CINXE.COM

Search results for: electrochemical properties

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: electrochemical properties</title> <meta name="description" content="Search results for: electrochemical properties"> <meta name="keywords" content="electrochemical properties"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="electrochemical properties" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="electrochemical properties"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9462</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: electrochemical properties</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9462</span> Useful Effects of Silica Nanoparticles in Ionic Liquid Electrolyte for Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Won%20Kim">Dong Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye%20Ji%20Kim"> Hye Ji Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Young%20Jung"> Hyun Young Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improved energy storage is inevitably needed to improve energy efficiency and to be environmentally friendly to chemical processes. Ionic liquids (ILs) can play a crucial role in addressing these needs due to inherent adjustable properties including low volatility, low flammability, inherent conductivity, wide liquid range, broad electrochemical window, high thermal stability, and recyclability. Here, binary mixtures of ILs were prepared with fumed silica nanoparticles and characterized to obtain ILs with conductivity and electrochemical properties optimized for use in energy storage devices. The solutes were prepared by varying the size and the weight percent concentration of the nanoparticles and made up 10 % of the binary mixture by weight. We report on the physical and electrochemical properties of the individual ILs and their binary mixtures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title="ionic liquid">ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20nanoparticle" title=" silica nanoparticle"> silica nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties" title=" electrochemical properties"> electrochemical properties</a> </p> <a href="https://publications.waset.org/abstracts/81400/useful-effects-of-silica-nanoparticles-in-ionic-liquid-electrolyte-for-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9461</span> Development of an Aptamer-Molecularly Imprinted Polymer Based Electrochemical Sensor to Detect Pathogenic Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Agar">Meltem Agar</a>, <a href="https://publications.waset.org/abstracts/search?q=Maisem%20Laabei"> Maisem Laabei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannah%20Leese"> Hannah Leese</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Estrela"> Pedro Estrela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pathogenic bacteria and the diseases they cause have become a global problem. Their early detection is vital and can only be possible by detecting the bacteria causing the disease accurately and rapidly. Great progress has been made in this field with the use of biosensors. Molecularly imprinted polymers have gain broad interest because of their excellent properties over natural receptors, such as being stable in a variety of conditions, inexpensive, biocompatible and having long shelf life. These properties make molecularly imprinted polymers an attractive candidate to be used in biosensors. In this study it is aimed to produce an aptamer-molecularly imprinted polymer based electrochemical sensor by utilizing the properties of molecularly imprinted polymers coupled with the enhanced specificity offered by DNA aptamers. These ‘apta-MIP’ sensors were used for the detection of Staphylococcus aureus and Escherichia coli. The experimental parameters for the fabrication of sensor were optimized, and detection of the bacteria was evaluated via Electrochemical Impedance Spectroscopy. Sensitivity and selectivity experiments were conducted. Furthermore, molecularly imprinted polymer only and aptamer only electrochemical sensors were produced separately, and their performance were compared with the electrochemical sensor produced in this study. Aptamer-molecularly imprinted polymer based electrochemical sensor showed good sensitivity and selectivity in terms of detection of Staphylococcus aureus and Escherichia coli. The performance of the sensor was assessed in buffer solution and tap water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aptamer" title="aptamer">aptamer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title=" electrochemical sensor"> electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=staphylococcus%20aureus" title=" staphylococcus aureus"> staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymer" title=" molecularly imprinted polymer"> molecularly imprinted polymer</a> </p> <a href="https://publications.waset.org/abstracts/171368/development-of-an-aptamer-molecularly-imprinted-polymer-based-electrochemical-sensor-to-detect-pathogenic-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9460</span> Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Amiri">Mandana Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sima%20Nouhi"> Sima Nouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashar%20Azizan-Kalandaragh"> Yashar Azizan-Kalandaragh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H<sub>2</sub>O<sub>2</sub>. The presented electrode can be employed as sensing element for hydrogen peroxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title="electrochemical sensor">electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanostructures" title=" silver nanostructures "> silver nanostructures </a> </p> <a href="https://publications.waset.org/abstracts/21938/electrodeposited-silver-nanostructures-a-non-enzymatic-sensor-for-hydrogen-peroxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9459</span> Electrochemical Study of Ti-O Modified Electrode towards Tyrosinase Catalytic Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riya%20Thomas">Riya Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Music"> Denis Music</a>, <a href="https://publications.waset.org/abstracts/search?q=Tautgirdas%20Ruzgas"> Tautgirdas Ruzgas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The detection of tyrosinase holds considerable interest in the domains of food nutrition and human health due to its significant role in causing a detrimental effect on the colour, flavour, and nutritional value of food as well as in the synthesis of melanin causing skin melanoma. Compared to other conventional analytical techniques, electrochemical (EC) sensors are highly promising owing to their quick response, great sensitivity, ease of use, and low cost. Particularly, titania nanoparticle-based electrochemical sensors have drawn special attention in identifying several biomolecules including enzymes, antibodies, and receptors, owing to their enhanced electrocatalytic activity and electron-accepting properties. In this study, Ti-O film-modified electrode is fabricated using reactive magnetron sputtering, and its affinity towards tyrosinase is examined via electrochemical methods. To comprehend the physiochemical and surface properties-governed electrocatalytic activity of modified electrodes, Ti-O films are grown under various compositional ranges and deposition temperature, and their corresponding electrochemical activity towards tyrosinase is studied. Further, to understand the underlying atomistic mechanisms and electronic-scale electrochemical characteristics, density functional theory (DFT) is employed. The main goal of the current work is to determine the correlation between macroscopic measurements and the underlying atomic properties to improve the tyrosinase activity on Ti-O surfaces. Moreover, this work offers an intriguing new perspective on the use of Ti-O-modified electrodes to detect tyrosinase in the areas of clinical diagnosis, skincare, and food science. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title="density functional theory">density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title=" electrochemical sensor"> electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-O%20film" title=" Ti-O film"> Ti-O film</a>, <a href="https://publications.waset.org/abstracts/search?q=tyrosinase" title=" tyrosinase"> tyrosinase</a> </p> <a href="https://publications.waset.org/abstracts/192153/electrochemical-study-of-ti-o-modified-electrode-towards-tyrosinase-catalytic-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9458</span> 1-Butyl-2,3-Dimethylimidazolium Bis (Trifluoromethanesulfonyl) Imide and Titanium Oxide Based Voltammetric Sensor for the Quantification of Flunarizine Dihydrochloride in Solubilized Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Jain">Rajeev Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Nimisha%20Jadon"> Nimisha Jadon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kshiti%20Singh"> Kshiti Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium oxide nanoparticles and 1-butyl-2,3-dimethylimidazolium bis (trifluoromethane- sulfonyl) imide modified glassy carbon electrode (TiO2/IL/GCE) has been fabricated for electrochemical sensing of flunarizine dihydrochloride (FRH). The electrochemical properties and morphology of the prepared nanocomposite were studied by electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM). The response of the electrochemical sensor was found to be proportional to the concentrations of FRH in the range from 0.5 µg mL-1 to 16 µg mL-1. The detection limit obtained was 0.03 µg mL-1. The proposed method was also applied to the determination of FRH in pharmaceutical formulation and human serum with good recoveries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flunarizine%20dihydrochloride" title="flunarizine dihydrochloride">flunarizine dihydrochloride</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=voltammetry" title=" voltammetry"> voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20serum" title=" human serum"> human serum</a> </p> <a href="https://publications.waset.org/abstracts/80599/1-butyl-23-dimethylimidazolium-bis-trifluoromethanesulfonyl-imide-and-titanium-oxide-based-voltammetric-sensor-for-the-quantification-of-flunarizine-dihydrochloride-in-solubilized-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9457</span> Electrochemical Regeneration of GIC Adsorbent in a Continuous Electrochemical Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Hussain">S. N. Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20A.%20Asghar"> H. M. A. Asghar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sattar"> H. Sattar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20P.%20L.%20Roberts"> E. P. L. Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arvia™ introduced a novel technology consisting of adsorption followed by electrochemical regeneration with a graphite intercalation compound adsorbent that takes place in a single unit. The adsorbed species may lead to the formation of intermediate by-products products due to incomplete mineralization during electrochemical regeneration. Therefore, the investigation of breakdown products due to incomplete oxidation is of great concern regarding the commercial applications of this process. In the present paper, the formation of the chlorinated breakdown products during continuous process of adsorption and electrochemical regeneration based on a graphite intercalation compound adsorbent has been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIC" title="GIC">GIC</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20regeneration" title=" electrochemical regeneration"> electrochemical regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorphenols" title=" chlorphenols"> chlorphenols</a> </p> <a href="https://publications.waset.org/abstracts/13387/electrochemical-regeneration-of-gic-adsorbent-in-a-continuous-electrochemical-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9456</span> Synthesis and Electrochemical Characterization of a Copolymer (PANI/PEDOT:PSS) for Application in Supercapacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naima%20Boudieb">Naima Boudieb</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Loucif%20Seaid"> Mohamed Loucif Seaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Imad%20Rati"> Imad Rati</a>, <a href="https://publications.waset.org/abstracts/search?q=Imane%20Benammane"> Imane Benammane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to synthesis of a copolymer PANI/PEDOT:PSS by electrochemical means to apply in supercapacitors. Polyaniline (PANI) is a conductive polymer; it was synthesized by electrochemical polymerization. It exhibits very stable properties in different environments, whereas PEDOT:PSS is a conductive polymer based on poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(styrene sulfonate)(PSS). It is commonly used with polyaniline to improve its electrical conductivity. Several physicochemical and electrochemical techniques were used for the characterization of PANI/PEDOT:PSS: cyclic voltammetry (VC), electrochemical impedance spectroscopy (EIS), open circuit potential, SEM, X-ray diffraction, etc. The results showed that the PANI/PEDOT:PSS composite is a promising material for supercapacitors due to its high electrical conductivity and high porosity. Electrochemical and physicochemical characterization tests have shown that the composite has high electrical and structural performances, making it a material of choice for high-performance energy storage applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitors" title=" supercapacitors"> supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=SIE" title=" SIE"> SIE</a>, <a href="https://publications.waset.org/abstracts/search?q=VC" title=" VC"> VC</a>, <a href="https://publications.waset.org/abstracts/search?q=PANI" title=" PANI"> PANI</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%283" title=" poly(3"> poly(3</a>, <a href="https://publications.waset.org/abstracts/search?q=4-ethylenedioxythiophene" title="4-ethylenedioxythiophene">4-ethylenedioxythiophene</a>, <a href="https://publications.waset.org/abstracts/search?q=PEDOT" title=" PEDOT"> PEDOT</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene%20sulfonate" title=" polystyrene sulfonate"> polystyrene sulfonate</a> </p> <a href="https://publications.waset.org/abstracts/182320/synthesis-and-electrochemical-characterization-of-a-copolymer-panipedotpss-for-application-in-supercapacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9455</span> Influence of Surface Preparation Effects on the Electrochemical Behavior of 2098-T351 Al–Cu–Li Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rejane%20Maria%20P.%20da%20Silva">Rejane Maria P. da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20X.%20Milagre"> Mariana X. Milagre</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Victor%20de%20S.%20Araujo"> João Victor de S. Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Leandro%20A.%20de%20Oliveira"> Leandro A. de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Renato%20A.%20Antunes"> Renato A. Antunes</a>, <a href="https://publications.waset.org/abstracts/search?q=Isolda%20Costa"> Isolda Costa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Al-Cu-Li alloys are advanced materials for aerospace application because of their interesting mechanical properties and low density when compared with conventional Al-alloys. However, Al-Cu-Li alloys are susceptible to localized corrosion. The near-surface deformed layer (NSDL) induced by the rolling process during the production of the alloy and its removal by polishing can influence on the corrosion susceptibility of these alloys. In this work, the influence of surface preparation effects on the electrochemical activity of AA2098-T351 (Al–Cu–Li alloy) was investigated using a correlation between surface chemistry, microstructure, and electrochemical activity. Two conditions were investigated, polished and as-received surfaces of the alloy. The morphology of the two types of surfaces was investigated using confocal laser scanning microscopy (CLSM) and optical microscopy. The surface chemistry was analyzed by X-ray Photoelectron Spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). Global electrochemical techniques (potentiodynamic polarization and EIS technique) and a local electrochemical technique (Localized Electrochemical Impedance Spectroscopy-LEIS) were used to examine the electrochemical activity of the surfaces. The results obtained in this study showed that in the as-received surface, the near-surface deformed layer (NSDL), which is composed of Mg-rich bands, influenced the electrochemical behavior of the alloy. The results showed higher electrochemical activity to the polished surface condition compared to the as-received one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Cu-Li%20alloys" title="Al-Cu-Li alloys">Al-Cu-Li alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20preparation%20effects" title=" surface preparation effects"> surface preparation effects</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20techniques" title=" electrochemical techniques"> electrochemical techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20corrosion" title=" localized corrosion"> localized corrosion</a> </p> <a href="https://publications.waset.org/abstracts/110369/influence-of-surface-preparation-effects-on-the-electrochemical-behavior-of-2098-t351-al-cu-li-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9454</span> Electrochemical Layer by Layer Assembly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mao%20Li">Mao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuguang%20Ma"> Yuguang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Katsuhiko%20Ariga"> Katsuhiko Ariga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of functional materials is governed by their ability to interact with surrounding environments in a well-defined and controlled manner. Layer-by-Layer (LbL) assembly is one of the most widely used technologies for coating both planar and particulate substrates in a diverse range of fields, including optics, energy, catalysis, separations, and biomedicine. Herein, we introduce electrochemical-coupling layer-by-layer assembly as a novel fabrication methodology for preparing layered thin films. This assembly method not only determines the process properties (such as the time, scalability, and manual intervention) but also directly control the physicochemical properties of the films (such as the thickness, homogeneity, and inter- and intra-layer film organization), with both sets of properties linked to application-specific performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=layer%20by%20layer%20assembly" title="layer by layer assembly">layer by layer assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=electropolymerization" title=" electropolymerization"> electropolymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=carbazole" title=" carbazole"> carbazole</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20thin%20film" title=" optical thin film"> optical thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=electronics" title=" electronics"> electronics</a> </p> <a href="https://publications.waset.org/abstracts/42525/electrochemical-layer-by-layer-assembly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9453</span> Controlling the Oxygen Vacancies in the Structure of Anode Materials for Improved Electrochemical Performance in Lithium-Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20M.%20S.%20Sanad">Moustafa M. S. Sanad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The worsening of energy supply crisis and the exacerbation of climate change by environmental pollution problems have become the greatest threat to human life. One of the ways to confront these problems is to rely on renewable energy and its storage systems. Nowadays, huge attention has been directed to the development of lithium-ion batteries (LIBs) as efficient tools for storing the clean energy produced by green sources like solar and wind energies. Accordingly, the demand for powerful electrode materials with excellent electrochemical characteristics has been progressively increased to meet fast and continuous growth in the market of energy storage systems. Therefore, the electronic and electrical properties of conversion anode materials for rechargeable lithium-ion batteries (LIBs) can be enhanced by introducing lattice defects and oxygen vacancies in the crystal structure. In this regard, the intended presentation will demonstrate new insights and effective ways for enhancing the electrical conductivity and improving the electrochemical performance of different anode materials such as MgFe₂O₄, CdFe₂O₄, Fe₃O₄, LiNbO₃ and Nb₂O₅. The changes in the physicochemical and morphological properties have been deeply investigated via structural and spectroscopic analyses (e.g., XRD, FESEM, HRTEM, and XPS). Moreover, the enhancement in the electrochemical properties of these anode materials will be discussed through Galvanostatic Cycling (GC), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structure%20modification" title="structure modification">structure modification</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20substitution" title=" cationic substitution"> cationic substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=non-stoichiometric%20synthesis" title=" non-stoichiometric synthesis"> non-stoichiometric synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20treatment" title=" plasma treatment"> plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20batteries" title=" lithium-ion batteries"> lithium-ion batteries</a> </p> <a href="https://publications.waset.org/abstracts/186386/controlling-the-oxygen-vacancies-in-the-structure-of-anode-materials-for-improved-electrochemical-performance-in-lithium-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9452</span> Electrochemical Properties of Bimetallic Silver-Platinum Core-Shell Nanoparticles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fredrick%20O.%20Okumu">Fredrick O. Okumu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mangaka%20C.%20Matoetoe"> Mangaka C. Matoetoe </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver-platinum (Ag-Pt) bimetallic nanoparticles (NPs) with varying mole fractions (1:1, 1:3 and 3:1) were prepared by co-reduction of hexachloroplatinate and silver nitrate with sodium citrate. Upon successful formation of both monometallic and bimetallic (BM) core shell nanoparticles, cyclic voltammetry (CV) was used to characterize the NPs. The drop coated nanofilms on the GC substrate showed characteristic peaks of monometallic Ag NPs; Ag+/Ag0 redox couple as well as the Pt NPs; hydrogen adsorption and desorption peaks. These characteristic peaks were confirmed in the bimetallic NPs voltammograms. The following varying current trends were observed in the BM NPs ratios; GCE/Ag-Pt 1:3 > GCE/Ag-Pt 3:1 > GCE/Ag-Pt 1:1. Fundamental electrochemical properties which directly or indirectly affects the applicability of films such as; diffusion coefficient (D), electroactive surface coverage, electrochemical band gap, electron transfer coefficient (α) and charge (Q) were assessed using Randles - Sevcik plot and Laviron’s equations . High charge and surface coverage was observed in GCE/Ag-Pt 1:3 which supports its enhanced current. GCE/Ag-Pt 3:1 showed high diffusion coefficient while GCE/Ag-Pt 1:1 possessed high electron transfer coefficient that is facilitated by its high apparent heterogeneous rate constant relative to other BM NPs ratios. Surface redox reaction was determined as adsorption controlled in all modified GCEs. Surface coverage is inversely proportional to size; therefore the surface coverage data suggests that Ag-Pt 1:1 NPs have a small particle size. Generally, GCE/Ag-Pt 1:3 depicts the best electrochemical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell" title=" core-shell"> core-shell</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles "> nanoparticles </a> </p> <a href="https://publications.waset.org/abstracts/36809/electrochemical-properties-of-bimetallic-silver-platinum-core-shell-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9451</span> Electrochemistry of Metal Chalcogenides Semiconductor Materials; Theory and Practical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Elrouby">Mahmoud Elrouby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal chalcogenide materials have wide spectrum of properties, for that these materials can be used in electronics, optics, magnetics, solar energy conversion, catalysis, passivation, ion sensing, batteries, and fuel cells. This work aims to, how can obtain these materials via electrochemical methods simply for further applications. The work regards in particular the systems relevant to the sulphur sub-group elements, i.e., sulphur, selenium, and tellurium. The role of electrochemistry in synthesis, development, and characterization of the metal chalcogenide materials and related devices is vital and important. Electrochemical methods as preparation tool offer the advantages of soft chemistry to access bulk, thin, nano film and epitaxial growth of a wide range of alloys and compounds, while as a characterization tool provides exceptional assistance in specifying the physicochemical properties of materials. Moreover, quite important applications and modern devices base their operation on electrochemical principles. Thereupon, our scope in the first place was to organize existing facts on the electrochemistry of metal chalcogenides regarding their synthesis, properties, and applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20chacogenides" title=" metal chacogenides"> metal chacogenides</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductors" title=" semiconductors"> semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a> </p> <a href="https://publications.waset.org/abstracts/24099/electrochemistry-of-metal-chalcogenides-semiconductor-materials-theory-and-practical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9450</span> Hybrid Graphene Based Nanomaterial as Highly Efficient Catalyst for the Electrochemical Determination of Ciprofloxacin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tien%20S.%20H.%20Pham">Tien S. H. Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20J.%20Mahon"> Peter J. Mahon</a>, <a href="https://publications.waset.org/abstracts/search?q=Aimin%20Yu"> Aimin Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The detection of drug molecules by voltammetry has attracted great interest over the past years. However, many drug molecules exhibit poor electrochemical signals at common electrodes which result in low sensitivity in detection. An efficient way to overcome this problem is to modify electrodes with functional materials. Since discovered in 2004, graphene (or reduced graphene oxide) has emerged as one of the most studied two-dimensional carbon materials in condensed matter physics, electrochemistry, and so on due to its exceptional physicochemical properties. Additionally, the continuous development of technology has opened the new window for the successful fabrications of many novel graphene-based nanomaterials to serve in electrochemical analysis. This research aims to synthesize and characterize gold nanoparticle coated beta-cyclodextrin functionalized reduced graphene oxide (Au NP–β-CD–RGO) nanocomposites with highly conductive and strongly electro-catalytic properties as well as excellent supramolecular recognition abilities for the modification of electrodes. The electrochemical responses of ciprofloxacin at the as-prepared nanocomposite modified electrode was effectively amplified was much higher in comparison with that at the bare electrode. The linear concentration range was from 0.01 to 120 µM, with a detection limit of 2.7 nM using differential pulse voltammetry. Thus, Au NP–β-CD–RGO nanocomposite has great potential as an ideal material to construct sensitive sensors for the electrochemical determination of ciprofloxacin or similar antibacterial drugs in the future based on its excellent stability, selectivity, and reproducibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Au%20nanoparticles" title="Au nanoparticles">Au nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-CD" title=" β-CD"> β-CD</a>, <a href="https://publications.waset.org/abstracts/search?q=ciprofloxacin" title=" ciprofloxacin"> ciprofloxacin</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20determination" title=" electrochemical determination"> electrochemical determination</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20based%20nanomaterials" title=" graphene based nanomaterials"> graphene based nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/73614/hybrid-graphene-based-nanomaterial-as-highly-efficient-catalyst-for-the-electrochemical-determination-of-ciprofloxacin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9449</span> Microstructure and Electrochemical Properties of LiNi1/3Co1/3Mn1/3-xAlxO2 Cathode Material for Lithium Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Bo%20Hua">Wei-Bo Hua</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Zheng"> Zhuo Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao-Dong%20Guo"> Xiao-Dong Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben-He%20Zhong"> Ben-He Zhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The layered structure LiNi1/3Co1/3Mn1/3-xAlxO2 (x = 0 ~ 0.04) series cathode materials were synthesized by a carbonate co-precipitation method, followed by a high temperature calcination process. The influence of Al substitution on the microstructure and electrochemical performances of the prepared materials was investigated by X-Ray diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic charge/discharge test. The results show that the LiNi1/3Co1/3Mn1/3-xAlxO2 has a well-ordered hexagonal "α" -NaFeO2 structure. Although the discharge capacity of Al-doped samples decreases as x increases, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 exhibits superior capacity retention at high voltage (4.6 V). Therefore, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 is a promising material for “green” vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20battery" title="lithium ion battery">lithium ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonate%20co-precipitation" title=" carbonate co-precipitation"> carbonate co-precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties" title=" electrochemical properties"> electrochemical properties</a> </p> <a href="https://publications.waset.org/abstracts/43058/microstructure-and-electrochemical-properties-of-lini13co13mn13-xalxo2-cathode-material-for-lithium-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9448</span> Hydrothermal Synthesis of Mesoporous Carbon Nanospheres and Their Electrochemical Properties for Glucose Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Kazemi%20Asl">Ali Akbar Kazemi Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Rahsepar"> Mansour Rahsepar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesoporous carbon nanospheres (MCNs) with uniform particle size distribution having an average of 290 nm and large specific surface area (274.4 m²/g) were synthesized by a one-step hydrothermal method followed by the calcination process and then utilized as an enzyme-free glucose biosensor. Morphology, crystal structure, and porous nature of the synthesized nanospheres were characterized by scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, respectively. Also, the electrochemical performance of the MCNs@GCE electrode for the measurement of glucose concentration in alkaline media was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). MCNs@GCE electrode shows good sensing performance, including a rapid glucose oxidation response within 3.1 s, a wide linear range of 0.026-12 mM, a sensitivity of 212.34 μA.mM⁻¹.cm⁻², and a detection limit of 25.7 μM with excellent selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20carbon" title=" mesoporous carbon"> mesoporous carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=non-enzymatic" title=" non-enzymatic"> non-enzymatic</a> </p> <a href="https://publications.waset.org/abstracts/142299/hydrothermal-synthesis-of-mesoporous-carbon-nanospheres-and-their-electrochemical-properties-for-glucose-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9447</span> Electrodeposition and Selenization of Cuin Alloys for the Synthesis of Photoactive Cu2in1-X Gax Se2 (Cigs) Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benaicha">Mohamed Benaicha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Allam"> Mahdi Allam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new two stage electrochemical process as a safe, large area and low processing cost technique for the production of semi-conducting CuInSe2 (CIS) thin films is studied. CuIn precursors were first potentiostatically electrodeposited onto molybdenum substrates from an acidic thiocyanate electrolyte. In a second stage, the prepared metallic CuIn layers were used as substrate in the selenium electrochemical deposition system and subjected to a thermal treatment in vacuum atmosphere, to eliminate binary phase formation by reaction of the Cu2-x Se and InxSey selenides, leading to the formation of CuInSe2 thin film. Electrochemical selenization from aqueous electrolyte is introduced as an alternative to toxic and hazardous H2Se or Se vapor phase selenization used in physical techniques. In this study, the influence of film deposition parameters such as bath composition, temperature and potential on film properties was studied. The electrochemical, morphological, structural and compositional properties of electrodeposited thin films were characterized using various techniques. Results of Cyclic and Stripping-Cyclic Voltammetry (CV, SCV), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray microanalysis (EDX) investigations revealed good reproducibility and homogeneity of the film composition. Thereby optimal technological parameters for the electrochemical production of CuIn, Se as precursors for CuInSe2 thin layers are determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title="photovoltaic">photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=CIGS" title=" CIGS"> CIGS</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20alloys" title=" copper alloys"> copper alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/31570/electrodeposition-and-selenization-of-cuin-alloys-for-the-synthesis-of-photoactive-cu2in1-x-gax-se2-cigs-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9446</span> Impact of Glycation on Proteomics of Human Serum Albumin: Relevance to Diabetes Associated Pathologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Raghav">Alok Raghav</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Ahmad"> Jamal Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Serum albumin glycation and advanced glycation end products (AGE) formation correlates in diabetes and its associated complications. Extensive modified human serum albumin is used to study the biochemical, electrochemical and functional properties in hyperglycemic environment with relevance to diabetes. We evaluate Spectroscopic, side chain modifications, amino acid analysis, biochemical and functional group properties in four glucose modified samples. Methods: A series four human serum albumin samples modified with glucose was characterized in terms of amino acid analysis, spectroscopic properties and side chain modifications. The diagnostic technique employed incorporates UV Spectroscopy, Fluorescence Spectroscopy, biochemical assays for side chain modifications, amino acid estimations, electrochemical and optical characterstic of glycated albumin. Conclusion: Glucose modified human serum albumin confers AGEs formation alters biochemical, electrochemical, optical, and functional property that depend on the reactivity of glucose and its concentration used for in-vitro glycation. A biochemical, electrochemical, optical, and functional characterization of modified albumin in-vitro produced AGE product that will be useful to interpret the complications and pathophysiological significance in diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20serum%20albumin" title="human serum albumin">human serum albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=glycated%20albumin" title=" glycated albumin"> glycated albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=adavanced%20glycation%20end%20products" title=" adavanced glycation end products"> adavanced glycation end products</a>, <a href="https://publications.waset.org/abstracts/search?q=associated%20pathologies" title=" associated pathologies"> associated pathologies</a> </p> <a href="https://publications.waset.org/abstracts/14588/impact-of-glycation-on-proteomics-of-human-serum-albumin-relevance-to-diabetes-associated-pathologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9445</span> Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giulio%20Rosati">Giulio Rosati</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciano%20Sappia"> Luciano Sappia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rossana%20Madrid"> Rossana Madrid</a>, <a href="https://publications.waset.org/abstracts/search?q=Noemi%20Rozl%C3%B2snik"> Noemi Rozlòsnik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscopy" title="atomic force microscopy">atomic force microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensors" title=" biosensors"> biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=four-point%20probe" title=" four-point probe"> four-point probe</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-films" title=" nano-films"> nano-films</a>, <a href="https://publications.waset.org/abstracts/search?q=PEDOT" title=" PEDOT"> PEDOT</a> </p> <a href="https://publications.waset.org/abstracts/75824/ironiii-tosylate-doped-pedot-and-peg-a-nanoscale-conductivity-study-of-an-electrochemical-system-with-biosensing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9444</span> Deciphering Electrochemical and Optical Properties of Folic Acid for the Applications of Tissue Engineering and Biofuel Cell </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharda%20Nara">Sharda Nara</a>, <a href="https://publications.waset.org/abstracts/search?q=Bansi%20Dhar%20Malhotra"> Bansi Dhar Malhotra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation of the vitamins as an electron transfer mediator could significantly assist in merging the area of tissue engineering and electronics required for the implantable therapeutic devices. The present study report that the molecules of folic acid released by Providencia rettgeri via fermentation route under the anoxic condition of the microbial fuel cell (MFC) exhibit characteristic electrochemical and optical properties, as indicated by absorption spectroscopy, photoluminescence (PL), and cyclic voltammetry studies. The absorption spectroscopy has depicted an absorption peak at 263 nm with a small bulge around 293 nm on day two of bacterial culture, whereas an additional peak was observed at 365 nm on the twentieth day. Furthermore, the PL spectra has indicated that the maximum emission occurred at various wavelengths 420, 425, 440, and 445 nm when excited by 310, 325, 350, and 365 nm. The change of emission spectra with varying excitation wavelength might be indicating the presence of tunable optical bands in the folic acid molecules co-related with the redox activity of the molecules. The results of cyclic voltammetry studies revealed that the oxidation and reduction occurred at 0.25V and 0.12V, respectively, indicating the electrochemical behavior of the folic acid. This could be inferred that the released folic acid molecules in a MFC might undergo inter as well as intra molecular electron transfer forming different intermediate states while transferring electrons to the electrode surface. Synchronization of electrochemical and optical properties of folic acid molecules could be potentially promising for the designing of electroactive scaffold and biocompatible conductive surface for the applications of tissue engineering and biofuel cells, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuel%20cell" title="biofuel cell">biofuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=electroactivity" title=" electroactivity"> electroactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=folic%20acid" title=" folic acid"> folic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering "> tissue engineering </a> </p> <a href="https://publications.waset.org/abstracts/130686/deciphering-electrochemical-and-optical-properties-of-folic-acid-for-the-applications-of-tissue-engineering-and-biofuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9443</span> Biochemical and Electrochemical Characterization of Glycated Albumin: Clinical Relevance in Diabetes Associated Complications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Raghav">Alok Raghav</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Ahmad"> Jamal Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Serum albumin glycation and advanced glycation end products (AGE) formation correlates in diabetes and its associated complications. Extensive modified human serum albumin is used to study the biochemical, electrochemical and functional properties in hyperglycemic environment with relevance to diabetes. We evaluate Spectroscopic, side chain modifications, amino acid analysis, biochemical and functional group properties in four glucose modified samples. Methods: A series four human serum albumin samples modified with glucose was characterized in terms of amino acid analysis, spectroscopic properties and side chain modifications. The diagnostic technique employed incorporates UV Spectroscopy, Fluorescence Spectroscopy, biochemical assays for side chain modifications, amino acid estimations. Conclusion: Glucose modified human serum albumin confers AGE formation causes biochemical and functional property that depend on the reactivity of glucose and its concentration used for in-vitro glycation. A biochemical and functional characterization of modified albumin in-vitro produced AGE product that will be useful to interpret the complications and pathophysiological significance in diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycation" title="glycation">glycation</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20serum%20albumin" title=" human serum albumin"> human serum albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical%20and%20electrochemical%20characterization" title=" biochemical and electrochemical characterization"> biochemical and electrochemical characterization</a> </p> <a href="https://publications.waset.org/abstracts/14263/biochemical-and-electrochemical-characterization-of-glycated-albumin-clinical-relevance-in-diabetes-associated-complications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9442</span> Electrochemical Detection of Polycyclic Aromatic Hydrocarbons in Urban Air by Exfoliated Graphite Based Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sacko">A. Sacko</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Nyoni"> H. Nyoni</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20M.%20Msagati"> T. A. M. Msagati</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ntsendwana"> B. Ntsendwana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon based materials to target environmental pollutants have become increasingly recognized in science. Electrochemical methods using carbon based materials are notable methods for high sensitive detection of organic pollutants in air. It is therefore in this light that exfoliated graphite electrode was fabricated for electrochemical analysis of PAHs in urban atmospheric air. The electrochemical properties of the graphite electrode were studied using CV and EIS in the presence of acetate buffer supporting electrolyte with 2 Mm ferricyanide as a redox probe. The graphite electrode showed enhanced current response which confirms facile kinetics and enhanced sensitivity. However, the peak to peak (DE) separation increased as a function of scan rate. The EIS showed a high charger transfer resistance. The detection phenanthrene on the exfoliated graphite was studied in the presence of acetate buffer solution at PH 3.5 using DPV. The oxidation peak of phenanthrene was observed at 0.4 V. Under optimized conditions (supporting electrolyte, pH, deposition time, etc.). The detection limit observed was at 5x 10⁻⁸ M. Thus the results demonstrate with further optimization and modification lower concentration detection can be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20detection" title="electrochemical detection">electrochemical detection</a>, <a href="https://publications.waset.org/abstracts/search?q=exfoliated%20graphite" title=" exfoliated graphite"> exfoliated graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs%20%28polycyclic%20aromatic%20hydrocarbons%29" title=" PAHs (polycyclic aromatic hydrocarbons)"> PAHs (polycyclic aromatic hydrocarbons)</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20air" title=" urban air"> urban air</a> </p> <a href="https://publications.waset.org/abstracts/78454/electrochemical-detection-of-polycyclic-aromatic-hydrocarbons-in-urban-air-by-exfoliated-graphite-based-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9441</span> Electrically Tuned Photoelectrochemical Properties of Ferroelectric PVDF/Cu/PVDF-NaNbO₃ Photoanode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simrjit%20Singh">Simrjit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Khare"> Neeraj Khare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, photo-electrochemical (PEC) water splitting with an aim to generate hydrogen (H₂) as a clean and renewable fuel has been the subject of intense research interests. Ferroelectric semiconductors have been demonstrated to exhibit enhanced PEC properties as these can be polarized with the application of an external electric field resulting in a built-in potential which helps in separating out the photogenerated charge carriers. In addition to this, by changing the polarization direction, the energy band alignment at the electrode/electrolyte interface can be modulated in a way that it can help in the easy transfer of the charge carriers from the electrode to the electrolyte. In this paper, we investigated the photoelectrochemical properties of ferroelectric PVDF/Cu/PVDF-NaNbO₃ PEC cell and demonstrated that PEC properties can be tuned with ferroelectric polarization and piezophototronic effect. Photocurrent density is enhanced from ~0.71 mA/cm² to 1.97 mA/cm² by changing the polarization direction. Furthermore, due to flexibility and piezoelectric properties of PVDF/Cu/PVDF-NaNbO₃ PEC cell, a further ~26% enhancement in the photocurrent is obtained using the piezophototronic effect. A model depicting the modulation of band alignment between PVDF and NaNbO₃ with the electric field is proposed to explain the observed tuning of the PEC properties. Electrochemical Impedance spectroscopy measurements support the validity of the proposed model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20tuning" title="electrical tuning">electrical tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%82%82%20generation" title=" H₂ generation"> H₂ generation</a>, <a href="https://publications.waset.org/abstracts/search?q=photoelectrochemical" title=" photoelectrochemical"> photoelectrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=NaNbO%E2%82%83" title=" NaNbO₃"> NaNbO₃</a> </p> <a href="https://publications.waset.org/abstracts/97331/electrically-tuned-photoelectrochemical-properties-of-ferroelectric-pvdfcupvdf-nanbo3-photoanode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9440</span> Effects of Phase and Morphology on the Electrochemical and Electrochromic Performances of Tungsten Oxide and Tungsten-Molybdenum Oxide Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinjoo%20Jung">Jinjoo Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayeon%20Won"> Hayeon Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Doyeong%20Jeong"> Doyeong Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Do%20Hyung%20Kim"> Do Hyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present the electrochemical and electrochromic performance of the novel crystalline tungsten oxide and tungsten-molybdenum oxide nanostructures synthesized by utilizing solvo-thermal method with hexacarbonyl tungsten, hexacarbonyl molybdenum, and ethyl alcohol. The morphology and phase of the prepared products were highly dependent on the synthesis conditions such as synthesis and annealing temperature, synthesis time, and precursor ratio. The tungsten oxide nanostructures (TCNs) have urchin-like or spherical nanostructure with different phase of W18O49 and WO3. The morphology of tungsten-molybdenum oxide nanostructures (TMONs) is basically similar to that of TCNs. However, the morphology and phase of TMONs are more diverse and are strongly dependent on the composition ratios of W/Mo in the precursor. The electrochemical properties depending on their morphologies and phases of TCNs and TMONs are compared using cyclic voltammetry and galvanostatic charge/discharge tests. The relationship between the electrochromic performance and phase structures/morphologies of nanostructured TCNs and TMONs are systematically investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title="electrochemical">electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochromic" title=" electrochromic"> electrochromic</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten%20oxide" title=" tungsten oxide"> tungsten oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten-molybdenum%20oxide" title=" tungsten-molybdenum oxide"> tungsten-molybdenum oxide</a> </p> <a href="https://publications.waset.org/abstracts/21623/effects-of-phase-and-morphology-on-the-electrochemical-and-electrochromic-performances-of-tungsten-oxide-and-tungsten-molybdenum-oxide-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9439</span> Nanostructured Transition Metal Oxides Doped Graphene for High Performance Solid-State Supercapacitor Electrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Nyongombe">G. Nyongombe</a>, <a href="https://publications.waset.org/abstracts/search?q=Guy%20L.%20Kabongo"> Guy L. Kabongo</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Mothudi"> B. M. Mothudi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20%20Dhlamini"> M. S. Dhlamini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of Transition Metals Oxides (TMOs) doped graphene were synthesized and successfully used as supercapacitor electrode materials. The as-synthesized materials exhibited exceptional electrochemical properties owing to the combined properties of its constituents; high surface area and good conductivity were achieved. Several analytical characterization techniques were employed to investigate the morphology, crystal structure atomic arrangement and elemental chemical state in the materials for which scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were conducted, respectively. Moreover, the electrochemical properties of the as-synthesized materials were examined by performing cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) measurements. Furthermore, the effect of doping concentration on the interlayer distance of the graphene materials and the charge transfer resistance are investigated and correlated to the exceptional current density which was multiplied by a factor of ~80 after TMOs doping in graphene. Finally, the resulting high capacitance obtained confirms the contribution of grapheme exceptional electronic conductivity and large surface area on the electrode materials. Such good-performing electrode materials are highly promising for supercapacitors and other energy storage devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20density" title="energy density">energy density</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitors" title=" supercapacitors"> supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=TMOs" title=" TMOs"> TMOs</a> </p> <a href="https://publications.waset.org/abstracts/84803/nanostructured-transition-metal-oxides-doped-graphene-for-high-performance-solid-state-supercapacitor-electrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9438</span> The Viscosity of Xanthan Gum Grout with Different pH and Ionic Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ahmad%20Raji">H. Ahmad Raji</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed"> R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Nozari"> M. A. Nozari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Xanthan gum (XG) an eco-friendly biopolymer has been recently explicitly investigated for ground improvement approaches. Rheological behavior of this additive strongly depends on electrochemical condition such as pH, ionic strength and also its content in aqueous solution. So, the effects of these factors have been studied in this paper considering various XG contents as 0.25, 0.5, 1, and 2% of water. Moreover, adjusting pH values such as 3, 5, 7 and 9 in addition to increasing ionic strength to 0.1 and 0.2 in the molar scale has covered a practical range of electrochemical condition. The viscosity of grouts shows an apparent upward trend with an increase in ionic strength and XG content. Also, pH affects the polymerization as much as other parameters. As a result, XG behavior is severely influenced by electrochemical settings <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20condition" title="electrochemical condition">electrochemical condition</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20strength" title=" ionic strength"> ionic strength</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=xhanthan%20gum" title=" xhanthan gum "> xhanthan gum </a> </p> <a href="https://publications.waset.org/abstracts/116666/the-viscosity-of-xanthan-gum-grout-with-different-ph-and-ionic-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9437</span> Nanohybrids for Energy Storage Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Guellati">O. Guellati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Harat"> A. Harat</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Djefaflia"> F. Djefaflia</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Habib"> N. Habib</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nait-Merzoug"> A. Nait-Merzoug</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20El%20Haskouri"> J. El Haskouri</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Momodu"> D. Momodu</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Manyala"> N. Manyala</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20B%C3%A9gin"> D. Bégin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Guerioune"> M. Guerioune</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a facile and low-cost free-template synthesis method was used to synthesize mesoporous smart multifunctional nanohybrids based on Graphene/PANI nanofibers micro/nanostructures with very interesting physic-chemical properties and faradic electrochemical behavior of these products was investigated. These nanohybrid products have been characterized quantitatively and qualitatively using different techniques, such as XRD / FTIR, Raman, XPS spectroscopy, Field Emission SEM and High-Resolution TEM microscopy, BET textural analysis, electrochemical measurements (CV, CD, EIS). Moreover, the electrochemical measurements performed in a 6 M KOH aqueous electrolyte depicted excellent electrochemical performance ascribed to the optimized composition of hydroxides et PANI nanofibers. An exceptionally notable specific capacitance between 800  and 2000 F. g-1 was obtained at 5  mV. s-1 scan rate for these synthesized products depends on the optimized growth conditions. We found much better nanohybrids by reinforcing hydroxides or conduction polymer nanofibers with carbonaceous nanomaterials depicting their potential as suitable materials for energy storage devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanohybrid%20materials" title="nanohybrid materials">nanohybrid materials</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymers" title=" conducting polymers"> conducting polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonaceous%20nanomaterials" title=" carbonaceous nanomaterials"> carbonaceous nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitors" title=" supercapacitors"> supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a> </p> <a href="https://publications.waset.org/abstracts/169195/nanohybrids-for-energy-storage-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9436</span> Development of a Cathode-Type Ca1-xSrxMnO3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Guemache">A. Guemache</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Omari"> M. Omari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxides with formula Ca1-xSrx MnO3 (0≤x≤0.2) were synthesized using co-precipitation method. The identification of the obtained phase was carried out using infrared spectroscopy and X-ray diffraction. Thermogravimetric and differential analysis was permitted to characterize different transformations of precursors which take place during one heating cycle. The study of electrochemical behavior was carried out by cyclic voltammetry and impedance spectroscopy. The obtained results show that apparent catalytic activity improved when increasing the concentration of strontium. Anodic current densities varies from 1.3 to 5.9 mA/cm2 at the rate scan of 20 mV.s-1 and a potential 0.8 V for oxides with composition x=0 to 0.2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxide" title="oxide">oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=co-precipitation" title=" co-precipitation"> co-precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties" title=" electrochemical properties"> electrochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=cathode-type" title=" cathode-type"> cathode-type</a> </p> <a href="https://publications.waset.org/abstracts/14852/development-of-a-cathode-type-ca1-xsrxmno3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9435</span> Development of Enzymatic Amperometric Biosensors with Carbon Nanotubes Decorated with Iron Oxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uc-Cayetano%20E.%20G.">Uc-Cayetano E. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ake-Uh%20O.%20E."> Ake-Uh O. E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Villanueva-Mena%20I.%20E."> Villanueva-Mena I. E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ordonez%20L.%20C."> Ordonez L. C.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes (CNTs) and other graphitic nanostructures are materials with extraordinary physical, physicochemical and electrochemical properties which are being aggressively investigated for a variety of sensing applications. Thus, sensing of biological molecules such as proteins, DNA, glucose and other enzymes using either single wall or multiwall carbon nanotubes (MWCNTs) has been widely reported. Despite the current progress in this area, the electrochemical response of CNTs used in a variety of sensing arrangements still needs to be improved. An alternative towards the enhancement of this CNTs' electrochemical response is to chemically (or physically) modify its surface. The influence of the decoration with iron oxide nanoparticles in different types of MWCNTs on the amperometric sensing of glucose, urea, and cholesterol in solution is investigated. Commercial MWCNTs were oxidized in acid media and subsequently decorated with iron oxide nanoparticles; finally, the enzymes glucose oxidase, urease, and cholesterol oxidase are chemically immobilized to oxidized and decorated MWCNTs for glucose, urease, and cholesterol electrochemical sensing. The results of the electrochemical characterizations consistently show that the presence of iron oxide nanoparticles decorating the surface of MWCNTs enhance the amperometric response and the sensitivity to increments in glucose, urease, and cholesterol concentration when compared to non-decorated MWCNTs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WCNTs" title="WCNTs">WCNTs</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=decoration" title=" decoration"> decoration</a> </p> <a href="https://publications.waset.org/abstracts/106360/development-of-enzymatic-amperometric-biosensors-with-carbon-nanotubes-decorated-with-iron-oxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9434</span> BaFe12O19/Polythiophene Nanocomposite as Electrochemical Supercapacitor Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Farokhi">H. Farokhi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bahadoran"> A. Bahadoran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is focused on the absorbance and magnetic properties of a novel nanocomposite based on conducting polymer, carbon black and barium hexaferrite in epoxy resin on the E-glass fibre substrate. The highly conductive nanocomposite was provided by in-situ polymerization of aniline in the presence of carbon black (C) and barium hexaferrite (BaFe12O19) as electromagnetic absorbance material. The structure, morphology, and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). SEM images showed the uniformly coated PAni on the surface of carbon black and barium hexaferrite. XRD peaks also verified the presence of carbon black and barium hexaferrite in the nanocomposite. The microwave characteristics determined from the magnetic and dielectric properties of the elastomeric composites obtained from scattering data by fitting the samples in a waveguide, where measured in the frequency in X-band frequency range, the range of 8 to 12 GHz. The reflection losses were evaluated to be less than −5dB over the whole X-band frequency (8–12 GHz) for the thickness of 1.4mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20polymer" title="conductive polymer">conductive polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20materials" title=" magnetic materials"> magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitance" title="capacitance">capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20cell" title=" electrochemical cell"> electrochemical cell</a> </p> <a href="https://publications.waset.org/abstracts/44855/bafe12o19polythiophene-nanocomposite-as-electrochemical-supercapacitor-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9433</span> Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambrish%20Singh">Ambrish Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=EFM" title=" EFM"> EFM</a>, <a href="https://publications.waset.org/abstracts/search?q=AFM" title=" AFM"> AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MD" title=" MD"> MD</a> </p> <a href="https://publications.waset.org/abstracts/115086/analysis-of-some-produced-inhibitors-for-corrosion-of-j55-steel-in-nacl-solution-saturated-with-co2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties&amp;page=315">315</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties&amp;page=316">316</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10