CINXE.COM
Search results for: crack width
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: crack width</title> <meta name="description" content="Search results for: crack width"> <meta name="keywords" content="crack width"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="crack width" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="crack width"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1199</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: crack width</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1199</span> Crack Width Analysis of Reinforced Concrete Members under Shrinkage Effect by Pseudo-Discrete Crack Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20J.%20Ma">F. J. Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20H.%20Kwan"> A. K. H. Kwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crack caused by shrinkage movement of concrete is a serious problem especially when restraint is provided. It may cause severe serviceability and durability problems. The existing prediction methods for crack width of concrete due to shrinkage movement are mainly numerical methods under simplified circumstances, which do not agree with each other. To get a more unified prediction method applicable to more sophisticated circumstances, finite element crack width analysis for shrinkage effect should be developed. However, no existing finite element analysis can be carried out to predict the crack width of concrete due to shrinkage movement because of unsolved reasons of conventional finite element analysis. In this paper, crack width analysis implemented by finite element analysis is presented with pseudo-discrete crack model, which combines traditional smeared crack model and newly proposed crack queuing algorithm. The proposed pseudo-discrete crack model is capable of simulating separate and single crack without adopting discrete crack element. And the improved finite element analysis can successfully simulate the stress redistribution when concrete is cracked, which is crucial for predicting crack width, crack spacing and crack number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20queuing%20algorithm" title="crack queuing algorithm">crack queuing algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width%20analysis" title=" crack width analysis"> crack width analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage%20effect" title=" shrinkage effect"> shrinkage effect</a> </p> <a href="https://publications.waset.org/abstracts/50507/crack-width-analysis-of-reinforced-concrete-members-under-shrinkage-effect-by-pseudo-discrete-crack-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1198</span> Diagonal Crack Width of RC Members with High Strength Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Lee">J. Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Lim"> H. S. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Yoon"> S. H. Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analysis of the diagonal crack widths of RC members with various types of materials by simulating a compatibility-aided truss model. The analytical results indicated that the diagonal crack width was influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. The yield strength of shear reinforcement and the compressive strength of concrete decreased the diagonal shear crack width of RC members for the same shear force because of the change of shear failure modes. However, regarding the maximum shear crack width at shear failure, the shear crack width of the beam with high strength materials was greater than that of the beam with normal strength materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagonal%20crack%20width" title="diagonal crack width">diagonal crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20stirrups" title=" high strength stirrups"> high strength stirrups</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20members" title=" RC members"> RC members</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20behavior" title=" shear behavior"> shear behavior</a> </p> <a href="https://publications.waset.org/abstracts/46565/diagonal-crack-width-of-rc-members-with-high-strength-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1197</span> Crack Width Evaluation for Flexural RC Members with Axial Tension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukrit%20Ghorai">Sukrit Ghorai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proof of controlling crack width is a basic condition for securing suitable performance in serviceability limit state. The cracking in concrete can occur at any time from the casting of time to the years after the concrete has been set in place. Most codes struggle with offering procedure for crack width calculation. There is lack in availability of design charts for designers to compute crack width with ease. The focus of the study is to utilize design charts and parametric equations in calculating crack width with minimum error. The paper contains a simplified procedure to calculate crack width for reinforced concrete (RC) sections subjected to bending with axial tensile force following the guidelines of Euro code [DS EN-1992-1-1 & DS EN-1992-1-2]. Numerical examples demonstrate the application of the suggested procedure. Comparison with parallel analytical tools support the validity of result and show the percentage deviation of crack width in both the procedures. The technique is simple, user-friendly and ready to evolve for a greater spectrum of section sizes and materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20structures" title="concrete structures">concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width%20calculation" title=" crack width calculation"> crack width calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=serviceability%20limit%20state" title=" serviceability limit state"> serviceability limit state</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20design" title=" structural design"> structural design</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20engineering" title=" bridge engineering"> bridge engineering</a> </p> <a href="https://publications.waset.org/abstracts/19413/crack-width-evaluation-for-flexural-rc-members-with-axial-tension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1196</span> Effect the Use of Steel Fibers (Dramix) on Reinforced Concrete Slab</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Ananda">Faisal Ananda</a>, <a href="https://publications.waset.org/abstracts/search?q=Junaidi%20Al-Husein"> Junaidi Al-Husein</a>, <a href="https://publications.waset.org/abstracts/search?q=Oni%20Febriani"> Oni Febriani</a>, <a href="https://publications.waset.org/abstracts/search?q=Juli%20Ardita"> Juli Ardita</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Indra"> N. Indra</a>, <a href="https://publications.waset.org/abstracts/search?q=Syaari%20Al-Husein"> Syaari Al-Husein</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bukri"> A. Bukri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, concrete technology continues to grow and continue to innovate one of them using fibers. Fiber concrete has advantages over non-fiber concrete, among others, strong against the effect of shrinkage, ability to reduce crack, fire resistance, etc. In this study, concrete mix design using the procedures listed on SNI 03-2834-2000. The sample used is a cylinder with a height of 30 cm and a width of 15cm in diameter, which is used for compression and tensile testing, while the slab is 400cm x 100cm x 15cm. The fiber used is steel fiber (dramix), with the addition of 2/3 of the thickness of the slabs. The charging is done using a two-point loading. From the result of the research, it is found that the loading of non-fiber slab (0%) of the initial crack is the maximum crack that has passed the maximum crack allowed with a crack width of 1.3 mm with a loading of 1160 kg. The initial crack with the largest load is found on the 1% fiber mixed slab, with the initial crack also being a maximum crack of 0.5mm which also has exceeded the required maximum crack. In the 4% slab the initial crack of 0.1 mm is a minimal initial crack with a load greater than the load of a non-fiber (0%) slab by load1200 kg. While the maximum load on the maximum crack according to the applicable maximum crack conditions, on the 5% fiber mixed slab with a crack width of 0.32mm by loading 1250 kg. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack" title="crack">crack</a>, <a href="https://publications.waset.org/abstracts/search?q=dramix" title=" dramix"> dramix</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=load" title=" load"> load</a>, <a href="https://publications.waset.org/abstracts/search?q=slab" title=" slab"> slab</a> </p> <a href="https://publications.waset.org/abstracts/81402/effect-the-use-of-steel-fibers-dramix-on-reinforced-concrete-slab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1195</span> Combined Effect of High Curing Temperature and Crack Width on Chloride Migration in Reinforced Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elkedrouci%20Lotfi">Elkedrouci Lotfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Diao%20Bo"> Diao Bo</a>, <a href="https://publications.waset.org/abstracts/search?q=Pang%20Sen"> Pang Sen</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Yi"> Li Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deterioration of reinforced concrete structures is a serious concern in the construction engineering, largely due to chloride induced corrosion of reinforcement. Chloride penetration is markedly influenced by one or several major factors at the same time such as cuing in combination with different crack widths which have spectacular effect on reinforced concrete structures. This research presents the results of an experimental investigation involving reinforced concrete beams with three different crack widths ranging from 0 to 0.2mm, curing temperatures of 20°C or 40°C and water-to-cement of 0.5. Chloride content profiles were determined under non-steady state diffusion at 20°C. Based on the obtained results, higher chloride content was obtained under condition of high curing temperature in combination with large crack more than 0.1mm and there are no significant differences between narrow crack width (less than 0.1 mm) and beams without crack (0mm). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20width" title="crack width">crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20curing%20temperature" title=" high curing temperature"> high curing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20chloride%20migration" title=" rapid chloride migration"> rapid chloride migration</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20beam" title=" reinforced concrete beam"> reinforced concrete beam</a> </p> <a href="https://publications.waset.org/abstracts/84151/combined-effect-of-high-curing-temperature-and-crack-width-on-chloride-migration-in-reinforced-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1194</span> A Study of Cracking Behavior in Concrete Beams Reinforced With Two Different Grades of Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nihal%20Abdel%20Hamid%20Taha">Nihal Abdel Hamid Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crack evaluation of flexure reinforced concrete (RC) member is considered an important step in the design process, since the formation of concrete cracks depends on the possibility of exposure to various conditions(pollution, humidity,..etc.). Because of the disparity between different grades of steel in the service load stresses, this affects the cracking behavior. This paper is concerned with the crack pattern and cracking load for concrete beams with T-section reinforced with two different grades of steel at the service load levels stages up to ultimate load. A practical program has been put up to investigate the difference between reinforced steel bars with yield strength 420 N/mm2 and 500 N/mm2 through six T-section reinforced beams. The beams were tested under static- monotonic two– point service loading up to ultimate failure under flexural stresses. The influence of parameters such as clear concrete cover and concrete compressive strength are considered for each of the two grades of steel used. Cracking load, spacing and width were determined. The experimental results demonstrated that increasing the concrete strength results in both of cracking and ultimate load increase, while no significant difference in yield load for the two steel grades used. It has also become obvious, that the number of cracks was more for the lower steel strength, which is followed by decrease in crack width and spacing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RC%20beams" title="RC beams">RC beams</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking%20behavior" title=" cracking behavior"> cracking behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20stress" title=" steel stress"> steel stress</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width" title=" crack width"> crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20spacing" title=" crack spacing"> crack spacing</a> </p> <a href="https://publications.waset.org/abstracts/182397/a-study-of-cracking-behavior-in-concrete-beams-reinforced-with-two-different-grades-of-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1193</span> Numerical Analysis of Effect of Crack Location on the Crack Breathing Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Mobarak">H. M. Mobarak</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20Wu"> Helen Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Keqin%20Xiao"> Keqin Xiao </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a three-dimensional finite element model was developed to investigate the crack breathing behavior at different crack locations considering the effect of unbalance force. A two-disk rotor with a crack is simulated using ABAQUS. The duration of each crack status (open, closed and partially open/closed) during a full shaft rotation was examined to analyse the crack breathing behavior. Unbalanced shaft crack breathing behavior was found to be different at different crack locations. The breathing behavior of crack along the shaft length is divided into different regions depending on the unbalance force and crack location. The simulated results in this work can be further utilised to obtain the time-varying stiffness matrix of the cracked shaft element under the influence of unbalance force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20breathing" title="crack breathing">crack breathing</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20location" title=" crack location"> crack location</a>, <a href="https://publications.waset.org/abstracts/search?q=slant%20crack" title=" slant crack"> slant crack</a>, <a href="https://publications.waset.org/abstracts/search?q=unbalance%20force" title=" unbalance force"> unbalance force</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20shaft" title=" rotating shaft"> rotating shaft</a> </p> <a href="https://publications.waset.org/abstracts/83659/numerical-analysis-of-effect-of-crack-location-on-the-crack-breathing-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1192</span> Flexural Behaviour of Normal Strength and High Strength Fibre Concrete Beams </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostefa%20Hamrat">Mostefa Hamrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensaid%20Boulekbache"> Bensaid Boulekbache</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Chemrouk"> Mohamed Chemrouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Amziane"> Sofiane Amziane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the results of an experimental work on the flexural behaviour of two types of concrete in terms of the progressive cracking process until failure and the crack opening, and beam deflection, using Digital Image Correlation (DIC) technique. At serviceability limit states, comparisons of the building code equations and the equations developed by some researchers for the short-term deflections and crack widths have been made using the reinforced concrete test beams. The experimental results show that the addition of steel fibers increases the first cracking load and amplify the number of cracks that conducts to a remarkable decreasing in the crack width with an increasing in ductility. This study also shows that there is a good agreement between the deflection values for RC beams predicted by the major codes (Eurocode2, ACI 318, and the CAN/CSA-S806) and the experimental results for beams with steel fibers at service load. The most important added benefit of the DIC technique is that it allows detecting the first crack with a high precision easily measures the crack opening and follows the progressive cracking process until failure of reinforced concrete members. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beams" title="beams">beams</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation%20%28DIC%29" title=" digital image correlation (DIC)"> digital image correlation (DIC)</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection" title=" deflection"> deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width" title=" crack width"> crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=serviceability" title=" serviceability"> serviceability</a>, <a href="https://publications.waset.org/abstracts/search?q=codes%20provisions" title=" codes provisions"> codes provisions</a> </p> <a href="https://publications.waset.org/abstracts/19290/flexural-behaviour-of-normal-strength-and-high-strength-fibre-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1191</span> Tensile Behavior of Oil Palm Fiber Concrete (OPFC) with Different Fiber Volume </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Zahreen%20Mohd%20Arof">Khairul Zahreen Mohd Arof</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahimah%20Muhamad"> Rahimah Muhamad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil palm fiber (OPF) is a fibrous material produced from the waste of palm oil industry which is suitable to be used in construction industry. The applications of OPF in concrete can reduce the material costs and enhance concrete behavior. Dog-bone test provides significant results for investigating the behavior of fiber reinforced concrete under tensile loading. It is able to provide stress-strain profile, modulus of elasticity, stress at cracking point and total crack width. In this research, dog-bone tests have been conducted to analyze total crack width, stress-strain profile, and modulus of elasticity of OPFC. Specimens are in a dog-bone shape with a long notch in the middle as compared to the end, to ensure cracks occur only within the notch. Tests were instrumented using a universal testing machine Shimadzu 300kN, a linear variable differential transformer and two strain gauges. A total of nine specimens with different fibers at fiber volume fractions of 0.75%, 1.00%, and 1.25% have been tested to analyze the behavior under tensile loading. Also, three specimens of plain concrete fiber have been tested as control specimens. The tensile test of all specimens have been carried out for concrete age exceed 28 days. It shows that OPFC able to reduce total crack width. In addition, OPFC has higher cracking stress than plain concrete. The study shows plain concrete can be improved with the addition of OPF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cracks" title="cracks">cracks</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width" title=" crack width"> crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=dog-bone%20test" title=" dog-bone test"> dog-bone test</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20fiber%20concrete" title=" oil palm fiber concrete"> oil palm fiber concrete</a> </p> <a href="https://publications.waset.org/abstracts/63754/tensile-behavior-of-oil-palm-fiber-concrete-opfc-with-different-fiber-volume" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1190</span> Dependence of Shaft Stiffness on the Crack Location</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Mobarak">H. M. Mobarak</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20Wu"> Helen Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunhui%20Yang"> Chunhui Yang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an analytical model is developed to study crack breathing behavior under the effect of crack location and unbalance force. Crack breathing behavior is determined using effectual bending angle by studying the transient change in closed area of the crack. The status of the crack of a balanced shaft is symmetrical about shaft rotational angle and the duration of each crack status remains unchanged. The global stiffness of the balanced shaft is independent of crack location. Different crack breathing behavior for the unbalanced shaft has been observed. The influence of crack location on the unbalanced shaft stiffness can be divided into three regions. When the crack is located between 0.3L and 0.8335L, where L is the total length of the shaft, the unbalanced shaft is less stiff and when located outside this region it is stiffer than the balanced shaft. It was also found that unbalanced shaft stiffness has a maximum value with a crack at 0.1946L, a minimum value at 0.8053L and same value as balanced shaft at 0.3L and 0.8335L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cracked%20shaft" title="cracked shaft">cracked shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20location" title=" crack location"> crack location</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20stiffness" title=" shaft stiffness"> shaft stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=unbalanced%20force" title=" unbalanced force"> unbalanced force</a> </p> <a href="https://publications.waset.org/abstracts/58562/dependence-of-shaft-stiffness-on-the-crack-location" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1189</span> Three-Dimensional Numerical Analysis of the Harmfulness of Defects in Oil Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Medjadji">B. Medjadji</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Aminallah"> L. Aminallah</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Serier"> B. Serier</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Benlebna"> M. Benlebna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the finite element method in 3-D is used to calculate the integral J in the semi-elliptical crack in a pipe subjected to internal pressure. The stress-strain curve of the pipe has been determined experimentally. The J-integral was calculated in two fronts crack (Ф = 0 and Ф = π/2). The effect of the configuration of the crack on the J integral is analysed. The results show that an external longitudinal crack in a pipe is the most dangerous. It also shows that the increase in the applied pressure causes a remarkable increase of the integral J. The effect of the depth of the crack becomes important when the ratio between the depth of the crack and the thickness of the pipe (a / t) tends to 1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=J%20integral" title="J integral">J integral</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=MEF" title=" MEF"> MEF</a> </p> <a href="https://publications.waset.org/abstracts/4115/three-dimensional-numerical-analysis-of-the-harmfulness-of-defects-in-oil-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1188</span> Finite Element and Experimental Investigation of Ductile Crack Growth of Surface Cracks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20A.%20Terfas">Osama A. Terfas</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhakim%20A.%20Hameda"> Abdelhakim A. Hameda</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdusalam%20A.%20Alktiwi"> Abdusalam A. Alktiwi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation on ductile crack growth of shallow semi-elliptical surface cracks with a/w=0.2, a/c=0.33 under bending was carried out, where a is the crack depth, w is the plate thickness and c is the crack length at surface. Finite element analysis and experiments were modelling and the crack growth model were verified with experimental data. The results showed that the initial crack shape was no longer maintained as the crack developed under ductile tearing. The maximum growth at the deepest point at early stages was stopped when the crack depth reached half thickness and growth occurred beneath surface. Excellent agreement in the crack shape patterns was observed between the experiments and the crack growth model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20growth" title="crack growth">crack growth</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20tearing" title=" ductile tearing"> ductile tearing</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20stress" title=" mean stress"> mean stress</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20cracks" title=" surface cracks "> surface cracks </a> </p> <a href="https://publications.waset.org/abstracts/19645/finite-element-and-experimental-investigation-of-ductile-crack-growth-of-surface-cracks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1187</span> Numerical Approach for Solving the Hyper Singular Integral Equation in the Analysis of a Central Symmetrical Crack within an Infinite Strip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Slamani">Ikram Slamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hicheme%20Ferdjani"> Hicheme Ferdjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on analyzing a Griffith crack situated at the center of an infinite strip. The problem is reformulated as a hyper-singular integral equation and solved numerically using second-order Chebyshev polynomials. The primary objective is to calculate the stress intensity factor in mode 1, denoted as K1. The obtained results reveal the influence of the strip width and crack length on the stress intensity factor, assuming stress-free edges. Additionally, a comparison is made with relevant literature to validate the findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=center%20crack" title="center crack">center crack</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20polynomial" title=" Chebyshev polynomial"> Chebyshev polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper%20singular%20integral%20equation" title=" hyper singular integral equation"> hyper singular integral equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Griffith" title=" Griffith"> Griffith</a>, <a href="https://publications.waset.org/abstracts/search?q=infinite%20strip" title=" infinite strip"> infinite strip</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a> </p> <a href="https://publications.waset.org/abstracts/167367/numerical-approach-for-solving-the-hyper-singular-integral-equation-in-the-analysis-of-a-central-symmetrical-crack-within-an-infinite-strip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1186</span> Influence of Angular Position of Unbalanced Force on Crack Breathing Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roselyn%20Zaman">Roselyn Zaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mobarak%20Hossain"> Mobarak Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new mathematical model is developed to study crack breathing behavior considering effect of angular position of unbalanced force at different crack locations. Crack breathing behavior has been determined using effectual bending angle by studying the transient change of the crack area. Different crack breathing behavior of the unbalanced shaft has been observed for different combination of angular position of unbalanced force with crack location except crack locations 0.3L and 0.8335L, where L is the total length of the shaft, where unbalanced shaft behave completely like the balanced shaft. Based on different combination of angular position of unbalanced force with crack location, the stiffness of unbalanced shaft can be divided into three regions. An unbalanced shaft is overall stiffer than a balanced shaft when angular position of unbalance force is between 90° to 270° and crack located between 0.3L and 0.8335L, and it is overall flexible when the crack located in outside this crack region. On the other hand, it is overall flexible when angular position of unbalanced force is between 0° to 90° or 270° to 360° and crack located in middle region and it is overall stiffer for outside this crack region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cracked%20shaft" title="cracked shaft">cracked shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20location" title=" crack location"> crack location</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20stiffness" title=" shaft stiffness"> shaft stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=unbalanced%20force" title=" unbalanced force"> unbalanced force</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20unbalanced%20force%20orientation" title=" and unbalanced force orientation"> and unbalanced force orientation</a> </p> <a href="https://publications.waset.org/abstracts/87582/influence-of-angular-position-of-unbalanced-force-on-crack-breathing-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1185</span> Concrete Cracking Simulation Using Vector Form Intrinsic Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Z.%20Wang">R. Z. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20Lin"> B. C. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Huang"> C. H. Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes a new method to simulate the crack propagation under mode-I loading using Vector Form Intrinsic Finite Element (VFIFE) method. A new idea which is expected to combine both VFIFE and J-integral is proposed to calculate the stress density factor as the crack critical in elastic crack. The procedure of implement the cohesive crack propagation in VFIFE based on the fictitious crack model is also proposed. In VFIFIE, the structure deformation is described by numbers of particles instead of elements. The strain energy density and the derivatives of the displacement vector of every particle is introduced to calculate the J-integral as the integral path is discrete by particles. The particle on the crack tip separated into two particles once the stress on the crack tip satisfied with the crack critical and then the crack tip propagates to the next particle. The internal force and the cohesive force is applied to the particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VFIFE" title="VFIFE">VFIFE</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20propagation" title=" crack propagation"> crack propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=fictitious%20crack%20model" title=" fictitious crack model"> fictitious crack model</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20critical" title=" crack critical"> crack critical</a> </p> <a href="https://publications.waset.org/abstracts/43158/concrete-cracking-simulation-using-vector-form-intrinsic-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1184</span> Evaluation of Flexural Cracking Width of Steel Fibre Reinforced Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Touhami%20Tahenni">Touhami Tahenni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excessively wide cracks are harmful to the serviceability of reinforced concrete (RC) beams and may lead to durability problems in the longer term. They also reduce the rigidity of RC sections, rendering the tensile concrete ineffective structurally. To reduce the negative effects of cracks, steel fibers are added to concrete mixes in the same manner as aggregates. In the present work, steel fibers reinforced concrete (SFRC) beams, made of normal strength and high strength concretes, were tested in a four-point bending test using a digital image correlation technique. The beams had different volume fractions of fibres and different aspect ratios (fiber length/fiber diameter). The evaluation of flexural cracking widths was determined using Gom-Aramis software. The experimental crack widths were compared with theoretical values predicted by the technical document of Rilem TC 162-TDF. The model proposed in this document seems to be the only one that considers the efficiency of steel fibres in restraining the crack widths. However, the model of Rilem takes into account only the aspect ratio of steel fibres to predict the crack width of SFRC beams. It has been reported in several pieces of research that the contribution of steel fibres to the limitation of flexural cracking widths is based on three essential parameters namely, the volume fraction, the orientation and the aspect ratio of fibres. Referring to the literature on the flexural cracking behavior of SFRC beams and the experimental observations of the present work, a correction of the Rilem model by the introduction of these parameters in the formula is proposed. The crack widths predicted by the new empirical model were compared with the experimental results and assessed against other test data on SFRC beams taken from the literature. The modified Rilem model gives better results and is found more satisfactory in predicting the crack widths of fibres concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stee%20fibres" title="stee fibres">stee fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20cracking" title=" flexural cracking"> flexural cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width" title=" crack width"> crack width</a> </p> <a href="https://publications.waset.org/abstracts/159802/evaluation-of-flexural-cracking-width-of-steel-fibre-reinforced-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1183</span> Numerical Prediction of Width Crack of Concrete Dapped-End Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatziri%20Y.%20Moreno-Martinez">Jatziri Y. Moreno-Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=Arturo%20Galvan"> Arturo Galvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Chavez%20Cardenas"> Xavier Chavez Cardenas</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiram%20Arroyo"> Hiram Arroyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title="cohesive zone model">cohesive zone model</a>, <a href="https://publications.waset.org/abstracts/search?q=dapped-end%20beams" title=" dapped-end beams"> dapped-end beams</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20crack%20approach" title=" discrete crack approach"> discrete crack approach</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/95557/numerical-prediction-of-width-crack-of-concrete-dapped-end-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1182</span> Influence of Maximum Fatigue Load on Probabilistic Aspect of Fatigue Crack Propagation Life at Specified Grown Crack in Magnesium Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seon%20Soon%20Choi">Seon Soon Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The principal purpose of this paper is to find the influence of maximum fatigue load on the probabilistic aspect of fatigue crack propagation life at a specified grown crack in magnesium alloys. The experiments of fatigue crack propagation are carried out in laboratory air under different conditions of the maximum fatigue loads to obtain the fatigue crack propagation data for the statistical analysis. In order to analyze the probabilistic aspect of fatigue crack propagation life, the goodness-of fit test for probability distribution of the fatigue crack propagation life at a specified grown crack is implemented through Anderson-Darling test. The good probability distribution of the fatigue crack propagation life is also verified under the conditions of the maximum fatigue loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack%20propagation%20life" title="fatigue crack propagation life">fatigue crack propagation life</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title=" magnesium alloys"> magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20fatigue%20load" title=" maximum fatigue load"> maximum fatigue load</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a> </p> <a href="https://publications.waset.org/abstracts/66629/influence-of-maximum-fatigue-load-on-probabilistic-aspect-of-fatigue-crack-propagation-life-at-specified-grown-crack-in-magnesium-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1181</span> Study of the Toughening by Crack Bridging in Mullite Alumina Zirconia Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Gheldane">F. Gheldane</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bouras"> S. Bouras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crack propagation behaviour of alumina mullite zirconia ceramic is investigated under monotonic and cyclic loading by means SENB bending method. This material show R-curve effects, i.e. an increase in crack growth resistance with increasing crack depth. The morphological study showed that the resistance of the crack propagation is mainly connected to the crack bridging. The value of bridging stress is in good agreement with the literature. Furthermore, cyclic-loading fatigue is caused by a decrease in the stress-shielding effect, due to degradation of bridging sites under cyclic loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20mullite%20zirconia" title="alumina mullite zirconia">alumina mullite zirconia</a>, <a href="https://publications.waset.org/abstracts/search?q=R-curve" title=" R-curve"> R-curve</a>, <a href="https://publications.waset.org/abstracts/search?q=bridging" title=" bridging"> bridging</a>, <a href="https://publications.waset.org/abstracts/search?q=toughening" title=" toughening"> toughening</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a> </p> <a href="https://publications.waset.org/abstracts/15375/study-of-the-toughening-by-crack-bridging-in-mullite-alumina-zirconia-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1180</span> Interaction between the Main Crack and Dislocation in the Glass Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mezzidi">A. Mezzidi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hamli%20Benzahar"> H. Hamli Benzahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study evaluates the stress and stress intensity factor during the propagation of a crack at presence of a dislocation near of crack tip. The problem is formulated using a glass material having an equivalent elasticity modulus and a Poisson ratio. In this research work, the proposed material is a plate form with a main crack in one of these ends and a dislocation near this crack, subjected to tensile stresses according to the mode 1 opening. For each distance between the two cracks, we can determine these stresses. This study is treated by finite elements method by using the software (ABAQUS) rate. It is shown here in that obtained results agreed with those determined by other researchers <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack" title="crack">crack</a>, <a href="https://publications.waset.org/abstracts/search?q=dislocation" title=" dislocation"> dislocation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=glass" title=" glass"> glass</a> </p> <a href="https://publications.waset.org/abstracts/44082/interaction-between-the-main-crack-and-dislocation-in-the-glass-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1179</span> Effect of Load Ratio on Probability Distribution of Fatigue Crack Propagation Life in Magnesium Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seon%20Soon%20Choi">Seon Soon Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is necessary to predict a fatigue crack propagation life for estimation of structural integrity. Because of an uncertainty and a randomness of a structural behavior, it is also required to analyze stochastic characteristics of the fatigue crack propagation life at a specified fatigue crack size. The essential purpose of this study is to present the good probability distribution fit for the fatigue crack propagation life at a specified fatigue crack size in magnesium alloys under various fatigue load ratio conditions. To investigate a stochastic crack growth behavior, fatigue crack propagation experiments are performed in laboratory air under several conditions of fatigue load ratio using AZ31. By Anderson-Darling test, a goodness-of-fit test for probability distribution of the fatigue crack propagation life is performed and the good probability distribution fit for the fatigue crack propagation life is presented. The effect of load ratio on variability of fatigue crack propagation life is also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack%20propagation%20life" title="fatigue crack propagation life">fatigue crack propagation life</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20ratio" title=" load ratio"> load ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title=" magnesium alloys"> magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20distribution" title=" probability distribution"> probability distribution</a> </p> <a href="https://publications.waset.org/abstracts/34718/effect-of-load-ratio-on-probability-distribution-of-fatigue-crack-propagation-life-in-magnesium-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">649</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1178</span> Effect of Specimen Thickness on Probability Distribution of Grown Crack Size in Magnesium Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seon%20Soon%20Choi">Seon Soon Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fatigue crack growth is stochastic because of the fatigue behavior having an uncertainty and a randomness. Therefore, it is necessary to determine the probability distribution of a grown crack size at a specific fatigue crack propagation life for maintenance of structure as well as reliability estimation. The essential purpose of this study is to present the good probability distribution fit for the grown crack size at a specified fatigue life in a rolled magnesium alloy under different specimen thickness conditions. Fatigue crack propagation experiments are carried out in laboratory air under three conditions of specimen thickness using AZ31 to investigate a stochastic crack growth behavior. The goodness-of-fit test for probability distribution of a grown crack size under different specimen thickness conditions is performed by Anderson-Darling test. The effect of a specimen thickness on variability of a grown crack size is also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20size" title="crack size">crack size</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack%20propagation" title=" fatigue crack propagation"> fatigue crack propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title=" magnesium alloys"> magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20distribution" title=" probability distribution"> probability distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=specimen%20thickness" title=" specimen thickness"> specimen thickness</a> </p> <a href="https://publications.waset.org/abstracts/11001/effect-of-specimen-thickness-on-probability-distribution-of-grown-crack-size-in-magnesium-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1177</span> Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guang%20Zou">Guang Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Kian%20Banisoleiman"> Kian Banisoleiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Arturo%20Gonz%C3%A1lez"> Arturo González</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20initiation" title="crack initiation">crack initiation</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20reliability" title=" fatigue reliability"> fatigue reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=inspection%20planning" title=" inspection planning"> inspection planning</a>, <a href="https://publications.waset.org/abstracts/search?q=welded%20joints" title=" welded joints"> welded joints</a> </p> <a href="https://publications.waset.org/abstracts/57736/methodologies-for-crack-initiation-in-welded-joints-applied-to-inspection-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1176</span> An Approach for the Assessment of Semi-Elliptical Surface Crack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naweed">Muhammad Naweed</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Tariq%20Murtaza"> Usman Tariq Murtaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Siddique"> Waseem Siddique</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pallet body approach is a finite element-based computational approach used for the modeling and assessment of a three-dimensional surface crack. The approach is capable of inserting the crack in an engineering structure and generating high-quality hexahedral mesh in the cracked region of the structure. The approach is capable of computing the stress intensity factors along a semi-elliptical surface crack numerically. The objective of this work is to present that the stress intensity factors produced by the approach can be used with confidence for capturing the parameters during the fatigue crack growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pallet%20body%20approach" title="pallet body approach">pallet body approach</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-elliptical%20surface%20crack" title=" semi-elliptical surface crack"> semi-elliptical surface crack</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factors" title=" stress intensity factors"> stress intensity factors</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack%20growth" title=" fatigue crack growth"> fatigue crack growth</a> </p> <a href="https://publications.waset.org/abstracts/161448/an-approach-for-the-assessment-of-semi-elliptical-surface-crack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1175</span> Fracture and Fatigue Crack Growth Analysis and Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Volkmar%20Nolting">Volkmar Nolting</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fatigue crack growth prediction has become an important topic in both engineering and non-destructive evaluation. Crack propagation is influenced by the mechanical properties of the material and is conveniently modelled by the Paris-Erdogan equation. The critical crack size and the total number of load cycles are calculated. From a Larson-Miller plot the maximum operational temperature can for a given stress level be determined so that failure does not occur within a given time interval t. The study is used to determine a reasonable inspection cycle and thus enhances operational safety and reduces costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracturemechanics" title="fracturemechanics">fracturemechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20growth%20prediction" title=" crack growth prediction"> crack growth prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime%20of%20a%20component" title=" lifetime of a component"> lifetime of a component</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a> </p> <a href="https://publications.waset.org/abstracts/186532/fracture-and-fatigue-crack-growth-analysis-and-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1174</span> Characteristics of Cumulative Distribution Function of Grown Crack Size at Specified Fatigue Crack Propagation Life under Different Maximum Fatigue Loads in AZ31</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seon%20Soon%20Choi">Seon Soon Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium alloy has been widely used in structure such as an automobile. It is necessary to consider probabilistic characteristics of a structural material because a fatigue behavior of a structure has a randomness and uncertainty. The purpose of this study is to find the characteristics of the cumulative distribution function (CDF) of the grown crack size at a specified fatigue crack propagation life and to investigate a statistical crack propagation in magnesium alloys. The statistical fatigue data of the grown crack size are obtained through the fatigue crack propagation (FCP) tests under different maximum fatigue load conditions conducted on the replicated specimens of magnesium alloys. The 3-parameter Weibull distribution is used to find the CDF of grown crack size. The CDF of grown crack size in case of larger maximum fatigue load has longer tail in below 10 percent and above 90 percent. The fatigue failure occurs easily as the tail of CDF of grown crack size becomes long. The fatigue behavior under the larger maximum fatigue load condition shows more rapid propagation and failure mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cumulative%20distribution%20function" title="cumulative distribution function">cumulative distribution function</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack%20propagation" title=" fatigue crack propagation"> fatigue crack propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=grown%20crack%20size" title=" grown crack size"> grown crack size</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title=" magnesium alloys"> magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20fatigue%20load" title=" maximum fatigue load"> maximum fatigue load</a> </p> <a href="https://publications.waset.org/abstracts/76512/characteristics-of-cumulative-distribution-function-of-grown-crack-size-at-specified-fatigue-crack-propagation-life-under-different-maximum-fatigue-loads-in-az31" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1173</span> The Cracks Propagation Monitoring of a Cantilever Beam Using Modal Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Raki">Morteza Raki</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolghasem%20Zabihollah"> Abolghasem Zabihollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Omid%20Askari"> Omid Askari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cantilever beam is a simplified sample of a lot of mechanical components used in a wide range of applications, including many industries such as gas turbine blade. Due to the nature of the operating conditions, beams are subject to variety of damages especially crack propagates. Crack propagation may lead to catastrophic failure during operation. Therefore, online detection of crack presence and its propagation is very important and may reduce possible significant cost of the whole system failure. This paper aims to investigate the effect of cracks presence and crack propagation on one end fixed beam`s vibration. A finite element model will be developed for the blade in which the modal response of the structure with and without crack will be studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade" title="blade">blade</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20propagation" title=" crack propagation"> crack propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20monitoring" title=" health monitoring"> health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a> </p> <a href="https://publications.waset.org/abstracts/48812/the-cracks-propagation-monitoring-of-a-cantilever-beam-using-modal-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1172</span> Compressive Stresses near Crack Tip Induced by Thermo-Electric Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Jin-Chee%20Liu">Thomas Jin-Chee Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the thermo-electro-structural coupled-field in a cracked metal plate is studied using the finite element analysis. From the computational results, the compressive stresses reveal near the crack tip. This conclusion agrees with the past reference. Furthermore, the compressive condition can retard and stop the crack growth during the Joule heating process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20stress" title="compressive stress">compressive stress</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20tip" title=" crack tip"> crack tip</a>, <a href="https://publications.waset.org/abstracts/search?q=Joule%20heating" title=" Joule heating"> Joule heating</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a> </p> <a href="https://publications.waset.org/abstracts/10730/compressive-stresses-near-crack-tip-induced-by-thermo-electric-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1171</span> Modeling of Crack Propagation Path in Concrete with Coarse Trapezoidal Aggregates by Boundary Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chong%20Wang">Chong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Urbano%20Hoffmann"> Alexandre Urbano Hoffmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interaction between a crack and a trapezoidal aggregate in a single edge notched concrete beam is simulated using boundary element method with an automatic crack extension program. The stress intensity factors of the growing crack are obtained from the J-integral. Three crack extension paths: deflecting around the particulate, growing along the interface and penetrating into the particulate are achieved in terms of the mismatch state of mechanical characteristics of matrix and the particulate. The toughening is also given by the ratio of stress intensity factors. The results reveal that as stress shielding occurs, toughening is obtained when the crack is approaching to a stiff and strong aggregate weakly bonded to a relatively soft matrix. The present work intends to help for the design of aggregate reinforced concretes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregate%20concrete" title="aggregate concrete">aggregate concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20method" title=" boundary element method"> boundary element method</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20composite" title=" two-phase composite"> two-phase composite</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20extension%20path" title=" crack extension path"> crack extension path</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%2Fparticulate%20interaction" title=" crack/particulate interaction"> crack/particulate interaction</a> </p> <a href="https://publications.waset.org/abstracts/28453/modeling-of-crack-propagation-path-in-concrete-with-coarse-trapezoidal-aggregates-by-boundary-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1170</span> Numerical Study of Fatigue Crack Growth at a Web Stiffener of Ship Structural Details</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wentao%20He">Wentao He</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingxi%20Liu"> Jingxi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=De%20Xie"> De Xie </a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is necessary to manage the fatigue crack growth (FCG) once those cracks are detected during in-service inspections. In this paper, a simulation program (FCG-System) is developed utilizing the commercial software ABAQUS with its object-oriented programming interface to simulate the fatigue crack path and to compute the corresponding fatigue life. In order to apply FCG-System in large-scale marine structures, the substructure modeling technique is integrated in the system under the consideration of structural details and load shedding during crack growth. Based on the nodal forces and nodal displacements obtained from finite element analysis, a formula for shell elements to compute stress intensity factors is proposed in the view of virtual crack closure technique. The cracks initiating from the intersection of flange and the end of the web-stiffener are investigated for fatigue crack paths and growth lives under water pressure loading and axial force loading, separately. It is found that the FCG-System developed by authors could be an efficient tool to perform fatigue crack growth analysis on marine structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20path" title="crack path">crack path</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack" title=" fatigue crack"> fatigue crack</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20live" title=" fatigue live"> fatigue live</a>, <a href="https://publications.waset.org/abstracts/search?q=FCG-system" title=" FCG-system"> FCG-system</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20crack%20closure%20technique" title=" virtual crack closure technique"> virtual crack closure technique</a> </p> <a href="https://publications.waset.org/abstracts/8860/numerical-study-of-fatigue-crack-growth-at-a-web-stiffener-of-ship-structural-details" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crack%20width&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crack%20width&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crack%20width&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crack%20width&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crack%20width&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crack%20width&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crack%20width&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crack%20width&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crack%20width&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crack%20width&page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crack%20width&page=40">40</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crack%20width&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>