"> natural fibre skins</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20element" title=" sandwich element"> sandwich element</a> </p> <a href="https://publications.waset.org/abstracts/76879/biobased-facade-illuminated-natural-fibre-polymer-with-cardboard-core" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5543</span> Natural Regeneration Assessment of a Double Bunrt Mediterranean Coniferous Forest: A Pilot Study from West Peloponnisos, Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dionisios%20Panagiotaras">Dionisios Panagiotaras</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20P.%20Kokkoris"> Ioannis P. Kokkoris</a>, <a href="https://publications.waset.org/abstracts/search?q=Dionysios%20Koulougliotis"> Dionysios Koulougliotis</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitra%20Lekka"> Dimitra Lekka</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Skalioti"> Alexandra Skalioti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the summer of 2021, Greece was affected by devastating forest fires in various regions of the country, resulting in human losses, destruction or degradation of the natural environment, infrastructure, livestock and cultivations. The present study concerns a pilot assessment of natural vegetation regeneration in the second, in terms of area, fire-affected region for 2021, at Ancient Olympia area, located in West Peloponnisos (Ilia Prefecture), Greece. A standardised field sampling protocol for assessing natural regeneration was implemented at selected sites where the forest fire had occurred previously (in 2007), and the vegetation (Pinus halepensis forest) had regenerated naturally. The results of the study indicate the loss of the established natural regeneration of Pinus halepensis forest, as well as of the tree-layer in total. Post-fire succession species are recorded to the shrub and the herb layer, with a varying cover. Present findings correspond to the results of field work and analysis one year after the fire, which will form the basis for further research and conclusions on taking action for restoration schemes in areas that have been affected by fire more than once within a 20-year period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest" title="forest">forest</a>, <a href="https://publications.waset.org/abstracts/search?q=pinus%20halepensis" title=" pinus halepensis"> pinus halepensis</a>, <a href="https://publications.waset.org/abstracts/search?q=ancient%20olympia" title=" ancient olympia"> ancient olympia</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20fire%20vegetation" title=" post fire vegetation"> post fire vegetation</a> </p> <a href="https://publications.waset.org/abstracts/173710/natural-regeneration-assessment-of-a-double-bunrt-mediterranean-coniferous-forest-a-pilot-study-from-west-peloponnisos-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5542</span> Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Bhowmik">H. Bhowmik</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Faisal"> A. Faisal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al%20Yaarubi"> Ahmed Al Yaarubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Al%20Alawi"> Nabil Al Alawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m<sup>2</sup> to 2426 W/m<sup>2</sup> and the Rayleigh number ranges from 1×10<sup>4</sup> to 4.35×10<sup>4</sup>. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0<sup>o</sup>, 90<sup>o</sup>, 180<sup>o</sup>) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90<sup>o</sup> and 180<sup>o</sup> are higher than that of stagnation point (0<sup>o</sup>). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fourier%20number" title="Fourier number">Fourier number</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20number" title=" Rayleigh number"> Rayleigh number</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state" title=" steady state"> steady state</a>, <a href="https://publications.waset.org/abstracts/search?q=transient" title=" transient"> transient</a> </p> <a href="https://publications.waset.org/abstracts/84493/analyses-of-natural-convection-heat-transfer-from-a-heated-cylinder-mounted-in-vertical-duct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5541</span> Trace Metals in Natural Bottled Water on Montenegrin Market and Comaparison with Tap Water in Podgorica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katarina%20%C5%BDivkovi%C4%87">Katarina Živković</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Joksimovi%C4%87"> Ivana Joksimović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many different chemicals may occur in drinking water and cause significant human health risks after prolonged periods of exposure. In particular concern are contaminants that have cumulative toxic properties, such as heavy metals. This investigation was done to clarify concerns about chemical quality and safety of drinking tap water in Podgorica. For comparison, all available natural bottled water on Montenegrin market were bought. All samples (bottled water and tap water from Podgorica) were analyzed using ICP –OES on contents of Al, Cd, Pb, Cu, Zn,Cr, Fe, As and Mn. All results compared with the maximum concentration levels allowed by international standards and World Health Organization (WHO) guidelines. The results of analysis showed that all trace of heavy metals were very low and in same time below MCL according to WHO and International standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inductively%20coupled%20plasma%20-%20optical%20emission%20spectrometry%20%28ICP-OES%29" title="inductively coupled plasma - optical emission spectrometry (ICP-OES)">inductively coupled plasma - optical emission spectrometry (ICP-OES)</a>, <a href="https://publications.waset.org/abstracts/search?q=Montenegro%20%28Podgorica%29" title=" Montenegro (Podgorica)"> Montenegro (Podgorica)</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20bottled%20water" title=" natural bottled water"> natural bottled water</a>, <a href="https://publications.waset.org/abstracts/search?q=tap%20water" title=" tap water "> tap water </a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20of%20heavy%20metal" title="trace of heavy metal">trace of heavy metal</a> </p> <a href="https://publications.waset.org/abstracts/31111/trace-metals-in-natural-bottled-water-on-montenegrin-market-and-comaparison-with-tap-water-in-podgorica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5540</span> Using Scale Invariant Feature Transform Features to Recognize Characters in Natural Scene Images </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belaynesh%20Chekol">Belaynesh Chekol</a>, <a href="https://publications.waset.org/abstracts/search?q=Numan%20%C3%87elebi"> Numan Çelebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this work is to recognize individual characters extracted from natural scene images using scale invariant feature transform (SIFT) features as an input to K-nearest neighbor (KNN); a classification learner algorithm. For this task, 1,068 and 78 images of English alphabet characters taken from Chars74k data set is used to train and test the classifier respectively. For each character image, We have generated describing features by using SIFT algorithm. This set of features is fed to the learner so that it can recognize and label new images of English characters. Two types of KNN (fine KNN and weighted KNN) were trained and the resulted classification accuracy is 56.9% and 56.5% respectively. The training time taken was the same for both fine and weighted KNN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=character%20recognition" title="character recognition">character recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=KNN" title=" KNN"> KNN</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20scene%20image" title=" natural scene image"> natural scene image</a>, <a href="https://publications.waset.org/abstracts/search?q=SIFT" title=" SIFT"> SIFT</a> </p> <a href="https://publications.waset.org/abstracts/58580/using-scale-invariant-feature-transform-features-to-recognize-characters-in-natural-scene-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5539</span> Development of Paper Based Analytical Devices for Analysis of Iron (III) in Natural Water Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakchai%20Satienperakul">Sakchai Satienperakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoch%20Thanomwat"> Manoch Thanomwat</a>, <a href="https://publications.waset.org/abstracts/search?q=Jutiporn%20Seedasama"> Jutiporn Seedasama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A paper based analytical devices (PADs) for the analysis of Fe (III) ion in natural water samples is developed, using reagent from guava leaf extract. The extraction is simply performed in deionized water pH 7, where tannin extract is obtained and used as an alternative natural reagent. The PADs are fabricated by ink-jet printing using alkenyl ketene dimer (AKD) wax. The quantitation of Fe (III) is carried out using reagent from guava leaf extract prepared in acetate buffer at the ratio of 1:1. A color change to gray-purple is observed by naked eye when dropping sample contained Fe (III) ion on PADs channel. The reflective absorption measurement is performed for creating a standard curve. The linear calibration range is observed over the concentration range of 2-10 mg L-1. Detection limited of Fe (III) is observed at 2 mg L-1. In its optimum form, the PADs is stable for up to 30 days under oxygen free conditions. The small dimensions, low volume requirement and alternative natural reagent make the proposed PADs attractive for on-site environmental monitoring and analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20chemical%20analysis" title="green chemical analysis">green chemical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=guava%20leaf%20extract" title=" guava leaf extract"> guava leaf extract</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20on%20a%20chip" title=" lab on a chip"> lab on a chip</a>, <a href="https://publications.waset.org/abstracts/search?q=paper%20based%20analytical%20device" title=" paper based analytical device"> paper based analytical device</a> </p> <a href="https://publications.waset.org/abstracts/54607/development-of-paper-based-analytical-devices-for-analysis-of-iron-iii-in-natural-water-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5538</span> An Overview of Smart Growth Concept from Ecological Planning Perspective </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozge%20Celik">Ozge Celik</a>, <a href="https://publications.waset.org/abstracts/search?q=Elvan%20Ender"> Elvan Ender</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With rapidly increasing population growth and industrial revolution in the 1950s, in Turkey migration began to the cities from the countryside. Along the rapid growth of urban population has started to bring many problems. Depending on the uncontrolled urban development, concerns about the protection of natural values has increased day by day. As a result of disturbance on the natural environment, human health has started to be under threat. After all, much urban planning approaches outspread that protecting natural resources by respect to human health and troubleshooting problems emerging with anthropogenic effects. Smart growth concept is one of the chosen methods to resolve the problems in Turkey. In this paper, smart growth concept idea and its criteria will be explained while ecological planning and urban planning problems will be mentioned in Turkey according to the need of concept. Studies, consisting of practical and theoretical smart growth ideas, shows that ecological landscape planning is not included in the urban development process in Turkey. The main idea is to initiate urban development plans considering social and cultural structures of cultural assets and also natural values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecological%20landscape%20planning" title="ecological landscape planning">ecological landscape planning</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20growth" title=" smart growth"> smart growth</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20development" title=" urban development"> urban development</a> </p> <a href="https://publications.waset.org/abstracts/52319/an-overview-of-smart-growth-concept-from-ecological-planning-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5537</span> Assesment of Financial Performance: An Empirical Study of Crude Oil and Natural Gas Companies in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Palash%20Bandyopadhyay">Palash Bandyopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and significance of the study: Crude oil and natural gas is of crucial importance due to its increasing demand in India. The demand has been increased because of change of lifestyle overtime. Since India has poor utilization of oil production capacity, constantly the import of it has been increased progressively day by day. This ultimately hit the foreign exchange reserves of India, however it negatively affect the Indian economy as well. The financial performance of crude oil and natural gas companies in India has been trimmed down year after year because of underutilization of production capacity, enhancement of demand, change in life style, and change in import bill and outflows of foreign currencies. In this background, the current study seeks to measure the financial performance of crude oil and natural gas companies of India in the post liberalization period. Keeping in view of this, this study assesses the financial performance in terms of liquidity management, solvency, efficiency, financial stability, and profitability of the companies under study. Methodology: This research work is encircled on yearly ratio data collected from Centre for Monitoring Indian Economy (CMIE) Prowess database for the periods between 1993-94 and 2012-13 with 20 observations using liquidity, solvency and efficiency indicators, profitability indicators and financial stability indicators of all the major crude oil and natural gas companies in India. In the course of analysis, descriptive statistics, correlation statistics, and linear regression test have been utilized. Major findings: Descriptive statistics indicate that liquidity position is satisfactory in case of three crude oil and natural gas companies (Oil and Natural Gas Companies Videsh Limited, Oil India Limited and Selan exploration and transportation Limited) out of selected companies under study but solvency position is satisfactory only for one company (Oil and Natural Gas Companies Videsh Limited). However, efficiency analysis points out that Oil and Natural Gas Companies Videsh Limited performs effectively the management of inventory, receivables, and payables, but the overall liquidity management is not well. Profitability position is very much satisfactory in case of all the companies except Tata Petrodyne Limited, but profitability management is not satisfactory for all the companies under study. Financial stability analysis shows that all the companies are more dependent on debt capital, which bears a financial risk. Correlation and regression test results illustrates that profitability is positively and negatively associated with liquidity, solvency, efficiency, and financial stability indicators. Concluding statement: Management of liquidity and profitability of crude oil and natural gas companies in India should have been improved through controlling unnecessary imports in spite of the heavy demand of crude oil and natural gas in India and proper utilization of domestic oil reserves. At the same time, Indian government has to concern about rupee depreciation and interest rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=financial%20performance" title="financial performance">financial performance</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil%20and%20natural%20gas%20companies" title=" crude oil and natural gas companies"> crude oil and natural gas companies</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression" title=" linear regression"> linear regression</a> </p> <a href="https://publications.waset.org/abstracts/39344/assesment-of-financial-performance-an-empirical-study-of-crude-oil-and-natural-gas-companies-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5536</span> Role of Environmental Focus in Legal Protection and Efficient Management of Wetlands in the Republic of Kazakhstan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Balabiyev">K. R. Balabiyev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Kaipbayeva"> A. O. Kaipbayeva </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article discusses the legal framework of the government’s environmental function and analyzes the role of the national policy in protection of wetlands. The problem is of interest for it deals with the most important branch of economy–utilization of Kazakhstan’s natural resources, protection of health and environmental well being of the population. Development of a long-term environmental program addressing the protection of wetlands represents the final stage of the government’s environmental policy, and is a relatively new function for the public administration system. It appeared due to the environmental measures that require immediate decisions to be taken. It is an integral part of the effort in the field of management of state-owned natural resource, as well as of the measures aimed at efficient management of natural resources to avoid their early depletion or contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20focus" title="environmental focus">environmental focus</a>, <a href="https://publications.waset.org/abstracts/search?q=government%E2%80%99s%20environmental%20function" title=" government’s environmental function"> government’s environmental function</a>, <a href="https://publications.waset.org/abstracts/search?q=protection%20of%20wetlands" title=" protection of wetlands"> protection of wetlands</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazakhstan" title=" Kazakhstan"> Kazakhstan</a> </p> <a href="https://publications.waset.org/abstracts/27744/role-of-environmental-focus-in-legal-protection-and-efficient-management-of-wetlands-in-the-republic-of-kazakhstan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5535</span> Development of Natural Zeolites Adsorbent: Preliminary Study on Water-Isopropyl Alcohol Adsorption in a Close-Loop Continuous Adsorber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Kompiang%20Wirawan">Sang Kompiang Wirawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Pandu%20Prabowo%20Jati"> Pandu Prabowo Jati</a>, <a href="https://publications.waset.org/abstracts/search?q=I%20Wayan%20Warmada"> I Wayan Warmada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Klaten Indonesian natural zeolite can be used as powder or pellet adsorbent. Pellet adsorbent has been made from activated natural zeolite powder by a conventional pressing method. Starch and formaldehyde were added as binder to strengthen the construction of zeolite pellet. To increase the absorptivity and its capacity, natural zeolite was activated first chemically and thermally. This research examined adsorption process of water from Isopropyl Alcohol (IPA)-water system using zeolite adsorbent pellet from natural zeolite powder which has been activated with H2SO4 0.1 M and 0.3 M. Adsorbent was pelleted by pressing apparatus at certain pressure to make specification in 1.96 cm diameter, 0.68 cm thickness which the natural zeolite powder (-80 mesh). The system of isopropyl-alcohol water contained 80% isopropyl-alcohol. Adsorption process was held in close-loop continuous apparatus which the zeolite pellet was put inside a column and the solution of IPA-water was circulated at certain flow. Concentration changing was examined thoroughly at a certain time. This adsorption process included mass transfer from bulk liquid into film layer and from film layer into the solid particle. Analysis of rate constant was using first order isotherm model that simulated with MATLAB. Besides using first order isotherm, intra-particle diffusion model was proposed by using pore diffusion model. The study shows that adsorbent activated by H2SO4 0.1 M has good absorptivity with mass transfer constant at 0.1286 min-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intra-particle%20diffusion" title="intra-particle diffusion">intra-particle diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20attainment" title=" fractional attainment"> fractional attainment</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20order%20isotherm" title=" first order isotherm"> first order isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/30479/development-of-natural-zeolites-adsorbent-preliminary-study-on-water-isopropyl-alcohol-adsorption-in-a-close-loop-continuous-adsorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5534</span> The Internal View of the Mu'min: Natural Law Theories in Islam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gianni%20Izzo">Gianni Izzo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relation of Islam to its legal precepts, reflected in the various jurisprudential 'schools of thought' (madhahib), is one expressed in a version of 'positivism' (fiqh) providing the primary theory for deducing Qurʾan rulings and those from the narrations (hadith) of the Prophet Muhammad. Scholars of Islam, including Patricia Crone (2004) and others chronicled by Anver Emon (2005), deny the influence of natural law theories as extra-scriptural indices of revelation’s content. This paper seeks to dispute these claims by reference to historical and canonical examples within Shiʿa legal thought that emphasize the salient roles of ‘aql (reason), fitrah (primordial human nature), and lutf (divine grace). These three holistic features, congenital to every human, and theophanically reflected in nature make up a mode of moral intelligibility antecedent to prophetic revelation. The debate between the 'traditionalist' Akhbaris and 'rationalist' Usulis over the nature of deriving legal edicts in Islam is well-covered academic ground. Instead, an attempt is made to define and detail the built-in assumptions of natural law revealed in the jurisprudential summa of Imami Shiʿism, whether of either dominant school, that undergird its legal prescriptions and methods of deduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Islam" title="Islam">Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=fiqh" title=" fiqh"> fiqh</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20law" title=" natural law"> natural law</a>, <a href="https://publications.waset.org/abstracts/search?q=legal%20positivism" title=" legal positivism"> legal positivism</a>, <a href="https://publications.waset.org/abstracts/search?q=aql" title=" aql"> aql</a> </p> <a href="https://publications.waset.org/abstracts/106945/the-internal-view-of-the-mumin-natural-law-theories-in-islam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5533</span> Genesis and Survival Chance of Autotriploid in Natural Diploid Population of Lilium lancifolium Thunb</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji-Won%20Park">Ji-Won Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Wha%20Kim"> Jong-Wha Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Triploid L. lancifolium have a wide geographic distribution. By contrast, diploid L. lancifolium have limited distributions in the islands and coastal regions of the South and West Korean Peninsula and northern Tsushima Island, Japan. L. lancifolium diploids and triploids are not sympatrically distributed with other lily species or ploidy lines in West Sea and South Sea Islands of the Korean Peninsula. This observation raises the following questions: 'Why have autotriploid L. lancifolium never been observed in those isolated islands?', 'What mechanism excludes the occurrence of autotriploids, if they arise?'. To determine the occurrence and survival of triploid plants in natural diploid populations of tiger lily (Lilium lancifolium), ploidy analysis was conducted on natural open-pollinated seeds produced from plants grown on isolated islands, and on hybrid seeds produced by artificial crossing between plant populations originating on different Korean islands. Normal seeds were classified into five grades depending on the ratio of embryo/endosperm lengths, including 5/5, 4/5, 3/5, 2/5, and 1/5. Triploids were not observed among seedlings produced from natural open pollinations on isolated islands. Triploids were detected only in seedlings of underdeveloped seed grades(3/5 and 2/5) from artificial crosses between populations from different isolated islands. The triploid occurrence frequency was calculated as 0.0 for natural open-pollinated seedlings and 0.000582 for artificial crosses(6 triploids from 10,303 seedlings). Triploids were produced from crosses between isolated populations located at least 70 km apart; no triploids were detected in inter-population crosses of plants originating on the same islands. Triploid seedlings have very low viability in soil. We analyzed factors affecting triploid occurrence and survival in natural diploid populations of L. lancifolium. The results suggest that triploids originate from fertilization between plants that are genetically isolated due to geographical isolation and/or genotypic differences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lilium%20lancifolium" title="Lilium lancifolium">Lilium lancifolium</a>, <a href="https://publications.waset.org/abstracts/search?q=autotriploid" title=" autotriploid"> autotriploid</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20population" title=" natural population"> natural population</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20distance" title=" genetic distance"> genetic distance</a>, <a href="https://publications.waset.org/abstracts/search?q=2n%20female%20gamete" title=" 2n female gamete"> 2n female gamete</a> </p> <a href="https://publications.waset.org/abstracts/20812/genesis-and-survival-chance-of-autotriploid-in-natural-diploid-population-of-lilium-lancifolium-thunb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5532</span> Exploration for Magnetic Minerals Using Geophysical Logging Techniques in the Northwestern Part of Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Selim%20Reza">Md. Selim Reza</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zohir%20Uddin"> Mohammad Zohir Uddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geophysical logging technique was conducted in a borehole in the north-western part of Bangladesh. The main objectives of this study were to identify the subsurface lithology and the presence of magnetic minerals within the basement complex. In this survey, full waveform sonic, magnetic susceptibility and natural gamma logs were conducted up to the depth of 660 m. From sonic log, three distinct velocity zones were observed at depths ranging from 20 m to 81 m, 81m to 360 m and 420 m to 660 m having the average velocity of 1600 m/s indicating unconsolidated sediment, 2500 m/s indicating hard, compact and matured sediments and 6300 m/s indicating basement complex respectively. Some low-velocity zones within the basement were identified as fractures/fissures. Natural gamma log was carried out only in the basement complex. According to magnetic susceptibility log, broadly three important zones were identified which had good agreement with the natural gamma, sonic as well as geological logs. The zone at the depth from 460 m to 470 m had the average susceptibility value of 3445 cgs unit. The average natural gamma value and sonic velocity in this zone are 150 cps and 3000 m/s respectively. The zone at the depth from 571 m to 598 m had the average susceptibility value of 5158 cgs unit with the average natural gamma value and sonic velocity are 160 cps and 6000 m/s respectively. On the other hand, the zone at the depth from 598 m to 620 m had the average susceptibility value of 1998 cgs unit with the average natural gamma value and sonic velocity show 200 cps and 3000 m/s respectively. From the interpretation of geophysical logs the 1st and 3rd zones within the basement complex are considered to be less significant whereas the 2nd zone is described as the most significant for magnetic minerals. Therefore, more drill holes are recommended on the anomalous body to delineate the extent, thickness and reserve of the magnetic body and further research are needed to determine the quality of mineral resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basement%20complex" title="basement complex">basement complex</a>, <a href="https://publications.waset.org/abstracts/search?q=fractures%2Ffissures" title=" fractures/fissures"> fractures/fissures</a>, <a href="https://publications.waset.org/abstracts/search?q=geophysical%20logging" title=" geophysical logging"> geophysical logging</a>, <a href="https://publications.waset.org/abstracts/search?q=lithology" title=" lithology"> lithology</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20susceptibility" title=" magnetic susceptibility"> magnetic susceptibility</a> </p> <a href="https://publications.waset.org/abstracts/71382/exploration-for-magnetic-minerals-using-geophysical-logging-techniques-in-the-northwestern-part-of-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5531</span> Natural Ventilation for the Sustainable Tall Office Buildings of the Future</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fin%20Sev">Ayşin Sev</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6rkem%20Aslan"> Görkem Aslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable tall buildings that provide comfortable, healthy and efficient indoor environments are clearly desirable as the densification of living and working space for the world’s increasing population proceeds. For environmental concerns, these buildings must also be energy efficient. One component of these tasks is the provision of indoor air quality and thermal comfort, which can be enhanced with natural ventilation by the supply of fresh air. Working spaces can only be naturally ventilated with connections to the outdoors utilizing operable windows, double facades, ventilation stacks, balconies, patios, terraces and skygardens. Large amounts of fresh air can be provided to the indoor spaces without mechanical air-conditioning systems, which are widely employed in contemporary tall buildings. This paper tends to present the concept of natural ventilation for sustainable tall office buildings in order to achieve healthy and comfortable working spaces, as well as energy efficient environments. Initially the historical evolution of ventilation strategies for tall buildings is presented, beginning with natural ventilation and continuing with the introduction of mechanical air-conditioning systems. Then the emergence of natural ventilation due to the health and environmental concerns in tall buildings is handled, and the strategies for implementing this strategy are revealed. In the next section, a number of case studies that utilize this strategy are investigated. Finally, how tall office buildings can benefit from this strategy is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tall%20office%20building" title="tall office building">tall office building</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=double-skin%20fa%C3%A7ade" title=" double-skin façade"> double-skin façade</a>, <a href="https://publications.waset.org/abstracts/search?q=stack%20ventilation" title=" stack ventilation"> stack ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning" title=" air conditioning"> air conditioning</a> </p> <a href="https://publications.waset.org/abstracts/12589/natural-ventilation-for-the-sustainable-tall-office-buildings-of-the-future" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5530</span> Natural Gas Flow Optimization Using Pressure Profiling and Isolation Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Tahir%20Shah">Syed Tahir Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Fazal%20Muhammad"> Fazal Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Kashif%20Shah"> Syed Kashif Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Maleeha%20Gul"> Maleeha Gul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent days, natural gas has become a relatively clean and quality source of energy, which is recovered from deep wells by expensive drilling activities. The recovered substance is purified by processing in multiple stages to remove the unwanted/containments like dust, dirt, crude oil and other particles. Mostly, gas utilities are concerned with essential objectives of quantity/quality of natural gas delivery, financial outcome and safe natural gas volumetric inventory in the transmission gas pipeline. Gas quantity and quality are primarily related to standards / advanced metering procedures in processing units/transmission systems, and the financial outcome is defined by purchasing and selling gas also the operational cost of the transmission pipeline. SNGPL (Sui Northern Gas Pipelines Limited) Pakistan has a wide range of diameters of natural gas transmission pipelines network of over 9125 km. This research results in answer a few of the issues in accuracy/metering procedures via multiple advanced gadgets for gas flow attributes after being utilized in the transmission system and research. The effects of good pressure management in transmission gas pipeline network in contemplation to boost the gas volume deposited in the existing network and finally curbing gas losses UFG (Unaccounted for gas) for financial benefits. Furthermore, depending on the results and their observation, it is directed to enhance the maximum allowable working/operating pressure (MAOP) of the system to 1235 PSIG from the current round about 900 PSIG, such that the capacity of the network could be entirely utilized. In gross, the results depict that the current model is very efficient and provides excellent results in the minimum possible time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title="natural gas">natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline%20network" title=" pipeline network"> pipeline network</a>, <a href="https://publications.waset.org/abstracts/search?q=UFG" title=" UFG"> UFG</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20pack" title=" transmission pack"> transmission pack</a>, <a href="https://publications.waset.org/abstracts/search?q=AGA" title=" AGA"> AGA</a> </p> <a href="https://publications.waset.org/abstracts/172999/natural-gas-flow-optimization-using-pressure-profiling-and-isolation-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5529</span> Effect of Phenolic Compounds on Off-Odor Development and Oxidative Stability of Camel Meat during Refrigerated Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajid%20Maqsood">Sajid Maqsood</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysha%20Al%20Rashedi"> Aysha Al Rashedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Abushelaibi"> Aisha Abushelaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kusaimah%20Manheem"> Kusaimah Manheem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impact of different natural antioxidants on lipid oxidation, microbial load and sensorial quality in ground camel meat (leg region) during 9 days of refrigerated storage were investigated. Control camel meat showed higher lipid oxidation products (Peroxide value and Thiobarbituric acid reactive substances (TBARS)) during the storage period. Upon addition of different natural antioxidants PV and TBARS were retarded, especially in samples added with tannic acid (TA), catechin (CT) and gallic acid (GA) (p<0.05). Haem iron content decreased with increasing storage period and was found to be lower in samples added with caffeic acid (CA) and gallic acid (GA) at the end of storage period (p<0.05). Furthermore, lower mesophilic bacterial count (MBC) and psychrophilic bacterial counts (PBC) were observed in TA and CT treated samples compared to control and other samples (p<0.05). Camel meat treated with TA and CT also received higher likeness scores for colour, odor and overall appearance compared to control samples (p<0.05). Therefore, adding different natural antioxidants especially TA and CT showed retarding effect on lipid oxidation and microbial growth and were also effective in maintaining sensory attributes (color and odor) of ground camel meat during storage at 4°C. Hence, TA and CT could be considered as the potential natural antioxidant for preserving the quality of the camel meat displayed at refrigerated shelves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20antioxidants" title="natural antioxidants">natural antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20oxidation" title=" lipid oxidation"> lipid oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=camel%20meat" title=" camel meat"> camel meat</a> </p> <a href="https://publications.waset.org/abstracts/12471/effect-of-phenolic-compounds-on-off-odor-development-and-oxidative-stability-of-camel-meat-during-refrigerated-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5528</span> Study and Conservation of Cultural and Natural Heritages with the Use of Laser Scanner and Processing System for 3D Modeling Spatial Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julia%20Desiree%20Velastegui%20Caceres">Julia Desiree Velastegui Caceres</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Alejandro%20Velastegui%20Caceres"> Luis Alejandro Velastegui Caceres</a>, <a href="https://publications.waset.org/abstracts/search?q=Oswaldo%20Padilla"> Oswaldo Padilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Kirby"> Eduardo Kirby</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Guerrero"> Francisco Guerrero</a>, <a href="https://publications.waset.org/abstracts/search?q=Theofilos%20%20Toulkeridis"> Theofilos Toulkeridis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is fundamental to conserve sites of natural and cultural heritage with any available technique or existing methodology of preservation in order to sustain them for the following generations. We propose a further skill to protect the actual view of such sites, in which with high technology instrumentation we are able to digitally preserve natural and cultural heritages applied in Ecuador. In this project the use of laser technology is presented for three-dimensional models, with high accuracy in a relatively short period of time. In Ecuador so far, there are not any records on the use and processing of data obtained by this new technological trend. The importance of the project is the description of the methodology of the laser scanner system using the Faro Laser Scanner Focus 3D 120, the method for 3D modeling of geospatial data and the development of virtual environments in the areas of Cultural and Natural Heritage. In order to inform users this trend in technology in which three-dimensional models are generated, the use of such tools has been developed to be able to be displayed in all kinds of digitally formats. The results of the obtained 3D models allows to demonstrate that this technology is extremely useful in these areas, but also indicating that each data campaign needs an individual slightly different proceeding starting with the data capture and processing to obtain finally the chosen virtual environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20scanner%20system" title="laser scanner system">laser scanner system</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20model" title=" 3D model"> 3D model</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20heritage" title=" cultural heritage"> cultural heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20heritage" title=" natural heritage"> natural heritage</a> </p> <a href="https://publications.waset.org/abstracts/58508/study-and-conservation-of-cultural-and-natural-heritages-with-the-use-of-laser-scanner-and-processing-system-for-3d-modeling-spatial-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5527</span> An Innovative Approach to Solve Thermal Comfort Problem Related to the 100m2 Houses in Erbil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haval%20Sami%20Ali">Haval Sami Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Majeed%20Hassoon%20%20Aldelfi"> Hassan Majeed Hassoon Aldelfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the rapid growth of Erbil population and the resulting shortage of residential buildings, individuals actively utilized 5x20 m plots for two bedroom residential houses. Consequently, poor and unhealthy ventilation comes about. In this paper, the authors developed an old Barajeel (Wind Catchers) approach for natural ventilation. Two Barajeels (Wind Catchers) are designed and located at both extreme ends of the built unit. The two wind catchers are made as inlet and outlet for the air movement where the rate of air changes at its best. To validate the usage of the wind catchers a CFD Software was used to simulate the operation of the wind catchers for natural ventilations for average wind speed of 2 m/s. The results show a positive solution to solve the problem of the cramped such built units. It can be concluded that such solutions can be deployed by the local Kurdistan authorities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20catcher" title="wind catcher">wind catcher</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural" title=" natural"> natural</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20changes" title=" air changes"> air changes</a>, <a href="https://publications.waset.org/abstracts/search?q=Barajeel" title=" Barajeel"> Barajeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Erbil" title=" Erbil"> Erbil</a> </p> <a href="https://publications.waset.org/abstracts/76483/an-innovative-approach-to-solve-thermal-comfort-problem-related-to-the-100m2-houses-in-erbil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5526</span> A General Assessment of Varagavank Monastery in Van City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20Kurucu">Muhammet Kurucu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahabettin%20Ozturk"> Sahabettin Ozturk</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20Guler"> Soner Guler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Varagavank monastery is one of the most important symbols of Van city. In time, because of it hosted sacred memories, Varagavank monastery has become a great place with additional churches and chapels. A large part of contemporary spaces in the main building of the Varagavank monastery are now under ground. In addition to this, many parts of this structure have been destroyed by humanity and natural disasters. In this study, present condition of the Varagavank monastery are observed and debated in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van%20city" title="Van city">Van city</a>, <a href="https://publications.waset.org/abstracts/search?q=seven%20churches" title=" seven churches"> seven churches</a>, <a href="https://publications.waset.org/abstracts/search?q=chapel" title=" chapel"> chapel</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20disasters" title=" natural disasters"> natural disasters</a> </p> <a href="https://publications.waset.org/abstracts/28496/a-general-assessment-of-varagavank-monastery-in-van-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5525</span> Suitability of Alternative Insulating Fluid for Power Transformer: A Laboratory Investigation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Deepa">S. N. Deepa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Srinivasan"> A. D. Srinivasan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20T.%20Veeramanju"> K. T. Veeramanju</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sandeep%20Kumar"> R. Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwini%20Mathapati"> Ashwini Mathapati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power transformer is a vital element in a power system as it continuously regulates power flow, maintaining good voltage regulation. The working of transformer much depends on the oil insulation, the oil insulation also decides the aging of transformer and hence its reliability. The mineral oil based liquid insulation is globally accepted for power transformer insulation; however it is potentially hazardous due to its non-biodegradability. In this work efficient alternative biodegradable insulating fluid is presented as a replacement to conventional mineral oil. Dielectric tests are performed as distinct alternating fluid to evaluate the suitability for transformer insulation. The selection of the distinct natural esters for an insulation system is carried out by the laboratory investigation of Breakdown voltage, Oxidation stability, Dissipation factor, Permittivity, Viscosity, Flash and Fire point. It is proposed to study and characterize the properties of natural esters to be used in power transformer. Therefore for the investigation of the dielectric behavior rice bran oil, sesame oil, and sunflower oil are considered for the study. The investigated results have been compared with the mineral oil to validate the dielectric behavior of natural esters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20insulating%20fluid" title="alternative insulating fluid">alternative insulating fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title=" dielectric properties"> dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20esters" title=" natural esters"> natural esters</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20transformers" title=" power transformers"> power transformers</a> </p> <a href="https://publications.waset.org/abstracts/109877/suitability-of-alternative-insulating-fluid-for-power-transformer-a-laboratory-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5524</span> An Experimental Investigation on Banana and Pineapple Natural Fibers Reinforced with Polypropylene Composite by Impact Test and SEM Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Karibasavaraja">D. Karibasavaraja</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20M.R."> Ramesh M.R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sufiyan%20Ahmed"> Sufiyan Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Noyonika%20M.R."> Noyonika M.R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameeksha%20A.%20V."> Sameeksha A. V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamatha%20J."> Mamatha J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Samiksha%20S.%20Urs"> Samiksha S. Urs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper gives an overview of the experimental analysis of natural fibers with polymer composite. The whole world is concerned about conserving the environment. Henceforth, the demand for natural and decomposable materials is increasing. The application of natural fibers is widely used in aerospace for manufacturing aircraft bodies, and ship construction in navy fields. Based on the literature review, researchers and scientists are replacing synthetic fibers with natural fibers. The selection of these fibers mainly depends on lightweight, easily available, and economical and has its own physical and chemical properties and many other properties that make them a fine quality fiber. The pineapple fiber has desirable properties of good mechanical strength, high cellulose content, and fiber length. Hybrid composite was prepared using different proportions of pineapple fiber and banana fiber, and their ratios were varied in 90% polypropylene mixed with 5% banana fiber and 5% pineapple fiber, 85% polypropylene mixed with 7.5% banana fiber and 7.5% pineapple fiber and 80% polypropylene mixed with 10% banana fiber and 10% pineapple fiber. By impact experimental analysis, we concluded that the combination of 90% polypropylene and 5% banana fiber and 5% pineapple fiber exhibits a higher toughness value with mechanical strength. We also conducted scanning electron microscopy (SEM) analysis which showed better fiber orientation bonding between the banana and pineapple fibers with polypropylene composites. The main aim of the present research is to evaluate the properties of pineapple fiber and banana fiber reinforced with hybrid polypropylene composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=toughness" title="toughness">toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20strength" title=" impact strength"> impact strength</a>, <a href="https://publications.waset.org/abstracts/search?q=banana%20fibers" title=" banana fibers"> banana fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=pineapple%20fibers" title=" pineapple fibers"> pineapple fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM%20analysis" title=" SEM analysis"> SEM analysis</a> </p> <a href="https://publications.waset.org/abstracts/150953/an-experimental-investigation-on-banana-and-pineapple-natural-fibers-reinforced-with-polypropylene-composite-by-impact-test-and-sem-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5523</span> Evaluation of Heat of Hydration and Strength Development in Natural Pozzolan-Incorporated Cement from the Gulf Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Al-Fadala">S. Al-Fadala</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Chakkamalayath"> J. Chakkamalayath</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Al-Bahar"> S. Al-Bahar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Aibani"> A. Al-Aibani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ahmed"> S. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Globally, the use of pozzolan in blended cement is gaining great interest due to the desirable effect of pozzolan from the environmental and energy conservation standpoint and the technical benefits they provide to the performance of cement. The deterioration of concrete structures in the marine environment and extreme climates demand the use of pozzolana cement in concrete construction in the Gulf region. Also, natural sources of cement clinker materials are limited in the Gulf region, and cement industry imports the raw materials for the production of Portland cement, resulting in an increase in the greenhouse gas effect due to the CO₂ emissions generated from transportation. Even though the Gulf region has vast deposits of natural pozzolana, it is not explored properly for the production of high performance concrete. Hence, an optimum use of regionally available natural pozzolana for the production of blended cement can result in sustainable construction. This paper investigates the effect of incorporating natural pozzolan sourced from the Gulf region on the performance of blended cement in terms of heat evolution and strength development. For this purpose, a locally produced Ordinary Portland Cement (OPC) and pozzolan-incorporated blended cements containing different amounts of natural pozzolan (volcanic ash) were prepared on laboratory scale. The strength development and heat evolution were measured and quantified. Promising results of strength development were obtained for blends with the percentages of Volcanic Ash (VA) replacement varying from 10 to 30%. Results showed that the heat of hydration decreased with increase in percentage of replacement of OPC with VA, indicating increased retardation in hydration due to the addition of VA. This property could be used in mass concreting in which a reduction in heat of hydration is required to reduce cracking in concrete, especially in hot weather concreting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended%20cement" title="blended cement">blended cement</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20weather" title=" hot weather"> hot weather</a>, <a href="https://publications.waset.org/abstracts/search?q=hydration" title=" hydration"> hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20ash" title=" volcanic ash"> volcanic ash</a> </p> <a href="https://publications.waset.org/abstracts/38465/evaluation-of-heat-of-hydration-and-strength-development-in-natural-pozzolan-incorporated-cement-from-the-gulf-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5522</span> Influence of Natural Gum on Curcumin Supersaturationin Gastrointestinal Fluids </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patcharawalai%20Jaisamut">Patcharawalai Jaisamut</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamonthip%20Wiwattanawongsa"> Kamonthip Wiwattanawongsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruedeekorn%20Wiwattanapatapee"> Ruedeekorn Wiwattanapatapee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersaturation of drugs in the gastrointestinal tract is one approach to increase the absorption of poorly water-soluble drugs. The stabilization of a supersaturated state was achieved by adding precipitation inhibitors that may act through a variety of mechanisms.In this study, the effect of the natural gums, acacia, gelatin, pectin and tragacanth on curcumin supersaturation in simulated gastric fluid (SGF) (pH 1.2), fasted state simulated gastric fluid (FaSSGF) (pH 1.6), and simulated intestinal fluid (SIF) (pH 6.8)was investigated. The results indicated that all natural gums significantly increased the curcum insolubility (about 1.2-6-fold)when compared to the absence of gum, and assisted in maintaining the supersaturated drug solution. Among the tested gums, pectin at 3% w/w was the best precipitation inhibitor with a significant increase in the degree of supersaturation about 3-fold in SGF, 2.4-fold in FaSSGF and 2-fold in SIF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curcumin" title="curcumin">curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=solubility" title=" solubility"> solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=supersaturation" title=" supersaturation"> supersaturation</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation%20inhibitor" title=" precipitation inhibitor"> precipitation inhibitor</a> </p> <a href="https://publications.waset.org/abstracts/1466/influence-of-natural-gum-on-curcumin-supersaturationin-gastrointestinal-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5521</span> Statistical Analysis of Natural Images after Applying ICA and ISA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Sheikholharam%20Mashhadi">Peyman Sheikholharam Mashhadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Difficulties in analyzing real world images in classical image processing and machine vision framework have motivated researchers towards considering the biology-based vision. It is a common belief that mammalian visual cortex has been adapted to the statistics of the real world images through the evolution process. There are two well-known successful models of mammalian visual cortical cells: Independent Component Analysis (ICA) and Independent Subspace Analysis (ISA). In this paper, we statistically analyze the dependencies which remain in the components after applying these models to the natural images. Also, we investigate the response of feature detectors to gratings with various parameters in order to find optimal parameters of the feature detectors. Finally, the selectiveness of feature detectors to phase, in both models is considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistics" title="statistics">statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20component%20analysis" title=" independent component analysis"> independent component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20subspace%20analysis" title=" independent subspace analysis"> independent subspace analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=phase" title=" phase"> phase</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20images" title=" natural images"> natural images</a> </p> <a href="https://publications.waset.org/abstracts/34292/statistical-analysis-of-natural-images-after-applying-ica-and-isa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5520</span> Nutraceutical Potential of Mushroom Bioactive Metabolites and Their Food Functionality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jackson%20Ishara">Jackson Ishara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariel%20Buzera"> Ariel Buzera</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustave%20N.%20Mushagalusa"> Gustave N. Mushagalusa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20R.%20A.%20Hammam"> Ahmed R. A. Hammam</a>, <a href="https://publications.waset.org/abstracts/search?q=Judith%20Munga"> Judith Munga</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Karanja"> Paul Karanja</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Kinyuru"> John Kinyuru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerous mushroom bioactive metabolites, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been studied in life-threatening conditions and diseases such as diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity attempting to identify natural therapies. These bioactive metabolites have shown potential as antiviral and immune system strengthener natural agents through diverse cellular and physiological pathways modulation with no toxicity evidence, widely available, and affordable. In light of the emerging literature, this paper compiles the most recent information describing the molecular mechanisms that underlie the nutraceutical potentials of these mushroom metabolites suggesting their effectiveness if combined with existing drug therapies. The findings raise hope that these mushroom bioactive metabolites may be utilized as natural therapies considering their therapeutic potential while anticipating further research designing clinical trials and developing new drug therapies while encouraging their consumption as a natural adjuvant in preventing and controlling life-threatening conditions and diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20metabolites" title="bioactive metabolites">bioactive metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20functionality" title=" food functionality"> food functionality</a>, <a href="https://publications.waset.org/abstracts/search?q=health-threatening%20conditions" title=" health-threatening conditions"> health-threatening conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=mushrooms" title=" mushrooms"> mushrooms</a>, <a href="https://publications.waset.org/abstracts/search?q=nutraceutical" title=" nutraceutical"> nutraceutical</a> </p> <a href="https://publications.waset.org/abstracts/151778/nutraceutical-potential-of-mushroom-bioactive-metabolites-and-their-food-functionality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20dyestuff&page=7" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20dyestuff&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20dyestuff&page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20dyestuff&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20dyestuff&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20dyestuff&page=7">7</a></li> <li class="page-item active"><span class="page-link">8</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20dyestuff&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20dyestuff&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20dyestuff&page=11">11</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20dyestuff&page=191">191</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20dyestuff&page=192">192</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20dyestuff&page=9" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>