CINXE.COM
Orthogonal group - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Orthogonal group - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"bb07b673-0258-4cc2-a50a-3c82646fa280","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Orthogonal_group","wgTitle":"Orthogonal group","wgCurRevisionId":1250663995,"wgRevisionId":1250663995,"wgArticleId":173954,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from July 2022","Wikipedia articles needing clarification from November 2019","All Wikipedia articles needing clarification","Wikipedia articles that are too technical from November 2019","All articles that are too technical","Wikipedia articles needing clarification from January 2024", "Wikipedia articles needing clarification from May 2020","Articles with Italian-language sources (it)","Lie groups","Quadratic forms","Euclidean symmetries","Linear algebraic groups"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Orthogonal_group","wgRelevantArticleId":173954,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":60000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false, "wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1783179","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage": "ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/1200px-Cyclic_group.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1167"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/800px-Cyclic_group.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="778"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/640px-Cyclic_group.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="623"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Orthogonal group - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Orthogonal_group"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Orthogonal_group&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Orthogonal_group"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Orthogonal_group rootpage-Orthogonal_group skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Orthogonal+group" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Orthogonal+group" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Orthogonal+group" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Orthogonal+group" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Name" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Name"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Name</span> </div> </a> <ul id="toc-Name-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_Euclidean_geometry" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#In_Euclidean_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>In Euclidean geometry</span> </div> </a> <button aria-controls="toc-In_Euclidean_geometry-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle In Euclidean geometry subsection</span> </button> <ul id="toc-In_Euclidean_geometry-sublist" class="vector-toc-list"> <li id="toc-Special_orthogonal_group" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Special_orthogonal_group"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Special orthogonal group</span> </div> </a> <ul id="toc-Special_orthogonal_group-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Canonical_form" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Canonical_form"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Canonical form</span> </div> </a> <ul id="toc-Canonical_form-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reflections" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Reflections"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Reflections</span> </div> </a> <ul id="toc-Reflections-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Symmetry_group_of_spheres" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Symmetry_group_of_spheres"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Symmetry group of spheres</span> </div> </a> <ul id="toc-Symmetry_group_of_spheres-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Group_structure" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Group_structure"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Group structure</span> </div> </a> <button aria-controls="toc-Group_structure-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Group structure subsection</span> </button> <ul id="toc-Group_structure-sublist" class="vector-toc-list"> <li id="toc-As_algebraic_groups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#As_algebraic_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>As algebraic groups</span> </div> </a> <ul id="toc-As_algebraic_groups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Maximal_tori_and_Weyl_groups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Maximal_tori_and_Weyl_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Maximal tori and Weyl groups</span> </div> </a> <ul id="toc-Maximal_tori_and_Weyl_groups-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Topology" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Topology"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Topology</span> </div> </a> <button aria-controls="toc-Topology-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Topology subsection</span> </button> <ul id="toc-Topology-sublist" class="vector-toc-list"> <li id="toc-Low-dimensional_topology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Low-dimensional_topology"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Low-dimensional topology</span> </div> </a> <ul id="toc-Low-dimensional_topology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fundamental_group" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fundamental_group"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Fundamental group</span> </div> </a> <ul id="toc-Fundamental_group-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Homotopy_groups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Homotopy_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Homotopy groups</span> </div> </a> <ul id="toc-Homotopy_groups-sublist" class="vector-toc-list"> <li id="toc-Relation_to_KO-theory" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Relation_to_KO-theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.1</span> <span>Relation to KO-theory</span> </div> </a> <ul id="toc-Relation_to_KO-theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computation_and_interpretation_of_homotopy_groups" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Computation_and_interpretation_of_homotopy_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.2</span> <span>Computation and interpretation of homotopy groups</span> </div> </a> <ul id="toc-Computation_and_interpretation_of_homotopy_groups-sublist" class="vector-toc-list"> <li id="toc-Low-dimensional_groups" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Low-dimensional_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.2.1</span> <span>Low-dimensional groups</span> </div> </a> <ul id="toc-Low-dimensional_groups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lie_groups" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Lie_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.2.2</span> <span>Lie groups</span> </div> </a> <ul id="toc-Lie_groups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vector_bundles" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Vector_bundles"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.2.3</span> <span>Vector bundles</span> </div> </a> <ul id="toc-Vector_bundles-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Loop_spaces" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Loop_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.2.4</span> <span>Loop spaces</span> </div> </a> <ul id="toc-Loop_spaces-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Interpretation_of_homotopy_groups" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Interpretation_of_homotopy_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.3</span> <span>Interpretation of homotopy groups</span> </div> </a> <ul id="toc-Interpretation_of_homotopy_groups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Whitehead_tower" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Whitehead_tower"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.4</span> <span>Whitehead tower</span> </div> </a> <ul id="toc-Whitehead_tower-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Of_indefinite_quadratic_form_over_the_reals" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Of_indefinite_quadratic_form_over_the_reals"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Of indefinite quadratic form over the reals</span> </div> </a> <ul id="toc-Of_indefinite_quadratic_form_over_the_reals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Of_complex_quadratic_forms" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Of_complex_quadratic_forms"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Of complex quadratic forms</span> </div> </a> <ul id="toc-Of_complex_quadratic_forms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Over_finite_fields" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Over_finite_fields"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Over finite fields</span> </div> </a> <button aria-controls="toc-Over_finite_fields-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Over finite fields subsection</span> </button> <ul id="toc-Over_finite_fields-sublist" class="vector-toc-list"> <li id="toc-Characteristic_different_from_two" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Characteristic_different_from_two"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Characteristic different from two</span> </div> </a> <ul id="toc-Characteristic_different_from_two-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dickson_invariant" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dickson_invariant"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Dickson invariant</span> </div> </a> <ul id="toc-Dickson_invariant-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Orthogonal_groups_of_characteristic_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Orthogonal_groups_of_characteristic_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Orthogonal groups of characteristic 2</span> </div> </a> <ul id="toc-Orthogonal_groups_of_characteristic_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-The_spinor_norm" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#The_spinor_norm"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>The spinor norm</span> </div> </a> <ul id="toc-The_spinor_norm-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Galois_cohomology_and_orthogonal_groups" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Galois_cohomology_and_orthogonal_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Galois cohomology and orthogonal groups</span> </div> </a> <ul id="toc-Galois_cohomology_and_orthogonal_groups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lie_algebra" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Lie_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Lie algebra</span> </div> </a> <ul id="toc-Lie_algebra-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Related_groups" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Related_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Related groups</span> </div> </a> <button aria-controls="toc-Related_groups-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Related groups subsection</span> </button> <ul id="toc-Related_groups-sublist" class="vector-toc-list"> <li id="toc-Lie_subgroups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lie_subgroups"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.1</span> <span>Lie subgroups</span> </div> </a> <ul id="toc-Lie_subgroups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lie_supergroups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lie_supergroups"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.2</span> <span>Lie supergroups</span> </div> </a> <ul id="toc-Lie_supergroups-sublist" class="vector-toc-list"> <li id="toc-Conformal_group" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Conformal_group"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.2.1</span> <span>Conformal group</span> </div> </a> <ul id="toc-Conformal_group-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Discrete_subgroups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Discrete_subgroups"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.3</span> <span>Discrete subgroups</span> </div> </a> <ul id="toc-Discrete_subgroups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Covering_and_quotient_groups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Covering_and_quotient_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.4</span> <span>Covering and quotient groups</span> </div> </a> <ul id="toc-Covering_and_quotient_groups-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Principal_homogeneous_space:_Stiefel_manifold" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Principal_homogeneous_space:_Stiefel_manifold"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Principal homogeneous space: Stiefel manifold</span> </div> </a> <ul id="toc-Principal_homogeneous_space:_Stiefel_manifold-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>See also</span> </div> </a> <button aria-controls="toc-See_also-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle See also subsection</span> </button> <ul id="toc-See_also-sublist" class="vector-toc-list"> <li id="toc-Specific_transforms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Specific_transforms"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.1</span> <span>Specific transforms</span> </div> </a> <ul id="toc-Specific_transforms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Specific_groups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Specific_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.2</span> <span>Specific groups</span> </div> </a> <ul id="toc-Specific_groups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Related_groups_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Related_groups_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.3</span> <span>Related groups</span> </div> </a> <ul id="toc-Related_groups_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lists_of_groups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lists_of_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.4</span> <span>Lists of groups</span> </div> </a> <ul id="toc-Lists_of_groups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Representation_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Representation_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.5</span> <span>Representation theory</span> </div> </a> <ul id="toc-Representation_theory-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">17</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Orthogonal group</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 20 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-20" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">20 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B2%D9%85%D8%B1%D8%A9_%D9%85%D8%AA%D8%B9%D8%A7%D9%85%D8%AF%D8%A9" title="زمرة متعامدة – Arabic" lang="ar" hreflang="ar" data-title="زمرة متعامدة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%90%D1%80%D1%82%D0%B0%D0%B3%D0%B0%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%B3%D1%80%D1%83%D0%BF%D0%B0" title="Артаганальная група – Belarusian" lang="be" hreflang="be" data-title="Артаганальная група" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Grup_ortogonal" title="Grup ortogonal – Catalan" lang="ca" hreflang="ca" data-title="Grup ortogonal" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Ortogon%C3%A1ln%C3%AD_grupa" title="Ortogonální grupa – Czech" lang="cs" hreflang="cs" data-title="Ortogonální grupa" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Orthogonale_Gruppe" title="Orthogonale Gruppe – German" lang="de" hreflang="de" data-title="Orthogonale Gruppe" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Grupo_ortogonal" title="Grupo ortogonal – Spanish" lang="es" hreflang="es" data-title="Grupo ortogonal" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Groupe_orthogonal" title="Groupe orthogonal – French" lang="fr" hreflang="fr" data-title="Groupe orthogonal" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gv mw-list-item"><a href="https://gv.wikipedia.org/wiki/Possan_cair-uillinagh" title="Possan cair-uillinagh – Manx" lang="gv" hreflang="gv" data-title="Possan cair-uillinagh" data-language-autonym="Gaelg" data-language-local-name="Manx" class="interlanguage-link-target"><span>Gaelg</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%A7%81%EA%B5%90%EA%B5%B0" title="직교군 – Korean" lang="ko" hreflang="ko" data-title="직교군" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Gruppo_ortogonale" title="Gruppo ortogonale – Italian" lang="it" hreflang="it" data-title="Gruppo ortogonale" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Orthogonale_groep" title="Orthogonale groep – Dutch" lang="nl" hreflang="nl" data-title="Orthogonale groep" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%9B%B4%E4%BA%A4%E7%BE%A4" title="直交群 – Japanese" lang="ja" hreflang="ja" data-title="直交群" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Grupo_ortogonal" title="Grupo ortogonal – Portuguese" lang="pt" hreflang="pt" data-title="Grupo ortogonal" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Grup_ortogonal" title="Grup ortogonal – Romanian" lang="ro" hreflang="ro" data-title="Grup ortogonal" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9E%D1%80%D1%82%D0%BE%D0%B3%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%B3%D1%80%D1%83%D0%BF%D0%BF%D0%B0" title="Ортогональная группа – Russian" lang="ru" hreflang="ru" data-title="Ортогональная группа" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Ortogonalgrupp" title="Ortogonalgrupp – Swedish" lang="sv" hreflang="sv" data-title="Ortogonalgrupp" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AF%86%E0%AE%99%E0%AF%8D%E0%AE%95%E0%AF%81%E0%AE%A4%E0%AF%8D%E0%AE%A4%E0%AF%81%E0%AE%95%E0%AF%8D_%E0%AE%95%E0%AF%81%E0%AE%B2%E0%AE%AE%E0%AF%8D" title="செங்குத்துக் குலம் – Tamil" lang="ta" hreflang="ta" data-title="செங்குத்துக் குலம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9E%D1%80%D1%82%D0%BE%D0%B3%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0_%D0%B3%D1%80%D1%83%D0%BF%D0%B0" title="Ортогональна група – Ukrainian" lang="uk" hreflang="uk" data-title="Ортогональна група" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Nh%C3%B3m_tr%E1%BB%B1c_giao" title="Nhóm trực giao – Vietnamese" lang="vi" hreflang="vi" data-title="Nhóm trực giao" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%AD%A3%E4%BA%A4%E7%BE%A4" title="正交群 – Chinese" lang="zh" hreflang="zh" data-title="正交群" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1783179#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Orthogonal_group" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Orthogonal_group" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Orthogonal_group"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Orthogonal_group&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Orthogonal_group&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Orthogonal_group"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Orthogonal_group&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Orthogonal_group&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Orthogonal_group" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Orthogonal_group" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Orthogonal_group&oldid=1250663995" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Orthogonal_group&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Orthogonal_group&id=1250663995&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOrthogonal_group"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOrthogonal_group"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Orthogonal_group&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Orthogonal_group&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1783179" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Type of group in mathematics</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><table class="sidebar sidebar-collapse nomobile nowraplinks" style="width:20.0em;"><tbody><tr><th class="sidebar-title" style="padding-bottom:0.4em;"><span style="font-size: 8pt; font-weight: none"><a href="/wiki/Algebraic_structure" title="Algebraic structure">Algebraic structure</a> → <b>Group theory</b></span><br /><a href="/wiki/Group_theory" title="Group theory">Group theory</a></th></tr><tr><td class="sidebar-image"><span typeof="mw:File"><a href="/wiki/File:Cyclic_group.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/120px-Cyclic_group.svg.png" decoding="async" width="120" height="117" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/180px-Cyclic_group.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/240px-Cyclic_group.svg.png 2x" data-file-width="443" data-file-height="431" /></a></span></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Basic notions</div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Subgroup" title="Subgroup">Subgroup</a></li> <li><a href="/wiki/Normal_subgroup" title="Normal subgroup">Normal subgroup</a></li> <li><a href="/wiki/Group_action" title="Group action">Group action</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Quotient_group" title="Quotient group">Quotient group</a></li> <li><a href="/wiki/Semidirect_product" title="Semidirect product">(Semi-)</a><a href="/wiki/Direct_product_of_groups" title="Direct product of groups">direct product</a></li> <li><a href="/wiki/Direct_sum_of_groups" title="Direct sum of groups">Direct sum</a></li> <li><a href="/wiki/Free_product" title="Free product">Free product</a></li> <li><a href="/wiki/Wreath_product" title="Wreath product">Wreath product</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <i><a href="/wiki/Group_homomorphism" title="Group homomorphism">Group homomorphisms</a></i></th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Kernel_(algebra)#Group_homomorphisms" title="Kernel (algebra)">kernel</a></li> <li><a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Simple_group" title="Simple group">simple</a></li> <li><a href="/wiki/Finite_group" title="Finite group">finite</a></li> <li><a href="/wiki/Infinite_group" title="Infinite group">infinite</a></li> <li><a href="/wiki/Continuous_group" class="mw-redirect" title="Continuous group">continuous</a></li> <li><a href="/wiki/Multiplicative_group" title="Multiplicative group">multiplicative</a></li> <li><a href="/wiki/Additive_group" title="Additive group">additive</a></li> <li><a href="/wiki/Cyclic_group" title="Cyclic group">cyclic</a></li> <li><a href="/wiki/Abelian_group" title="Abelian group">abelian</a></li> <li><a href="/wiki/Dihedral_group" title="Dihedral group">dihedral</a></li> <li><a href="/wiki/Nilpotent_group" title="Nilpotent group">nilpotent</a></li> <li><a href="/wiki/Solvable_group" title="Solvable group">solvable</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Glossary_of_group_theory" title="Glossary of group theory">Glossary of group theory</a></li> <li><a href="/wiki/List_of_group_theory_topics" title="List of group theory topics">List of group theory topics</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Finite_group" title="Finite group">Finite groups</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Cyclic_group" title="Cyclic group">Cyclic group</a> Z<sub><i>n</i></sub></li> <li><a href="/wiki/Symmetric_group" title="Symmetric group">Symmetric group</a> S<sub><i>n</i></sub></li> <li><a href="/wiki/Alternating_group" title="Alternating group">Alternating group</a> A<sub><i>n</i></sub></li></ul> <ul><li><a href="/wiki/Dihedral_group" title="Dihedral group">Dihedral group</a> D<sub><i>n</i></sub></li> <li><a href="/wiki/Quaternion_group" title="Quaternion group">Quaternion group</a> Q</li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Cauchy%27s_theorem_(group_theory)" title="Cauchy's theorem (group theory)">Cauchy's theorem</a></li> <li><a href="/wiki/Lagrange%27s_theorem_(group_theory)" title="Lagrange's theorem (group theory)">Lagrange's theorem</a></li></ul> <ul><li><a href="/wiki/Sylow_theorems" title="Sylow theorems">Sylow theorems</a></li> <li><a href="/wiki/Hall_subgroup" title="Hall subgroup">Hall's theorem</a></li></ul> <ul><li><a href="/wiki/P-group" title="P-group"><i>p</i>-group</a></li> <li><a href="/wiki/Elementary_abelian_group" title="Elementary abelian group">Elementary abelian group</a></li></ul> <ul><li><a href="/wiki/Frobenius_group" title="Frobenius group">Frobenius group</a></li></ul> <ul><li><a href="/wiki/Schur_multiplier" title="Schur multiplier">Schur multiplier</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Classification_of_finite_simple_groups" title="Classification of finite simple groups">Classification of finite simple groups</a></th></tr><tr><td class="sidebar-content"> <ul><li>cyclic</li> <li>alternating</li> <li><a href="/wiki/Group_of_Lie_type" title="Group of Lie type">Lie type</a></li> <li><a href="/wiki/Sporadic_group" title="Sporadic group">sporadic</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><div class="hlist"><ul><li><a href="/wiki/Discrete_group" title="Discrete group">Discrete groups</a></li><li><a href="/wiki/Lattice_(discrete_subgroup)" title="Lattice (discrete subgroup)">Lattices</a></li></ul></div></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Integer" title="Integer">Integers</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li> <li><a href="/wiki/Free_group" title="Free group">Free group</a></li></ul> <div style="display:inline-block; padding:0.2em 0.4em; line-height:1.2em;"><a href="/wiki/Modular_group" title="Modular group">Modular groups</a> <div class="hlist"><ul><li>PSL(2, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li><li>SL(2, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li></ul></div></div> <ul><li><a href="/wiki/Arithmetic_group" title="Arithmetic group">Arithmetic group</a></li> <li><a href="/wiki/Lattice_(group)" title="Lattice (group)">Lattice</a></li> <li><a href="/wiki/Hyperbolic_group" title="Hyperbolic group">Hyperbolic group</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Topological_group" title="Topological group">Topological</a> and <a href="/wiki/Lie_group" title="Lie group">Lie groups</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Solenoid_(mathematics)" title="Solenoid (mathematics)">Solenoid</a></li> <li><a href="/wiki/Circle_group" title="Circle group">Circle</a></li></ul> <ul><li><a href="/wiki/General_linear_group" title="General linear group">General linear</a> GL(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Special_linear_group" title="Special linear group">Special linear</a> SL(<i>n</i>)</li></ul> <ul><li><a class="mw-selflink selflink">Orthogonal</a> O(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Euclidean_group" title="Euclidean group">Euclidean</a> E(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Special_orthogonal_group" class="mw-redirect" title="Special orthogonal group">Special orthogonal</a> SO(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Unitary_group" title="Unitary group">Unitary</a> U(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Special_unitary_group" title="Special unitary group">Special unitary</a> SU(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Symplectic_group" title="Symplectic group">Symplectic</a> Sp(<i>n</i>)</li></ul> <ul><li><a href="/wiki/G2_(mathematics)" title="G2 (mathematics)">G<sub>2</sub></a></li> <li><a href="/wiki/F4_(mathematics)" title="F4 (mathematics)">F<sub>4</sub></a></li> <li><a href="/wiki/E6_(mathematics)" title="E6 (mathematics)">E<sub>6</sub></a></li> <li><a href="/wiki/E7_(mathematics)" title="E7 (mathematics)">E<sub>7</sub></a></li> <li><a href="/wiki/E8_(mathematics)" title="E8 (mathematics)">E<sub>8</sub></a></li></ul> <ul><li><a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz</a></li> <li><a href="/wiki/Poincar%C3%A9_group" title="Poincaré group">Poincaré</a></li> <li><a href="/wiki/Conformal_group" title="Conformal group">Conformal</a></li></ul> <ul><li><a href="/wiki/Diffeomorphism" title="Diffeomorphism">Diffeomorphism</a></li> <li><a href="/wiki/Loop_group" title="Loop group">Loop</a></li></ul> <div style="display:inline-block; padding:0.2em 0.4em; line-height:1.2em;"><a href="/wiki/Infinite_dimensional_Lie_group" class="mw-redirect" title="Infinite dimensional Lie group">Infinite dimensional Lie group</a> <div class="hlist"><ul><li>O(∞)</li><li>SU(∞)</li><li>Sp(∞)</li></ul></div></div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Algebraic_group" title="Algebraic group">Algebraic groups</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Linear_algebraic_group" title="Linear algebraic group">Linear algebraic group</a></li></ul> <ul><li><a href="/wiki/Reductive_group" title="Reductive group">Reductive group</a></li></ul> <ul><li><a href="/wiki/Abelian_variety" title="Abelian variety">Abelian variety</a></li></ul> <ul><li><a href="/wiki/Elliptic_curve" title="Elliptic curve">Elliptic curve</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Group_theory_sidebar" title="Template:Group theory sidebar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Group_theory_sidebar" title="Template talk:Group theory sidebar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Group_theory_sidebar" title="Special:EditPage/Template:Group theory sidebar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>orthogonal group</b> in dimension <span class="texhtml"><i>n</i></span>, denoted <span class="texhtml">O(<i>n</i>)</span>, is the <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> of <a href="/wiki/Isometry" title="Isometry">distance-preserving transformations</a> of a <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> of dimension <span class="texhtml"><i>n</i></span> that preserve a fixed point, where the group operation is given by <a href="/wiki/Function_composition" title="Function composition">composing</a> transformations. The orthogonal group is sometimes called the <b>general orthogonal group</b>, by analogy with the <a href="/wiki/General_linear_group" title="General linear group">general linear group</a>. Equivalently, it is the group of <span class="texhtml"><i>n</i> × <i>n</i></span> <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal matrices</a>, where the group operation is given by <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">matrix multiplication</a> (an orthogonal matrix is a <a href="/wiki/Real_matrix" class="mw-redirect" title="Real matrix">real matrix</a> whose <a href="/wiki/Invertible_matrix" title="Invertible matrix">inverse</a> equals its <a href="/wiki/Transpose" title="Transpose">transpose</a>). The orthogonal group is an <a href="/wiki/Algebraic_group" title="Algebraic group">algebraic group</a> and a <a href="/wiki/Lie_group" title="Lie group">Lie group</a>. It is <a href="/wiki/Compact_group" title="Compact group">compact</a>. </p><p>The orthogonal group in dimension <span class="texhtml"><i>n</i></span> has two <a href="/wiki/Connected_component_(topology)" class="mw-redirect" title="Connected component (topology)">connected components</a>. The one that contains the <a href="/wiki/Identity_element" title="Identity element">identity element</a> is a <a href="/wiki/Normal_subgroup" title="Normal subgroup">normal subgroup</a>, called the <b>special orthogonal group</b>, and denoted <span class="texhtml">SO(<i>n</i>)</span>. It consists of all orthogonal matrices of <a href="/wiki/Determinant" title="Determinant">determinant</a> 1. This group is also called the <b>rotation group</b>, generalizing the fact that in dimensions 2 and 3, its elements are the usual <a href="/wiki/Rotation_(mathematics)" title="Rotation (mathematics)">rotations</a> around a point (in dimension 2) or a line (in dimension 3). In low dimension, these groups have been widely studied, see <span class="texhtml"><a href="/wiki/SO(2)" class="mw-redirect" title="SO(2)">SO(2)</a></span>, <span class="texhtml"><a href="/wiki/SO(3)" class="mw-redirect" title="SO(3)">SO(3)</a></span> and <span class="texhtml"><a href="/wiki/SO(4)" class="mw-redirect" title="SO(4)">SO(4)</a></span>. The other component consists of all orthogonal matrices of determinant <span class="texhtml">−1</span>. This component does not form a group, as the product of any two of its elements is of determinant 1, and therefore not an element of the component. </p><p>By extension, for any field <span class="texhtml"><i>F</i></span>, an <span class="texhtml"><i>n</i> × <i>n</i></span> matrix with entries in <span class="texhtml"><i>F</i></span> such that its inverse equals its transpose is called an <i>orthogonal matrix over</i> <span class="texhtml"><i>F</i></span>. The <span class="texhtml"><i>n</i> × <i>n</i></span> orthogonal matrices form a subgroup, denoted <span class="texhtml">O(<i>n</i>, <i>F</i>)</span>, of the <a href="/wiki/General_linear_group" title="General linear group">general linear group</a> <span class="texhtml">GL(<i>n</i>, <i>F</i>)</span>; that is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {O} (n,F)=\left\{Q\in \operatorname {GL} (n,F)\mid Q^{\mathsf {T}}Q=QQ^{\mathsf {T}}=I\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">O</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mi>Q</mi> <mo>∈<!-- ∈ --></mo> <mi>GL</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>∣<!-- ∣ --></mo> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>Q</mi> <mo>=</mo> <mi>Q</mi> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mo>=</mo> <mi>I</mi> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {O} (n,F)=\left\{Q\in \operatorname {GL} (n,F)\mid Q^{\mathsf {T}}Q=QQ^{\mathsf {T}}=I\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7ae53f9baa7adbce56646d3dcd268bad973eb33" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:47.927ex; height:3.343ex;" alt="{\displaystyle \operatorname {O} (n,F)=\left\{Q\in \operatorname {GL} (n,F)\mid Q^{\mathsf {T}}Q=QQ^{\mathsf {T}}=I\right\}.}"></span> </p><p>More generally, given a non-degenerate <a href="/wiki/Symmetric_bilinear_form" title="Symmetric bilinear form">symmetric bilinear form</a> or <a href="/wiki/Quadratic_form" title="Quadratic form">quadratic form</a><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> on a <a href="/wiki/Vector_space" title="Vector space">vector space</a> over a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a>, the <i>orthogonal group of the form</i> is the group of invertible <a href="/wiki/Linear_map" title="Linear map">linear maps</a> that preserve the form. The preceding orthogonal groups are the special case where, on some basis, the bilinear form is the <a href="/wiki/Dot_product" title="Dot product">dot product</a>, or, equivalently, the quadratic form is the sum of the square of the coordinates. </p><p>All orthogonal groups are <a href="/wiki/Algebraic_group" title="Algebraic group">algebraic groups</a>, since the condition of preserving a form can be expressed as an equality of matrices. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Name">Name</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=1" title="Edit section: Name"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The name of "orthogonal group" originates from the following characterization of its elements. Given a <a href="/wiki/Euclidean_vector_space" class="mw-redirect" title="Euclidean vector space">Euclidean vector space</a> <span class="texhtml"><i>E</i></span> of dimension <span class="texhtml"><i>n</i></span>, the elements of the orthogonal group <span class="texhtml">O(<i>n</i>)</span> are, <a href="/wiki/Up_to" title="Up to">up to</a> a <a href="/wiki/Uniform_scaling" class="mw-redirect" title="Uniform scaling">uniform scaling</a> (<a href="/wiki/Homothecy" class="mw-redirect" title="Homothecy">homothecy</a>), the <a href="/wiki/Linear_map" title="Linear map">linear maps</a> from <span class="texhtml"><i>E</i></span> to <span class="texhtml"><i>E</i></span> that map <a href="/wiki/Orthogonal_vector" class="mw-redirect" title="Orthogonal vector">orthogonal vectors</a> to orthogonal vectors. </p> <div class="mw-heading mw-heading2"><h2 id="In_Euclidean_geometry">In Euclidean geometry</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=2" title="Edit section: In Euclidean geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The orthogonal <span class="texhtml">O(<i>n</i>)</span> is the subgroup of the <a href="/wiki/General_linear_group" title="General linear group">general linear group</a> <span class="texhtml">GL(<i>n</i>, <b>R</b>)</span>, consisting of all <a href="/wiki/Endomorphisms" class="mw-redirect" title="Endomorphisms">endomorphisms</a> that preserve the <a href="/wiki/Euclidean_norm" class="mw-redirect" title="Euclidean norm">Euclidean norm</a>; that is, endomorphisms <span class="texhtml"><i>g</i></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|g(x)\|=\|x\|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|g(x)\|=\|x\|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/952423c0b02e41f60653e7f982c7968dd2cbfc51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.98ex; height:2.843ex;" alt="{\displaystyle \|g(x)\|=\|x\|.}"></span> </p><p>Let <span class="texhtml">E(<i>n</i>)</span> be the group of the <a href="/wiki/Euclidean_isometry" class="mw-redirect" title="Euclidean isometry">Euclidean isometries</a> of a <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> <span class="texhtml"><i>S</i></span> of dimension <span class="texhtml"><i>n</i></span>. This group does not depend on the choice of a particular space, since all Euclidean spaces of the same dimension are <a href="/wiki/Isomorphic" class="mw-redirect" title="Isomorphic">isomorphic</a>. The <a href="/wiki/Stabilizer_subgroup" class="mw-redirect" title="Stabilizer subgroup">stabilizer subgroup</a> of a point <span class="texhtml"><i>x</i> ∈ <i>S</i></span> is the subgroup of the elements <span class="texhtml"><i>g</i> ∈ E(<i>n</i>)</span> such that <span class="texhtml"><i>g</i>(<i>x</i>) = <i>x</i></span>. This stabilizer is (or, more exactly, is isomorphic to) <span class="texhtml">O(<i>n</i>)</span>, since the choice of a point as an origin induces an isomorphism between the Euclidean space and its associated Euclidean vector space. </p><p>There is a natural <a href="/wiki/Group_homomorphism" title="Group homomorphism">group homomorphism</a> <span class="texhtml"><i>p</i></span> from <span class="texhtml">E(<i>n</i>)</span> to <span class="texhtml">O(<i>n</i>)</span>, which is defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(g)(y-x)=g(y)-g(x),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(g)(y-x)=g(y)-g(x),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296ebaf47306f2d9c23dfae3bb1e312ff3e08aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:26.24ex; height:2.843ex;" alt="{\displaystyle p(g)(y-x)=g(y)-g(x),}"></span></dd></dl> <p>where, as usual, the subtraction of two points denotes the <a href="/wiki/Translation_(geometry)" title="Translation (geometry)">translation</a> vector that maps the second point to the first one. This is a well defined homomorphism, since a straightforward verification shows that, if two pairs of points have the same difference, the same is true for their images by <span class="texhtml"><i>g</i></span> (for details, see <i><a href="/wiki/Affine_space#Subtraction_and_Weyl's_axioms" title="Affine space">Affine space § Subtraction and Weyl's axioms</a></i>). </p><p>The <a href="/wiki/Kernel_(algebra)" title="Kernel (algebra)">kernel</a> of <span class="texhtml"><i>p</i></span> is the vector space of the translations. So, the translations form a <a href="/wiki/Normal_subgroup" title="Normal subgroup">normal subgroup</a> of <span class="texhtml">E(<i>n</i>)</span>, the stabilizers of two points are <a href="/wiki/Conjugate_subgroup" class="mw-redirect" title="Conjugate subgroup">conjugate</a> under the action of the translations, and all stabilizers are isomorphic to <span class="texhtml">O(<i>n</i>)</span>. </p><p>Moreover, the Euclidean group is a <a href="/wiki/Semidirect_product" title="Semidirect product">semidirect product</a> of <span class="texhtml">O(<i>n</i>)</span> and the group of translations. It follows that the study of the Euclidean group is essentially reduced to the study of <span class="texhtml">O(<i>n</i>)</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Special_orthogonal_group">Special orthogonal group</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=3" title="Edit section: Special orthogonal group"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>By choosing an <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a> of a Euclidean vector space, the orthogonal group can be identified with the group (under matrix multiplication) of <a href="/wiki/Orthogonal_matrices" class="mw-redirect" title="Orthogonal matrices">orthogonal matrices</a>, which are the matrices such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle QQ^{\mathsf {T}}=I.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle QQ^{\mathsf {T}}=I.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97a735e54898214aab10ac4fb8eebcd93ef54b61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.945ex; height:3.009ex;" alt="{\displaystyle QQ^{\mathsf {T}}=I.}"></span></dd></dl> <p>It follows from this equation that the square of the <a href="/wiki/Determinant" title="Determinant">determinant</a> of <span class="texhtml mvar" style="font-style:italic;">Q</span> equals <span class="texhtml">1</span>, and thus the determinant of <span class="texhtml mvar" style="font-style:italic;">Q</span> is either <span class="texhtml">1</span> or <span class="texhtml">−1</span>. The orthogonal matrices with determinant <span class="texhtml">1</span> form a subgroup called the <i>special orthogonal group</i>, denoted <span class="texhtml">SO(<i>n</i>)</span>, consisting of all <a href="/wiki/Euclidean_group#Direct_and_indirect_isometries" title="Euclidean group">direct isometries</a> of <span class="texhtml">O(<i>n</i>)</span>, which are those that preserve the <a href="/wiki/Orientation_(vector_space)" title="Orientation (vector space)">orientation</a> of the space. </p><p><span class="texhtml">SO(<i>n</i>)</span> is a normal subgroup of <span class="texhtml">O(<i>n</i>)</span>, as being the <a href="/wiki/Kernel_(algebra)" title="Kernel (algebra)">kernel</a> of the determinant, which is a group homomorphism whose image is the multiplicative group <span class="texhtml">{−1, +1}</span>. This implies that the orthogonal group is an internal <a href="/wiki/Semidirect_product" title="Semidirect product">semidirect product</a> of <span class="texhtml">SO(<i>n</i>)</span> and any subgroup formed with the identity and a <a href="/wiki/Reflection_(geometry)" class="mw-redirect" title="Reflection (geometry)">reflection</a>. </p><p>The group with two elements <span class="texhtml">{±<i>I</i>}</span> (where <span class="texhtml mvar" style="font-style:italic;">I</span> is the identity matrix) is a <a href="/wiki/Normal_subgroup" title="Normal subgroup">normal subgroup</a> and even a <a href="/wiki/Characteristic_subgroup" title="Characteristic subgroup">characteristic subgroup</a> of <span class="texhtml">O(<i>n</i>)</span>, and, if <span class="texhtml"><i>n</i></span> is even, also of <span class="texhtml">SO(<i>n</i>)</span>. If <span class="texhtml"><i>n</i></span> is odd, <span class="texhtml">O(<i>n</i>)</span> is the internal <a href="/wiki/Direct_product_of_groups" title="Direct product of groups">direct product</a> of <span class="texhtml">SO(<i>n</i>)</span> and <span class="texhtml">{±<i>I</i>}</span>. </p><p>The group <span class="texhtml">SO(2)</span> is <a href="/wiki/Abelian_group" title="Abelian group">abelian</a> (whereas <span class="texhtml">SO(<i>n</i>)</span> is not abelian when <span class="texhtml"><i>n</i> > 2</span>). Its finite subgroups are the <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic group</a> <span class="texhtml"><i>C</i><sub><i>k</i></sub></span> of <a href="/wiki/Rotational_symmetry" title="Rotational symmetry"><span class="texhtml"><i>k</i></span>-fold rotations</a>, for every positive integer <span class="texhtml mvar" style="font-style:italic;">k</span>. All these groups are normal subgroups of <span class="texhtml">O(2)</span> and <span class="texhtml">SO(2)</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Canonical_form">Canonical form</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=4" title="Edit section: Canonical form"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For any element of <span class="texhtml">O(<i>n</i>)</span> there is an orthogonal basis, where its matrix has the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}{\begin{matrix}R_{1}&&\\&\ddots &\\&&R_{k}\end{matrix}}&0\\0&{\begin{matrix}\pm 1&&\\&\ddots &\\&&\pm 1\end{matrix}}\\\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd /> <mtd /> </mtr> <mtr> <mtd /> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd /> </mtr> <mtr> <mtd /> <mtd /> <mtd> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>±<!-- ± --></mo> <mn>1</mn> </mtd> <mtd /> <mtd /> </mtr> <mtr> <mtd /> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd /> </mtr> <mtr> <mtd /> <mtd /> <mtd> <mo>±<!-- ± --></mo> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}{\begin{matrix}R_{1}&&\\&\ddots &\\&&R_{k}\end{matrix}}&0\\0&{\begin{matrix}\pm 1&&\\&\ddots &\\&&\pm 1\end{matrix}}\\\end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28f62c045098cb32ab3ee373bdedc48c1d034de5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.671ex; width:35.184ex; height:22.509ex;" alt="{\displaystyle {\begin{bmatrix}{\begin{matrix}R_{1}&&\\&\ddots &\\&&R_{k}\end{matrix}}&0\\0&{\begin{matrix}\pm 1&&\\&\ddots &\\&&\pm 1\end{matrix}}\\\end{bmatrix}},}"></span></dd></dl> <p>where the matrices <span class="texhtml"><i>R</i><sub>1</sub>, ..., <i>R</i><sub><i>k</i></sub></span> are 2-by-2 rotation matrices, that is matrices of the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}a&b\\-b&a\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mi>b</mi> </mtd> <mtd> <mi>a</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}a&b\\-b&a\end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/511c75d021c31bba852462b067bfad41086f3052" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:10.211ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}a&b\\-b&a\end{bmatrix}},}"></span></dd></dl> <p>with <span class="texhtml"><i>a</i><sup>2</sup> + <i>b</i><sup>2</sup> = 1</span>. </p><p>This results from the <a href="/wiki/Spectral_theorem" title="Spectral theorem">spectral theorem</a> by regrouping <a href="/wiki/Eigenvalues" class="mw-redirect" title="Eigenvalues">eigenvalues</a> that are <a href="/wiki/Complex_conjugate" title="Complex conjugate">complex conjugate</a>, and taking into account that the absolute values of the eigenvalues of an orthogonal matrix are all equal to <span class="texhtml">1</span>. </p><p>The element belongs to <span class="texhtml">SO(<i>n</i>)</span> if and only if there are an even number of <span class="texhtml">−1</span> on the diagonal. A pair of eigenvalues <span class="texhtml">−1</span> can be identified with a rotation by <span class="texhtml">π</span> and a pair of eigenvalues <span class="texhtml">+1</span> can be identified with a rotation by <span class="texhtml">0</span>. </p><p>The special case of <span class="texhtml"><i>n</i> = 3</span> is known as <a href="/wiki/Euler%27s_rotation_theorem" title="Euler's rotation theorem">Euler's rotation theorem</a>, which asserts that every (non-identity) element of <span class="texhtml">SO(3)</span> is a <a href="/wiki/Rotation" title="Rotation">rotation</a> about a unique axis–angle pair. </p> <div class="mw-heading mw-heading3"><h3 id="Reflections">Reflections</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=5" title="Edit section: Reflections"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Reflection_(mathematics)" title="Reflection (mathematics)">Reflections</a> are the elements of <span class="texhtml">O(<i>n</i>)</span> whose canonical form is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}-1&0\\0&I\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>I</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}-1&0\\0&I\end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e22808665f9d482793ff6a882a8ac0fd56c0396" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:10.318ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}-1&0\\0&I\end{bmatrix}},}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">I</span> is the <span class="texhtml">(<i>n</i> − 1) × (<i>n</i> − 1)</span> identity matrix, and the zeros denote row or column zero matrices. In other words, a reflection is a transformation that transforms the space in its <a href="/wiki/Mirror_image" title="Mirror image">mirror image</a> with respect to a <a href="/wiki/Hyperplane" title="Hyperplane">hyperplane</a>. </p><p>In dimension two, <a href="/wiki/Rotations_and_reflections_in_two_dimensions" title="Rotations and reflections in two dimensions">every rotation can be decomposed into a product of two reflections</a>. More precisely, a rotation of angle <span class="texhtml"><i>θ</i></span> is the product of two reflections whose axes form an angle of <span class="texhtml"><i>θ</i> / 2</span>. </p><p>A product of up to <span class="texhtml"><i>n</i></span> elementary reflections always suffices to generate any element of <span class="texhtml">O(<i>n</i>)</span>. This results immediately from the above canonical form and the case of dimension two. </p><p>The <a href="/wiki/Cartan%E2%80%93Dieudonn%C3%A9_theorem" title="Cartan–Dieudonné theorem">Cartan–Dieudonné theorem</a> is the generalization of this result to the orthogonal group of a nondegenerate quadratic form over a field of characteristic different from two. </p><p>The <a href="/wiki/Reflection_through_the_origin" class="mw-redirect" title="Reflection through the origin">reflection through the origin</a> (the map <span class="texhtml"><i>v</i> ↦ −<i>v</i></span>) is an example of an element of <span class="texhtml">O(<i>n</i>)</span> that is not a product of fewer than <span class="texhtml"><i>n</i></span> reflections. </p> <div class="mw-heading mw-heading3"><h3 id="Symmetry_group_of_spheres">Symmetry group of spheres</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=6" title="Edit section: Symmetry group of spheres"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The orthogonal group <span class="texhtml">O(<i>n</i>)</span> is the <a href="/wiki/Symmetry_group" title="Symmetry group">symmetry group</a> of the <a href="/wiki/N-sphere" title="N-sphere"><span class="texhtml">(<i>n</i> − 1)</span>-sphere</a> (for <span class="texhtml"><i>n</i> = 3</span>, this is just the <a href="/wiki/Sphere" title="Sphere">sphere</a>) and all objects with spherical symmetry, if the origin is chosen at the center. </p><p>The <a href="/wiki/Symmetry_group" title="Symmetry group">symmetry group</a> of a <a href="/wiki/Circle" title="Circle">circle</a> is <span class="texhtml">O(2)</span>. The orientation-preserving subgroup <span class="texhtml">SO(2)</span> is isomorphic (as a <i>real</i> Lie group) to the <a href="/wiki/Circle_group" title="Circle group">circle group</a>, also known as <span class="texhtml"><a href="/wiki/Unitary_group" title="Unitary group">U</a>(1)</span>, the multiplicative group of the <a href="/wiki/Complex_number" title="Complex number">complex numbers</a> of absolute value equal to one. This isomorphism sends the complex number <span class="texhtml">exp(<i>φ</i> <i>i</i>) = cos(<i>φ</i>) + <i>i</i> sin(<i>φ</i>)</span> of <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> <span class="texhtml">1</span> to the special orthogonal matrix </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}\cos(\varphi )&-\sin(\varphi )\\\sin(\varphi )&\cos(\varphi )\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}\cos(\varphi )&-\sin(\varphi )\\\sin(\varphi )&\cos(\varphi )\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/992b0590e850c4daf909b5de5ebde221f5a8d640" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.997ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}\cos(\varphi )&-\sin(\varphi )\\\sin(\varphi )&\cos(\varphi )\end{bmatrix}}.}"></span></dd></dl> <p>In higher dimension, <span class="texhtml">O(<i>n</i>)</span> has a more complicated structure (in particular, it is no longer commutative). The <a href="/wiki/Topological" class="mw-redirect" title="Topological">topological</a> structures of the <span class="texhtml mvar" style="font-style:italic;">n</span>-sphere and <span class="texhtml">O(<i>n</i>)</span> are strongly correlated, and this correlation is widely used for studying both <a href="/wiki/Topological_space" title="Topological space">topological spaces</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Group_structure">Group structure</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=7" title="Edit section: Group structure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The groups <span class="texhtml">O(<i>n</i>)</span> and <span class="texhtml">SO(<i>n</i>)</span> are real <a href="/wiki/Compact_space" title="Compact space">compact</a> <a href="/wiki/Lie_group" title="Lie group">Lie groups</a> of <a href="/wiki/Dimension_(mathematics)" class="mw-redirect" title="Dimension (mathematics)">dimension</a> <span class="texhtml"><i>n</i>(<i>n</i> − 1) / 2</span>. The group <span class="texhtml">O(<i>n</i>)</span> has two <a href="/wiki/Connected_space" title="Connected space">connected components</a>, with <span class="texhtml">SO(<i>n</i>)</span> being the <a href="/wiki/Identity_component" title="Identity component">identity component</a>, that is, the connected component containing the <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a>. </p> <div class="mw-heading mw-heading3"><h3 id="As_algebraic_groups">As algebraic groups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=8" title="Edit section: As algebraic groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The orthogonal group <span class="texhtml">O(<i>n</i>)</span> can be identified with the group of the matrices <span class="texhtml mvar" style="font-style:italic;">A</span> such that <span class="texhtml"><i>A</i><sup>T</sup><i>A</i> = <i>I</i></span>. Since both members of this equation are <a href="/wiki/Symmetric_matrices" class="mw-redirect" title="Symmetric matrices">symmetric matrices</a>, this provides <span class="texhtml"><i>n</i>(<i>n</i> + 1) / 2</span> equations that the entries of an orthogonal matrix must satisfy, and which are not all satisfied by the entries of any non-orthogonal matrix. </p><p>This proves that <span class="texhtml">O(<i>n</i>)</span> is an <a href="/wiki/Algebraic_set" class="mw-redirect" title="Algebraic set">algebraic set</a>. Moreover, it can be proved<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (July 2022)">citation needed</span></a></i>]</sup> that its dimension is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n(n-1)}{2}}=n^{2}-{\frac {n(n+1)}{2}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n(n-1)}{2}}=n^{2}-{\frac {n(n+1)}{2}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec5ae8404e91f4515111df65cde6cc9fc8219e61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.91ex; height:5.676ex;" alt="{\displaystyle {\frac {n(n-1)}{2}}=n^{2}-{\frac {n(n+1)}{2}},}"></span></dd></dl> <p>which implies that <span class="texhtml">O(<i>n</i>)</span> is a <a href="/wiki/Complete_intersection" title="Complete intersection">complete intersection</a>. This implies that all its <a href="/wiki/Irreducible_component" title="Irreducible component">irreducible components</a> have the same dimension, and that it has no <a href="/wiki/Embedded_prime" class="mw-redirect" title="Embedded prime">embedded component</a>. In fact, <span class="texhtml">O(<i>n</i>)</span> has two irreducible components, that are distinguished by the sign of the determinant (that is <span class="texhtml">det(<i>A</i>) = 1</span> or <span class="texhtml">det(<i>A</i>) = −1</span>). Both are <a href="/wiki/Singular_point_of_an_algebraic_variety" title="Singular point of an algebraic variety">nonsingular algebraic varieties</a> of the same dimension <span class="texhtml"><i>n</i>(<i>n</i> − 1) / 2</span>. The component with <span class="texhtml">det(<i>A</i>) = 1</span> is <span class="texhtml">SO(<i>n</i>)</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Maximal_tori_and_Weyl_groups">Maximal tori and Weyl groups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=9" title="Edit section: Maximal tori and Weyl groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Maximal_torus" title="Maximal torus">maximal torus</a> in a compact <a href="/wiki/Lie_group" title="Lie group">Lie group</a> <i>G</i> is a maximal subgroup among those that are isomorphic to <span class="texhtml"><b>T</b><sup><i>k</i></sup></span> for some <span class="texhtml mvar" style="font-style:italic;">k</span>, where <span class="texhtml"><b>T</b> = SO(2)</span> is the standard one-dimensional torus.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>In <span class="texhtml">O(2<i>n</i>)</span> and <span class="texhtml">SO(2<i>n</i>)</span>, for every maximal torus, there is a basis on which the torus consists of the <a href="/wiki/Block_matrix#Block_diagonal_matrices" title="Block matrix">block-diagonal matrices</a> of the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}R_{1}&&0\\&\ddots &\\0&&R_{n}\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd /> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd /> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd /> <mtd> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}R_{1}&&0\\&\ddots &\\0&&R_{n}\end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efd5af8a6de711289e2e3bbcb12d2e79fa1ccd61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:17.924ex; height:11.009ex;" alt="{\displaystyle {\begin{bmatrix}R_{1}&&0\\&\ddots &\\0&&R_{n}\end{bmatrix}},}"></span></dd></dl> <p>where each <span class="texhtml"><i>R</i><sub><i>j</i></sub></span> belongs to <span class="texhtml">SO(2)</span>. In <span class="texhtml">O(2<i>n</i> + 1)</span> and <span class="texhtml">SO(2<i>n</i> + 1)</span>, the maximal tori have the same form, bordered by a row and a column of zeros, and <span class="texhtml">1</span> on the diagonal. </p><p>The <a href="/wiki/Maximal_torus#Weyl_group" title="Maximal torus">Weyl group</a> of <span class="texhtml">SO(2<i>n</i> + 1)</span> is the <a href="/wiki/Semidirect_product" title="Semidirect product">semidirect product</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\pm 1\}^{n}\rtimes S_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mo>±<!-- ± --></mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>⋊<!-- ⋊ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\pm 1\}^{n}\rtimes S_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8df4add7563f89713147119153adb1d8fcfcfc10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.998ex; height:2.843ex;" alt="{\displaystyle \{\pm 1\}^{n}\rtimes S_{n}}"></span> of a normal <a href="/wiki/Elementary_abelian_group" title="Elementary abelian group">elementary abelian</a> <a href="/wiki/P-group" title="P-group">2-subgroup</a> and a <a href="/wiki/Symmetric_group" title="Symmetric group">symmetric group</a>, where the nontrivial element of each <span class="texhtml">{±1}</span> factor of <span class="texhtml">{±1}<sup><i>n</i></sup></span> acts on the corresponding circle factor of <span class="texhtml"><i>T</i> × {1</span>} by <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">inversion</a>, and the symmetric group <span class="texhtml"><i>S<sub>n</sub></i></span> acts on both <span class="texhtml">{±1}<sup><i>n</i></sup></span> and <span class="texhtml"><i>T</i> × {1</span>} by permuting factors. The elements of the Weyl group are represented by matrices in <span class="texhtml">O(2<i>n</i>) × {±1}</span>. The <span class="texhtml"><i>S<sub>n</sub></i></span> factor is represented by block permutation matrices with 2-by-2 blocks, and a final <span class="texhtml">1</span> on the diagonal. The <span class="texhtml">{±1}<sup><i>n</i></sup></span> component is represented by block-diagonal matrices with 2-by-2 blocks either </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}1&0\\0&1\end{bmatrix}}\quad {\text{or}}\quad {\begin{bmatrix}0&1\\1&0\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>or</mtext> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}1&0\\0&1\end{bmatrix}}\quad {\text{or}}\quad {\begin{bmatrix}0&1\\1&0\end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b65ddcddf406dd22917e7042e9277bea89bbcba2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:23.074ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}1&0\\0&1\end{bmatrix}}\quad {\text{or}}\quad {\begin{bmatrix}0&1\\1&0\end{bmatrix}},}"></span></dd></dl> <p>with the last component <span class="texhtml">±1</span> chosen to make the determinant <span class="texhtml">1</span>. </p><p>The Weyl group of <span class="texhtml">SO(2<i>n</i>)</span> is the subgroup <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{n-1}\rtimes S_{n}<\{\pm 1\}^{n}\rtimes S_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>⋊<!-- ⋊ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo><</mo> <mo fence="false" stretchy="false">{</mo> <mo>±<!-- ± --></mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>⋊<!-- ⋊ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{n-1}\rtimes S_{n}<\{\pm 1\}^{n}\rtimes S_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f549666d03f38b8263f896f657e7d9ab17bbd121" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.83ex; height:2.843ex;" alt="{\displaystyle H_{n-1}\rtimes S_{n}<\{\pm 1\}^{n}\rtimes S_{n}}"></span> of that of <span class="texhtml">SO(2<i>n</i> + 1)</span>, where <span class="texhtml"><i>H</i><sub><i>n</i>−1</sub> < {±1}<sup><i>n</i></sup></span> is the <a href="/wiki/Kernel_(algebra)#Group_homomorphism" title="Kernel (algebra)">kernel</a> of the product homomorphism <span class="texhtml">{±1}<sup><i>n</i></sup> → {±1}</span> given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\varepsilon _{1},\ldots ,\varepsilon _{n}\right)\mapsto \varepsilon _{1}\cdots \varepsilon _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msub> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">↦<!-- ↦ --></mo> <msub> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <msub> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\varepsilon _{1},\ldots ,\varepsilon _{n}\right)\mapsto \varepsilon _{1}\cdots \varepsilon _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76d33a204db27e0304e2df9fff026ebb12004ea8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.978ex; height:2.843ex;" alt="{\displaystyle \left(\varepsilon _{1},\ldots ,\varepsilon _{n}\right)\mapsto \varepsilon _{1}\cdots \varepsilon _{n}}"></span>; that is, <span class="texhtml"><i>H</i><sub><i>n</i>−1</sub> < {±1}<sup><i>n</i></sup></span> is the subgroup with an even number of minus signs. The Weyl group of <span class="texhtml">SO(2<i>n</i>)</span> is represented in <span class="texhtml">SO(2<i>n</i>)</span> by the preimages under the standard injection <span class="texhtml">SO(2<i>n</i>) → SO(2<i>n</i> + 1)</span> of the representatives for the Weyl group of <span class="texhtml">SO(2<i>n</i> + 1)</span>. Those matrices with an odd number of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}0&1\\1&0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}0&1\\1&0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc64578eb51f34058527d6bb06d6162a1908de83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:7.854ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}0&1\\1&0\end{bmatrix}}}"></span> blocks have no remaining final <span class="texhtml">−1</span> coordinate to make their determinants positive, and hence cannot be represented in <span class="texhtml">SO(2<i>n</i>)</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Topology">Topology</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=10" title="Edit section: Topology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Confusing plainlinks metadata ambox ambox-style ambox-confusing" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>may be <a href="/wiki/Wikipedia:Vagueness" title="Wikipedia:Vagueness">confusing or unclear</a> to readers</b>. In particular, most notations are undefined; no context for explaining why these consideration belong to the article. Moreover, the section consists essentially in a list of advanced results without providing the information that is needed for a non-specialist for verifying them (no reference, no link to articles about the methods of computation that are used, no sketch of proofs.<span class="hide-when-compact"> Please help <a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify">clarify the section</a>. There might be a discussion about this on <a href="/wiki/Talk:Orthogonal_group" title="Talk:Orthogonal group">the talk page</a>.</span> <span class="date-container"><i>(<span class="date">November 2019</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Technical plainlinks metadata ambox ambox-style ambox-technical" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>may be too technical for most readers to understand</b>.<span class="hide-when-compact"> Please <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Orthogonal_group&action=edit">help improve it</a> to <a href="/wiki/Wikipedia:Make_technical_articles_understandable" title="Wikipedia:Make technical articles understandable">make it understandable to non-experts</a>, without removing the technical details.</span> <span class="date-container"><i>(<span class="date">November 2019</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Low-dimensional_topology">Low-dimensional topology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=11" title="Edit section: Low-dimensional topology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The low-dimensional (real) orthogonal groups are familiar <a href="/wiki/Topological_space" title="Topological space">spaces</a>: </p> <ul><li><span class="texhtml">O(1) = <i>S</i><sup>0</sup></span>, a <a href="/wiki/2_(number)" class="mw-redirect" title="2 (number)">two</a>-point <a href="/wiki/Discrete_topology" class="mw-redirect" title="Discrete topology">discrete space</a></li> <li><span class="texhtml">SO(1) = {1}</span></li> <li><span class="texhtml">SO(2)</span> is <span class="texhtml"><a href="/wiki/Circle" title="Circle"><i>S</i><sup>1</sup></a></span></li> <li><span class="texhtml"><a href="/wiki/Rotation_group_SO(3)" class="mw-redirect" title="Rotation group SO(3)">SO(3)</a></span> is <span class="texhtml"><a href="/wiki/Real_projective_space" title="Real projective space"><b>R</b>P<sup>3</sup></a></span> <sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup></li> <li><span class="texhtml">SO(4)</span> is <a href="/wiki/Double_cover_(topology)" class="mw-redirect" title="Double cover (topology)">doubly covered</a> by <span class="texhtml"><a href="/wiki/Special_unitary_group" title="Special unitary group">SU</a>(2) × SU(2) = <a href="/wiki/3-sphere" title="3-sphere"><i>S</i><sup>3</sup></a> × <i>S</i><sup>3</sup></span>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Fundamental_group">Fundamental group</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=12" title="Edit section: Fundamental group"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In terms of <a href="/wiki/Algebraic_topology" title="Algebraic topology">algebraic topology</a>, for <span class="texhtml"><i>n</i> > 2</span> the <a href="/wiki/Fundamental_group" title="Fundamental group">fundamental group</a> of <span class="texhtml">SO(<i>n</i>, <b>R</b>)</span> is <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic of order 2</a>,<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> and the <a href="/wiki/Spin_group" title="Spin group">spin group</a> <span class="texhtml">Spin(<i>n</i>)</span> is its <a href="/wiki/Universal_cover" class="mw-redirect" title="Universal cover">universal cover</a>. For <span class="texhtml"><i>n</i> = 2</span> the fundamental group is <a href="/wiki/Infinite_cyclic" class="mw-redirect" title="Infinite cyclic">infinite cyclic</a> and the universal cover corresponds to the <a href="/wiki/Real_line" class="mw-redirect" title="Real line">real line</a> (the group <span class="texhtml">Spin(2)</span> is the unique connected <a href="/wiki/Double_cover_(topology)" class="mw-redirect" title="Double cover (topology)">2-fold cover</a>). </p> <div class="mw-heading mw-heading3"><h3 id="Homotopy_groups">Homotopy groups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=13" title="Edit section: Homotopy groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Generally, the <a href="/wiki/Homotopy_group" title="Homotopy group">homotopy groups</a> <span class="texhtml">π<sub><i>k</i></sub>(<i>O</i>)</span> of the real orthogonal group are related to <a href="/wiki/Homotopy_groups_of_spheres" title="Homotopy groups of spheres">homotopy groups of spheres</a>, and thus are in general hard to compute. However, one can compute the homotopy groups of the stable orthogonal group (aka the infinite orthogonal group), defined as the <a href="/wiki/Direct_limit" title="Direct limit">direct limit</a> of the sequence of inclusions: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {O} (0)\subset \operatorname {O} (1)\subset \operatorname {O} (2)\subset \cdots \subset O=\bigcup _{k=0}^{\infty }\operatorname {O} (k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">O</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>⊂<!-- ⊂ --></mo> <mi mathvariant="normal">O</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>⊂<!-- ⊂ --></mo> <mi mathvariant="normal">O</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>⊂<!-- ⊂ --></mo> <mo>⋯<!-- ⋯ --></mo> <mo>⊂<!-- ⊂ --></mo> <mi>O</mi> <mo>=</mo> <munderover> <mo>⋃<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi mathvariant="normal">O</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {O} (0)\subset \operatorname {O} (1)\subset \operatorname {O} (2)\subset \cdots \subset O=\bigcup _{k=0}^{\infty }\operatorname {O} (k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2f35cb999e333d411ebcb01861c0ef4f35a68cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:42.501ex; height:7.009ex;" alt="{\displaystyle \operatorname {O} (0)\subset \operatorname {O} (1)\subset \operatorname {O} (2)\subset \cdots \subset O=\bigcup _{k=0}^{\infty }\operatorname {O} (k)}"></span></dd></dl> <p>Since the inclusions are all closed, hence <a href="/wiki/Cofibration" title="Cofibration">cofibrations</a>, this can also be interpreted as a union. On the other hand, <span class="texhtml"><a href="/wiki/N-sphere" title="N-sphere"><i>S</i><sup><i>n</i></sup></a></span> is a <a href="/wiki/Homogeneous_space" title="Homogeneous space">homogeneous space</a> for <span class="texhtml">O(<i>n</i> + 1)</span>, and one has the following <a href="/wiki/Fiber_bundle" title="Fiber bundle">fiber bundle</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {O} (n)\to \operatorname {O} (n+1)\to S^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">O</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">O</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {O} (n)\to \operatorname {O} (n+1)\to S^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c44b697f4c79a2a516929cadf0b9b9760a823402" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.642ex; height:2.843ex;" alt="{\displaystyle \operatorname {O} (n)\to \operatorname {O} (n+1)\to S^{n},}"></span></dd></dl> <p>which can be understood as "The orthogonal group <span class="texhtml">O(<i>n</i> + 1)</span> acts <a href="/wiki/Transitive_action" class="mw-redirect" title="Transitive action">transitively</a> on the unit sphere <span class="texhtml"><i>S</i><sup><i>n</i></sup></span>, and the <a href="/wiki/Stabilizer_(group_theory)" class="mw-redirect" title="Stabilizer (group theory)">stabilizer</a> of a point (thought of as a <a href="/wiki/Unit_vector" title="Unit vector">unit vector</a>) is the orthogonal group of the <a href="/wiki/Orthogonal_complement" title="Orthogonal complement">perpendicular complement</a>, which is an orthogonal group one dimension lower." Thus the natural inclusion <span class="texhtml">O(<i>n</i>) → O(<i>n</i> + 1)</span> is <a href="/wiki/N-connected" class="mw-redirect" title="N-connected"><span class="texhtml">(<i>n</i> − 1)</span>-connected</a>, so the homotopy groups stabilize, and <span class="texhtml">π<sub><i>k</i></sub>(O(<i>n</i> + 1)) = π<sub><i>k</i></sub>(O(<i>n</i>))</span> for <span class="texhtml"><i>n</i> > <i>k</i> + 1</span>: thus the homotopy groups of the stable space equal the lower homotopy groups of the unstable spaces. </p><p>From <a href="/wiki/Bott_periodicity" class="mw-redirect" title="Bott periodicity">Bott periodicity</a> we obtain <span class="texhtml">Ω<sup>8</sup><i>O</i> ≅ <i>O</i></span>, therefore the homotopy groups of <span class="texhtml"><i>O</i></span> are 8-fold periodic, meaning <span class="texhtml">π<sub><i>k</i> + 8</sub>(<i>O</i>) = π<sub><i>k</i></sub>(<i>O</i>)</span>, and one need only to list the lower 8 homotopy groups: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\pi _{0}(O)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{1}(O)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{2}(O)&=0\\\pi _{3}(O)&=\mathbf {Z} \\\pi _{4}(O)&=0\\\pi _{5}(O)&=0\\\pi _{6}(O)&=0\\\pi _{7}(O)&=\mathbf {Z} \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\pi _{0}(O)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{1}(O)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{2}(O)&=0\\\pi _{3}(O)&=\mathbf {Z} \\\pi _{4}(O)&=0\\\pi _{5}(O)&=0\\\pi _{6}(O)&=0\\\pi _{7}(O)&=\mathbf {Z} \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d227c990d9d42c451e302d967a653dad4e86c34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.838ex; width:15.405ex; height:24.843ex;" alt="{\displaystyle {\begin{aligned}\pi _{0}(O)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{1}(O)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{2}(O)&=0\\\pi _{3}(O)&=\mathbf {Z} \\\pi _{4}(O)&=0\\\pi _{5}(O)&=0\\\pi _{6}(O)&=0\\\pi _{7}(O)&=\mathbf {Z} \end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Relation_to_KO-theory">Relation to KO-theory</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=14" title="Edit section: Relation to KO-theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Via the <a href="/wiki/Clutching_construction" title="Clutching construction">clutching construction</a>, homotopy groups of the stable space <span class="texhtml"><i>O</i></span> are identified with stable vector bundles on spheres (<a href="/wiki/Up_to_isomorphism" class="mw-redirect" title="Up to isomorphism">up to isomorphism</a>), with a dimension shift of 1: <span class="texhtml">π<sub><i>k</i></sub>(<i>O</i>) = π<sub><i>k</i> + 1</sub>(<i>BO</i>)</span>. Setting <span class="texhtml"><i>KO</i> = <i>BO</i> × <b>Z</b> = Ω<sup>−1</sup><i>O</i> × <b>Z</b></span> (to make <span class="texhtml">π<sub>0</sub></span> fit into the periodicity), one obtains: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\pi _{0}(KO)&=\mathbf {Z} \\\pi _{1}(KO)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{2}(KO)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{3}(KO)&=0\\\pi _{4}(KO)&=\mathbf {Z} \\\pi _{5}(KO)&=0\\\pi _{6}(KO)&=0\\\pi _{7}(KO)&=0\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>K</mi> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>K</mi> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>K</mi> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>K</mi> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>K</mi> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>K</mi> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>K</mi> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>K</mi> <mi>O</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\pi _{0}(KO)&=\mathbf {Z} \\\pi _{1}(KO)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{2}(KO)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{3}(KO)&=0\\\pi _{4}(KO)&=\mathbf {Z} \\\pi _{5}(KO)&=0\\\pi _{6}(KO)&=0\\\pi _{7}(KO)&=0\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68ea77a8753cfc2a366ac2b1115f7779e49f4ea3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.838ex; width:17.471ex; height:24.843ex;" alt="{\displaystyle {\begin{aligned}\pi _{0}(KO)&=\mathbf {Z} \\\pi _{1}(KO)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{2}(KO)&=\mathbf {Z} /2\mathbf {Z} \\\pi _{3}(KO)&=0\\\pi _{4}(KO)&=\mathbf {Z} \\\pi _{5}(KO)&=0\\\pi _{6}(KO)&=0\\\pi _{7}(KO)&=0\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Computation_and_interpretation_of_homotopy_groups">Computation and interpretation of homotopy groups</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=15" title="Edit section: Computation and interpretation of homotopy groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading5"><h5 id="Low-dimensional_groups">Low-dimensional groups</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=16" title="Edit section: Low-dimensional groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The first few homotopy groups can be calculated by using the concrete descriptions of low-dimensional groups. </p> <ul><li><span class="texhtml">π<sub>0</sub>(<i>O</i>) = π<sub>0</sub>(O(1)) = <b>Z</b> / 2<b>Z</b></span>, from <a href="/wiki/Orientation_(mathematics)" class="mw-redirect" title="Orientation (mathematics)">orientation</a>-preserving/reversing (this class survives to <span class="texhtml">O(2)</span> and hence stably)</li> <li><span class="texhtml">π<sub>1</sub>(<i>O</i>) = π<sub>1</sub>(SO(3)) = <b>Z</b> / 2<b>Z</b></span>, which is <a href="/wiki/Spin_group" title="Spin group">spin</a> comes from <span class="texhtml">SO(3) = <b>R</b>P<sup>3</sup> = <i>S</i><sup>3</sup> / (<b>Z</b> / 2<b>Z</b>)</span>.</li> <li><span class="texhtml">π<sub>2</sub>(<i>O</i>) = π<sub>2</sub>(SO(3)) = 0</span>, which surjects onto <span class="texhtml">π<sub>2</sub>(SO(4))</span>; this latter thus vanishes.</li></ul> <div class="mw-heading mw-heading5"><h5 id="Lie_groups">Lie groups</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=17" title="Edit section: Lie groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>From general facts about <a href="/wiki/Lie_group" title="Lie group">Lie groups</a>, <span class="texhtml">π<sub>2</sub>(<i>G</i>)</span> always vanishes, and <span class="texhtml">π<sub>3</sub>(<i>G</i>)</span> is free (<a href="/wiki/Free_abelian_group" title="Free abelian group">free abelian</a>). </p> <div class="mw-heading mw-heading5"><h5 id="Vector_bundles">Vector bundles</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=18" title="Edit section: Vector bundles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Confusing plainlinks metadata ambox ambox-style ambox-confusing" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>may be <a href="/wiki/Wikipedia:Vagueness" title="Wikipedia:Vagueness">confusing or unclear</a> to readers</b>.<span class="hide-when-compact"> Please help <a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify">clarify the section</a>. There might be a discussion about this on <a href="/wiki/Talk:Orthogonal_group" title="Talk:Orthogonal group">the talk page</a>.</span> <span class="date-container"><i>(<span class="date">January 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p><span class="texhtml">π<sub>0</sub>(<i>K</i>O)</span> is a <a href="/wiki/Vector_bundle" title="Vector bundle">vector bundle</a> over <span class="texhtml"><i>S</i><sup>0</sup></span>, which consists of two points. Thus over each point, the bundle is trivial, and the non-triviality of the bundle is the difference between the dimensions of the vector spaces over the two points, so <span class="texhtml">π<sub>0</sub>(<i>K</i>O) = <b><a href="/wiki/Integers" class="mw-redirect" title="Integers">Z</a></b></span> is the <a href="/wiki/Hamel_dimension" class="mw-redirect" title="Hamel dimension">dimension</a>. </p> <div class="mw-heading mw-heading5"><h5 id="Loop_spaces">Loop spaces</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=19" title="Edit section: Loop spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Using concrete descriptions of the loop spaces in <a href="/wiki/Bott_periodicity" class="mw-redirect" title="Bott periodicity">Bott periodicity</a>, one can interpret the higher homotopies of <span class="texhtml"><i>O</i></span> in terms of simpler-to-analyze homotopies of lower order. Using π<sub>0</sub>, <span class="texhtml"><i>O</i></span> and <span class="texhtml"><i>O</i>/U</span> have two components, <span class="texhtml"><i>K</i>O = <i>B</i>O × <b>Z</b></span> and <span class="texhtml"><i>K</i>Sp = <i>B</i>Sp × <b>Z</b></span> have <a href="/wiki/Countably_many" class="mw-redirect" title="Countably many">countably many</a> components, and the rest are connected. </p> <div class="mw-heading mw-heading4"><h4 id="Interpretation_of_homotopy_groups">Interpretation of homotopy groups</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=20" title="Edit section: Interpretation of homotopy groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a nutshell:<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <ul><li><span class="texhtml">π<sub>0</sub>(<i>K</i>O) = <b>Z</b></span> is about <a href="/wiki/Hamel_dimension" class="mw-redirect" title="Hamel dimension">dimension</a></li> <li><span class="texhtml">π<sub>1</sub>(<i>K</i>O) = <b>Z</b> / 2<b>Z</b></span> is about <a href="/wiki/Orientation_(mathematics)" class="mw-redirect" title="Orientation (mathematics)">orientation</a></li> <li><span class="texhtml">π<sub>2</sub>(<i>K</i>O) = <b>Z</b> / 2<b>Z</b></span> is about <a href="/wiki/Spin_group" title="Spin group">spin</a></li> <li><span class="texhtml">π<sub>4</sub>(<i>K</i>O) = <b>Z</b></span> is about <a href="/wiki/Topological_quantum_field_theory" title="Topological quantum field theory">topological quantum field theory</a>.</li></ul> <p>Let <span class="texhtml"><i>R</i></span> be any of the four <a href="/wiki/Division_algebra" title="Division algebra">division algebras</a> <span class="texhtml"><b>R</b></span>, <span class="texhtml"><b>C</b></span>, <span class="texhtml"><b><a href="/wiki/Quaternions" class="mw-redirect" title="Quaternions">H</a></b></span>, <span class="texhtml"><b><a href="/wiki/Octonions" class="mw-redirect" title="Octonions">O</a></b></span>, and let <span class="texhtml"><i>L<sub>R</sub></i></span> be the <a href="/wiki/Tautological_line_bundle" class="mw-redirect" title="Tautological line bundle">tautological line bundle</a> over the <a href="/wiki/Projective_line" title="Projective line">projective line</a> <span class="texhtml"><i>R</i>P<sup>1</sup></span>, and <span class="texhtml">[<i>L<sub>R</sub></i>]</span> its class in K-theory. Noting that <span class="texhtml"><a href="/wiki/Real_projective_line" title="Real projective line"><b>R</b>P<sup>1</sup></a> = <i>S</i><sup>1</sup></span>, <span class="texhtml"><a href="/wiki/Riemann_sphere" title="Riemann sphere"><b>C</b>P<sup>1</sup></a> = <i>S</i><sup>2</sup></span>, <span class="texhtml"><b>H</b>P<sup>1</sup> = <i>S</i><sup>4</sup></span>, <span class="texhtml"><b>O</b>P<sup>1</sup> = <i>S</i><sup>8</sup></span>, these yield vector bundles over the corresponding spheres, and </p> <ul><li><span class="texhtml">π<sub>1</sub>(<i>K</i>O)</span> is generated by <span class="texhtml">[<i>L</i><sub><b>R</b></sub>]</span></li> <li><span class="texhtml">π<sub>2</sub>(<i>K</i>O)</span> is generated by <span class="texhtml">[<i>L</i><sub><b>C</b></sub>]</span></li> <li><span class="texhtml">π<sub>4</sub>(<i>K</i>O)</span> is generated by <span class="texhtml">[<i>L</i><sub><b>H</b></sub>]</span></li> <li><span class="texhtml">π<sub>8</sub>(<i>K</i>O)</span> is generated by <span class="texhtml">[<i>L</i><sub><b>O</b></sub>]</span></li></ul> <p>From the point of view of <a href="/wiki/Symplectic_geometry" title="Symplectic geometry">symplectic geometry</a>, <span class="texhtml">π<sub>0</sub>(<i>K</i>O) ≅ π<sub>8</sub>(<i>K</i>O) = <b>Z</b></span> can be interpreted as the <a href="/wiki/Maslov_index" class="mw-redirect" title="Maslov index">Maslov index</a>, thinking of it as the fundamental group <span class="texhtml">π<sub>1</sub>(U/O)</span> of the stable <a href="/wiki/Lagrangian_Grassmannian" title="Lagrangian Grassmannian">Lagrangian Grassmannian</a> as <span class="texhtml">U/O ≅ Ω<sup>7</sup>(<i>K</i>O)</span>, so <span class="texhtml">π<sub>1</sub>(U/O) = π<sub>1+7</sub>(<i>K</i>O)</span>. </p> <div class="mw-heading mw-heading4"><h4 id="Whitehead_tower">Whitehead tower</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=21" title="Edit section: Whitehead tower"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The orthogonal group anchors a <a href="/wiki/Whitehead_tower" class="mw-redirect" title="Whitehead tower">Whitehead tower</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdots \rightarrow \operatorname {Fivebrane} (n)\rightarrow \operatorname {String} (n)\rightarrow \operatorname {Spin} (n)\rightarrow \operatorname {SO} (n)\rightarrow \operatorname {O} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⋯<!-- ⋯ --></mo> <mo stretchy="false">→<!-- → --></mo> <mi>Fivebrane</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mi>String</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mi>Spin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mi>SO</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">O</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdots \rightarrow \operatorname {Fivebrane} (n)\rightarrow \operatorname {String} (n)\rightarrow \operatorname {Spin} (n)\rightarrow \operatorname {SO} (n)\rightarrow \operatorname {O} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1efe7d69c364462cd202a4954b727ccb33946b03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:62.574ex; height:2.843ex;" alt="{\displaystyle \cdots \rightarrow \operatorname {Fivebrane} (n)\rightarrow \operatorname {String} (n)\rightarrow \operatorname {Spin} (n)\rightarrow \operatorname {SO} (n)\rightarrow \operatorname {O} (n)}"></span></dd></dl> <p>which is obtained by successively removing (killing) homotopy groups of increasing order. This is done by constructing <a href="/wiki/Short_exact_sequence" class="mw-redirect" title="Short exact sequence">short exact sequences</a> starting with an <a href="/wiki/Eilenberg%E2%80%93MacLane_space" title="Eilenberg–MacLane space">Eilenberg–MacLane space</a> for the homotopy group to be removed. The first few entries in the tower are the <a href="/wiki/Spin_group" title="Spin group">spin group</a> and the <a href="/wiki/String_group" title="String group">string group</a>, and are preceded by the <a href="/wiki/Fivebrane_group" class="mw-redirect" title="Fivebrane group">fivebrane group</a>. The homotopy groups that are killed are in turn <span class="texhtml mvar" style="font-style:italic;">π</span><sub>0</sub>(<i>O</i>) to obtain <i>SO</i> from <i>O</i>, <span class="texhtml mvar" style="font-style:italic;">π</span><sub>1</sub>(<i>O</i>) to obtain <i>Spin</i> from <i>SO</i>, <span class="texhtml mvar" style="font-style:italic;">π</span><sub>3</sub>(<i>O</i>) to obtain <i>String</i> from <i>Spin</i>, and then <span class="texhtml mvar" style="font-style:italic;">π</span><sub>7</sub>(<i>O</i>) and so on to obtain the higher order <a href="/wiki/Brane" title="Brane">branes</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Of_indefinite_quadratic_form_over_the_reals">Of indefinite quadratic form over the reals</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=22" title="Edit section: Of indefinite quadratic form over the reals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Indefinite_orthogonal_group" title="Indefinite orthogonal group">Indefinite orthogonal group</a></div> <p>Over the real numbers, <a href="/wiki/Nondegenerate_quadratic_form" class="mw-redirect" title="Nondegenerate quadratic form">nondegenerate quadratic forms</a> are classified by <a href="/wiki/Sylvester%27s_law_of_inertia" title="Sylvester's law of inertia">Sylvester's law of inertia</a>, which asserts that, on a vector space of dimension <span class="texhtml mvar" style="font-style:italic;">n</span>, such a form can be written as the difference of a sum of <span class="texhtml mvar" style="font-style:italic;">p</span> squares and a sum of <span class="texhtml mvar" style="font-style:italic;">q</span> squares, with <span class="texhtml"><i>p</i> + <i>q</i> = <i>n</i></span>. In other words, there is a basis on which the matrix of the quadratic form is a <a href="/wiki/Diagonal_matrix" title="Diagonal matrix">diagonal matrix</a>, with <span class="texhtml mvar" style="font-style:italic;">p</span> entries equal to <span class="texhtml">1</span>, and <span class="texhtml mvar" style="font-style:italic;">q</span> entries equal to <span class="texhtml">−1</span>. The pair <span class="texhtml">(<i>p</i>, <i>q</i>)</span> called the <i>inertia</i>, is an invariant of the quadratic form, in the sense that it does not depend on the way of computing the diagonal matrix. </p><p>The orthogonal group of a quadratic form depends only on the inertia, and is thus generally denoted <span class="texhtml">O(<i>p</i>, <i>q</i>)</span>. Moreover, as a quadratic form and its opposite have the same orthogonal group, one has <span class="texhtml">O(<i>p</i>, <i>q</i>) = O(<i>q</i>, <i>p</i>)</span>. </p><p>The standard orthogonal group is <span class="texhtml">O(<i>n</i>) = O(<i>n</i>, 0) = O(0, <i>n</i>)</span>. So, in the remainder of this section, it is supposed that neither <span class="texhtml mvar" style="font-style:italic;">p</span> nor <span class="texhtml mvar" style="font-style:italic;">q</span> is zero. </p><p>The subgroup of the matrices of determinant 1 in <span class="texhtml">O(<i>p</i>, <i>q</i>)</span> is denoted <span class="texhtml">SO(<i>p</i>, <i>q</i>)</span>. The group <span class="texhtml">O(<i>p</i>, <i>q</i>)</span> has four connected components, depending on whether an element preserves orientation on either of the two maximal subspaces where the quadratic form is positive definite or negative definite. The component of the identity, whose elements preserve orientation on both subspaces, is denoted <span class="texhtml">SO<sup>+</sup>(<i>p</i>, <i>q</i>)</span>. </p><p>The group <span class="texhtml">O(3, 1)</span> is the <a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz group</a> that is fundamental in <a href="/wiki/Relativity_theory" class="mw-redirect" title="Relativity theory">relativity theory</a>. Here the <span class="texhtml">3</span> corresponds to space coordinates, and <span class="texhtml">1</span> corresponds to the time coordinate. </p> <div class="mw-heading mw-heading2"><h2 id="Of_complex_quadratic_forms">Of complex quadratic forms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=23" title="Edit section: Of complex quadratic forms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Over the field <span class="texhtml"><b>C</b></span> of <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>, every non-degenerate <a href="/wiki/Quadratic_form" title="Quadratic form">quadratic form</a> in <span class="texhtml mvar" style="font-style:italic;">n</span> variables is equivalent to <span class="texhtml"><i>x</i><sub>1</sub><sup>2</sup> + ... + <i>x</i><sub><i>n</i></sub><sup>2</sup></span>. Thus, up to isomorphism, there is only one non-degenerate complex <a href="/wiki/Quadratic_space" class="mw-redirect" title="Quadratic space">quadratic space</a> of dimension <span class="texhtml mvar" style="font-style:italic;">n</span>, and one associated orthogonal group, usually denoted <span class="texhtml">O(<i>n</i>, <b>C</b>)</span>. It is the group of <i>complex orthogonal matrices</i>, complex matrices whose product with their transpose is the identity matrix. </p><p>As in the real case, <span class="texhtml">O(<i>n</i>, <b>C</b>)</span> has two connected components. The component of the identity consists of all matrices of determinant <span class="texhtml">1</span> in <span class="texhtml">O(<i>n</i>, <b>C</b>)</span>; it is denoted <span class="texhtml">SO(<i>n</i>, <b>C</b>)</span>. </p><p>The groups <span class="texhtml">O(<i>n</i>, <b>C</b>)</span> and <span class="texhtml">SO(<i>n</i>, <b>C</b>)</span> are complex Lie groups of dimension <span class="texhtml"><i>n</i>(<i>n</i> − 1) / 2</span> over <span class="texhtml"><b>C</b></span> (the dimension over <span class="texhtml"><b>R</b></span> is twice that). For <span class="texhtml"><i>n</i> ≥ 2</span>, these groups are noncompact. As in the real case, <span class="texhtml">SO(<i>n</i>, <b>C</b>)</span> is not simply connected: For <span class="texhtml"><i>n</i> > 2</span>, the <a href="/wiki/Fundamental_group" title="Fundamental group">fundamental group</a> of <span class="texhtml">SO(<i>n</i>, <b>C</b>)</span> is <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic of order 2</a>, whereas the fundamental group of <span class="texhtml">SO(2, <b>C</b>)</span> is <span class="texhtml"><b>Z</b></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Over_finite_fields">Over finite fields</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=24" title="Edit section: Over finite fields"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Characteristic_different_from_two">Characteristic different from two</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=25" title="Edit section: Characteristic different from two"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Over a field of characteristic different from two, two <a href="/wiki/Quadratic_form" title="Quadratic form">quadratic forms</a> are <i>equivalent</i> if their matrices are <a href="/wiki/Congruent_matrices" class="mw-redirect" title="Congruent matrices">congruent</a>, that is if a change of basis transforms the matrix of the first form into the matrix of the second form. Two equivalent quadratic forms have clearly the same orthogonal group. </p><p>The non-degenerate quadratic forms over a finite field of characteristic different from two are completely classified into congruence classes, and it results from this classification that there is only one orthogonal group in odd dimension and two in even dimension. </p><p>More precisely, <a href="/wiki/Witt%27s_decomposition_theorem" class="mw-redirect" title="Witt's decomposition theorem">Witt's decomposition theorem</a> asserts that (in characteristic different from two) every vector space equipped with a non-degenerate quadratic form <span class="texhtml mvar" style="font-style:italic;">Q</span> can be decomposed as a direct sum of pairwise orthogonal subspaces </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V=L_{1}\oplus L_{2}\oplus \cdots \oplus L_{m}\oplus W,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⊕<!-- ⊕ --></mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⊕<!-- ⊕ --></mo> <mo>⋯<!-- ⋯ --></mo> <mo>⊕<!-- ⊕ --></mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>⊕<!-- ⊕ --></mo> <mi>W</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V=L_{1}\oplus L_{2}\oplus \cdots \oplus L_{m}\oplus W,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5aa9861ad86784a9835e4135bad4c56417761e52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:30.585ex; height:2.509ex;" alt="{\displaystyle V=L_{1}\oplus L_{2}\oplus \cdots \oplus L_{m}\oplus W,}"></span></dd></dl> <p>where each <span class="texhtml mvar" style="font-style:italic;">L<sub>i</sub></span> is a <a href="/wiki/Hyperbolic_plane_(quadratic_forms)" class="mw-redirect" title="Hyperbolic plane (quadratic forms)">hyperbolic plane</a> (that is there is a basis such that the matrix of the restriction of <span class="texhtml mvar" style="font-style:italic;">Q</span> to <span class="texhtml mvar" style="font-style:italic;">L<sub>i</sub></span> has the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\begin{bmatrix}0&1\\1&0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\begin{bmatrix}0&1\\1&0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69d86609df11c3e1ae8abb736606e7ee7873a147" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:7.854ex; height:6.176ex;" alt="{\displaystyle \textstyle {\begin{bmatrix}0&1\\1&0\end{bmatrix}}}"></span>), and the restriction of <span class="texhtml mvar" style="font-style:italic;">Q</span> to <span class="texhtml mvar" style="font-style:italic;">W</span> is <a href="/wiki/Anisotropic_quadratic_form" class="mw-redirect" title="Anisotropic quadratic form">anisotropic</a> (that is, <span class="texhtml"><i>Q</i>(<i>w</i>) ≠ 0</span> for every nonzero <span class="texhtml mvar" style="font-style:italic;">w</span> in <span class="texhtml mvar" style="font-style:italic;">W</span>). </p><p>The <a href="/wiki/Chevalley%E2%80%93Warning_theorem" title="Chevalley–Warning theorem">Chevalley–Warning theorem</a> asserts that, over a <a href="/wiki/Finite_field" title="Finite field">finite field</a>, the dimension of <span class="texhtml mvar" style="font-style:italic;">W</span> is at most two. </p><p>If the dimension of <span class="texhtml mvar" style="font-style:italic;">V</span> is odd, the dimension of <span class="texhtml mvar" style="font-style:italic;">W</span> is thus equal to one, and its matrix is congruent either to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\begin{bmatrix}1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\begin{bmatrix}1\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55b8be060a298b7887a995201ab96eb6ba5c9d2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.208ex; height:2.843ex;" alt="{\displaystyle \textstyle {\begin{bmatrix}1\end{bmatrix}}}"></span> or to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\begin{bmatrix}\varphi \end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>φ<!-- φ --></mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\begin{bmatrix}\varphi \end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b70ceaac59f869c20293e3c64ba0860b99373a91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.212ex; height:2.843ex;" alt="{\displaystyle \textstyle {\begin{bmatrix}\varphi \end{bmatrix}},}"></span> where <span class="texhtml mvar" style="font-style:italic;">𝜑</span> is a non-square scalar. It results that there is only one orthogonal group that is denoted <span class="texhtml">O(2<i>n</i> + 1, <i>q</i>)</span>, where <span class="texhtml mvar" style="font-style:italic;">q</span> is the number of elements of the finite field (a power of an odd prime).<sup id="cite_ref-Wil6975_6-0" class="reference"><a href="#cite_note-Wil6975-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p><p>If the dimension of <span class="texhtml mvar" style="font-style:italic;">W</span> is two and <span class="texhtml">−1</span> is not a square in the ground field (that is, if its number of elements <span class="texhtml mvar" style="font-style:italic;">q</span> is congruent to 3 modulo 4), the matrix of the restriction of <span class="texhtml mvar" style="font-style:italic;">Q</span> to <span class="texhtml mvar" style="font-style:italic;">W</span> is congruent to either <span class="texhtml mvar" style="font-style:italic;">I</span> or <span class="texhtml">–<i>I</i></span>, where <span class="texhtml mvar" style="font-style:italic;">I</span> is the 2×2 identity matrix. If the dimension of <span class="texhtml mvar" style="font-style:italic;">W</span> is two and <span class="texhtml">−1</span> is a square in the ground field (that is, if <span class="texhtml mvar" style="font-style:italic;">q</span> is congruent to 1, modulo 4) the matrix of the restriction of <span class="texhtml mvar" style="font-style:italic;">Q</span> to <span class="texhtml mvar" style="font-style:italic;">W</span> is congruent to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\begin{bmatrix}1&0\\0&\varphi \end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>φ<!-- φ --></mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\begin{bmatrix}1&0\\0&\varphi \end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc6cc0906d7fa6ac420c4df04f03c677d95b03a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:8.858ex; height:6.176ex;" alt="{\displaystyle \textstyle {\begin{bmatrix}1&0\\0&\varphi \end{bmatrix}},}"></span> <span class="texhtml mvar" style="font-style:italic;">φ</span> is any non-square scalar. </p><p>This implies that if the dimension of <span class="texhtml mvar" style="font-style:italic;">V</span> is even, there are only two orthogonal groups, depending whether the dimension of <span class="texhtml mvar" style="font-style:italic;">W</span> zero or two. They are denoted respectively <span class="texhtml">O<sup>+</sup>(2<i>n</i>, <i>q</i>)</span> and <span class="texhtml">O<sup>−</sup>(2<i>n</i>, <i>q</i>)</span>.<sup id="cite_ref-Wil6975_6-1" class="reference"><a href="#cite_note-Wil6975-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p><p>The orthogonal group <span class="texhtml">O<sup><i>ε</i></sup>(2, <i>q</i>)</span> is a <a href="/wiki/Dihedral_group" title="Dihedral group">dihedral group</a> of order <span class="texhtml">2(<i>q</i> − <i>ε</i>)</span>, where <span class="texhtml"><i>ε</i> = ±</span>. </p> <style data-mw-deduplicate="TemplateStyles:r1174254338">.mw-parser-output .math_proof{border:thin solid #aaa;margin:1em 2em;padding:0.5em 1em 0.4em}@media(max-width:500px){.mw-parser-output .math_proof{margin:1em 0;padding:0.5em 0.5em 0.4em}}</style><div class="math_proof" style=""><strong>Proof</strong> <p>For studying the orthogonal group of <span class="texhtml">O<sup><i>ε</i></sup>(2, <i>q</i>)</span>, one can suppose that the matrix of the quadratic form is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q={\begin{bmatrix}1&0\\0&-\omega \end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>ω<!-- ω --></mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q={\begin{bmatrix}1&0\\0&-\omega \end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e015879eb1adeddae5845ed39f2dc1284cd54880" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.529ex; height:6.176ex;" alt="{\displaystyle Q={\begin{bmatrix}1&0\\0&-\omega \end{bmatrix}},}"></span> because, given a quadratic form, there is a basis where its matrix is diagonalizable. A matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\begin{bmatrix}a&b\\c&d\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>c</mi> </mtd> <mtd> <mi>d</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\begin{bmatrix}a&b\\c&d\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c69fc0502c8f960b4cd20db0ea2a2acd263b6137" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:12.816ex; height:6.176ex;" alt="{\displaystyle A={\begin{bmatrix}a&b\\c&d\end{bmatrix}}}"></span> belongs to the orthogonal group if <span class="texhtml"><i>AQA</i><sup>T</sup> = Q</span>, that is, <span class="texhtml"><i>a</i><sup>2</sup> – <i>ωb</i><sup>2</sup> = 1</span>, <span class="texhtml"><i>ac</i> – <i>ωbd</i> = 0</span>, and <span class="texhtml"><i>c</i><sup>2</sup> – <i>ωd</i><sup>2</sup> = –<i>ω</i></span>. As <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> cannot be both zero (because of the first equation), the second equation implies the existence of <span class="texhtml mvar" style="font-style:italic;">ε</span> in <span class="texhtml"><b>F</b><sub><i>q</i></sub></span>, such that <span class="texhtml"><i>c</i> = <i>εωb</i></span> and <span class="texhtml"><i>d</i> = <i>εa</i></span>. Reporting these values in the third equation, and using the first equation, one gets that <span class="texhtml"><i>ε</i><sup>2</sup> = 1</span>, and thus the orthogonal group consists of the matrices </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}a&b\\\varepsilon \omega b&\varepsilon a\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>ε<!-- ε --></mi> <mi>ω<!-- ω --></mi> <mi>b</mi> </mtd> <mtd> <mi>ε<!-- ε --></mi> <mi>a</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}a&b\\\varepsilon \omega b&\varepsilon a\end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7e12363ccd7c6af8cdf6a2824ab9674c6ebb823" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:12.016ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}a&b\\\varepsilon \omega b&\varepsilon a\end{bmatrix}},}"></span></dd></dl> <p>where <span class="texhtml"><i>a</i><sup>2</sup> – <i>ωb</i><sup>2</sup> = 1</span> and <span class="texhtml"><i>ε</i> = ±1</span>. Moreover, the determinant of the matrix is <span class="texhtml mvar" style="font-style:italic;">ε</span>. </p><p>For further studying the orthogonal group, it is convenient to introduce a square root <span class="texhtml mvar" style="font-style:italic;">α</span> of <span class="texhtml mvar" style="font-style:italic;">ω</span>. This square root belongs to <span class="texhtml"><b>F</b><sub><i>q</i></sub></span> if the orthogonal group is <span class="texhtml">O<sup>+</sup>(2, <i>q</i>)</span>, and to <span class="texhtml"><b>F</b><sub><i>q</i><sup>2</sup></sub></span> otherwise. Setting <span class="texhtml"><i>x</i> = <i>a</i> + <i>αb</i></span>, and <span class="texhtml"><i>y</i> = <i>a</i> – <i>αb</i></span>, one has </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy=1,\qquad a={\frac {x+y}{2}}\qquad b={\frac {x-y}{2\alpha }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="2em" /> <mi>a</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mi>y</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mspace width="2em" /> <mi>b</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>y</mi> </mrow> <mrow> <mn>2</mn> <mi>α<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy=1,\qquad a={\frac {x+y}{2}}\qquad b={\frac {x-y}{2\alpha }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07b71cd2c0ce64b9c21e41f479faaa97428c14e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:38.465ex; height:5.176ex;" alt="{\displaystyle xy=1,\qquad a={\frac {x+y}{2}}\qquad b={\frac {x-y}{2\alpha }}.}"></span></dd></dl> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{1}={\begin{bmatrix}a_{1}&b_{1}\\\omega b_{1}&a_{1}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>ω<!-- ω --></mi> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{1}={\begin{bmatrix}a_{1}&b_{1}\\\omega b_{1}&a_{1}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c53b9afc285442f179dcd498c6389ba578ba2ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.206ex; height:6.176ex;" alt="{\displaystyle A_{1}={\begin{bmatrix}a_{1}&b_{1}\\\omega b_{1}&a_{1}\end{bmatrix}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{2}={\begin{bmatrix}a_{2}&b_{2}\\\omega b_{2}&a_{2}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>ω<!-- ω --></mi> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{2}={\begin{bmatrix}a_{2}&b_{2}\\\omega b_{2}&a_{2}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22f041ef7e30b154b2d83a4b478e65397a660a8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.206ex; height:6.176ex;" alt="{\displaystyle A_{2}={\begin{bmatrix}a_{2}&b_{2}\\\omega b_{2}&a_{2}\end{bmatrix}}}"></span> are two matrices of determinant one in the orthogonal group then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{1}A_{2}={\begin{bmatrix}a_{1}a_{2}+\omega b_{1}b_{2}&a_{1}b_{2}+b_{1}a_{2}\\\omega b_{1}a_{2}+\omega a_{1}b_{2}&\omega b_{1}b_{2}+a_{1}a_{1}\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>ω<!-- ω --></mi> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>ω<!-- ω --></mi> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>ω<!-- ω --></mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi>ω<!-- ω --></mi> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{1}A_{2}={\begin{bmatrix}a_{1}a_{2}+\omega b_{1}b_{2}&a_{1}b_{2}+b_{1}a_{2}\\\omega b_{1}a_{2}+\omega a_{1}b_{2}&\omega b_{1}b_{2}+a_{1}a_{1}\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea7a6e40af7eeb198032e98f3f438f2ab37222d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:42.231ex; height:6.176ex;" alt="{\displaystyle A_{1}A_{2}={\begin{bmatrix}a_{1}a_{2}+\omega b_{1}b_{2}&a_{1}b_{2}+b_{1}a_{2}\\\omega b_{1}a_{2}+\omega a_{1}b_{2}&\omega b_{1}b_{2}+a_{1}a_{1}\end{bmatrix}}.}"></span></dd></dl> <p>This is an orthogonal matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}a&b\\\omega b&a\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>ω<!-- ω --></mi> <mi>b</mi> </mtd> <mtd> <mi>a</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}a&b\\\omega b&a\end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab52f1ad649ff3517bbb619a87631b9e43603528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:9.849ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}a&b\\\omega b&a\end{bmatrix}},}"></span> with <span class="texhtml"><i>a</i> = <i>a</i><sub>1</sub><i>a</i><sub>2</sub> + <i>ωb</i><sub>1</sub><i>b</i><sub>2</sub></span>, and <span class="texhtml"><i>b</i> = <i>a</i><sub>1</sub><i>b</i><sub>2</sub> + <i>b</i><sub>1</sub><i>a</i><sub>2</sub></span>. Thus </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+\alpha b=(a_{1}+\alpha b_{1})(a_{2}+\alpha b_{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>α<!-- α --></mi> <mi>b</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>α<!-- α --></mi> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>α<!-- α --></mi> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+\alpha b=(a_{1}+\alpha b_{1})(a_{2}+\alpha b_{2}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d4839eb7c1529ed06aaf88464becc35cfc4d372" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.247ex; height:2.843ex;" alt="{\displaystyle a+\alpha b=(a_{1}+\alpha b_{1})(a_{2}+\alpha b_{2}).}"></span></dd></dl> <p>It follows that the map <span class="texhtml">(<i>a</i>, <i>b</i>) ↦ <i>a</i> + <i>αb</i></span> is a homomorphism of the group of orthogonal matrices of determinant one into the multiplicative group of <span class="texhtml"><b>F</b><sub><i>q</i><sup>2</sup></sub></span>. </p><p>In the case of <span class="texhtml">O<sup>+</sup>(2<i>n</i>, <i>q</i>)</span>, the image is the multiplicative group of <span class="texhtml"><b>F</b><sub><i>q</i></sub></span>, which is a cyclic group of order <span class="texhtml mvar" style="font-style:italic;">q</span>. </p><p>In the case of <span class="texhtml">O<sup>–</sup>(2<i>n</i>, <i>q</i>)</span>, the above <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> are <a href="/wiki/Conjugate_element_(field_theory)" title="Conjugate element (field theory)">conjugate</a>, and are therefore the image of each other by the <a href="/wiki/Frobenius_automorphism" class="mw-redirect" title="Frobenius automorphism">Frobenius automorphism</a>. This meant that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=x^{-1}=x^{q},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=x^{-1}=x^{q},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f3a8f811958dbe12022b5fbd6546d16402419cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.98ex; height:3.009ex;" alt="{\displaystyle y=x^{-1}=x^{q},}"></span> and thus <span class="texhtml"><i>x</i><sup><i>q</i>+1</sup> = 1</span>. For every such <span class="texhtml mvar" style="font-style:italic;">x</span> one can reconstruct a corresponding orthogonal matrix. It follows that the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)\mapsto a+\alpha b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">↦<!-- ↦ --></mo> <mi>a</mi> <mo>+</mo> <mi>α<!-- α --></mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)\mapsto a+\alpha b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1026d77d240cb4db96e49c317467ace881b4a5d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.24ex; height:2.843ex;" alt="{\displaystyle (a,b)\mapsto a+\alpha b}"></span> is a group isomorphism from the orthogonal matrices of determinant 1 to the group of the <span class="texhtml">(<i>q</i> + 1)</span>-<a href="/wiki/Roots_of_unity" class="mw-redirect" title="Roots of unity">roots of unity</a>. This group is a cyclic group of order <span class="texhtml"><i>q</i> + 1</span> which consists of the powers of <span class="texhtml"><i>g</i><sup><i>q</i>−1</sup></span>, where <span class="texhtml mvar" style="font-style:italic;">g</span> is a <a href="/wiki/Primitive_element_(finite_field)" title="Primitive element (finite field)">primitive element</a> of <span class="texhtml"><b>F</b><sub><i>q</i><sup>2</sup></sub></span>, </p><p>For finishing the proof, it suffices to verify that the group all orthogonal matrices is not abelian, and is the semidirect product of the group <span class="texhtml">{1, −1}</span> and the group of orthogonal matrices of determinant one. </p><p>The comparison of this proof with the real case may be illuminating. </p><p>Here two group isomorphisms are involved: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {Z} /(q+1)\mathbf {Z} &\to T\\k&\mapsto g^{(q-1)k},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> </mtd> <mtd> <mi></mi> <mo stretchy="false">→<!-- → --></mo> <mi>T</mi> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> </mtd> <mtd> <mi></mi> <mo stretchy="false">↦<!-- ↦ --></mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>q</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>k</mi> </mrow> </msup> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {Z} /(q+1)\mathbf {Z} &\to T\\k&\mapsto g^{(q-1)k},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1d5b98c16f754b6d0cdd3a60839b16bf19d0ed5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.668ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}\mathbf {Z} /(q+1)\mathbf {Z} &\to T\\k&\mapsto g^{(q-1)k},\end{aligned}}}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">g</span> is a primitive element of <span class="texhtml"><b>F</b><sub><i>q</i><sup>2</sup></sub></span> and <span class="texhtml mvar" style="font-style:italic;">T</span> is the multiplicative group of the element of norm one in <span class="texhtml"><b>F</b><sub><i>q</i><sup>2</sup></sub></span> ; </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {T} &\to \operatorname {SO} ^{+}(2,\mathbf {F} _{q})\\x&\mapsto {\begin{bmatrix}a&b\\\omega b&a\end{bmatrix}},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> </mtd> <mtd> <mi></mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mi>SO</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo stretchy="false">↦<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>ω<!-- ω --></mi> <mi>b</mi> </mtd> <mtd> <mi>a</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {T} &\to \operatorname {SO} ^{+}(2,\mathbf {F} _{q})\\x&\mapsto {\begin{bmatrix}a&b\\\omega b&a\end{bmatrix}},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/211ad31c1ee78b6de11fc7d25a6724e1c8abc98b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.873ex; margin-bottom: -0.299ex; width:17.513ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}\mathbf {T} &\to \operatorname {SO} ^{+}(2,\mathbf {F} _{q})\\x&\mapsto {\begin{bmatrix}a&b\\\omega b&a\end{bmatrix}},\end{aligned}}}"></span></dd></dl> <p>with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a={\frac {x+x^{-1}}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a={\frac {x+x^{-1}}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a79c6e1698e687564710455884dd6044f04cee85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.997ex; height:5.676ex;" alt="{\displaystyle a={\frac {x+x^{-1}}{2}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b={\frac {x-x^{-1}}{2\alpha }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>α<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b={\frac {x-x^{-1}}{2\alpha }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af81284879c0cf71e95be9f4e79ddf867e63de5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.412ex; height:5.676ex;" alt="{\displaystyle b={\frac {x-x^{-1}}{2\alpha }}.}"></span> </p><p>In the real case, the corresponding isomorphisms are: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {R} /2\pi \mathbf {R} &\to C\\\theta &\mapsto e^{i\theta },\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> </mtd> <mtd> <mi></mi> <mo stretchy="false">→<!-- → --></mo> <mi>C</mi> </mtd> </mtr> <mtr> <mtd> <mi>θ<!-- θ --></mi> </mtd> <mtd> <mi></mi> <mo stretchy="false">↦<!-- ↦ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>θ<!-- θ --></mi> </mrow> </msup> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {R} /2\pi \mathbf {R} &\to C\\\theta &\mapsto e^{i\theta },\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d72e8f2a0a579a27edfbfd587e278bcd96b904d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.33ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}\mathbf {R} /2\pi \mathbf {R} &\to C\\\theta &\mapsto e^{i\theta },\end{aligned}}}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">C</span> is the circle of the complex numbers of norm one; </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {C} &\to \operatorname {SO} (2,\mathbf {R} )\\x&\mapsto {\begin{bmatrix}\cos \theta &\sin \theta \\-\sin \theta &\cos \theta \end{bmatrix}},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mtd> <mtd> <mi></mi> <mo stretchy="false">→<!-- → --></mo> <mi>SO</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo stretchy="false">↦<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> </mtd> <mtd> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> </mtd> <mtd> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {C} &\to \operatorname {SO} (2,\mathbf {R} )\\x&\mapsto {\begin{bmatrix}\cos \theta &\sin \theta \\-\sin \theta &\cos \theta \end{bmatrix}},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20dcbdbeba07f9295dbf6ade713f81a0ac29062a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:23.59ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}\mathbf {C} &\to \operatorname {SO} (2,\mathbf {R} )\\x&\mapsto {\begin{bmatrix}\cos \theta &\sin \theta \\-\sin \theta &\cos \theta \end{bmatrix}},\end{aligned}}}"></span></dd></dl> <p>with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \theta ={\frac {e^{i\theta }+e^{-i\theta }}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>θ<!-- θ --></mi> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>θ<!-- θ --></mi> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \theta ={\frac {e^{i\theta }+e^{-i\theta }}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e128422fe183eff61ef1383fe0d8230f4f41b85c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.951ex; height:5.676ex;" alt="{\displaystyle \cos \theta ={\frac {e^{i\theta }+e^{-i\theta }}{2}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin \theta ={\frac {e^{i\theta }-e^{-i\theta }}{2i}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>θ<!-- θ --></mi> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>θ<!-- θ --></mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin \theta ={\frac {e^{i\theta }-e^{-i\theta }}{2i}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6604741a33de7f83484cf1813f624cf3114ae579" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.342ex; height:5.676ex;" alt="{\displaystyle \sin \theta ={\frac {e^{i\theta }-e^{-i\theta }}{2i}}.}"></span> </p> </div> <p>When the characteristic is not two, the order of the orthogonal groups are<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\operatorname {O} (2n+1,q)\right|=2q^{n^{2}}\prod _{i=1}^{n}\left(q^{2i}-1\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <mi mathvariant="normal">O</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mn>2</mn> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>i</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\operatorname {O} (2n+1,q)\right|=2q^{n^{2}}\prod _{i=1}^{n}\left(q^{2i}-1\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1563000f033a2f96525e1b5a35817bb34a3a9133" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:34.576ex; height:6.843ex;" alt="{\displaystyle \left|\operatorname {O} (2n+1,q)\right|=2q^{n^{2}}\prod _{i=1}^{n}\left(q^{2i}-1\right),}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\operatorname {O} ^{+}(2n,q)\right|=2q^{n(n-1)}\left(q^{n}-1\right)\prod _{i=1}^{n-1}\left(q^{2i}-1\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <msup> <mi mathvariant="normal">O</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mn>2</mn> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>i</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\operatorname {O} ^{+}(2n,q)\right|=2q^{n(n-1)}\left(q^{n}-1\right)\prod _{i=1}^{n-1}\left(q^{2i}-1\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/322f19d4d7ade017568953f41e81056cc58c8355" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:44.233ex; height:7.343ex;" alt="{\displaystyle \left|\operatorname {O} ^{+}(2n,q)\right|=2q^{n(n-1)}\left(q^{n}-1\right)\prod _{i=1}^{n-1}\left(q^{2i}-1\right),}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\operatorname {O} ^{-}(2n,q)\right|=2q^{n(n-1)}\left(q^{n}+1\right)\prod _{i=1}^{n-1}\left(q^{2i}-1\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <msup> <mi mathvariant="normal">O</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mn>2</mn> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>i</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\operatorname {O} ^{-}(2n,q)\right|=2q^{n(n-1)}\left(q^{n}+1\right)\prod _{i=1}^{n-1}\left(q^{2i}-1\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d38d27749cbff0b67d7d9cd79e68741185bae5cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:44.233ex; height:7.343ex;" alt="{\displaystyle \left|\operatorname {O} ^{-}(2n,q)\right|=2q^{n(n-1)}\left(q^{n}+1\right)\prod _{i=1}^{n-1}\left(q^{2i}-1\right).}"></span></dd></dl> <p>In characteristic two, the formulas are the same, except that the factor <span class="texhtml">2</span> of <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;">O(2<i>n</i> + 1, <i>q</i>)</span>|</span> must be removed. </p> <div class="mw-heading mw-heading3"><h3 id="Dickson_invariant">Dickson invariant</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=26" title="Edit section: Dickson invariant"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For orthogonal groups, the <b>Dickson invariant</b> is a homomorphism from the orthogonal group to the quotient group <span class="texhtml"><b>Z</b> / 2<b>Z</b></span> (integers modulo 2), taking the value <span class="texhtml">0</span> in case the element is the product of an even number of reflections, and the value of 1 otherwise.<sup id="cite_ref-Knus224_8-0" class="reference"><a href="#cite_note-Knus224-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>Algebraically, the Dickson invariant can be defined as <span class="texhtml"><i>D</i>(<i>f</i>) = rank(<i>I</i> − <i>f</i>) modulo 2</span>, where <span class="texhtml"><i>I</i></span> is the identity (<a href="#CITEREFTaylor1992">Taylor 1992</a>, Theorem 11.43). Over fields that are not of <a href="/wiki/Characteristic_(algebra)" title="Characteristic (algebra)">characteristic</a> 2 it is equivalent to the determinant: the determinant is <span class="texhtml">−1</span> to the power of the Dickson invariant. Over fields of characteristic 2, the determinant is always 1, so the Dickson invariant gives more information than the determinant. </p><p>The special orthogonal group is the <a href="/wiki/Kernel_(matrix)" class="mw-redirect" title="Kernel (matrix)">kernel</a> of the Dickson invariant<sup id="cite_ref-Knus224_8-1" class="reference"><a href="#cite_note-Knus224-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> and usually has index 2 in <span class="texhtml">O(<i>n</i>, <i>F</i> )</span>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> When the characteristic of <span class="texhtml"><i>F</i></span> is not 2, the Dickson Invariant is <span class="texhtml">0</span> whenever the determinant is <span class="texhtml">1</span>. Thus when the characteristic is not 2, <span class="texhtml">SO(<i>n</i>, <i>F</i> )</span> is commonly defined to be the elements of <span class="texhtml">O(<i>n</i>, <i>F</i> )</span> with determinant <span class="texhtml">1</span>. Each element in <span class="texhtml">O(<i>n</i>, <i>F</i> )</span> has determinant <span class="texhtml">±1</span>. Thus in characteristic 2, the determinant is always <span class="texhtml">1</span>. </p><p>The Dickson invariant can also be defined for <a href="/wiki/Clifford_group" title="Clifford group">Clifford groups</a> and <a href="/wiki/Pin_group" title="Pin group">pin groups</a> in a similar way (in all dimensions). </p> <div class="mw-heading mw-heading3"><h3 id="Orthogonal_groups_of_characteristic_2">Orthogonal groups of characteristic 2</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=27" title="Edit section: Orthogonal groups of characteristic 2"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Over fields of characteristic 2 orthogonal groups often exhibit special behaviors, some of which are listed in this section. (Formerly these groups were known as the <b>hypoabelian groups</b>, but this term is no longer used.) </p> <ul><li>Any orthogonal group over any field is generated by reflections, except for a unique example where the vector space is 4-dimensional over the field with 2 elements and the <a href="/wiki/Witt_index" class="mw-redirect" title="Witt index">Witt index</a> is 2.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> A reflection in characteristic two has a slightly different definition. In characteristic two, the reflection orthogonal to a vector <span class="texhtml"><b>u</b></span> takes a vector <span class="texhtml"><b>v</b></span> to <span class="texhtml"><b>v</b> + <i>B</i>(<b>v</b>, <b>u</b>)/<i>Q</i>(<b>u</b>) · <b>u</b></span> where <span class="texhtml"><i>B</i></span> is the bilinear form<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="This seems like it is the associated polar form B′(x,y)=Q(x+y)−Q(x)−Q(y) (the name 'associated bilinear form' is used variously to mean B′ or B=B′/2). When expressed in the same terms (e.g. in terms of Q), the expression for a reflection is the same for all cases. (May 2020)">clarification needed</span></a></i>]</sup> and <span class="texhtml"><i>Q</i></span> is the quadratic form associated to the orthogonal geometry. Compare this to the <a href="/wiki/Householder_reflection" class="mw-redirect" title="Householder reflection">Householder reflection</a> of odd characteristic or characteristic zero, which takes <span class="texhtml"><b>v</b></span> to <span class="texhtml"><b>v</b> − 2·<i>B</i>(<b>v</b>, <b>u</b>)/<i>Q</i>(<b>u</b>) · <b>u</b></span>.</li> <li>The <a href="/wiki/Center_of_a_group" class="mw-redirect" title="Center of a group">center</a> of the orthogonal group usually has order 1 in characteristic 2, rather than 2, since <span class="texhtml"><i>I</i> = −<i>I</i></span>.</li> <li>In odd dimensions <span class="texhtml">2<i>n</i> + 1</span> in characteristic 2, orthogonal groups over <a href="/wiki/Perfect_field" title="Perfect field">perfect fields</a> are the same as <a href="/wiki/Symplectic_group" title="Symplectic group">symplectic groups</a> in dimension <span class="texhtml">2<i>n</i></span>. In fact the symmetric form is alternating in characteristic 2, and as the dimension is odd it must have a kernel of dimension 1, and the quotient by this kernel is a symplectic space of dimension <span class="texhtml">2<i>n</i></span>, acted upon by the orthogonal group.</li> <li>In even dimensions in characteristic 2 the orthogonal group is a subgroup of the symplectic group, because the symmetric bilinear form of the quadratic form is also an alternating form.</li></ul> <div class="mw-heading mw-heading2"><h2 id="The_spinor_norm">The spinor norm</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=28" title="Edit section: The spinor norm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>spinor norm</b> is a homomorphism from an orthogonal group over a field <span class="texhtml"><i>F</i></span> to the <a href="/wiki/Quotient_group" title="Quotient group">quotient group</a> <span class="texhtml"><i>F</i><sup>×</sup> / (<i>F</i><sup>×</sup>)<sup>2</sup></span> (the <a href="/wiki/Multiplicative_group" title="Multiplicative group">multiplicative group</a> of the field <span class="texhtml"><i>F</i></span> <a href="/wiki/Up_to" title="Up to">up to</a> multiplication by <a href="/wiki/Square_(algebra)" title="Square (algebra)">square</a> elements), that takes reflection in a vector of norm <span class="texhtml"><i>n</i></span> to the image of <span class="texhtml"><i>n</i></span> in <span class="texhtml"><i>F</i><sup>×</sup> / (<i>F</i><sup>×</sup>)<sup>2</sup></span>.<sup id="cite_ref-C178_11-0" class="reference"><a href="#cite_note-C178-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p><p>For the usual orthogonal group over the reals, it is trivial, but it is often non-trivial over other fields, or for the orthogonal group of a quadratic form over the reals that is not positive definite. </p> <div class="mw-heading mw-heading2"><h2 id="Galois_cohomology_and_orthogonal_groups">Galois cohomology and orthogonal groups</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=29" title="Edit section: Galois cohomology and orthogonal groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the theory of <a href="/wiki/Galois_cohomology" title="Galois cohomology">Galois cohomology</a> of <a href="/wiki/Algebraic_group" title="Algebraic group">algebraic groups</a>, some further points of view are introduced. They have explanatory value, in particular in relation with the theory of quadratic forms; but were for the most part <i>post hoc</i>, as far as the discovery of the phenomenon is concerned. The first point is that <a href="/wiki/Quadratic_form" title="Quadratic form">quadratic forms</a> over a field can be identified as a Galois <span class="texhtml"><i>H</i><sup>1</sup></span>, or twisted forms (<a href="/wiki/Torsor" class="mw-redirect" title="Torsor">torsors</a>) of an orthogonal group. As an algebraic group, an orthogonal group is in general neither connected nor simply-connected; the latter point brings in the spin phenomena, while the former is related to the <a href="/wiki/Determinant" title="Determinant">determinant</a>. </p><p>The 'spin' name of the spinor norm can be explained by a connection to the <a href="/wiki/Spin_group" title="Spin group">spin group</a> (more accurately a <a href="/wiki/Pin_group" title="Pin group">pin group</a>). This may now be explained quickly by Galois cohomology (which however postdates the introduction of the term by more direct use of <a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebras</a>). The spin covering of the orthogonal group provides a <a href="/wiki/Short_exact_sequence" class="mw-redirect" title="Short exact sequence">short exact sequence</a> of <a href="/wiki/Algebraic_group" title="Algebraic group">algebraic groups</a>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\rightarrow \mu _{2}\rightarrow \mathrm {Pin} _{V}\rightarrow \mathrm {O_{V}} \rightarrow 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">O</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">V</mi> </mrow> </msub> </mrow> <mo stretchy="false">→<!-- → --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\rightarrow \mu _{2}\rightarrow \mathrm {Pin} _{V}\rightarrow \mathrm {O_{V}} \rightarrow 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1975a2040c979f28a8a721a89af2d3efdbfa8cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.528ex; height:2.676ex;" alt="{\displaystyle 1\rightarrow \mu _{2}\rightarrow \mathrm {Pin} _{V}\rightarrow \mathrm {O_{V}} \rightarrow 1}"></span></dd></dl> <p>Here <span class="texhtml"><i>μ</i><sub>2</sub></span> is the <a href="/wiki/Group_scheme_of_roots_of_unity" class="mw-redirect" title="Group scheme of roots of unity">algebraic group of square roots of 1</a>; over a field of characteristic not 2 it is roughly the same as a two-element group with trivial Galois action. The <a href="/wiki/Connecting_homomorphism" class="mw-redirect" title="Connecting homomorphism">connecting homomorphism</a> from <span class="texhtml"><i>H</i><sup>0</sup>(O<sub>V</sub>)</span>, which is simply the group <span class="texhtml">O<sub>V</sub>(<i>F</i>)</span> of <span class="texhtml"><i>F</i></span>-valued points, to <span class="texhtml"><i>H</i><sup>1</sup>(<i>μ</i><sub>2</sub>)</span> is essentially the spinor norm, because <span class="texhtml"><i>H</i><sup>1</sup>(μ<sub>2</sub>)</span> is isomorphic to the multiplicative group of the field modulo squares. </p><p>There is also the connecting homomorphism from <span class="texhtml"><i>H</i><sup>1</sup></span> of the orthogonal group, to the <span class="texhtml"><i>H</i><sup>2</sup></span> of the kernel of the spin covering. The cohomology is non-abelian so that this is as far as we can go, at least with the conventional definitions. </p> <div class="mw-heading mw-heading2"><h2 id="Lie_algebra">Lie algebra</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=30" title="Edit section: Lie algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="orthogonal_Lie_algebra"></span><span class="anchor" id="special_orthogonal_Lie_algebra"></span> The <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> corresponding to Lie groups <span class="texhtml">O(<i>n</i>, <i>F</i> )</span> and <span class="texhtml">SO(<i>n</i>, <i>F</i> )</span> consists of the <a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">skew-symmetric</a> <span class="texhtml"><i>n</i> × <i>n</i></span> matrices, with the Lie bracket <span class="texhtml">[ , ]</span> given by the <a href="/wiki/Commutator" title="Commutator">commutator</a>. One Lie algebra corresponds to both groups. It is often denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {o}}(n,F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {o}}(n,F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f806a7f667e931ae01ee8b51653e62e32dc4b3b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.116ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {o}}(n,F)}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(n,F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(n,F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1e919d7f02580764bd39f74021b78fb0b08c5e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:8.186ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(n,F)}"></span>, and called the <b>orthogonal Lie algebra</b> or <b>special orthogonal Lie algebra</b>. Over real numbers, these Lie algebras for different <span class="texhtml"><i>n</i></span> are the <a href="/wiki/Compact_real_form" class="mw-redirect" title="Compact real form">compact real forms</a> of two of the four families of <a href="/wiki/Semisimple_Lie_algebra" title="Semisimple Lie algebra">semisimple Lie algebras</a>: in odd dimension <span class="texhtml">B<sub><i>k</i></sub></span>, where <span class="texhtml"><i>n</i> = 2<i>k</i> + 1</span>, while in even dimension <span class="texhtml">D<sub><i>r</i></sub></span>, where <span class="texhtml"><i>n</i> = 2<i>r</i></span>. </p><p>Since the group <span class="texhtml">SO(<i>n</i>)</span> is not simply connected, the representation theory of the orthogonal Lie algebras includes both representations corresponding to <i>ordinary</i> representations of the orthogonal groups, and representations corresponding to <i>projective</i> representations of the orthogonal groups. (The projective representations of <span class="texhtml">SO(<i>n</i>)</span> are just linear representations of the universal cover, the <a href="/wiki/Spin_group" title="Spin group">spin group</a> Spin(<i>n</i>).) The latter are the so-called <a href="/wiki/Spin_representation" title="Spin representation">spin representation</a>, which are important in physics. </p><p>More generally, given a vector space <span class="texhtml"><i>V</i></span> (over a field with characteristic not equal to 2) with a nondegenerate symmetric bilinear form <span class="texhtml">(⋅, ⋅)</span>, the special orthogonal Lie algebra consists of tracefree endomorphisms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> which are skew-symmetric for this form (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\varphi A,B)+(A,\varphi B)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>φ<!-- φ --></mi> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\varphi A,B)+(A,\varphi B)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dbec464f358a8ccabf070e5fca37455b9f7ec30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.842ex; height:2.843ex;" alt="{\displaystyle (\varphi A,B)+(A,\varphi B)=0}"></span>). Over a field of characteristic 2 we consider instead the alternating endomorphisms. Concretely we can equate these with the alternating tensors <span class="texhtml">Λ<sup>2</sup><i>V</i></span>. The correspondence is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\wedge w\mapsto (v,\cdot )w-(w,\cdot )v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>∧<!-- ∧ --></mo> <mi>w</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">)</mo> <mi>w</mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>w</mi> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">)</mo> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\wedge w\mapsto (v,\cdot )w-(w,\cdot )v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3be8aec7ba14076418174342ee019e0b72555a49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.392ex; height:2.843ex;" alt="{\displaystyle v\wedge w\mapsto (v,\cdot )w-(w,\cdot )v}"></span></dd></dl> <p>This description applies equally for the indefinite special orthogonal Lie algebras <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(p,q)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(p,q)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee93eecf623e48878214a948efa289b4193dcc74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:7.29ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(p,q)}"></span> for symmetric bilinear forms with signature <span class="texhtml">(<i>p</i>, <i>q</i>)</span>. </p><p>Over real numbers, this characterization is used in interpreting the <a href="/wiki/Curl_(mathematics)" title="Curl (mathematics)">curl</a> of a vector field (naturally a 2-vector) as an infinitesimal rotation or "curl", hence the name. </p> <div class="mw-heading mw-heading2"><h2 id="Related_groups">Related groups</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=31" title="Edit section: Related groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The orthogonal groups and special orthogonal groups have a number of important subgroups, supergroups, quotient groups, and covering groups. These are listed below. </p><p>The inclusions <span class="texhtml">O(<i>n</i>) ⊂ U(<i>n</i>) ⊂ USp(2<i>n</i>)</span> and <span class="texhtml">USp(<i>n</i>) ⊂ U(<i>n</i>) ⊂ O(2<i>n</i>)</span> are part of a sequence of 8 inclusions used in a <a href="/wiki/Bott_periodicity_theorem#Geometric_model_of_loop_spaces" title="Bott periodicity theorem">geometric proof of the Bott periodicity theorem</a>, and the corresponding quotient spaces are <a href="/wiki/Symmetric_space" title="Symmetric space">symmetric spaces</a> of independent interest – for example, <span class="texhtml">U(<i>n</i>)/O(<i>n</i>)</span> is the <a href="/wiki/Lagrangian_Grassmannian" title="Lagrangian Grassmannian">Lagrangian Grassmannian</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Lie_subgroups">Lie subgroups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=32" title="Edit section: Lie subgroups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In physics, particularly in the areas of <a href="/wiki/Kaluza%E2%80%93Klein" class="mw-redirect" title="Kaluza–Klein">Kaluza–Klein</a> compactification, it is important to find out the subgroups of the orthogonal group. The main ones are: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {O} (n)\supset \mathrm {O} (n-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>⊃<!-- ⊃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {O} (n)\supset \mathrm {O} (n-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e9908269df75e85beb70f2339afff4e8d35f7e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.126ex; height:2.843ex;" alt="{\displaystyle \mathrm {O} (n)\supset \mathrm {O} (n-1)}"></span> – preserve an axis</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {O} (2n)\supset \mathrm {U} (n)\supset \mathrm {SU} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>⊃<!-- ⊃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">U</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>⊃<!-- ⊃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">U</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {O} (2n)\supset \mathrm {U} (n)\supset \mathrm {SU} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8694d24d7dd507d7952639906eb5665fb0845c7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.558ex; height:2.843ex;" alt="{\displaystyle \mathrm {O} (2n)\supset \mathrm {U} (n)\supset \mathrm {SU} (n)}"></span> – <span class="texhtml">U(<i>n</i>)</span> are those that preserve a compatible complex structure <i>or</i> a compatible symplectic structure – see <a href="/wiki/Unitary_group#2-out-of-3_property" title="Unitary group">2-out-of-3 property</a>; <span class="texhtml">SU(<i>n</i>)</span> also preserves a complex orientation.</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {O} (2n)\supset \mathrm {USp} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>⊃<!-- ⊃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">U</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">p</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {O} (2n)\supset \mathrm {USp} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c0a88bab7096722760d6ea131b5448c8ee941e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.805ex; height:2.843ex;" alt="{\displaystyle \mathrm {O} (2n)\supset \mathrm {USp} (n)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {O} (7)\supset \mathrm {G} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mn>7</mn> <mo stretchy="false">)</mo> <mo>⊃<!-- ⊃ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">G</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {O} (7)\supset \mathrm {G} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a9c842f802294d1d7dca69954d1cfed3b0f4617" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.757ex; height:2.843ex;" alt="{\displaystyle \mathrm {O} (7)\supset \mathrm {G} _{2}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Lie_supergroups">Lie supergroups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=33" title="Edit section: Lie supergroups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The orthogonal group <span class="texhtml">O(<i>n</i>)</span> is also an important subgroup of various Lie groups: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathrm {U} (n)&\supset \mathrm {O} (n)\\\mathrm {USp} (2n)&\supset \mathrm {O} (n)\\\mathrm {G} _{2}&\supset \mathrm {O} (3)\\\mathrm {F} _{4}&\supset \mathrm {O} (9)\\\mathrm {E} _{6}&\supset \mathrm {O} (10)\\\mathrm {E} _{7}&\supset \mathrm {O} (12)\\\mathrm {E} _{8}&\supset \mathrm {O} (16)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">U</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>⊃<!-- ⊃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">U</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">p</mi> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>⊃<!-- ⊃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">G</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>⊃<!-- ⊃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>⊃<!-- ⊃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mn>9</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>⊃<!-- ⊃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mn>10</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>⊃<!-- ⊃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mn>12</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>⊃<!-- ⊃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mn>16</mn> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathrm {U} (n)&\supset \mathrm {O} (n)\\\mathrm {USp} (2n)&\supset \mathrm {O} (n)\\\mathrm {G} _{2}&\supset \mathrm {O} (3)\\\mathrm {F} _{4}&\supset \mathrm {O} (9)\\\mathrm {E} _{6}&\supset \mathrm {O} (10)\\\mathrm {E} _{7}&\supset \mathrm {O} (12)\\\mathrm {E} _{8}&\supset \mathrm {O} (16)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55597f8830d4612981368865f73bca5c348e0ff4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.338ex; width:18.487ex; height:21.843ex;" alt="{\displaystyle {\begin{aligned}\mathrm {U} (n)&\supset \mathrm {O} (n)\\\mathrm {USp} (2n)&\supset \mathrm {O} (n)\\\mathrm {G} _{2}&\supset \mathrm {O} (3)\\\mathrm {F} _{4}&\supset \mathrm {O} (9)\\\mathrm {E} _{6}&\supset \mathrm {O} (10)\\\mathrm {E} _{7}&\supset \mathrm {O} (12)\\\mathrm {E} _{8}&\supset \mathrm {O} (16)\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Conformal_group">Conformal group</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=34" title="Edit section: Conformal group"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Conformal_group" title="Conformal group">Conformal group</a></div> <p>Being <a href="/wiki/Isometry" title="Isometry">isometries</a>, real orthogonal transforms preserve <a href="/wiki/Angle" title="Angle">angles</a>, and are thus <a href="/wiki/Conformal_map" title="Conformal map">conformal maps</a>, though not all conformal linear transforms are orthogonal. In classical terms this is the difference between <a href="/wiki/Congruence_(geometry)" title="Congruence (geometry)">congruence</a> and <a href="/wiki/Similarity_(geometry)" title="Similarity (geometry)">similarity</a>, as exemplified by SSS (side-side-side) <a href="/wiki/Congruence_(geometry)#Congruence_of_triangles" title="Congruence (geometry)">congruence of triangles</a> and AAA (angle-angle-angle) <a href="/wiki/Similar_triangles" class="mw-redirect" title="Similar triangles">similarity of triangles</a>. The group of conformal linear maps of <span class="texhtml"><b>R</b><sup><i>n</i></sup></span> is denoted <span class="texhtml">CO(<i>n</i>)</span> for the <b>conformal orthogonal group</b>, and consists of the product of the orthogonal group with the group of <a href="/wiki/Homothetic_transformation" class="mw-redirect" title="Homothetic transformation">dilations</a>. If <span class="texhtml"><i>n</i></span> is odd, these two subgroups do not intersect, and they are a <a href="/wiki/Direct_product_of_groups" title="Direct product of groups">direct product</a>: <span class="texhtml">CO(2<i>k</i> + 1) = O(2<i>k</i> + 1) × <b>R</b><sup>∗</sup></span>, where <span class="texhtml"><b>R</b><sup>∗</sup> = <b>R</b>∖{0</span>} is the real <a href="/wiki/Multiplicative_group" title="Multiplicative group">multiplicative group</a>, while if <span class="texhtml"><i>n</i></span> is even, these subgroups intersect in <span class="texhtml">±1</span>, so this is not a direct product, but it is a direct product with the subgroup of dilation by a positive scalar: <span class="texhtml">CO(2<i>k</i>) = O(2<i>k</i>) × <b>R</b><sup>+</sup></span>. </p><p>Similarly one can define <span class="texhtml">CSO(<i>n</i>)</span>; this is always: <span class="texhtml">CSO(<i>n</i>) = CO(<i>n</i>) ∩ GL<sup>+</sup>(<i>n</i>) = SO(<i>n</i>) × <b>R</b><sup>+</sup></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Discrete_subgroups">Discrete subgroups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=35" title="Edit section: Discrete subgroups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As the orthogonal group is compact, discrete subgroups are equivalent to finite subgroups.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>note 1<span class="cite-bracket">]</span></a></sup> These subgroups are known as <a href="/wiki/Point_group" title="Point group">point groups</a> and can be realized as the symmetry groups of <a href="/wiki/Polytope" title="Polytope">polytopes</a>. A very important class of examples are the <a href="/wiki/Finite_Coxeter_group" class="mw-redirect" title="Finite Coxeter group">finite Coxeter groups</a>, which include the symmetry groups of <a href="/wiki/Regular_polytope" title="Regular polytope">regular polytopes</a>. </p><p>Dimension 3 is particularly studied – see <a href="/wiki/Point_groups_in_three_dimensions" title="Point groups in three dimensions">point groups in three dimensions</a>, <a href="/wiki/Polyhedral_group" title="Polyhedral group">polyhedral groups</a>, and <a href="/wiki/List_of_spherical_symmetry_groups" title="List of spherical symmetry groups">list of spherical symmetry groups</a>. In 2 dimensions, the finite groups are either cyclic or dihedral – see <a href="/wiki/Point_groups_in_two_dimensions" title="Point groups in two dimensions">point groups in two dimensions</a>. </p><p>Other finite subgroups include: </p> <ul><li><a href="/wiki/Permutation_matrices" class="mw-redirect" title="Permutation matrices">Permutation matrices</a> (the <a href="/wiki/Coxeter_group" title="Coxeter group">Coxeter group</a> <span class="texhtml">A<sub><i>n</i></sub></span>)</li> <li><a href="/wiki/Signed_permutation_matrices" class="mw-redirect" title="Signed permutation matrices">Signed permutation matrices</a> (the <a href="/wiki/Coxeter_group" title="Coxeter group">Coxeter group</a> <span class="texhtml">B<sub><i>n</i></sub></span>); also equals the intersection of the orthogonal group with the <a href="/wiki/Integer_matrix" title="Integer matrix">integer matrices</a>.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>note 2<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Covering_and_quotient_groups">Covering and quotient groups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=36" title="Edit section: Covering and quotient groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The orthogonal group is neither <a href="/wiki/Simply_connected" class="mw-redirect" title="Simply connected">simply connected</a> nor <a href="/wiki/Centerless" class="mw-redirect" title="Centerless">centerless</a>, and thus has both a <a href="/wiki/Covering_group" title="Covering group">covering group</a> and a <a href="/wiki/Quotient_group" title="Quotient group">quotient group</a>, respectively: </p> <ul><li>Two covering <a href="/wiki/Pin_group" title="Pin group">Pin groups</a>, <span class="texhtml">Pin<sub>+</sub>(<i>n</i>) → O(<i>n</i>)</span> and <span class="texhtml">Pin<sub>−</sub>(<i>n</i>) → O(<i>n</i>)</span>,</li> <li>The quotient <a href="/wiki/Projective_orthogonal_group" title="Projective orthogonal group">projective orthogonal group</a>, <span class="texhtml">O(<i>n</i>) → PO(<i>n</i>)</span>.</li></ul> <p>These are all 2-to-1 covers. </p><p>For the special orthogonal group, the corresponding groups are: </p> <ul><li><a href="/wiki/Spin_group" title="Spin group">Spin group</a>, <span class="texhtml">Spin(<i>n</i>) → SO(<i>n</i>)</span>,</li> <li><a href="/wiki/Projective_special_orthogonal_group" class="mw-redirect" title="Projective special orthogonal group">Projective special orthogonal group</a>, <span class="texhtml">SO(<i>n</i>) → PSO(<i>n</i>)</span>.</li></ul> <p>Spin is a 2-to-1 cover, while in even dimension, <span class="texhtml">PSO(2<i>k</i>)</span> is a 2-to-1 cover, and in odd dimension <span class="texhtml">PSO(2<i>k</i> + 1)</span> is a 1-to-1 cover; i.e., isomorphic to <span class="texhtml">SO(2<i>k</i> + 1)</span>. These groups, <span class="texhtml">Spin(<i>n</i>)</span>, <span class="texhtml">SO(<i>n</i>)</span>, and <span class="texhtml">PSO(<i>n</i>)</span> are Lie group forms of the compact <a href="/wiki/Special_orthogonal_Lie_algebra" class="mw-redirect" title="Special orthogonal Lie algebra">special orthogonal Lie algebra</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(n,\mathbf {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(n,\mathbf {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/248649418dbaf041ffc71db6020d773a2cbdd13c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:8.449ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(n,\mathbf {R} )}"></span> – <span class="texhtml">Spin</span> is the simply connected form, while <span class="texhtml">PSO</span> is the centerless form, and <span class="texhtml">SO</span> is in general neither.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>note 3<span class="cite-bracket">]</span></a></sup> </p><p>In dimension 3 and above these are the covers and quotients, while dimension 2 and below are somewhat degenerate; see specific articles for details. </p> <div class="mw-heading mw-heading2"><h2 id="Principal_homogeneous_space:_Stiefel_manifold">Principal homogeneous space: Stiefel manifold</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=37" title="Edit section: Principal homogeneous space: Stiefel manifold"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Stiefel_manifold" title="Stiefel manifold">Stiefel manifold</a></div> <p>The <a href="/wiki/Principal_homogeneous_space" title="Principal homogeneous space">principal homogeneous space</a> for the orthogonal group <span class="texhtml">O(<i>n</i>)</span> is the <a href="/wiki/Stiefel_manifold" title="Stiefel manifold">Stiefel manifold</a> <span class="texhtml"><i>V<sub>n</sub></i>(<b>R</b><sup><i>n</i></sup>)</span> of <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal bases</a> (orthonormal <a href="/wiki/K-frame" title="K-frame"><span class="texhtml"><i>n</i></span>-frames</a>). </p><p>In other words, the space of orthonormal bases is like the orthogonal group, but without a choice of base point: given an orthogonal space, there is no natural choice of orthonormal basis, but once one is given one, there is a one-to-one correspondence between bases and the orthogonal group. Concretely, a linear map is determined by where it sends a basis: just as an invertible map can take any basis to any other basis, an orthogonal map can take any <i>orthogonal</i> basis to any other <i>orthogonal</i> basis. </p><p>The other Stiefel manifolds <span class="texhtml"><i>V<sub>k</sub></i>(<b>R</b><sup><i>n</i></sup>)</span> for <span class="texhtml"><i>k</i> < <i>n</i></span> of <i>incomplete</i> orthonormal bases (orthonormal <span class="texhtml"><i>k</i></span>-frames) are still homogeneous spaces for the orthogonal group, but not <i>principal</i> homogeneous spaces: any <span class="texhtml"><i>k</i></span>-frame can be taken to any other <span class="texhtml"><i>k</i></span>-frame by an orthogonal map, but this map is not uniquely determined. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=38" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Specific_transforms">Specific transforms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=39" title="Edit section: Specific transforms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Coordinate_rotations_and_reflections" class="mw-redirect" title="Coordinate rotations and reflections">Coordinate rotations and reflections</a></li> <li><a href="/wiki/Reflection_through_the_origin" class="mw-redirect" title="Reflection through the origin">Reflection through the origin</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Specific_groups">Specific groups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=40" title="Edit section: Specific groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>rotation group, <a href="/wiki/Rotation_group_SO(3)" class="mw-redirect" title="Rotation group SO(3)"><span class="texhtml">SO(3, <b>R</b>)</span></a></li> <li><span class="texhtml"><a href="/wiki/SO(8)" title="SO(8)">SO(8)</a></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Related_groups_2">Related groups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=41" title="Edit section: Related groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Indefinite_orthogonal_group" title="Indefinite orthogonal group">indefinite orthogonal group</a></li> <li><a href="/wiki/Unitary_group" title="Unitary group">unitary group</a></li> <li><a href="/wiki/Symplectic_group" title="Symplectic group">symplectic group</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Lists_of_groups">Lists of groups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=42" title="Edit section: Lists of groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/List_of_finite_simple_groups" title="List of finite simple groups">list of finite simple groups</a></li> <li><a href="/wiki/List_of_simple_Lie_groups" class="mw-redirect" title="List of simple Lie groups">list of simple Lie groups</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Representation_theory">Representation theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=43" title="Edit section: Representation theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Representations_of_classical_Lie_groups" title="Representations of classical Lie groups">Representations of classical Lie groups</a></li> <li><a href="/wiki/Brauer_algebra" title="Brauer algebra">Brauer algebra</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=44" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Infinite subsets of a compact space have an <a href="/wiki/Accumulation_point" title="Accumulation point">accumulation point</a> and are not discrete.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><span class="texhtml">O(<i>n</i>) ∩ <a href="/wiki/General_linear_group" title="General linear group">GL</a>(<i>n</i>, <b>Z</b>)</span> equals the signed permutation matrices because an integer vector of norm 1 must have a single non-zero entry, which must be <span class="texhtml">±1</span> (if it has two non-zero entries or a larger entry, the norm will be larger than 1), and in an orthogonal matrix these entries must be in different coordinates, which is exactly the signed permutation matrices.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">In odd dimension, <span class="texhtml">SO(2<i>k</i> + 1) ≅ PSO(2<i>k</i> + 1)</span> is centerless (but not simply connected), while in even dimension <span class="texhtml">SO(2<i>k</i>)</span> is neither centerless nor simply connected.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Citations">Citations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=45" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">For base fields of <a href="/wiki/Characteristic_(algebra)" title="Characteristic (algebra)">characteristic</a> not 2, the definition in terms of a <a href="/wiki/Symmetric_bilinear_form" title="Symmetric bilinear form">symmetric bilinear form</a> is equivalent to that in terms of a <a href="/wiki/Quadratic_form" title="Quadratic form">quadratic form</a>, but in characteristic 2 these notions differ.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Theorem 11.2</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Section 1.3.4</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Proposition 13.10</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBaez" class="citation web cs1"><a href="/wiki/John_C._Baez" title="John C. Baez">Baez, John</a>. <a rel="nofollow" class="external text" href="https://math.ucr.edu/home/baez/week105.html">"Week 105"</a>. <i>This Week's Finds in Mathematical Physics</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2023-02-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=This+Week%27s+Finds+in+Mathematical+Physics&rft.atitle=Week+105&rft.aulast=Baez&rft.aufirst=John&rft_id=https%3A%2F%2Fmath.ucr.edu%2Fhome%2Fbaez%2Fweek105.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+group" class="Z3988"></span></span> </li> <li id="cite_note-Wil6975-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Wil6975_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Wil6975_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilson2009" class="citation book cs1">Wilson, Robert A. (2009). <i>The finite simple groups</i>. Graduate Texts in Mathematics. Vol. 251. London: Springer. pp. 69–75. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-84800-987-5" title="Special:BookSources/978-1-84800-987-5"><bdi>978-1-84800-987-5</bdi></a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:1203.20012">1203.20012</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+finite+simple+groups&rft.place=London&rft.series=Graduate+Texts+in+Mathematics&rft.pages=69-75&rft.pub=Springer&rft.date=2009&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1203.20012%23id-name%3DZbl&rft.isbn=978-1-84800-987-5&rft.aulast=Wilson&rft.aufirst=Robert+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+group" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">(<a href="#CITEREFTaylor1992">Taylor 1992</a>, p. 141)</span> </li> <li id="cite_note-Knus224-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Knus224_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Knus224_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnus1991" class="citation cs2">Knus, Max-Albert (1991), <i>Quadratic and Hermitian forms over rings</i>, Grundlehren der Mathematischen Wissenschaften, vol. 294, Berlin etc.: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, p. 224, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-540-52117-8" title="Special:BookSources/3-540-52117-8"><bdi>3-540-52117-8</bdi></a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0756.11008">0756.11008</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quadratic+and+Hermitian+forms+over+rings&rft.place=Berlin+etc.&rft.series=Grundlehren+der+Mathematischen+Wissenschaften&rft.pages=224&rft.pub=Springer-Verlag&rft.date=1991&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0756.11008%23id-name%3DZbl&rft.isbn=3-540-52117-8&rft.aulast=Knus&rft.aufirst=Max-Albert&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+group" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">(<a href="#CITEREFTaylor1992">Taylor 1992</a>, page 160)</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">(<a href="#CITEREFGrove2002">Grove 2002</a>, Theorem 6.6 and 14.16)</span> </li> <li id="cite_note-C178-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-C178_11-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFCassels1978">Cassels 1978</a>, p. 178</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=46" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCassels1978" class="citation cs2"><a href="/wiki/J._W._S._Cassels" title="J. W. S. Cassels">Cassels, J.W.S.</a> (1978), <i>Rational Quadratic Forms</i>, London Mathematical Society Monographs, vol. 13, <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-12-163260-1" title="Special:BookSources/0-12-163260-1"><bdi>0-12-163260-1</bdi></a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0395.10029">0395.10029</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Rational+Quadratic+Forms&rft.series=London+Mathematical+Society+Monographs&rft.pub=Academic+Press&rft.date=1978&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0395.10029%23id-name%3DZbl&rft.isbn=0-12-163260-1&rft.aulast=Cassels&rft.aufirst=J.W.S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrove2002" class="citation cs2">Grove, Larry C. (2002), <i>Classical groups and geometric algebra</i>, <a href="/wiki/Graduate_Studies_in_Mathematics" title="Graduate Studies in Mathematics">Graduate Studies in Mathematics</a>, vol. 39, Providence, R.I.: <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-2019-3" title="Special:BookSources/978-0-8218-2019-3"><bdi>978-0-8218-2019-3</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1859189">1859189</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Classical+groups+and+geometric+algebra&rft.place=Providence%2C+R.I.&rft.series=Graduate+Studies+in+Mathematics&rft.pub=American+Mathematical+Society&rft.date=2002&rft.isbn=978-0-8218-2019-3&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1859189%23id-name%3DMR&rft.aulast=Grove&rft.aufirst=Larry+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHall2015" class="citation cs2">Hall, Brian C. (2015), <i>Lie Groups, Lie Algebras, and Representations: An Elementary Introduction</i>, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3319134666" title="Special:BookSources/978-3319134666"><bdi>978-3319134666</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lie+Groups%2C+Lie+Algebras%2C+and+Representations%3A+An+Elementary+Introduction&rft.series=Graduate+Texts+in+Mathematics&rft.edition=2nd&rft.pub=Springer&rft.date=2015&rft.isbn=978-3319134666&rft.aulast=Hall&rft.aufirst=Brian+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylor1992" class="citation cs2">Taylor, Donald E. (1992), <i>The Geometry of the Classical Groups</i>, Sigma Series in Pure Mathematics, vol. 9, Berlin: Heldermann Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-88538-009-9" title="Special:BookSources/3-88538-009-9"><bdi>3-88538-009-9</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1189139">1189139</a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0767.20001">0767.20001</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Geometry+of+the+Classical+Groups&rft.place=Berlin&rft.series=Sigma+Series+in+Pure+Mathematics&rft.pub=Heldermann+Verlag&rft.date=1992&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0767.20001%23id-name%3DZbl&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1189139%23id-name%3DMR&rft.isbn=3-88538-009-9&rft.aulast=Taylor&rft.aufirst=Donald+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+group" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Orthogonal_group&action=edit&section=47" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Orthogonal_group">"Orthogonal group"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Orthogonal+group&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DOrthogonal_group&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOrthogonal+group" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://math.ucr.edu/home/baez/week105.html">John Baez "This Week's Finds in Mathematical Physics" week 105</a></li> <li><a rel="nofollow" class="external text" href="http://math.ucr.edu/home/baez/octonions/node10.html">John Baez on Octonions</a></li> <li><span class="languageicon">(in Italian)</span> <a rel="nofollow" class="external text" href="http://ansi.altervista.org">n-dimensional Special Orthogonal Group parametrization</a></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐ssg57 Cached time: 20241122142002 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.320 seconds Real time usage: 1.553 seconds Preprocessor visited node count: 21372/1000000 Post‐expand include size: 157577/2097152 bytes Template argument size: 46462/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 9/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 75314/5000000 bytes Lua time usage: 0.672/10.000 seconds Lua memory usage: 17639299/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1244.797 1 -total 35.95% 447.490 396 Template:Math 11.67% 145.284 2 Template:Reflist 11.18% 139.210 1 Template:Group_theory_sidebar 10.98% 136.735 1 Template:Sidebar_with_collapsible_lists 9.16% 113.989 1 Template:In_lang 8.35% 103.921 1 Template:Short_description 7.71% 96.011 1 Template:Cite_web 6.85% 85.231 402 Template:Main_other 5.79% 72.015 2 Template:Pagetype --> <!-- Saved in parser cache with key enwiki:pcache:idhash:173954-0!canonical and timestamp 20241122142002 and revision id 1250663995. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Orthogonal_group&oldid=1250663995">https://en.wikipedia.org/w/index.php?title=Orthogonal_group&oldid=1250663995</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Lie_groups" title="Category:Lie groups">Lie groups</a></li><li><a href="/wiki/Category:Quadratic_forms" title="Category:Quadratic forms">Quadratic forms</a></li><li><a href="/wiki/Category:Euclidean_symmetries" title="Category:Euclidean symmetries">Euclidean symmetries</a></li><li><a href="/wiki/Category:Linear_algebraic_groups" title="Category:Linear algebraic groups">Linear algebraic groups</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_July_2022" title="Category:Articles with unsourced statements from July 2022">Articles with unsourced statements from July 2022</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_November_2019" title="Category:Wikipedia articles needing clarification from November 2019">Wikipedia articles needing clarification from November 2019</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_needing_clarification" title="Category:All Wikipedia articles needing clarification">All Wikipedia articles needing clarification</a></li><li><a href="/wiki/Category:Wikipedia_articles_that_are_too_technical_from_November_2019" title="Category:Wikipedia articles that are too technical from November 2019">Wikipedia articles that are too technical from November 2019</a></li><li><a href="/wiki/Category:All_articles_that_are_too_technical" title="Category:All articles that are too technical">All articles that are too technical</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_January_2024" title="Category:Wikipedia articles needing clarification from January 2024">Wikipedia articles needing clarification from January 2024</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_May_2020" title="Category:Wikipedia articles needing clarification from May 2020">Wikipedia articles needing clarification from May 2020</a></li><li><a href="/wiki/Category:Articles_with_Italian-language_sources_(it)" title="Category:Articles with Italian-language sources (it)">Articles with Italian-language sources (it)</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 11 October 2024, at 19:18<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Orthogonal_group&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-g5pcr","wgBackendResponseTime":166,"wgPageParseReport":{"limitreport":{"cputime":"1.320","walltime":"1.553","ppvisitednodes":{"value":21372,"limit":1000000},"postexpandincludesize":{"value":157577,"limit":2097152},"templateargumentsize":{"value":46462,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":9,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":75314,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1244.797 1 -total"," 35.95% 447.490 396 Template:Math"," 11.67% 145.284 2 Template:Reflist"," 11.18% 139.210 1 Template:Group_theory_sidebar"," 10.98% 136.735 1 Template:Sidebar_with_collapsible_lists"," 9.16% 113.989 1 Template:In_lang"," 8.35% 103.921 1 Template:Short_description"," 7.71% 96.011 1 Template:Cite_web"," 6.85% 85.231 402 Template:Main_other"," 5.79% 72.015 2 Template:Pagetype"]},"scribunto":{"limitreport-timeusage":{"value":"0.672","limit":"10.000"},"limitreport-memusage":{"value":17639299,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBaez\"] = 1,\n [\"CITEREFCassels1978\"] = 1,\n [\"CITEREFGrove2002\"] = 1,\n [\"CITEREFHall2015\"] = 1,\n [\"CITEREFKnus1991\"] = 1,\n [\"CITEREFTaylor1992\"] = 1,\n [\"CITEREFWilson2009\"] = 1,\n [\"orthogonal_Lie_algebra\"] = 1,\n [\"special_orthogonal_Lie_algebra\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Abs\"] = 1,\n [\"Anchor\"] = 2,\n [\"Citation\"] = 5,\n [\"Cite book\"] = 1,\n [\"Cite web\"] = 1,\n [\"Clarify\"] = 1,\n [\"Cn\"] = 1,\n [\"Confusing section\"] = 2,\n [\"Group theory sidebar\"] = 1,\n [\"Harv\"] = 4,\n [\"Harvnb\"] = 4,\n [\"In lang\"] = 1,\n [\"Main\"] = 3,\n [\"Math\"] = 396,\n [\"Math proof\"] = 1,\n [\"Mset\"] = 13,\n [\"Mvar\"] = 57,\n [\"Pi\"] = 4,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 2,\n [\"Short description\"] = 1,\n [\"Slink\"] = 1,\n [\"Springer\"] = 1,\n [\"Sub\"] = 20,\n [\"Sup\"] = 22,\n [\"Technical\"] = 1,\n [\"Varphi\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-ssg57","timestamp":"20241122142002","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Orthogonal group","url":"https:\/\/en.wikipedia.org\/wiki\/Orthogonal_group","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1783179","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1783179","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-01-24T20:40:11Z","dateModified":"2024-10-11T19:18:27Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/5\/5f\/Cyclic_group.svg","headline":"mathematical group consisting of transformations of a Euclidean space which preserve distance and a fixed point"}</script> </body> </html>