CINXE.COM

Search results for: lithium batteries

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: lithium batteries</title> <meta name="description" content="Search results for: lithium batteries"> <meta name="keywords" content="lithium batteries"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="lithium batteries" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="lithium batteries"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 485</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: lithium batteries</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">395</span> A First-Principles Molecular Dynamics Study on Li+ Solvation Structures in THF/MTHF Containing Electrolytes for Lithium Metal Batteries.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiu-Neng%20Su">Chiu-Neng Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhanamoorthi%20Nachimuthu"> Santhanamoorthi Nachimuthu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Chiang%20Jiang"> Jyh-Chiang Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In lithium-ion batteries (LIBs) the solid–electrolyte interphase (SEI) layer, which forms on the anode surface, plays a crucial role in stabilizing battery performance. Over the past two decades, efforts to enhance LIB electrolytes have primarily focused on refining the quality of SEI components. Despite these endeavors, several observed phenomena remain inadequately improved the SEI layer. Consequently, there has been a significant surge in research interest regarding the behavior of electrolyte solvation structures to elucidate improvements in battery performance. Thus, in this study, we aimed to explore the solvation structures of LiPF₆ in a mixture of organic solvents, tetrahydrofuran (THF) and 2-methyl-tetrahydrofuran (MTHF) using ab-initio molecular dynamics (AIMD) simulations. Our work investigated the solvation structure of electrolytes with different salt concentrations: low-concentration electrolyte (1.0M LiPF6 in 1:1v/v mixture of THF and MTHF), and high-concentration electrolyte (2.0M LiPF₆ in 1:1v/v mixture of THF and MTHF) and compared them with that of conventional electrolyte (1.0M LiPF₆ in 1:1v/v mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC)). Furthermore, the reduction stability of Li+ solvation structures in these electrolyte systems are investigated. It is found that the first solvation shell of Li+ primary consists of THF. We also analyzed the molecular orbital energy levels to understand the reducing stability of these solvents. Compared with the solvation sheath of commercial electrolyte, the THF/MTHF-containing electrolytes have a higher lowest unoccupied molecular orbital (LUMO) energy level, resulting in improved reduction and interface stability. It has been shown that Li-Al alloy can significantly improve cycle life and promote the formation of a dense SEI layer. Therefore, this study aims to construct the solvation structures obtained from calculations of the pure electrolyte system on the surface of Al-Li alloy. Additionally, AIMD simulations will be conducted to investigate chemical reactions at the interface. This investigation aims to elucidate the composition of the SEI layer formed. Furthermore, Bader charges are used to determine the origin and flow of electrons, thereby revealing the sequence of reduction reactions for generating SEI layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium" title="lithium">lithium</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=alloy" title=" alloy"> alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=solvation%20structure" title=" solvation structure"> solvation structure</a> </p> <a href="https://publications.waset.org/abstracts/192129/a-first-principles-molecular-dynamics-study-on-li-solvation-structures-in-thfmthf-containing-electrolytes-for-lithium-metal-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">394</span> Partially Fluorinated Electrolyte for High-Voltage Cathode for Lithium-Ion Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gebregziabher%20Brhane%20Berhe">Gebregziabher Brhane Berhe</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Nien%20Su"> Wei-Nien Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing%20Joe%20Hwang"> Bing Joe Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new lithium-ion battery is configured by coupling sulfurized carbon anode and high voltage LiNi₀.₅Mn₁.₅O₄ (LNMO) cathode. The anode is derived from sulfurized polyacrylonitrile (S-C(PAN)). Severe capacity fading usually becomes unavoidable due to the oxidative decomposition of solvents, primarily when a conventional carbonate electrolyte with 1 M lithium hexafluorophosphate (LiPF6) is employed. Fluoroethylene carbonate (FEC), ethyl methyl carbonate (EMC), and 1, 1, 2, 2-Tetrafluoroethyl-2, 2, 3, 3-tetrafluoropropyl ether (TTE) are formulated as the best electrolyte (3:2:5 in vol. ratio) for this new high-voltage lithium-ion battery to mitigate this capacity fading and improve the adaptability of the S-C(PAN) and LNMO. The discharge capacity of a full cell made with 1 M lithium hexafluorophosphate (LiPF6) in FEC/EMC/TTE (3:2:5) electrolyte reaches 688 mAh g⁻¹ at a rate of 2 C, while 19 mAh g⁻¹ for the control electrolyte. X-ray photoelectron spectroscopy (XPS) results confirm that the fluorinated electrolyte effectively stabilizes both surfaces of S-C(PAN) and LNMO in the full cell. Compared to the control electrolyte, the developed electrolyte enhances the cyclic stability and rate capability of both half cells (Li//S-C(PAN and Li//LiNi₀.₅Mn₁.₅O₄) and S-C(PAN)//LiNi₀.₅Mn₁.₅O₄ full cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorinated%20electrolyte" title="fluorinated electrolyte">fluorinated electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage" title=" high voltage"> high voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title=" lithium-ion battery"> lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylonitrile" title=" polyacrylonitrile"> polyacrylonitrile</a> </p> <a href="https://publications.waset.org/abstracts/193157/partially-fluorinated-electrolyte-for-high-voltage-cathode-for-lithium-ion-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">393</span> Syndrome of Irreversible Lithium-Effectuated Neurotoxicity: Case Report and Review of Literature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20J.%20Thomson">David J. Thomson</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20C.%20J.%20Chew"> Joshua C. J. Chew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Syndrome of Irreversible Lithium-Effectuated Neurotoxicity (SILENT) is a rare complication of lithium toxicity that typically causes irreversible cerebellar dysfunction. These patients may require hemodialysis and extensive supports in the intensive care. Methods: A review was performed on the available literature of SILENT with a focus on current pathophysiological hypotheses and advances in treatment. Articles were restricted to the English language. Results: Although the exact mechanism is unclear, CNS demyelination, especially in the cerebellum, was seen on the brain biopsies of a proportion of patients. There is no definitive management of SILENT but instead current management is focused on primary and tertiary prevention – detection of those at risk, and rehabilitation post onset of neurological deficits. Conclusions: This review draws conclusions from a limited amount of available literature, most of which are isolated case reports. Greater awareness of SILENT and further investigation into the risk factors and pathogenesis are required so this serious and irreversible syndrome may be avoided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20toxicity" title="lithium toxicity">lithium toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenesis" title=" pathogenesis"> pathogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=SILENT" title=" SILENT"> SILENT</a>, <a href="https://publications.waset.org/abstracts/search?q=syndrome%20of%20irreversible%20lithium-effectuated%20neurotoxicity" title=" syndrome of irreversible lithium-effectuated neurotoxicity"> syndrome of irreversible lithium-effectuated neurotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/34033/syndrome-of-irreversible-lithium-effectuated-neurotoxicity-case-report-and-review-of-literature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">392</span> Selective Extraction of Lithium from Native Geothermal Brines Using Lithium-ion Sieves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misagh%20Ghobadi">Misagh Ghobadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rich%20Crane"> Rich Crane</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Hudson-Edwards"> Karen Hudson-Edwards</a>, <a href="https://publications.waset.org/abstracts/search?q=Clemens%20Vinzenz%20Ullmann"> Clemens Vinzenz Ullmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lithium is recognized as the critical energy metal of the 21st century, comparable in importance to coal in the 19th century and oil in the 20th century, often termed 'white gold'. Current global demand for lithium, estimated at 0.95-0.98 million metric tons (Mt) of lithium carbonate equivalent (LCE) annually in 2024, is projected to rise to 1.87 Mt by 2027 and 3.06 Mt by 2030. Despite anticipated short-term stability in supply and demand, meeting the forecasted 2030 demand will require the lithium industry to develop an additional capacity of 1.42 Mt of LCE annually, exceeding current planned and ongoing efforts. Brine resources constitute nearly 65% of global lithium reserves, underscoring the importance of exploring lithium recovery from underutilized sources, especially geothermal brines. However, conventional lithium extraction from brine deposits faces challenges due to its time-intensive process, low efficiency (30-50% lithium recovery), unsuitability for low lithium concentrations (<300 mg/l), and notable environmental impacts. Addressing these challenges, direct lithium extraction (DLE) methods have emerged as promising technologies capable of economically extracting lithium even from low-concentration brines (>50 mg/l) with high recovery rates (75-98%). However, most studies (70%) have predominantly focused on synthetic brines instead of native (natural/real), with limited application of these approaches in real-world case studies or industrial settings. This study aims to bridge this gap by investigating a geothermal brine sample collected from a real case study site in the UK. A Mn-based lithium-ion sieve (LIS) adsorbent was synthesized and employed to selectively extract lithium from the sample brine. Adsorbents with a Li:Mn molar ratio of 1:1 demonstrated superior lithium selectivity and adsorption capacity. Furthermore, the pristine Mn-based adsorbent was modified through transition metals doping, resulting in enhanced lithium selectivity and adsorption capacity. The modified adsorbent exhibited a higher separation factor for lithium over major co-existing cations such as Ca, Mg, Na, and K, with separation factors exceeding 200. The adsorption behaviour was well-described by the Langmuir model, indicating monolayer adsorption, and the kinetics followed a pseudo-second-order mechanism, suggesting chemisorption at the solid surface. Thermodynamically, negative ΔG° values and positive ΔH° and ΔS° values were observed, indicating the spontaneity and endothermic nature of the adsorption process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20minerals" title=" critical minerals"> critical minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=DLE" title=" DLE"> DLE</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20brines" title=" geothermal brines"> geothermal brines</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title=" geochemistry"> geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium" title=" lithium"> lithium</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20sieves" title=" lithium-ion sieves"> lithium-ion sieves</a> </p> <a href="https://publications.waset.org/abstracts/186911/selective-extraction-of-lithium-from-native-geothermal-brines-using-lithium-ion-sieves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">391</span> Synthesis of LiMₓMn₂₋ₓO₄ Doped Co, Ni, Cr and Its Characterization as Lithium Battery Cathode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dyah%20Purwaningsih">Dyah Purwaningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Roto%20Roto"> Roto Roto</a>, <a href="https://publications.waset.org/abstracts/search?q=Hari%20Sutrisno"> Hari Sutrisno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manganese dioxide (MnO₂) and its derivatives are among the most widely used materials for the positive electrode in both primary and rechargeable lithium batteries. The MnO₂ derivative compound of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is one of the leading candidates for positive electrode materials in lithium batteries as it is abundant, low cost and environmentally friendly. Over the years, synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) has been carried out using various methods including sol-gel, gas condensation, spray pyrolysis, and ceramics. Problems with these various methods persist including high cost (so commercially inapplicable) and must be done at high temperature (environmentally unfriendly). This research aims to: (1) synthesize LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) by reflux technique; (2) develop microstructure analysis method from XRD Powder LiMₓMn₂₋ₓO₄ data with the two-stage method; (3) study the electrical conductivity of LiMₓMn₂₋ₓO₄. This research developed the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) with reflux. The materials consisting of Mn(CH₃COOH)₂. 4H₂O and Na₂S₂O₈ were refluxed for 10 hours at 120°C to form β-MnO₂. The doping of Co, Ni and Cr were carried out using solid-state method with LiOH to form LiMₓMn₂₋ₓO₄. The instruments used included XRD, SEM-EDX, XPS, TEM, SAA, TG/DTA, FTIR, LCR meter and eight-channel battery analyzer. Microstructure analysis of LiMₓMn₂₋ₓO₄ was carried out on XRD powder data by two-stage method using FullProf program integrated into WinPlotR and Oscail Program as well as on binding energy data from XPS. The morphology of LiMₓMn₂₋ₓO₄ was studied with SEM-EDX, TEM, and SAA. The thermal stability test was performed with TG/DTA, the electrical conductivity was studied from the LCR meter data. The specific capacity of LiMₓMn₂₋ₓO₄ as lithium battery cathode was tested using an eight-channel battery analyzer. The results showed that the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) was successfully carried out by reflux. The optimal temperature of calcination is 750°C. XRD characterization shows that LiMn₂O₄ has a cubic crystal structure with Fd3m space group. By using the CheckCell in the WinPlotr, the increase of Li/Mn mole ratio does not result in changes in the LiMn₂O₄ crystal structure. The doping of Co, Ni and Cr on LiMₓMn₂₋ₓO₄ (x = 0.02; 0.04; 0; 0.6; 0.08; 0.10) does not change the cubic crystal structure of Fd3m. All the formed crystals are polycrystals with the size of 100-450 nm. Characterization of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) microstructure by two-stage method shows the shrinkage of lattice parameter and cell volume. Based on its range of capacitance, the conductivity obtained at LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is an ionic conductivity with varying capacitance. The specific battery capacity at a voltage of 4799.7 mV for LiMn₂O₄; Li₁.₀₈Mn₁.₉₂O₄; LiCo₀.₁Mn₁.₉O₄; LiNi₀.₁Mn₁.₉O₄ and LiCr₀.₁Mn₁.₉O₄ are 88.62 mAh/g; 2.73 mAh/g; 89.39 mAh/g; 85.15 mAh/g; and 1.48 mAh/g respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LiM%E2%82%93Mn%E2%82%82%E2%82%8B%E2%82%93O%E2%82%84" title="LiMₓMn₂₋ₓO₄">LiMₓMn₂₋ₓO₄</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-state" title=" solid-state"> solid-state</a>, <a href="https://publications.waset.org/abstracts/search?q=reflux" title=" reflux"> reflux</a>, <a href="https://publications.waset.org/abstracts/search?q=two-stage%20method" title=" two-stage method"> two-stage method</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20conductivity" title=" ionic conductivity"> ionic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20capacity" title=" specific capacity"> specific capacity</a> </p> <a href="https://publications.waset.org/abstracts/91955/synthesis-of-limmn2o4-doped-co-ni-cr-and-its-characterization-as-lithium-battery-cathode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">390</span> Reducing Change-Related Costs in Assembly of Lithium-Ion Batteries for Electric Cars by Mechanical Decoupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achim%20Kampker">Achim Kampker</a>, <a href="https://publications.waset.org/abstracts/search?q=Heiner%20Hans%20Heimes"> Heiner Hans Heimes</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Ordung"> Mathias Ordung</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemanja%20Sarovic"> Nemanja Sarovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key component of the drive train of electric vehicles is the lithium-ion battery system. Among various other components, such as the battery management system or the thermal management system, the battery system mostly consists of several cells which are integrated mechanically as well as electrically. Due to different vehicle concepts with regards to space, energy and power specifications, there is a variety of different battery systems. The corresponding assembly lines are specially designed for each battery concept. Minor changes to certain characteristics of the battery have a disproportionally high effect on the set-up effort in the form of high change-related costs. This paper will focus on battery systems which are made out of battery cells with a prismatic format. The product architecture and the assembly process will be analyzed in detail based on battery concepts of existing electric cars and key variety-causing drivers will be identified. On this basis, several measures will be presented and discussed on how to change the product architecture and the assembly process in order to reduce change-related costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly" title="assembly">assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title=" automotive industry"> automotive industry</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20system" title=" battery system"> battery system</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20concept" title=" battery concept"> battery concept</a> </p> <a href="https://publications.waset.org/abstracts/56399/reducing-change-related-costs-in-assembly-of-lithium-ion-batteries-for-electric-cars-by-mechanical-decoupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">389</span> Tin and Tin-Copper Composite Nanorod Anodes for Rechargeable Lithium Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20D.%20Polat">B. D. Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96.%20Kele%C5%9F"> Ö. Keleş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical vapor deposition under conditions of an obliquely incident flux results in a film formation with an inclined columnar structure. These columns will be oriented toward the vapor source because of the self-shadowing effect, and they are homogenously distributed on the substrate surface because of the limited surface diffusion ability of ad-atoms when there is no additional substrate heating. In this work, the oblique angle electron beam evaporation technique is used to fabricate thin films containing inclined nanorods. The results demonstrate that depending on the thin film composition, the morphology of the nanorods changed as well. The galvanostatic analysis of these thin film anodes reveals that a composite CuSn nanorods having approximately 900mAhg-1 of initial discharge capacity, performs higher electrochemical performance compared to pure Sn nanorods containing anode material. The long cycle life and the advanced electrochemical properties of the nano-structured composite electrode might be attributed to its improved mechanical tolerance and enhanced electrical conductivity depending on the Cu presence in the nanorods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Sn%20thin%20film" title="Cu-Sn thin film">Cu-Sn thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20angle%20deposition" title=" oblique angle deposition"> oblique angle deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20batteries" title=" lithium ion batteries"> lithium ion batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=anode" title=" anode"> anode</a> </p> <a href="https://publications.waset.org/abstracts/2210/tin-and-tin-copper-composite-nanorod-anodes-for-rechargeable-lithium-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">388</span> Reinforcement of an Electric Vehicle Battery Pack Using Honeycomb Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brandon%20To">Brandon To</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20S.%20Park"> Yong S. Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As more battery electric vehicles are being introduced into the automobile industry, continuous advancements are constantly made in the electric vehicle space. Improvements in lithium-ion battery technology allow electric vehicles to be capable of traveling long distances. The batteries are capable of being charged faster, allowing for a sufficient range in shorter amounts of time. With increased reliance on battery technology and the changes in vehicle power trains, new challenges arise from this. Resulting electric vehicle fires caused by collisions are potentially more dangerous than those of the typical internal combustion engine. To further reduce the battery failures involved with side collisions, this project intends to reinforce an existing battery pack of an electric vehicle with honeycomb structures such that intrusion into the batteries can be minimized with weight restrictions in place. Honeycomb structures of hexagonal geometry are implemented into the side extrusions of the battery pack. With the use of explicit dynamics simulations performed in ANSYS, quantitative results such as deformation, strain, and stress are used to compare the performance of the battery pack with and without the implemented honeycomb structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20pack" title="battery pack">battery pack</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb" title=" honeycomb"> honeycomb</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20impact" title=" side impact"> side impact</a> </p> <a href="https://publications.waset.org/abstracts/162975/reinforcement-of-an-electric-vehicle-battery-pack-using-honeycomb-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">387</span> Electrocatalysts for Lithium-Sulfur Energy Storage Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirko%20Ante">Mirko Ante</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eeniz%20S%C3%B6rgel"> Şeniz Sörgel</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Bund"> Andreas Bund</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Li-S- (Lithium-Sulfur-) battery systems provide very high specific gravimetric energy (2600 Wh/kg) and volumetric energy density (2800Wh/l). Hence, Li-S batteries are one of the key technologies for both the upcoming electromobility and stationary applications. Furthermore, the Li-S battery system is potentially cheap and environmentally benign. However, the technical implementation suffers from cycling stability, low charge and discharge rates and incomplete understanding of the complex polysulfide reaction mechanism. The aim of this work is to develop an effective electrocatalyst for the polysulfide reactions so that the electrode kinetics of the sulfur half-cell will be improved. Accordingly, the overvoltage will be decreased, and the efficiency of the cell will be increased. An enhanced electroactive surface additionally improves the charge and discharge rates. To reach this goal, functionalized electrocatalytic coatings are investigated to accelerate the kinetics of the polysulfide reactions. In order to determine a suitable electrocatalyst, apparent exchange current densities of a variety of materials (Ni, Co, Pt, Cr, Al, Cu, ITO, stainless steel) have been evaluated in a polysulfide containing electrolyte by potentiodynamic measurements and a Butler-Volmer fit including diffusion limitation. The samples have been examined by Scanning Electron Microscopy (SEM) after the potentiodynamic measurements. Up to now, our work shows that cobalt is a promising material with good electrocatalytic properties for the polysulfide reactions and good chemical stability in the system. Furthermore, an electrodeposition from a modified Watt’s nickel electrolyte with a sulfur source seems to provide an autocatalytic effect, but the electrocatalytic behavior decreases after several cycles of the current-potential-curve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocatalyst" title="electrocatalyst">electrocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20sulfur%20battery" title=" lithium sulfur battery"> lithium sulfur battery</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20electrode%20materials" title=" sulfur electrode materials"> sulfur electrode materials</a> </p> <a href="https://publications.waset.org/abstracts/78665/electrocatalysts-for-lithium-sulfur-energy-storage-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">386</span> Effect of Li-excess on Electrochemical Performance of Ni-rich LiNi₀.₉Co₀.₀₉Mn₀.₀₉O₂ Cathode Materials for Li-ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyob%20Belew%20Abebe">Eyob Belew Abebe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel-rich layered oxide cathode materials having a Ni content of ≥ 90% have great potential for use in next-generation lithium-ion batteries (LIBs), due to their high energy densities and relatively low cost. They suffer, however, from poor cycling performance and rate capability, significantly hampering their widespread applicability. In this study we synthesized a Ni-rich precursor through a co-precipitation method and added different amounts of Li-excess on the precursors using a solid-state method to obtain sintered Li1+x(Ni0.9Co0.05Mn0.05)1–xO2 (denoted as L1+x-NCM; x = 0.00, 0.02, 0.04, 0.06, and 0.08) transition metal (TM) oxide cathode materials. The L1+x-NCM cathode having a Li-excess of 4% exhibited a discharge capacity of ca. 216.17 mAh g–1 at 2.7–4.3 V, 0.1C and retained 95.7% of its initial discharge capacity (ca. 181.39 mAh g–1) after 100 cycles of 1C charge/discharge which is the best performance as compared with stoichiometric Li1+x(Ni0.9Co0.05Mn0.05)1-xO2 (i.e. x=0, Li:TM = 1:1). Furthermore, a high-rate capability of ca. 162.92 mAh g–1 at a rate of 10C, led to the 4% Li-excess optimizing the electrochemical performance, relative to the other Li-excess samples. Ex/in-situ X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy revealed that the 4% Li-excess in the Ni-rich NCM90 cathode material: (i). decreased the Li+/Ni2+ disorder by increasing the content of Ni3+ in the TM slab, (ii). increased the crystallinity, and (iii). accelerated Li+ ion transport by widening the Li-slab. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry confirmed that the appropriate Li-excess lowered the electrochemical impedance and improved the reversibility of the electrochemical reaction. Therefore, our results revealed that NCM90 cathode materials featuring an optimal Li-excess are potential candidates for use in next-generation Li-ion batteries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LiNi%E2%82%80.%E2%82%89Co%E2%82%80.%E2%82%80%E2%82%89Mn%E2%82%80.%E2%82%80%E2%82%89O%E2%82%82" title="LiNi₀.₉Co₀.₀₉Mn₀.₀₉O₂">LiNi₀.₉Co₀.₀₉Mn₀.₀₉O₂</a>, <a href="https://publications.waset.org/abstracts/search?q=li-excess" title=" li-excess"> li-excess</a>, <a href="https://publications.waset.org/abstracts/search?q=cation%20mixing" title=" cation mixing"> cation mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20change" title=" structure change"> structure change</a>, <a href="https://publications.waset.org/abstracts/search?q=cycle%20stability" title=" cycle stability"> cycle stability</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties" title=" electrochemical properties"> electrochemical properties</a> </p> <a href="https://publications.waset.org/abstracts/151888/effect-of-li-excess-on-electrochemical-performance-of-ni-rich-lini09co009mn009o2-cathode-materials-for-li-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">385</span> Nigeria Energy Security: The Role of Solar Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ihugba%20Okezie%20A.">Ihugba Okezie A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Oguzie%20Emeka%20E."> Oguzie Emeka E.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nigeria's renewable energy market is expanding due to increased environmental awareness, supportive government policies, and the need for energy diversification. This paper examines the role of solar batteries in enhancing Nigeria's energy security. With growing energy demands and frequent power outages, integrating solar batteries presents a viable solution to stabilize the energy supply. The study investigates the current state of solar battery technology in Nigeria, its economic and environmental benefits, and the challenges to implementation. Through a literature review, case studies, and stakeholder interviews, the paper provides a comprehensive analysis of solar batteries' contribution to a resilient energy future. Key players include Engie SA, TotalEnergies SE, Starsight Energy, Enel SpA, and North-South Power Co. Ltd. Challenges include high upfront costs, inadequate policies, weak infrastructure, and security risks. The paper recommends that the government should strengthen policies and incentives to encourage investments through tax breaks, subsidies, and financial incentives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20batteries" title=" solar batteries"> solar batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20security" title=" energy security"> energy security</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria%E2%80%99s%20electricity%20generation" title=" Nigeria’s electricity generation"> Nigeria’s electricity generation</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20creation" title=" job creation"> job creation</a> </p> <a href="https://publications.waset.org/abstracts/190023/nigeria-energy-security-the-role-of-solar-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> A Review of Magnesium Air Battery Systems: From Design Aspects to Performance Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sharma">R. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Bhatnagar"> J. K. Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=Poonam"> Poonam</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Sharma"> R. C. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal–air batteries have been designed and developed as an essential source of electric power to propel automobiles, make electronic equipment functional, and use them as the source of power in remote areas and space. High energy and power density, lightweight, easy recharge capabilities, and low cost are essential features of these batteries. Both primary and rechargeable magnesium air batteries are highly promising. Our focus will be on the basics of electrode reaction kinetics of Mg–air cell in this paper. Design and development of Mg or Mg alloys as anode materials, design and composition of air cathode, and promising electrolytes for Mg–air batteries have been reviewed. A brief note on the possible and proposed improvements in design and functionality is also incorporated. This article may serve as the primary and premier document in the critical research area of Mg-air battery systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20cathode" title="air cathode">air cathode</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20design" title=" battery design"> battery design</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20air%20battery" title=" magnesium air battery"> magnesium air battery</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20anode" title=" magnesium anode"> magnesium anode</a>, <a href="https://publications.waset.org/abstracts/search?q=rechargeable%20magnesium%20air%20battery" title=" rechargeable magnesium air battery"> rechargeable magnesium air battery</a> </p> <a href="https://publications.waset.org/abstracts/135970/a-review-of-magnesium-air-battery-systems-from-design-aspects-to-performance-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> Solid Polymer Electrolyte Membranes Based on Siloxane Matrix </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natia%20Jalagonia">Natia Jalagonia</a>, <a href="https://publications.waset.org/abstracts/search?q=Tinatin%20Kuchukhidze"> Tinatin Kuchukhidze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer electrolytes (PE) play an important part in electrochemical devices such as batteries and fuel cells. To achieve optimal performance, the PE must maintain a high ionic conductivity and mechanical stability at both high and low relative humidity. The polymer electrolyte also needs to have excellent chemical stability for long and robustness. According to the prevailing theory, ionic conduction in polymer electrolytes is facilitated by the large-scale segmental motion of the polymer backbone, and primarily occurs in the amorphous regions of the polymer electrolyte. Crystallinity restricts polymer backbone segmental motion and significantly reduces conductivity. Consequently, polymer electrolytes with high conductivity at room temperature have been sought through polymers which have highly flexible backbones and have largely amorphous morphology. The interest in polymer electrolytes was increased also by potential applications of solid polymer electrolytes in high energy density solid state batteries, gas sensors and electrochromic windows. Conductivity of 10-3 S/cm is commonly regarded as a necessary minimum value for practical applications in batteries. At present, polyethylene oxide (PEO)-based systems are most thoroughly investigated, reaching room temperature conductivities of 10-7 S/cm in some cross-linked salt in polymer systems based on amorphous PEO-polypropylene oxide copolymers.. It is widely accepted that amorphous polymers with low glass transition temperatures Tg and a high segmental mobility are important prerequisites for high ionic conductivities. Another necessary condition for high ionic conductivity is a high salt solubility in the polymer, which is most often achieved by donors such as ether oxygen or imide groups on the main chain or on the side groups of the PE. It is well established also that lithium ion coordination takes place predominantly in the amorphous domain, and that the segmental mobility of the polymer is an important factor in determining the ionic mobility. Great attention was pointed to PEO-based amorphous electrolyte obtained by synthesis of comb-like polymers, by attaching short ethylene oxide unit sequences to an existing amorphous polymer backbone. The aim of presented work is to obtain of solid polymer electrolyte membranes using PMHS as a matrix. For this purpose the hydrosilylation reactions of α,ω-bis(trimethylsiloxy)methyl¬hydrosiloxane with allyl triethylene-glycol mo¬nomethyl ether and vinyltriethoxysilane at 1:28:7 ratio of initial com¬pounds in the presence of Karstedt’s catalyst, platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon catalyst in 50% solution of anhydrous toluene have been studied. The synthesized olygomers are vitreous liquid products, which are well soluble in organic solvents with specific viscosity ηsp ≈ 0.05 - 0.06. The synthesized olygomers were analysed with FTIR, 1H, 13C, 29Si NMR spectroscopy. Synthesized polysiloxanes were investigated with wide-angle X-ray, gel-permeation chromatography, and DSC analyses. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis¬(trifluoromethylsulfonyl)¬imide polymer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration was investigated and the activation energies of conductivity for all obtained compounds are calculated <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthesis" title="synthesis">synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=PMHS" title=" PMHS"> PMHS</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolyte" title=" electrolyte"> electrolyte</a> </p> <a href="https://publications.waset.org/abstracts/69503/solid-polymer-electrolyte-membranes-based-on-siloxane-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">382</span> 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alfonso%20Sepulveda">Alfonso Sepulveda</a>, <a href="https://publications.waset.org/abstracts/search?q=Brecht%20Put"> Brecht Put</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouha%20Labyedh"> Nouha Labyedh</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20M.%20Vereecken"> Philippe M. Vereecken</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-ion%20rechargeable%20batteries" title="Li-ion rechargeable batteries">Li-ion rechargeable batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20performance" title=" rate performance"> rate performance</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20batteries" title=" 3D batteries"> 3D batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=all-solid%20state" title=" all-solid state"> all-solid state</a> </p> <a href="https://publications.waset.org/abstracts/46911/3d-structuring-of-thin-film-solid-state-batteries-for-high-power-demanding-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">381</span> Synergy Surface Modification for High Performance Li-Rich Cathode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aipeng%20Zhu">Aipeng Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun%20Zhang"> Yun Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing grievous environment problems together with the exhaustion of energy resources put urgent demands for developing high energy density. Considering the factors including capacity, resource and environment, Manganese-based lithium-rich layer-structured cathode materials xLi₂MnO₃⋅(1-x)LiMO₂ (M = Ni, Co, Mn, and other metals) are drawing increasing attention due to their high reversible capacities, high discharge potentials, and low cost. They are expected to be one type of the most promising cathode materials for the next-generation Li-ion batteries (LIBs) with higher energy densities. Unfortunately, their commercial applications are hindered with crucial drawbacks such as poor rate performance, limited cycle life and continuous falling of the discharge potential. With decades of extensive studies, significant achievements have been obtained in improving their cyclability and rate performances, but they cannot meet the requirement of commercial utilization till now. One major problem for lithium-rich layer-structured cathode materials (LLOs) is the side reaction during cycling, which leads to severe surface degradation. In this process, the metal ions can dissolve in the electrolyte, and the surface phase change can hinder the intercalation/deintercalation of Li ions and resulting in low capacity retention and low working voltage. To optimize the LLOs cathode material, the surface coating is an efficient method. Considering the price and stability, Al₂O₃ was used as a coating material in the research. Meanwhile, due to the low initial Coulombic efficiency (ICE), the pristine LLOs was pretreated by KMnO₄ to increase the ICE. The precursor was prepared by a facile coprecipitation method. The as-prepared precursor was then thoroughly mixed with Li₂CO₃ and calcined in air at 500℃ for 5h and 900℃ for 12h to produce Li₁.₂[Ni₀.₂Mn₀.₆]O₂ (LNMO). The LNMO was then put into 0.1ml/g KMnO₄ solution stirring for 3h. The resultant was filtered and washed with water, and dried in an oven. The LLOs obtained was dispersed in Al(NO₃)₃ solution. The mixture was lyophilized to confer the Al(NO₃)₃ was uniformly coated on LLOs. After lyophilization, the LLOs was calcined at 500℃ for 3h to obtain LNMO@LMO@ALO. The working electrodes were prepared by casting the mixture of active material, acetylene black, and binder (polyvinglidene fluoride) dissolved in N-methyl-2-pyrrolidone with a mass ratio of 80: 15: 5 onto an aluminum foil. The electrochemical performance tests showed that the multiple surface modified materials had a higher initial Coulombic efficiency (84%) and better capacity retention (91% after 100 cycles) compared with that of pristine LNMO (76% and 80%, respectively). The modified material suggests that the KMnO₄ pretreat and Al₂O₃ coating can increase the ICE and cycling stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-rich%20materials" title="Li-rich materials">Li-rich materials</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20coating" title=" surface coating"> surface coating</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20batteries" title=" lithium ion batteries"> lithium ion batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%E2%82%82O%E2%82%83" title=" Al₂O₃"> Al₂O₃</a> </p> <a href="https://publications.waset.org/abstracts/127498/synergy-surface-modification-for-high-performance-li-rich-cathode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> The Mechanism Study on the Difference between High and Low Voltage Performance of Li3V2(PO4)3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enhui%20Wang">Enhui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingzhu%20Ou"> Qingzhu Ou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Tang"> Yan Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20Guo"> Xiaodong Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As one of most popular polyanionic compounds in lithium-ion cathode materials, Li3V2(PO4)3 has always suffered from the low rate capability especially during 3~4.8V, which is considered to be related with the ion diffusion resistance and structural transformation during the Li+ de/intercalation. Here, as the change of cut-off voltages, cycling numbers and current densities, the process of SEI interfacial film’s formation-growing- destruction-repair on the surface of the cathode, the structural transformation during the charge and discharge, the de/intercalation kinetics reflected by the electrochemical impedance and the diffusion coefficient, have been investigated in detail. Current density, cycle numbers and cut-off voltage impacting on interfacial film and structure was studied specifically. Firstly, the matching between electrolyte and material was investigated, it turned out that the batteries with high voltage electrolyte showed the best electrochemical performance and high voltage electrolyte would be the best electrolyte. Secondly, AC impedance technology was used to study the changes of interface impedance and lithium ion diffusion coefficient, the results showed that current density, cycle numbers and cut-off voltage influenced the interfacial film together and the one who changed the interfacial properties most was the key factor. Scanning electron microscopy (SEM) analysis confirmed that the attenuation of discharge specific capacity was associated with the destruction and repair process of the SEI film. Thirdly, the X-ray diffraction was used to study the changes of structure, which was also impacted by current density, cycle numbers and cut-off voltage. The results indicated that the cell volume of Li3V2 (PO4 )3 increased as the current density increased; cycle numbers merely influenced the structure of material; the cell volume decreased first and moved back gradually after two Li-ion had been deintercalated as the charging cut-off voltage increased, and increased as the intercalation number of Li-ion increased during the discharging process. Then, the results which studied the changes of interface impedance and lithium ion diffusion coefficient turned out that the interface impedance and lithium ion diffusion coefficient increased when the cut-off voltage passed the voltage platforms and decreased when the cut-off voltage was between voltage platforms. Finally, three-electrode system was first adopted to test the activation energy of the system, the results indicated that the activation energy of the three-electrode system (22.385 KJ /mol) was much smaller than that of two-electrode system (40.064 KJ /mol). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cut-off%20voltage" title="cut-off voltage">cut-off voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=de%2Fintercalation%20kinetics" title=" de/intercalation kinetics"> de/intercalation kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20electrolyte%20interphase%20film" title=" solid electrolyte interphase film"> solid electrolyte interphase film</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20transformation" title=" structural transformation"> structural transformation</a> </p> <a href="https://publications.waset.org/abstracts/43035/the-mechanism-study-on-the-difference-between-high-and-low-voltage-performance-of-li3v2po43" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> Increased Energy Efficiency and Improved Product Quality in Processing of Lithium Bearing Ores by Applying Fluidized-Bed Calcination Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edgar%20Gasafi">Edgar Gasafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Pardemann"> Robert Pardemann</a>, <a href="https://publications.waset.org/abstracts/search?q=Linus%20Perander"> Linus Perander</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the production of lithium carbonate or hydroxide out of lithium bearing ores, a thermal activation (calcination/decrepitation) is required for the phase transition in the mineral to enable an acid respectively soda leaching in the downstream hydrometallurgical section. In this paper, traditional processing in Lithium industry is reviewed, and opportunities to reduce energy consumption and improve product quality and recovery rate will be discussed. The conventional process approach is still based on rotary kiln calcination, a technology in use since the early days of lithium ore processing, albeit not significantly further developed since. A new technology, at least for the Lithium industry, is fluidized bed calcination. Decrepitation of lithium ore was investigated at Outotec’s Frankfurt Research Centre. Focusing on fluidized bed technology, a study of major process parameters (temperature and residence time) was performed at laboratory and larger bench scale aiming for optimal product quality for subsequent processing. The technical feasibility was confirmed for optimal process conditions on pilot scale (400 kg/h feed input) providing the basis for industrial process design. Based on experimental results, a comprehensive Aspen Plus flow sheet simulation was developed to quantify mass and energy flow for the rotary kiln and fluidized bed system. Results show a significant reduction in energy consumption and improved process performance in terms of temperature profile, product quality and plant footprint. The major conclusion is that a substantial reduction of energy consumption can be achieved in processing Lithium bearing ores by using fluidized bed based systems. At the same time and different from rotary kiln process, an accurate temperature and residence time control is ensured in fluidized-bed systems leading to a homogenous temperature profile in the reactor which prevents overheating and sintering of the solids and results in uniform product quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcination" title="calcination">calcination</a>, <a href="https://publications.waset.org/abstracts/search?q=decrepitation" title=" decrepitation"> decrepitation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed" title=" fluidized bed"> fluidized bed</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium" title=" lithium"> lithium</a>, <a href="https://publications.waset.org/abstracts/search?q=spodumene" title=" spodumene"> spodumene</a> </p> <a href="https://publications.waset.org/abstracts/54838/increased-energy-efficiency-and-improved-product-quality-in-processing-of-lithium-bearing-ores-by-applying-fluidized-bed-calcination-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> The Efficacy of Lithium vs. Valporate on Bipolar Patients and Their Sexual Side Effect: A Meta-Analysis of 4159 Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasmeen%20Jamal%20Alabdallat">Yasmeen Jamal Alabdallat</a>, <a href="https://publications.waset.org/abstracts/search?q=Almutazballlah%20Bassam%20Qablan"> Almutazballlah Bassam Qablan</a>, <a href="https://publications.waset.org/abstracts/search?q=Obada%20Ahmad%20Al%20Jayyousi"> Obada Ahmad Al Jayyousi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihdaa%20Mahmoud%20Bani%20Khalaf"> Ihdaa Mahmoud Bani Khalaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20E.%20Alshial"> Eman E. Alshial</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Bipolar disorder, formerly known as manic depression, is a mental health status that leads to extreme mood swings that include emotional lows (depression) and highs (mania or hypomania). This systematic review and meta-analysis aimed to assess the safety and efficacy of lithium versus valproate among bipolar patients. Methods: A computer literature search of PubMed, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials was conducted from inception until June 2022. Studies comparing lithium versus valproate among bipolar patients were selected for the analysis, and all relevant outcomes were pooled in the meta-analysis using Review Manager Software. Results: 11 Randomized Clinical Trials were included in this meta-analysis with a total of 4159 patients. Our meta showed that lithium was superior to valproate in terms of Young Mania Rating Scale (YMRS) (MD = 0.00 with 95% CI, (-0.55 – 0.55; I2 = 0%), P = 1.00). The results of the Hamilton Depression Rating Scale (HDRS) showed that the overall effect favored the valproate treated group (MD = 1.41 with 95% CI, (-0.15 – 2.67; I2 = 0%), P = 0.03). Concerning the results of the Montgomery-Asberg Depression Rating Scale (MADRS), the results showed that the lithium was superior to valproate (MD = 0.03 with 95% CI, (-0.80 to 0.87; I2 = 40%), P = 0.94). In terms of the sexual side effect, we found that the valproate was superior to lithium (RR 1.19 with 95% CI, (0.74 to 1.91; I2 = 0%), P = 0.47). The lithium-treated group was superior in comparison to valproate treated group in terms of Abnormal Involuntary Movement Scale (AIMS) (MD = -0.03 with 95% CI (-0.38 to 0.32; I2 = 0%), P = 0.87). The lithium was more favorable in terms of Simpson-Agnes scale (MD = -0.40 with 95% CI, (-0.86 to 0.06; I2 = 0%), P = 0.09). The results of the Barnes akathisia scale showed that the overall effect of the valproate was more favorable in comparison to lithium (MD = 0.05 with 95% CI, (-0.12 to 0.22; I2 = 0%), P = 0.57). Conclusion: Our study revealed that on the scales of efficacy Lithium treated group surpassed Valproate treated group in terms of Young Mania Rating Scale (YMRS), Abnormal Involuntary Movement Scale (AIMS) and Simpson-Agnes scale, but valproate surpassed it in Barnes Akathisia scale. Furthermore, on the scales of depression Hamilton Depression Rating Scale (HDRS) showed that the overall effect favored Valproate treated group, but Lithium surpassed valproate in terms of Montgomery-Asberg Depression Rating Scale (MADRS). Valproate surpassed Lithium in terms of sexual side effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bipolar" title="bipolar">bipolar</a>, <a href="https://publications.waset.org/abstracts/search?q=mania" title=" mania"> mania</a>, <a href="https://publications.waset.org/abstracts/search?q=bipolar-depression" title=" bipolar-depression"> bipolar-depression</a>, <a href="https://publications.waset.org/abstracts/search?q=sexual%20dysfunction" title=" sexual dysfunction"> sexual dysfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=sexual%20side%20effects" title=" sexual side effects"> sexual side effects</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/155001/the-efficacy-of-lithium-vs-valporate-on-bipolar-patients-and-their-sexual-side-effect-a-meta-analysis-of-4159-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> The Experimental Measurement of the LiBr Concentration of a Solar Absorption Machine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Hatraf">N. Hatraf</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Merabti"> L. Merabti</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Neffah"> Z. Neffah</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Taane"> W. Taane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The excessive consumption of fossil energies (electrical energy) during summer caused by the technological development involves more and more climate warming. In order to reduce the worst impact of gas emissions produced from classical air conditioning, heat driven solar absorption chiller is pretty promising; it consists on using solar as motive energy which is clean and environmentally friendly to provide cold. Solar absorption machine is composed by four components using Lithium Bromide /water as a refrigerating couple. LiBr- water is the most promising in chiller applications due to high safety, high volatility ratio, high affinity, high stability and its high latent heat. The lithium bromide solution is constitute by the salt lithium bromide which absorbs water under certain conditions of pressure and temperature however if the concentration of the solution is high in the absorption chillers; which exceed 70%, the solution will crystallize. The main aim of this article is to study the phenomena of the crystallization and to evaluate how the dependence between the electric conductivity and the concentration which should be controlled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption" title="absorption">absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20results" title=" experimental results"> experimental results</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20bromide%20solution" title=" lithium bromide solution "> lithium bromide solution </a> </p> <a href="https://publications.waset.org/abstracts/10868/the-experimental-measurement-of-the-libr-concentration-of-a-solar-absorption-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> [Keynote Talk]: Morphological Analysis of Continuous Graphene Oxide Fibers Incorporated with Carbon Nanotube and MnCl₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuray%20Ucar">Nuray Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pelin%20Altay"> Pelin Altay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilkay%20Ozsev%20Yuksek"> Ilkay Ozsev Yuksek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene oxide fibers have recently received increasing attention due to their excellent properties such as high specific surface area, high mechanical strength, good thermal properties and high electrical conductivity. They have shown notable potential in various applications including batteries, sensors, filtration and separation and wearable electronics. Carbon nanotubes (CNTs) have unique structural, mechanical, and electrical properties and can be used together with graphene oxide fibers for several application areas such as lithium ion batteries, wearable electronics, etc. Metals salts that can be converted into metal ions and metal oxide can be also used for several application areas such as battery, purification natural gas, filtration, absorption. This study investigates the effects of CNT and metal complex compounds (MnCl₂, metal salts) on the morphological structure of graphene oxide fibers. The graphene oxide dispersion was manufactured by modified Hummers method, and continuous graphene oxide fibers were produced with wet spinning. The CNT and MnCl₂ were incorporated into the coagulation baths during wet spinning process. Produced composite continuous fibers were analyzed with SEM, SEM-EDS and AFM microscopies and as spun fiber counts were measured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20graphene%20oxide%20fiber" title="continuous graphene oxide fiber">continuous graphene oxide fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=Hummers%27%20method" title=" Hummers&#039; method"> Hummers&#039; method</a>, <a href="https://publications.waset.org/abstracts/search?q=CNT" title=" CNT"> CNT</a>, <a href="https://publications.waset.org/abstracts/search?q=MnCl%E2%82%82" title=" MnCl₂"> MnCl₂</a> </p> <a href="https://publications.waset.org/abstracts/99784/keynote-talk-morphological-analysis-of-continuous-graphene-oxide-fibers-incorporated-with-carbon-nanotube-and-mncl2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Electrospun NaMnPO₄/CNF as High-Performance Cathode Material for Sodium Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Concetta%20Busacca">Concetta Busacca</a>, <a href="https://publications.waset.org/abstracts/search?q=Leone%20Frusteri"> Leone Frusteri</a>, <a href="https://publications.waset.org/abstracts/search?q=Orazio%20Di%20Blasi"> Orazio Di Blasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandra%20Di%20Blasi"> Alessandra Di Blasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The large-scale extension of renewable energy led, recently, to the development of efficient and low-cost electrochemical energy storage (EES) systems such as batteries. Although lithium-ion battery (LIB) technology is relatively mature, several issues regarding safety, cyclability, and high costs must be overcome. Thanks to the availability and low cost of sodium, sodium-ion batteries (NIB) have the potential to meet the energy storage needs of the large-scale grid, becoming a valid alternative to LIB in some energy sectors, such as the stationary one. However, important challenges such as low specific energy and short cyclic life due to the large radius of Na+ must be faced to introduce this technology into the market. As an important component of SIBs, cathode materials have a significant effect on the electrochemical performance of SIBs. Recently, sodium layer transition metal oxides, phosphates, and organic compounds have been investigated as cathode materials for SIBs. In particular, phosphate-based compounds such as NaₓMPO₄ (M= Fe, Co, Mn) have been extensively studied as cathodic polyanion materials due to their long cycle stability and appropriate operating voltage. Among these, an interesting cathode material is the NaMnPO₄ based one, thanks to the stability and the high redox potential of the Mn²⁺/Mn³⁺ ion pair (3÷4 V vs. Na+/Na), which allows reaching a high energy density. This work concerns with the synthesis of a composite material based on NaMnPO₄ and carbon nanofibers (NaMnPO₄-CNF) characterized by a mixed crystalline structure between the maricite and olivine phases and a self-standing manufacture obtained by electrospinning technique. The material was tested in a Na-ion battery coin cell in half cell configuration, and showed outstanding electrocatalytic performances with a specific discharge capacity of 125 mAhg⁻¹ and 101 mAhg⁻¹ at 0.3C and 0.6C, respectively, and a retention capacity of about 80% a 0.6C after 100 cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20standing%20materials" title=" self standing materials"> self standing materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Na%20ion%20battery" title=" Na ion battery"> Na ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=cathode%20materials" title=" cathode materials"> cathode materials</a> </p> <a href="https://publications.waset.org/abstracts/174045/electrospun-namnpo4cnf-as-high-performance-cathode-material-for-sodium-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Advanced Lithium Recovery from Brine: 2D-Based Ion Selectivity Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nour%20S.%20Abdelrahman">Nour S. Abdelrahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghyun%20Hong"> Seunghyun Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20A.%20Arafat"> Hassan A. Arafat</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Choi"> Daniel Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Al%20Marzooqi"> Faisal Al Marzooqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract—The advancement of lithium extraction methods from water sources, particularly saltwater brine, is gaining prominence in the lithium recovery industry due to its cost-effectiveness. Traditional techniques like recrystallization, chemical precipitation, and solvent extraction for metal recovery from seawater or brine are energy-intensive and exhibit low efficiency. Moreover, the extensive use of organic solvents poses environmental concerns. As a result, there's a growing demand for environmentally friendly lithium recovery methods. Membrane-based separation technology has emerged as a promising alternative, offering high energy efficiency and ease of continuous operation. In our study, we explored the potential of lithium-selective sieve channels constructed from layers of 2D graphene oxide and MXene (transition metal carbides and nitrides), integrated with surface – SO₃₋ groups. The arrangement of these 2D sheets creates interplanar spacing ranging from 0.3 to 0.8 nm, which forms a barrier against multivalent ions while facilitating lithium-ion movement through nano capillaries. The introduction of the sulfonate group provides an effective pathway for Li⁺ ions, with a calculated binding energy of Li⁺ – SO³⁻ at – 0.77 eV, the lowest among monovalent species. These modified membranes demonstrated remarkably rapid transport of Li⁺ ions, efficiently distinguishing them from other monovalent and divalent species. This selectivity is achieved through a combination of size exclusion and varying binding affinities. The graphene oxide channels in these membranes showed exceptional inter-cation selectivity, with a Li⁺/Mg²⁺ selectivity ratio exceeding 104, surpassing commercial membranes. Additionally, these membranes achieved over 94% rejection of MgCl₂. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion%20permeation" title="ion permeation">ion permeation</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20extraction" title=" lithium extraction"> lithium extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane-based%20separation" title=" membrane-based separation"> membrane-based separation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/177815/advanced-lithium-recovery-from-brine-2d-based-ion-selectivity-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Effect of Thermal Annealing Used in the Hydrothermal Synthesis of Titanium Dioxide on Its Electrochemical Properties As Li-Ion Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabouze%20Nourredine">Gabouze Nourredine</a>, <a href="https://publications.waset.org/abstracts/search?q=Saloua%20Merazga"> Saloua Merazga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to their exceptional durability, low-cost, high-power density, and reliability, cathodes based on titanium dioxide, and more specifically spinel LTO (Li4Ti5O12), present an attractive alternative to conventional lithium cathode materials for multiple applications. The aim of this work is to synthesize and characterize the nanopowders of titanium dioxide (TiO₂) and lithium titanate (Li₄Ti5O₁₂) by the hydrothermal method and to use them as a cathode in a lithium-ion battery. The structural and morphological characterizations of the synthesized powders were performed by XRD, SEM, EDS, and FTIR-ATR. Nevertheless, the study of the electrochemical performances of the elaborated electrode materials was carried out by: cyclic voltametry (CV) and galvanostatic charge/discharge (CDG). The prepared electrode by the powder annealed at 800 °C has a good specific capacity of about 173 mAh/g and a good cyclic stability <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithuim-ion" title="lithuim-ion">lithuim-ion</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=LTO" title=" LTO"> LTO</a>, <a href="https://publications.waset.org/abstracts/search?q=tio2" title=" tio2"> tio2</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity"> capacity</a> </p> <a href="https://publications.waset.org/abstracts/152523/effect-of-thermal-annealing-used-in-the-hydrothermal-synthesis-of-titanium-dioxide-on-its-electrochemical-properties-as-li-ion-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> Experimental investigation on the lithium-Ion Battery Thermal Management System Based on Micro Heat Pipe Array in High Temperature Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruyang%20Ren">Ruyang Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaohua%20Zhao"> Yaohua Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanhua%20Diao"> Yanhua Diao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intermittent and unstable characteristics of renewable energy such as solar energy can be effectively solved through battery energy storage system. Lithium-ion battery is widely used in battery energy storage system because of its advantages of high energy density, small internal resistance, low self-discharge rate, no memory effect and long service life. However, the performance and service life of lithium-ion battery is seriously affected by its operating temperature. Thus, the safety operation of the lithium-ion battery module is inseparable from an effective thermal management system (TMS). In this study, a new type of TMS based on micro heat pipe array (MHPA) for lithium-ion battery is established, and the TMS is applied to a battery energy storage box that needs to operate at a high temperature environment of 40 °C all year round. MHPA is a flat shape metal body with high thermal conductivity and excellent temperature uniformity. The battery energy storage box is composed of four battery modules, with a nominal voltage of 51.2 V, a nominal capacity of 400 Ah. Through the excellent heat transfer characteristics of the MHPA, the heat generated by the charge and discharge process can be quickly transferred out of the battery module. In addition, if only the MHPA cannot meet the heat dissipation requirements of the battery module, the TMS can automatically control the opening of the external fan outside the battery module according to the temperature of the battery, so as to further enhance the heat dissipation of the battery module. The thermal management performance of lithium-ion battery TMS based on MHPA is studied experimentally under different ambient temperatures and the condition to turn on the fan or not. Results show that when the ambient temperature is 40 °C and the fan is not turned on in the whole charge and discharge process, the maximum temperature of the battery in the energy storage box is 53.1 °C and the maximum temperature difference in the battery module is 2.4 °C. After the fan is turned on in the whole charge and discharge process, the maximum temperature is reduced to 50.1 °C, and the maximum temperature difference is reduced to 1.7 °C. Obviously, the lithium-ion battery TMS based on MHPA not only could control the maximum temperature of the battery below 55 °C, but also ensure the excellent temperature uniformity of the battery module. In conclusion, the lithium-ion battery TMS based on MHPA can ensure the safe and stable operation of the battery energy storage box in high temperature environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20dissipation" title="heat dissipation">heat dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery%20thermal%20management" title=" lithium-ion battery thermal management"> lithium-ion battery thermal management</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20heat%20pipe%20array" title=" micro heat pipe array"> micro heat pipe array</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20uniformity" title=" temperature uniformity"> temperature uniformity</a> </p> <a href="https://publications.waset.org/abstracts/148328/experimental-investigation-on-the-lithium-ion-battery-thermal-management-system-based-on-micro-heat-pipe-array-in-high-temperature-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> A Review of Current Trends in Grid Balancing Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kulkarni%20Rohini%20D.">Kulkarni Rohini D.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While emerging as plausible sources of energy generation, new technologies, including photovoltaic (PV) solar panels, home battery energy storage systems, and electric vehicles (EVs), are exacerbating the operations of power distribution networks for distribution network operators (DNOs). Renewable energy production fluctuates, stemming in over- and under-generation energy, further complicating the issue of storing excess power and using it when necessary. Though renewable sources are non-exhausting and reoccurring, power storage of generated energy is almost as paramount as to its production process. Hence, to ensure smooth and efficient power storage at different levels, Grid balancing technologies are consequently the next theme to address in the sustainable space and growth sector. But, since hydrogen batteries were used in the earlier days to achieve this balance in power grids, new, recent advancements are more efficient and capable per unit of storage space while also being distinctive in terms of their underlying operating principles. The underlying technologies of "Flow batteries," "Gravity Solutions," and "Graphene Batteries" already have entered the market and are leading the race for efficient storage device solutions that will improve and stabilize Grid networks, followed by Grid balancing technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20batteries" title="flow batteries">flow batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20balancing" title=" grid balancing"> grid balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20batteries" title=" hydrogen batteries"> hydrogen batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20storage" title=" power storage"> power storage</a>, <a href="https://publications.waset.org/abstracts/search?q=solar" title=" solar"> solar</a> </p> <a href="https://publications.waset.org/abstracts/172781/a-review-of-current-trends-in-grid-balancing-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Modification of Li-Rich Layered Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Li">Liu Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Seng%20Lee"> Kim Seng Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Lu"> Li Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high-energy-density Li-rich layered materials are promising cathode materials for the next-generation high-performance lithium-ion batteries. The relatively low rate capability is one of the major problems that limit their practical application. In this work, Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material synthesized by coprecipitation method is further modified by F doping or surface treatment to enhance its cycling stability as well as rate capability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-ion%20battery" title="Li-ion battery">Li-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-rich%20layered%20cathode%20material" title=" Li-rich layered cathode material"> Li-rich layered cathode material</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transformation" title=" phase transformation"> phase transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=cycling%20stability" title=" cycling stability"> cycling stability</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20capacility" title=" rate capacility"> rate capacility</a> </p> <a href="https://publications.waset.org/abstracts/18626/modification-of-li-rich-layered-li12mn054ni013co013o2-cathode-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> Efficiency and Reliability Analysis of SiC-Based and Si-Based DC-DC Buck Converters in Thin-Film PV Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elaid%20Bouchetob">Elaid Bouchetob</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouchra%20Nadji"> Bouchra Nadji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper compares the efficiency and reliability (R(t)) of SiC-based and Si-based DC-DC buck converters in thin layer PV systems with an AI-based MPPT controller. Using Simplorer/Simulink simulations, the study assesses their performance under varying conditions. Results show that the SiC-based converter outperforms the Si-based one in efficiency and cost-effectiveness, especially in high temperature and low irradiance conditions. It also exhibits superior reliability, particularly at high temperature and voltage. Reliability calculation (R(t)) is analyzed to assess system performance over time. The SiC-based converter demonstrates better reliability, considering factors like component failure rates and system lifetime. The research focuses on the buck converter's role in charging a Lithium battery within the PV system. By combining the SiC-based converter and AI-based MPPT controller, higher charging efficiency, improved reliability, and cost-effectiveness are achieved. The SiC-based converter proves superior under challenging conditions, emphasizing its potential for optimizing PV system charging. These findings contribute insights into the efficiency, reliability, and reliability calculation of SiC-based and Si-based converters in PV systems. SiC technology's advantages, coupled with advanced control strategies, promote efficient and sustainable energy storage using Lithium batteries. The research supports PV system design and optimization for reliable renewable energy utilization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=sic%20device" title=" sic device"> sic device</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20layer" title=" thin layer"> thin layer</a>, <a href="https://publications.waset.org/abstracts/search?q=buck%20converter" title=" buck converter"> buck converter</a> </p> <a href="https://publications.waset.org/abstracts/173719/efficiency-and-reliability-analysis-of-sic-based-and-si-based-dc-dc-buck-converters-in-thin-film-pv-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> Autonomic Management for Mobile Robot Battery Degradation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Doran">Martin Doran</a>, <a href="https://publications.waset.org/abstracts/search?q=Roy%20Sterritt"> Roy Sterritt</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Wilkie"> George Wilkie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The majority of today&rsquo;s mobile robots are very dependent on battery power. Mobile robots can operate untethered for a number of hours but eventually they will need to recharge their batteries in-order to continue to function. While computer processing and sensors have become cheaper and more powerful each year, battery development has progress very little. They are slow to re-charge, inefficient and lagging behind in the general progression of robotic development we see today. However, batteries are relatively cheap and when fully charged, can supply high power output necessary for operating heavy mobile robots. As there are no cheap alternatives to batteries, we need to find efficient ways to manage the power that batteries provide during their operational lifetime. This paper proposes the use of autonomic principles of self-adaption to address the behavioral changes a battery experiences as it gets older. In life, as we get older, we cannot perform tasks in the same way as we did in our youth; these tasks generally take longer to perform and require more of our energy to complete. Batteries also suffer from a form of degradation. As a battery gets older, it loses the ability to retain the same charge capacity it would have when brand new. This paper investigates how we can adapt the current state of a battery charge and cycle count, to the requirements of a mobile robot to perform its tasks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomic" title="autonomic">autonomic</a>, <a href="https://publications.waset.org/abstracts/search?q=self-adaptive" title=" self-adaptive"> self-adaptive</a>, <a href="https://publications.waset.org/abstracts/search?q=self-optimising" title=" self-optimising"> self-optimising</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a> </p> <a href="https://publications.waset.org/abstracts/77739/autonomic-management-for-mobile-robot-battery-degradation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> Ab Initio Studies of Organic Electrodes for Li and Na Ion Batteries Based on Tetracyanoethylene </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingqian%20Chen">Yingqian Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Manzhos"> Sergei Manzhos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic electrodes are a way to achieve high rate (high power) and environment-friendly batteries. We present a computational density functional theory study of Li and Na storage in tetracyanoethylene based molecular and crystalline materials. Up to five Li and Na atoms can be stored on TCNE chemisorbed on doped graphene (corresponding to ~1000 mAh/gTCNE), with binding energies stronger than cohesive energies of the Li and Na metals by 1-2 eV. TCNE has been experimentally shown to form a crystalline material with Li with stoichiometry Li-TCNE. We confirm this computationally and also predict that a similar crystal based of Na-TCNE is also stable. These crystalline materials have well defined channels for facile Li or Na ion insertion and diffusion. Specifically, Li and Na binding energies in Li-TCNE and Na-TCNE crystals are about 1.5 eV and stronger than the cohesive energy of Li and Na, respectively. TCNE immobilized on conducting graphene-based substrates and Li/Na-TCNE crystals could therefore become efficient anode materials for organic Li and Na ion batteries, with which it should also be possible to avoid reduction of common battery electrolytes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20ion%20batteries" title="organic ion batteries">organic ion batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracyanoethylene" title=" tetracyanoethylene"> tetracyanoethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20energies" title=" cohesive energies"> cohesive energies</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolytes" title=" electrolytes"> electrolytes</a> </p> <a href="https://publications.waset.org/abstracts/18520/ab-initio-studies-of-organic-electrodes-for-li-and-na-ion-batteries-based-on-tetracyanoethylene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">640</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> Modeling and Simulation of Standalone Photovoltaic Charging Stations for Electric Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Mkahl">R. Mkahl</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nait-Sidi-Moh"> A. Nait-Sidi-Moh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Wack"> M. Wack</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Batteries of electric vehicles (BEV) are becoming more attractive with the advancement of new battery technologies and promotion of electric vehicles. BEV batteries are recharged on board vehicles using either the grid (G2V for Grid to Vehicle) or renewable energies in a stand-alone application (H2V for Home to Vehicle). This paper deals with the modeling, sizing and control of a photo voltaic stand-alone application that can charge the BEV at home. The modeling approach and developed mathematical models describing the system components are detailed. Simulation and experimental results are presented and commented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20energy" title=" photovoltaic energy"> photovoltaic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=lead-acid%20batteries" title=" lead-acid batteries"> lead-acid batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20process" title=" charging process"> charging process</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20tests" title=" experimental tests"> experimental tests</a> </p> <a href="https://publications.waset.org/abstracts/19209/modeling-and-simulation-of-standalone-photovoltaic-charging-stations-for-electric-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lithium%20batteries&amp;page=3" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lithium%20batteries&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lithium%20batteries&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lithium%20batteries&amp;page=3">3</a></li> <li class="page-item active"><span class="page-link">4</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lithium%20batteries&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lithium%20batteries&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lithium%20batteries&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lithium%20batteries&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lithium%20batteries&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lithium%20batteries&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lithium%20batteries&amp;page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lithium%20batteries&amp;page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lithium%20batteries&amp;page=5" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10