CINXE.COM
Search results for: geotechnical properties
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: geotechnical properties</title> <meta name="description" content="Search results for: geotechnical properties"> <meta name="keywords" content="geotechnical properties"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="geotechnical properties" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="geotechnical properties"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9168</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: geotechnical properties</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9168</span> Geotechnical Engineering Solutions for Adaptation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johnstone%20Walubengo%20Wangusi">Johnstone Walubengo Wangusi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geotechnical engineering is a multidisciplinary field that encompasses the study of soil, rock, and groundwater properties and their interactions with civil engineering structures. This research paper provides an in-depth overview of geotechnical engineering, covering its fundamental principles, applications in civil infrastructure projects, and the challenges faced by practitioners in the field. Through a comprehensive examination of soil mechanics, foundation design, slope stability analysis, and geotechnical site investigation techniques, this paper aims to highlight the importance of geotechnical engineering in ensuring the safety, stability, and sustainability of infrastructure development. Additionally, it discusses emerging trends, innovative technologies, and future directions in geotechnical engineering research and practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20geotechnical%20engineering%20solutions" title="sustainable geotechnical engineering solutions">sustainable geotechnical engineering solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=education%20and%20training%20for%20future%20generations%20geotechnical%20engineers" title=" education and training for future generations geotechnical engineers"> education and training for future generations geotechnical engineers</a>, <a href="https://publications.waset.org/abstracts/search?q=integration%20of%20geotechnical%20engineering%20and%20structural%20engineering" title=" integration of geotechnical engineering and structural engineering"> integration of geotechnical engineering and structural engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=use%20of%20AI%20in%20geotechnical%20engineering%20modelling" title=" use of AI in geotechnical engineering modelling"> use of AI in geotechnical engineering modelling</a> </p> <a href="https://publications.waset.org/abstracts/184517/geotechnical-engineering-solutions-for-adaptation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9167</span> Preliminary Geotechnical Properties of Uncemented Sandstone Kati Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nursyafiqah%20Abdul%20Kahar">Nursyafiqah Abdul Kahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Niraku%20Rosmawati%20Ahmad"> Niraku Rosmawati Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hisham%20Mohamad"> Hisham Mohamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nuruljannah%20Mohd%20Marzuki"> Siti Nuruljannah Mohd Marzuki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assessment of geotechnical properties of the subsoil is necessary for generating relevant input for the design and construction of a foundation. It is significant for the future development in the area. The focus of this research is to investigate the preliminary geotechnical properties of the uncemented sandstone from Kati formation at Puncak Iskandar, Seri Iskandar. A series of basic soil tests, oedometer and direct shear box tests were carried out to obtain the soil parameters. The uncemented sandstone of Kati Formation was found to have well-graded and poorly graded sand distribution, depending on the location where the samples were obtained. The sand grains distribution was in a range of 82%-100% while, the specific gravity of the uncemented sandstone is in the range 2.65-2.86. The preconsolidation pressure for USB3 was 990 kPa indicating that the sandstone at USB3 sample had undergone 990 kPa of overburden pressure. The angle of friction for uncemented sandstone was ranging between 23.34°-32.92°. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties" title="geotechnical properties">geotechnical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Kati%20formation" title=" Kati formation"> Kati formation</a>, <a href="https://publications.waset.org/abstracts/search?q=uncemented%20sandstone" title=" uncemented sandstone"> uncemented sandstone</a>, <a href="https://publications.waset.org/abstracts/search?q=oedometer%20test%3B%20shear%20box%20test" title=" oedometer test; shear box test"> oedometer test; shear box test</a> </p> <a href="https://publications.waset.org/abstracts/131980/preliminary-geotechnical-properties-of-uncemented-sandstone-kati-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9166</span> Effect of Nanobentonite Particles on Geotechnical Properties of Kerman Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghasemipanah">A. Ghasemipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed"> R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Niroumand"> H. Niroumand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving the geotechnical properties of soil has always been one of the issues in geotechnical engineering. Traditional materials have been used to improve and stabilize soils to date, each with its own advantages and disadvantages. Although the soil stabilization by adding materials such as cement, lime, bitumen, etc. is one of the effective methods to improve the geotechnical properties of soil, but nanoparticles are one of the newest additives which can improve the loose soils. This research is intended to study the effect of adding nanobentonite on soil engineering properties, especially the unconfined compression strength and maximum dry unit weight, using clayey soil with low liquid limit (CL) from Kerman (Iran). Nanobentonite was mixed with soil in three different percentages (i.e. 3, 5, 7% by weight of the parent soil) with different curing time (1, 7 and 28 days). The unconfined compression strength, liquid and plastic limits and plasticity index of treated specimens were measured by unconfined compression and Atterberg limits test. It was found that increase in nanobentonite content resulted in increase in the unconfined compression strength, liquid and plastic limits of the clayey soil and reduce in plasticity index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanobentonite%20particles" title="nanobentonite particles">nanobentonite particles</a>, <a href="https://publications.waset.org/abstracts/search?q=clayey%20soil" title=" clayey soil"> clayey soil</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20stress" title=" unconfined compression stress"> unconfined compression stress</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20improvement." title=" soil improvement."> soil improvement.</a> </p> <a href="https://publications.waset.org/abstracts/111617/effect-of-nanobentonite-particles-on-geotechnical-properties-of-kerman-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9165</span> Spatial Interpolation of Intermediate Soil Properties to Enhance Geotechnical Surveying for Foundation Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yelbek%20B.%20Utepov">Yelbek B. Utepov</a>, <a href="https://publications.waset.org/abstracts/search?q=Assel%20T.%20Mukhamejanova"> Assel T. Mukhamejanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliya%20K.%20Aldungarova"> Aliya K. Aldungarova</a>, <a href="https://publications.waset.org/abstracts/search?q=Aida%20G.%20Nazarova"> Aida G. Nazarova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabit%20A.%20Karaulov"> Sabit A. Karaulov</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurgul%20T.%20Alibekova"> Nurgul T. Alibekova</a>, <a href="https://publications.waset.org/abstracts/search?q=Aigul%20K.%20Kozhas"> Aigul K. Kozhas</a>, <a href="https://publications.waset.org/abstracts/search?q=Dias%20Kazhimkanuly"> Dias Kazhimkanuly</a>, <a href="https://publications.waset.org/abstracts/search?q=Akmaral%20K.%20Tleubayeva"> Akmaral K. Tleubayeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focuses on enhancing geotechnical surveying for foundation design through the spatial interpolation of intermediate soil properties. Traditional geotechnical practices rely on discrete data from borehole drilling, soil sampling, and laboratory analyses, often neglecting the continuous nature of soil properties and disregarding values in intermediate locations. This study challenges these omissions by emphasizing interpolation techniques such as Kriging, Inverse Distance Weighting, and Spline interpolation to capture the nuanced spatial variations in soil properties. The methodology is applied to geotechnical survey data from two construction sites in Astana, Kazakhstan, revealing continuous representations of Young's Modulus, Cohesion, and Friction Angle. The spatial heatmaps generated through interpolation offered valuable insights into the subsurface environment, highlighting heterogeneity and aiding in more informed foundation design decisions for considered cites. Moreover, intriguing patterns of heterogeneity, as well as visual clusters and transitions between soil classes, were explored within seemingly uniform layers. The study bridges the gap between discrete borehole samples and the continuous subsurface, contributing to the evolution of geotechnical engineering practices. The proposed approach, utilizing open-source software geographic information systems, provides a practical tool for visualizing soil characteristics and may pave the way for future advancements in geotechnical surveying and foundation design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20mechanical%20properties" title="soil mechanical properties">soil mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20interpolation" title=" spatial interpolation"> spatial interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20distance%20weighting" title=" inverse distance weighting"> inverse distance weighting</a>, <a href="https://publications.waset.org/abstracts/search?q=heatmaps" title=" heatmaps"> heatmaps</a> </p> <a href="https://publications.waset.org/abstracts/183248/spatial-interpolation-of-intermediate-soil-properties-to-enhance-geotechnical-surveying-for-foundation-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9164</span> Improvement of Deficient Soils in Nigeria Using Bagasse Ash - A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musa%20Alhassan">Musa Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Alhaji%20Mohammed%20Mustapha"> Alhaji Mohammed Mustapha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Review of studies carried out on the use of bagasse ash in the improvement of deficient soils in Nigeria, with emphasis on lateritic and black cotton soils is presented. Although, the bagasse ash is mostly used as additive to the conventional soil stabilizer (cement and lime), the studies generally showed improvement of geotechnical properties of the soils either modified or stabilized with the ash. This showed the potentials of using this agricultural waste (bagasse ash) in the improvement of geotechnical properties of deficient soils. Thus suggesting that using this material at large scale level, in geotechnical engineering practice could help in the provision of stable and durable structures, reduce cost of soil improvement and also reduces environmental nuisance caused by the unused waste in Nigeria <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagasse%20ash" title="bagasse ash">bagasse ash</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20cotton%20soil" title=" black cotton soil"> black cotton soil</a>, <a href="https://publications.waset.org/abstracts/search?q=deficient%20soil" title=" deficient soil"> deficient soil</a>, <a href="https://publications.waset.org/abstracts/search?q=laterite" title=" laterite"> laterite</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20improvement" title=" soil improvement"> soil improvement</a> </p> <a href="https://publications.waset.org/abstracts/34756/improvement-of-deficient-soils-in-nigeria-using-bagasse-ash-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9163</span> Geotechnical Characteristics of Miocenemarl in the Region of Medea North-South Highway, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Yongli">Y. Yongli</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Aissa"> M. H. Aissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper aims for a geotechnical analysis based on experimental physical and mechanical characteristics of Miocene marl situated at Medea region in Algeria. More than 150 soil samples were taken in the investigation part of the North-South Highway which extends over than 53 km from Chiffa in the North to Berrouaghia in the South of Algeria. The analysis of data in terms of Atterberg limits, plasticity index, and clay content reflects an acceptable correlation justified by a high coefficient of regression which was compared with the previous works in the region. Finally, approximated equations that serve as a guideline for geotechnical design locally have been suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties" title=" geotechnical properties"> geotechnical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=miocene%20marl" title=" miocene marl"> miocene marl</a>, <a href="https://publications.waset.org/abstracts/search?q=north-south%20highway" title=" north-south highway"> north-south highway</a> </p> <a href="https://publications.waset.org/abstracts/48442/geotechnical-characteristics-of-miocenemarl-in-the-region-of-medea-north-south-highway-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9162</span> Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chief</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Younes">Rabah Younes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reduction of available land resources and the increased cout associated with the use of high quality materials have led to the need for local soils to be used in geotechnical construction, however; poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in other works unsuitable soils with low bearing capacity , high plasticity coupled with high instability are frequently encountered hence, there is a need to improve the physical and mechanical characteristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for sometime but mixing additives, such us cement, lime and fly ash to the soil to increase its strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization" title=" soil stabilization"> soil stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=naturaln%20pozzolana" title=" naturaln pozzolana"> naturaln pozzolana</a>, <a href="https://publications.waset.org/abstracts/search?q=atterberg%20limits" title=" atterberg limits"> atterberg limits</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength%20shear%20strength" title="compressive strength shear strength">compressive strength shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=curing" title=" curing"> curing</a> </p> <a href="https://publications.waset.org/abstracts/28009/effect-of-mineral-additives-on-improving-the-geotechnical-properties-of-soils-in-chief" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9161</span> Numerical Evaluation of the Degradation of Shear Modulus and Damping Evolution of Soils in the Eastern Region of Algiers Using Geophysical and Geotechnical Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Khiatine">Mohamed Khiatine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramdane%20Bahar"> Ramdane Bahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research performed during the last years has revealed that the seismic response of the soilis significantly non linear and hysteresis to the deformationsitundergoes during earthquakes and notably during violent shaking. This nonlinear behavior of soils can be characterized by curves showing the evolution of shearmodulus and damping versus distortion. Also, in this context, geotechnical seismic engineering problems often require the characterization of dynamic soil properties over a wide range of deformation. This determination of dynamic soil properties is key to predict the seismic response of soils for important civil engineering structures. This communication discusses a numerical analysis method for evaluating the nonlinear dynamic properties of soils in Algeriausing the FLAC2D software and the database resulting from geophysical and geotechnical studies when laboratory dynamic tests are not available. The nonlinear model proposed by Ramberg-Osgood and limited by the Mohr-coulomb criterion is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/abstracts/search?q=ramberg-osgood" title=" ramberg-osgood"> ramberg-osgood</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis." title=" numerical analysis."> numerical analysis.</a> </p> <a href="https://publications.waset.org/abstracts/156371/numerical-evaluation-of-the-degradation-of-shear-modulus-and-damping-evolution-of-soils-in-the-eastern-region-of-algiers-using-geophysical-and-geotechnical-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9160</span> Geotechnical and Mineralogical Properties of Clay Soils in the Second Organized Industrial Region, Konya, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Y%C4%B1ld%C4%B1z">Mustafa Yıldız</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ulvi%20Uzer"> Ali Ulvi Uzer</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Olgun"> Murat Olgun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, geotechnical and mineralogical properties of gypsum containing clay basis which form the ground of Second Organized Industrial Zone in Konya province have been researched through comprehensive field and laboratory experiments. Although sufficient geotechnical research has not been performed yet, an intensive structuring in the region continues at present. The study area consists of mid-lake sediments formed by gypsum containing soft silt-clay basis which evolves to a large area. To determine the soil profile and geotechnical specifications; 18 drilling holes were opened and disturbed / undisturbed soil samples have been taken through shelby tubes within 1.5m intervals. Tests have been performed on these samples to designate the index and strength properties of soil. Besides, at all drilling holes Standart Penetration Tests have been done within 1.5m intervals. For the purpose of determining the mineralogical characteristics of the soil; all rock and X-RD analysis have been carried out on 6 samples which were taken from various depths through the soil profile. Strength and compressibility characteristics of the soil were defined with correlations using laboratory and field test results. Unconfined compressive strength, undrained cohesion, compression index varies between 16 kN/m2 and 405.4 kN/m2, 6.5 kN/m2 and 72 kN/m2, 0.066 and 0.864, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Konya%20second%20organized%20industrial%20region" title="Konya second organized industrial region">Konya second organized industrial region</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=compressibility" title=" compressibility"> compressibility</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20clay" title=" soft clay"> soft clay</a> </p> <a href="https://publications.waset.org/abstracts/43299/geotechnical-and-mineralogical-properties-of-clay-soils-in-the-second-organized-industrial-region-konya-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9159</span> Determination of Geotechnical Properties of Travertine Lithotypes in Van-Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ozvan">Ali Ozvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Akkaya"> Ismail Akkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Mucip%20Tapan"> Mucip Tapan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Travertine is generally a weak or medium strong rock, and physical, mechanical and structural properties of travertines are direct impacts on geotechnical studies. New settlement areas were determined on travertine units after two destructive earthquakes which occurred on October 23rd, 2011 (M=7.1) and November 9th, 2011 (M=5.6) in Tabanlı and Edremit districts of Van province in Turkey, respectively. In the study area, the travertines have different lithotype and engineering properties such as strong crystalline crust, medium strong shrub, and weak reed which can affect mechanical and engineering properties of travertine and each level have different handicaps. Travertine has a higher strength when compared to the soil ground; however, it can have different handicaps such as having poor rock mass, karst caves and weathering alteration. Physico-mechanical properties of travertine in the study area are determined by laboratory tests and field observations. Uniaxial compressive strength (UCS) values were detected by indirect methods, and the strength map of different lithotype of Edremit travertine was created in order to define suitable settlement areas. Also, rock mass properties and underground structure were determined by bore holes, field studies, and geophysical method. The reason of this study is to investigate the relationship between lithotype and physicomechanical properties of travertines. According to the results, lithotype has an effect on physical, mechanical and rock mass properties of travertine levels. It is detected by several research methods that various handicaps may occur on such areas when the active tectonic structure of the area is evaluated along with the karstic cavities within the travertine and different lithotype qualities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=travertine" title="travertine">travertine</a>, <a href="https://publications.waset.org/abstracts/search?q=lithotype" title=" lithotype"> lithotype</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20parameters" title=" geotechnical parameters"> geotechnical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20earthquake" title=" Van earthquake"> Van earthquake</a> </p> <a href="https://publications.waset.org/abstracts/58578/determination-of-geotechnical-properties-of-travertine-lithotypes-in-van-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9158</span> Reliability-Based Design of an Earth Slope Taking into Account Unsaturated Soil Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Siacara">A. T. Siacara</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Beck"> A. T. Beck</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Futai"> M. M. Futai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper shows how accurately and efficiently reliability analyses of geotechnical installations can be performed by directly coupling geotechnical software with a reliability solver. An earth slope is used as the study object. The limit equilibrium method of Morgenstern-Price is used to calculate factors of safety and find the critical slip surface. The deterministic software package Seep/W and Slope/W is coupled with the StRAnD reliability software. Reliability indexes of critical probabilistic surfaces are evaluated by the first-order reliability methods (FORM). By means of sensitivity analysis, the effective cohesion (c') is found to be the most relevant uncertain geotechnical parameter for slope equilibrium. The slope was tested using different geometries, taking into account unsaturated soil properties. Finally, a critical slip surface, identified in terms of minimum factor of safety, is shown here not to be the critical surface in terms of reliability index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slope" title="slope">slope</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated" title=" unsaturated"> unsaturated</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=seepage" title=" seepage"> seepage</a> </p> <a href="https://publications.waset.org/abstracts/126812/reliability-based-design-of-an-earth-slope-taking-into-account-unsaturated-soil-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9157</span> Analysis of Geotechnical Parameters from Geophysical Information</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adewoyin%20O.%20Olusegun">Adewoyin O. Olusegun</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinwumi%20I.%20Isaac"> Akinwumi I. Isaac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In some part of the world where legislations related to site investigations before constructions are not strictly enforced, the expenses and time required for carrying out a comprehensive geotechnical investigation to characterize a site can discourage prospective private residential building developers. Another factor that can discourage a developer is the fact that most of the geotechnical tests procedures utilized during site investigations, to a certain extent, alter the existing environment of the site. This study suggests a quick, non-destructive and non-intrusive method of obtaining key subsoil geotechnical properties necessary for foundation design for proposed engineering facilities. Seismic wave velocities generated from near surface refraction method was used to determine the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity of a competent layer that can bear structural load at the particular study site. Also, regression equations were developed in order to directly obtain the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity from the compressional wave velocities. The results obtained correlated with the results of standard geotechnical investigations carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterize" title="characterize">characterize</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=geophysical" title=" geophysical"> geophysical</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical" title=" geotechnical"> geotechnical</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/37069/analysis-of-geotechnical-parameters-from-geophysical-information" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9156</span> Geotechnical Distress Evaluation of a Damaged Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulfiqar%20Ali">Zulfiqar Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Umar%20Saleem"> Umar Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Junaid"> Muhammad Junaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Tahir"> Rizwan Tahir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gulzar Mahal is a heritage site located in the city of Bahawalpur, Pakistan. The site is under a process of degradation, as cracks are appearing on the walls, roofs, and floor around the building due to differential settlement. To preserve the integrity of the structure, a geotechnical distress evaluation was carried out to evaluate the causal factors and recommend remediation measures. The research involved the characterization of the problematic soil and analysis of the observed distress with respect to the geotechnical properties. Both conventional lab and field tests were used in conjunction with the unconventional techniques like; Electrical Resistivity Tomography (ERT) and FEA. The temporal, geophysical and geotechnical evaluations have concluded that the foundation soil over the past was subjected to variations in the land use, poor drainage patterns, overloading and fluctuations in groundwater table all contributing to the differential settlements manifesting in the form of the visible shear crack across the length and breadth of the building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20settlement" title="differential settlement">differential settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=distress%20evaluation" title=" distress evaluation"> distress evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulzar%20Mahal" title=" Gulzar Mahal"> Gulzar Mahal</a> </p> <a href="https://publications.waset.org/abstracts/121679/geotechnical-distress-evaluation-of-a-damaged-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9155</span> Analysis of the Engineering Judgement Influence on the Selection of Geotechnical Parameters Characteristic Values</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Ivandic">K. Ivandic</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Dodigovic"> F. Dodigovic</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Stuhec"> D. Stuhec</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Strelec"> S. Strelec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A characteristic value of certain geotechnical parameter results from an engineering assessment. Its selection has to be based on technical principles and standards of engineering practice. It has been shown that the results of engineering assessment of different authors for the same problem and input data are significantly dispersed. A survey was conducted in which participants had to estimate the force that causes a 10 cm displacement at the top of a axially in-situ compressed pile. Fifty experts from all over the world took part in it. The lowest estimated force value was 42% and the highest was 133% of measured force resulting from a mentioned static pile load test. These extreme values result in significantly different technical solutions to the same engineering task. In case of selecting a characteristic value of a geotechnical parameter the importance of the influence of an engineering assessment can be reduced by using statistical methods. An informative annex of Eurocode 1 prescribes the method of selecting the characteristic values of material properties. This is followed by Eurocode 7 with certain specificities linked to selecting characteristic values of geotechnical parameters. The paper shows the procedure of selecting characteristic values of a geotechnical parameter by using a statistical method with different initial conditions. The aim of the paper is to quantify an engineering assessment in the example of determining a characteristic value of a specific geotechnical parameter. It is assumed that this assessment is a random variable and that its statistical features will be determined. For this purpose, a survey research was conducted among relevant experts from the field of geotechnical engineering. Conclusively, the results of the survey and the application of statistical method were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20values" title="characteristic values">characteristic values</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20judgement" title=" engineering judgement"> engineering judgement</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode%207" title=" Eurocode 7"> Eurocode 7</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20methods" title=" statistical methods"> statistical methods</a> </p> <a href="https://publications.waset.org/abstracts/87290/analysis-of-the-engineering-judgement-influence-on-the-selection-of-geotechnical-parameters-characteristic-values" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9154</span> District Selection for Geotechnical Settlement Suitability Using GIS and Multi Criteria Decision Analysis: A Case Study in Denizli, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erdal%20Akyol">Erdal Akyol</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutlu%20Alkan"> Mutlu Alkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi criteria decision analysis (MDCA) covers both data and experience. It is very common to solve the problems with many parameters and uncertainties. GIS supported solutions improve and speed up the decision process. Weighted grading as a MDCA method is employed for solving the geotechnical problems. In this study, geotechnical parameters namely soil type; SPT (N) blow number, shear wave velocity (Vs) and depth of underground water level (DUWL) have been engaged in MDCA and GIS. In terms of geotechnical aspects, the settlement suitability of the municipal area was analyzed by the method. MDCA results were compatible with the geotechnical observations and experience. The method can be employed in geotechnical oriented microzoning studies if the criteria are well evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20analysis" title=" spatial analysis"> spatial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20criteria%20decision%20analysis" title=" multi criteria decision analysis"> multi criteria decision analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnics" title=" geotechnics"> geotechnics</a> </p> <a href="https://publications.waset.org/abstracts/9032/district-selection-for-geotechnical-settlement-suitability-using-gis-and-multi-criteria-decision-analysis-a-case-study-in-denizli-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9153</span> Geotechnical Properties and Compressibility Behavior of Organic Dredged Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inci%20Develioglu">Inci Develioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Firat%20Pulat"> Hasan Firat Pulat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable development is one of the most important topics in today's world, and it is also an important research topic for geoenvironmental engineering. Dredging process is performed to expand the river and port channel, flood control and accessing harbors. Every year large amount of sediment are dredged for these purposes. Dredged marine soils can be reused as filling materials, road and foundation embankments, construction materials and wildlife habitat developments. In this study, geotechnical engineering properties and compressibility behavior of dredged soil obtained from the Izmir Bay were investigated. The samples with four different organic matter contents were obtained and particle size distributions, consistency limits, pH and specific gravity tests were performed. The consolidation tests were conducted to examine organic matter content (OMC) effects on compressibility behavior of dredged soil. This study has shown that the OMC has an important effect on the engineering properties of dredged soils. The liquid and plastic limits increased with increasing OMC. The lowest specific gravity belonged to sample which has the maximum OMC. The specific gravity values ranged between 2.76 and 2.52. The maximum void ratio difference belongs to sample with the highest OMC (De<sub>11%</sub> = 0.38)<sub>.</sub> As the organic matter content of the samples increases, the change in the void ratio has also increased. The compression index increases with increasing OMC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressibility" title="compressibility">compressibility</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties" title=" geotechnical properties"> geotechnical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20matter%20content" title=" organic matter content"> organic matter content</a>, <a href="https://publications.waset.org/abstracts/search?q=dredged%20soil" title=" dredged soil"> dredged soil</a> </p> <a href="https://publications.waset.org/abstracts/57070/geotechnical-properties-and-compressibility-behavior-of-organic-dredged-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9152</span> Stabilization of Spent Engine Oil Contaminated Lateritic Soil Admixed with Cement Kiln Dust for Use as Road Construction Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johnson%20Rotimi%20Oluremi">Johnson Rotimi Oluremi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Adedayo%20Adegbola"> A. Adedayo Adegbola</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Samson%20Adediran"> A. Samson Adediran</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Solomon%20Oladapo"> O. Solomon Oladapo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spent engine oil contains heavy metals and polycyclic aromatic hydrocarbons which contribute to chronic health hazards, poor soil aeration, immobilisation of nutrients and lowering of pH in soil. It affects geotechnical properties of lateritic soil thereby constituting geotechnical and foundation problems. This study is therefore based on the stabilization of spent engine oil (SEO) contaminated lateritic soil using cement kiln dust (CKD) as a mean of restoring it to its pristine state. Geotechnical tests which include sieve analysis, atterberg limit, compaction, California bearing ratio and unconfined compressive strength tests were carried out on the natural, SEO contaminated and CKD stabilized SEO contaminated lateritic soil samples. The natural soil classified as A-2-7 (2) by AASHTO classification and GC according to the Unified Soil Classification System changed to A-4 non-plastic soil due to SEO contaminated even under the influence of CKD it remained unchanged. However, the maximum dry density (MDD) of the SEO contaminated soil increased while the optimum moisture content (OMC) behaved vice versa with the increase in the percentages of CKD. Similarly, the bearing strength of the stabilized SEO contaminated soil measured by California Bearing Ratio (CBR) increased with percentage increment in CKD. In conclusion, spent engine oil has a detrimental effect on the geotechnical properties of the lateritic soil sample but which can be remediated using 10% CKD as a stand alone admixture in stabilizing spent engine oil contaminated soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spent%20engine%20oil" title="spent engine oil">spent engine oil</a>, <a href="https://publications.waset.org/abstracts/search?q=lateritic%20soil" title=" lateritic soil"> lateritic soil</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20kiln%20dust" title=" cement kiln dust"> cement kiln dust</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compressive%20strength" title=" unconfined compressive strength"> unconfined compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/71051/stabilization-of-spent-engine-oil-contaminated-lateritic-soil-admixed-with-cement-kiln-dust-for-use-as-road-construction-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9151</span> Influence of Produced Water Mixed With Crude Oil on the Geotechnical Properties of Sandy Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalifa%20Abdunaser">Khalifa Abdunaser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the effects of oil contamination due to pro-duced water leaks that created lakes decades ago, as well as the extent of its im-pact on altering the geotechnical characteristics of the soil, which could act as a barrier to groundwater access The concentration of total petroleum hydrocarbons (TPH), which is the main component in the contaminated soil, was measured using a variety of analyses. Additionally, some extensive laboratory tests were performed to examine the effects on the soil's geotechnical properties, including particle size distribution, shear strength, consistency limits, specific gravity, and permeability coefficient. A clear decrease in TPH concentration was observed with increasing depth, and it is expected to end within only a few meters. It was found that there is a signifi-cant effect of this pollutant on the size of the soil particles, which led to them be-coming coarser than the uncontaminated soil particles. Moreover, it causes a de-crease in fluid and plastic boundaries, as well as an increase in cohesion between soil particles. However, the angle of internal friction decreases with the increase in the content of petroleum hydrocarbons in the soil samples. It came to light that determining the permeability coefficient as one of the physical characteristics of the most important factors responsible for the passage of pollutants in the groundwater, as it showed an obvious reduction in the permeability, which is the main reason dealt as an obstacle to the arrival of oil pollutants to the groundwater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TPH" title="TPH">TPH</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20gravity" title=" specific gravity"> specific gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20lake" title=" oil lake"> oil lake</a>, <a href="https://publications.waset.org/abstracts/search?q=Libya" title=" Libya"> Libya</a> </p> <a href="https://publications.waset.org/abstracts/168253/influence-of-produced-water-mixed-with-crude-oil-on-the-geotechnical-properties-of-sandy-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9150</span> Review in Role of Geotextile on Soil Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Ghavam%20Shirazi">Sandra Ghavam Shirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Ramezan%20Shirazi"> Mohsen Ramezan Shirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Golhashem"> Mohammadreza Golhashem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays by development of construction in modern world new techniques are introduced to civil engineering. As for geotechnical problems and demands of soil improvement, engineers are searching for decisive methods to ensure the safety of projects. As a popular material Geotextiles are used in almost every aspect of civil engineering. There is a vast variety of geotextiles and each kind has their own unique characteristics therefor to select the proper geotextile for a specific project their properties must be carefully examined. This review gathers and evaluates different parameters of geotextiles that are used in geotechnical field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geotextile" title="geotextile">geotextile</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soils" title=" soft soils"> soft soils</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric" title=" fabric"> fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a> </p> <a href="https://publications.waset.org/abstracts/32329/review-in-role-of-geotextile-on-soil-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9149</span> Subsurface Elastic Properties Determination for Site Characterization Using Seismic Refraction Tomography at the Pwalugu Dam Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van-Dycke%20Sarpong%20Asare">Van-Dycke Sarpong Asare</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Adongo"> Vincent Adongo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field measurement of subsurface seismic p-wave velocities was undertaken through seismic refraction tomography. The aim of this work is to obtain a model of the shallow subsurface material elastic properties relevant for geotechnical site characterization. The survey area is at Pwalugu in Northern Ghana, where a multipurpose dam, for electricity generation, irrigation, and potable water delivery, is being planned. A 24-channel seismograph and 24, 10 Hz electromagnetic geophones, deployed 5 m apart constituted the acquisition hardware. Eleven (2-D) seismic refraction profiles, nine of which ran almost perpendicular and two parallel to the White Volta at Pwalugu, were acquired. The refraction tomograms of the thirteen profiles revealed a subsurface model consisting of one minor and one major acoustic impedance boundaries – the top dry/loose sand and the variably weathered sandstone contact, and the overburden-sandstones bedrock contact respectively. The p-wave velocities and by inference, with a priori values of poison ratios, the s-wave velocities, assisted in characterizing the geotechnical conditions of the proposed site and also in evaluating the dynamic properties such as the maximum shear modulus, the bulk modulus, and the Young modulus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomography" title="tomography">tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidated" title=" consolidated"> consolidated</a>, <a href="https://publications.waset.org/abstracts/search?q=Pwalugu%20and%20seismograph" title=" Pwalugu and seismograph"> Pwalugu and seismograph</a> </p> <a href="https://publications.waset.org/abstracts/120294/subsurface-elastic-properties-determination-for-site-characterization-using-seismic-refraction-tomography-at-the-pwalugu-dam-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9148</span> Performance of Bored Pile on Alluvial Deposit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Raja%20Rajan">K. Raja Rajan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nagarajan"> D. Nagarajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bored cast in-situ pile is a popular choice amongst consultant and contractor due to the ability to adjust the pile length suitably in case if any variation found in the actual geological strata. Bangladesh geological strata are dominated by silt content. Design is normally based on field test such as Standard Penetration test N-values. Initially, pile capacity estimated through static formula with co-relation of N-value and angle of internal friction. Initial pile load test was conducted in order to validate the geotechnical parameters assumed in design. Initial pile load test was conducted on 1.5m diameter bored cast in-situ pile. Kentledge method is used to load the pile for 2.5 times of its working load. Initially, safe working load of pile has been estimated as 570T, so test load is fixed to 1425T. Max load applied is 777T for which the settlement reached around 155mm which is more than 10% of diameter of piles. Pile load test results was not satisfactory and compelled to increase the pile length approximately 20% of its total length. Due to unpredictable geotechnical parameters, length of each pile has been increased which is having a major impact on the project cost and as well as in project schedule. Extra bore holes have been planned along with lab test results in order to redefine the assumed geotechnical parameters. This article presents detailed design assumptions of geotechnical parameters in the design stage and the results of pile load test which made to redefine the assumed geotechnical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=end%20bearing" title="end bearing">end bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20load%20test" title=" pile load test"> pile load test</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20friction" title=" shaft friction"> shaft friction</a> </p> <a href="https://publications.waset.org/abstracts/74868/performance-of-bored-pile-on-alluvial-deposit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9147</span> Effect of Temperature on Investigation of Index Properties of Red Clay Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birhanu%20Kassa">Birhanu Kassa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge of temperature effect on index properties and, thus, the understanding of its behavior may be essential for a complete understanding of the various cases of Geotechnical Engineering problems and for conducting meaningful practical research, analysis, and design in tropical regions, such as the Ethiopian environment. The scarcity of the proper geotechnical information on the subsoil makes foundation and engineering works risk able, difficult, and sometimes hazardous. Seasonal variations, environmental effects, terrain challenges, and temperature effects all affect the quality of soil. Simada is a city which is found in south Gondar and it is developing rapidly both in horizontal and vertical construction. Rapid urbanization in the city area has led to an increased interest in the basic properties of soils that are present within the city area. There has been no previous research that looks into the effect of temperature on the investigation of clay soil index qualities in Simada. This work focuses mainly on investigating the Index and some other properties of soil in Simada Town with varying temperatures. To explore the influence of temperature change, samples were collected from various regions of the city, and routine laboratory tests were performed on the collected samples at various temperatures. Disturbed samples were taken at intervals where an average depth of 1.5-2m depths below natural ground level. The standard laboratory tests performed on all twenty-four soil samples were the water content, gradation analysis, Atterberg limits, specific gravity, and compaction test. All specimens were tested at different temperatures (25°C, 35 °C, 45 °C, 65 °C,75 and 105 °C). The variation of the plasticity characteristics of the soils has been determined based on the temperature variation. From the test result, we can conclude that temperature has a significant effect on the index properties of clay soil, in our case, red clay soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airdried" title="airdried">airdried</a>, <a href="https://publications.waset.org/abstracts/search?q=oven%20dried" title=" oven dried"> oven dried</a>, <a href="https://publications.waset.org/abstracts/search?q=soils%20index%20properties" title=" soils index properties"> soils index properties</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction%20test" title=" compaction test"> compaction test</a> </p> <a href="https://publications.waset.org/abstracts/191946/effect-of-temperature-on-investigation-of-index-properties-of-red-clay-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9146</span> Geotechnical-Environmental Risk Assessment in Iranian Healthcare Centers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Siyami">Maryam Siyami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, one of the major environmental challenges is hospital waste, which, due to the presence of hazardous, toxic, and infectious agents, is of particular concern. The expansion of cities and population growth has significantly accelerated the establishment of various healthcare institutions. In this paper, the geotechnical-environmental risks in healthcare centers have been examined. The Iranian Leopold Matrix method was used to analyze the data. According to the study results, the greatest impact was related to socio-economic, environmental factors, particularly waste and wastewater management. Additionally, the most significant geotechnical-environmental risks at hospital were hospital hazardous waste, chemicals, and waste disposal. In conclusion, the most beneficial geotechnical-environmental measures were determined to be wastewater collection, waste collection, and recycling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=risk" title="risk">risk</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnics" title=" geotechnics"> geotechnics</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=Leopold%20Matrix" title=" Leopold Matrix"> Leopold Matrix</a> </p> <a href="https://publications.waset.org/abstracts/191793/geotechnical-environmental-risk-assessment-in-iranian-healthcare-centers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9145</span> Evaluation of Geotechnical Parameters at Nubian Habitations in Kurkur Area, Aswan, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20E.%20Fat-Helbary">R. E. Fat-Helbary</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Abdel-latief"> A. A. Abdel-latief</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Arfa"> M. S. Arfa</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Mostafa"> Alaa Mostafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Egyptian Government proposed a general plan, aiming at constructing new settlements for Nubian in south Aswan in different places around Nasser Lake, one of these settlements in Kurkur area. The Nubian habitations in Wadi Kurkur are located around 30 km southwest of Aswan City. This area are affecting by near distance earthquakes from Kalabsha faults system. The shallow seismic refraction technique was conducted at the study area, to evaluate the soil and rock material quality and geotechnical parameters, in addition to the detection of the subsurface ground model under the study area. The P and S-wave velocities were calculated. The surface layer has P-wave, velocity ranges from 900 m/sec to 1625 m/sec and S-wave velocity ranges from 650 m/sec to 1400 m/sec. On the other hand the bedrock has P-wave velocity ranges from 1300 m/sec to 1980 m/sec and S-wave velocity ranges from 1050 m/sec to1725 m/sec. Measuring Vp and Vs velocities together with bulk density are calculated and used to extract the mechanical properties and geotechnical parameters of the foundation material at the study area. Output of this study is very important for solving the problems, which associated with the construction of various civil engineering purposes, for land use planning and for earthquakes resistant structure design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shallow%20seismic%20refraction%20technique" title="shallow seismic refraction technique">shallow seismic refraction technique</a>, <a href="https://publications.waset.org/abstracts/search?q=Kurkur%20area" title=" Kurkur area"> Kurkur area</a>, <a href="https://publications.waset.org/abstracts/search?q=p%20and%20s-wave%20velocities" title=" p and s-wave velocities"> p and s-wave velocities</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20parameters" title=" geotechnical parameters"> geotechnical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20density" title=" bulk density"> bulk density</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalabsha%20faults" title=" Kalabsha faults"> Kalabsha faults</a> </p> <a href="https://publications.waset.org/abstracts/35906/evaluation-of-geotechnical-parameters-at-nubian-habitations-in-kurkur-area-aswan-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9144</span> Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Shafaei%20Bajestani">Mahsa Shafaei Bajestani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Yazdani"> Mahmoud Yazdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliakbar%20Golshani"> Aliakbar Golshani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m<sup>3</sup>. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expanded%20clay" title="expanded clay">expanded clay</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20shear%20test" title=" direct shear test"> direct shear test</a>, <a href="https://publications.waset.org/abstracts/search?q=triaxial%20test" title=" triaxial test"> triaxial test</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20properties" title=" shear properties"> shear properties</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a> </p> <a href="https://publications.waset.org/abstracts/75574/experimental-determination-of-shear-strength-properties-of-lightweight-expanded-clay-aggregates-using-direct-shear-and-triaxial-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9143</span> Geotechnical Characterization of Landslide in Dounia Park, Algiers, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mira%20Filali">Mira Filali</a>, <a href="https://publications.waset.org/abstracts/search?q=Amar%20Nechnech"> Amar Nechnech</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most landslides in Algiers take place in Piacenzian marls of the Sahel (port in Arabic) and cause severe damage to properties and infrastructures. The aim of this paper is to describe the results of experimental as well as theoretical analysis of landslides. In order to understand the process which caused this slope instabilities, the results of geotechnical investigation carried out by the laboratory of construction (LNHC) laboratory in the area of Dounia park were analyzed, including particle size distribution, Atterberg limits, shear strength, odometer and pressuremeter tests. The study shows that the soils exhibited a high capacity to swelling according to index plasticity and clay content. Highs limit liquidity (LL) (53.45%) means that the soils are susceptible to landslides. The stability analysis carried out using finite element method, shows that the slope is stable (Fs > 1) in dry condition and in static state. Despite this results, the stable site could be described as only conditionally stable because slope failure can occur under combined effect of different factors. In fact the safety factor obtained by applying load when the phreatic surface is at ground, less than 1.5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=index%20properties" title="index properties">index properties</a>, <a href="https://publications.waset.org/abstracts/search?q=landslides" title=" landslides"> landslides</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20factor" title=" safety factor"> safety factor</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/73166/geotechnical-characterization-of-landslide-in-dounia-park-algiers-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9142</span> Characterization and Evaluation of South West Tunisian Clay Types as Insulation of Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najah%20Majouri">Najah Majouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El%20Mankibi"> Mohamed El Mankibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalila%20Sghaier"> Jalila Sghaier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examined the geotechnical, mineralogical, thermal and physical characterization of clays in south-west Tunisia. Its aims are to elaborate an insulator material based on the clay used in the field of building materials. The geotechnical study showed that the clay studied is characterized by a high degree of plasticity of 30.83%. High mineralogical findings showed that the sample consisted mainly of kaonolite and other clay minerals. The thermal and physical properties of the different samples are obtained by mixing clays, which indicates a promising future for the use of this type of clays in the production of insulating building materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-saving" title=" energy-saving"> energy-saving</a>, <a href="https://publications.waset.org/abstracts/search?q=insulator%20material" title=" insulator material"> insulator material</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20South-West%20Tunisia." title=" and South-West Tunisia."> and South-West Tunisia.</a> </p> <a href="https://publications.waset.org/abstracts/165403/characterization-and-evaluation-of-south-west-tunisian-clay-types-as-insulation-of-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9141</span> Reliability of Using Standard Penetration Test (SPT) in Evaluation of Soil Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Alimohammadi">Hossein Alimohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Amirmojahedi"> Mohsen Amirmojahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20%20Rowhani"> Mehrdad Rowhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil properties are used by geotechnical engineers to evaluate and analyze site conditions for designing purposes. Although basic soil classification tests are easy to perform and provide useful information to determine the properties of soils, it may take time to get the result and add some costs to the projects. Standard Penetration Test (SPT) provides an opportunity to evaluate soil parameters without performing laboratory tests. In addition to its simplicity and cheapness, the results become available immediately. This research provides a guideline on the application of the SPT test method, reliability of adapting the SPT test results in evaluating soil physical and mechanical properties such as Atterberg limits, shear strength, and compressive strength compressibility parameters. A total of 70 boreholes were investigated in this study by taking soil samples between depths of 1.2 to 15.25 meters. The project site was located in Morrow County, Ohio. A regression-based formula was proposed based on Tobit regression with a stepwise variable selection analysis conducted between SPT and other typical soil properties obtained from soil tests. The results of the research illustrated that the shear strength and physical properties of the soil affect the SPT number. The proposed correlation can help engineers to use SPT test results in their design with higher accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=standard%20penetration%20test" title="standard penetration test">standard penetration test</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20properties" title=" soil properties"> soil properties</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20classification" title=" soil classification"> soil classification</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20method" title=" regression method"> regression method</a> </p> <a href="https://publications.waset.org/abstracts/137933/reliability-of-using-standard-penetration-test-spt-in-evaluation-of-soil-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9140</span> Reliability Based Performance Evaluation of Stone Column Improved Soft Ground</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20GuhaRay">A. GuhaRay</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20V.%20S.%20P.%20Kiranmayi"> C. V. S. P. Kiranmayi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rudraraju"> S. Rudraraju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study considers the effect of variation of different geotechnical random variables in the design of stone column-foundation systems for assessing the bearing capacity and consolidation settlement of highly compressible soil. The soil and stone column properties, spacing, diameter and arrangement of stone columns are considered as the random variables. Probability of failure (<em>P<sub>f</sub></em>) is computed for a target degree of consolidation and a target safe load by Monte Carlo Simulation (MCS). The study shows that the variation in coefficient of radial consolidation (<em>c<sub>r</sub></em>) and cohesion of soil (<em>c<sub>s</sub></em>) are two most important factors influencing Pf. If the coefficient of variation (COV) of <em>c</em><sub>r</sub> exceeds 20%, <em>P<sub>f</sub></em> exceeds 0.001, which is unsafe following the guidelines of US Army Corps of Engineers. The bearing capacity also exceeds its safe value for COV of <em>c<sub>s</sub></em> > 30%. It is also observed that as the spacing between the stone column increases, the probability of reaching a target degree of consolidation decreases. Accordingly, design guidelines, considering both consolidation and bearing capacity of improved ground, are proposed for different spacing and diameter of stone columns and geotechnical random variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20random%20variables" title=" geotechnical random variables"> geotechnical random variables</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20failure" title=" probability of failure"> probability of failure</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20columns" title=" stone columns"> stone columns</a> </p> <a href="https://publications.waset.org/abstracts/69435/reliability-based-performance-evaluation-of-stone-column-improved-soft-ground" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9139</span> Geotechnical Characterization of Residual Soil for Deterministic Landslide Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vera%20Karla%20S.%20Caingles">Vera Karla S. Caingles</a>, <a href="https://publications.waset.org/abstracts/search?q=Glen%20A.%20Lorenzo"> Glen A. Lorenzo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil, as the main material of landslides, plays a vital role in landslide assessment. An efficient and accurate method of doing an assessment is significantly important to prevent damage of properties and loss of lives. The study has two phases: to establish an empirical correlation of the residual soil thickness with the slope angle and to investigate the geotechnical characteristics of residual soil. Digital Elevation Model (DEM) in Geographic Information System (GIS) was used to establish the slope map and to program sampling points for field investigation. Physical and index property tests were undertaken on the 20 soil samples obtained from the area with Pliocene-Pleistocene geology and different slope angle in Kibawe, Bukidnon. The regression analysis result shows that the best fitting model that can describe the soil thickness-slope angle relationship is an exponential function. The physical property results revealed that soils contain a high percentage of clay and silts ranges from 41% - 99.52%. Based on the index properties test results, the soil exhibits a high degree of plasticity and expansion but not collapsible. It is deemed that this compendium will serve as primary data for slope stability analysis and deterministic landslide assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collapsibility" title="collapsibility">collapsibility</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=expansiveness" title=" expansiveness"> expansiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=landslide" title=" landslide"> landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a> </p> <a href="https://publications.waset.org/abstracts/109136/geotechnical-characterization-of-residual-soil-for-deterministic-landslide-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties&page=305">305</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties&page=306">306</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>