CINXE.COM

Search results for: linear predictive coding

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: linear predictive coding</title> <meta name="description" content="Search results for: linear predictive coding"> <meta name="keywords" content="linear predictive coding"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="linear predictive coding" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="linear predictive coding"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4794</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: linear predictive coding</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4794</span> Meteosat Second Generation Image Compression Based on the Radon Transform and Linear Predictive Coding: Comparison and Performance </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cherifi%20Mehdi">Cherifi Mehdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahdir%20Mourad"> Lahdir Mourad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameur%20Soltane"> Ameur Soltane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image compression is used to reduce the number of bits required to represent an image. The Meteosat Second Generation satellite (MSG) allows the acquisition of 12 image files every 15 minutes. Which results a large databases sizes. The transform selected in the images compression should contribute to reduce the data representing the images. The Radon transform retrieves the Radon points that represent the sum of the pixels in a given angle for each direction. Linear predictive coding (LPC) with filtering provides a good decorrelation of Radon points using a Predictor constitute by the Symmetric Nearest Neighbor filter (SNN) coefficients, which result losses during decompression. Finally, Run Length Coding (RLC) gives us a high and fixed compression ratio regardless of the input image. In this paper, a novel image compression method based on the Radon transform and linear predictive coding (LPC) for MSG images is proposed. MSG image compression based on the Radon transform and the LPC provides a good compromise between compression and quality of reconstruction. A comparison of our method with other whose two based on DCT and one on DWT bi-orthogonal filtering is evaluated to show the power of the Radon transform in its resistibility against the quantization noise and to evaluate the performance of our method. Evaluation criteria like PSNR and the compression ratio allows showing the efficiency of our method of compression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title="image compression">image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=radon%20transform" title=" radon transform"> radon transform</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding%20%28LPC%29" title=" linear predictive coding (LPC)"> linear predictive coding (LPC)</a>, <a href="https://publications.waset.org/abstracts/search?q=run%20lengthcoding%20%28RLC%29" title=" run lengthcoding (RLC)"> run lengthcoding (RLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=meteosat%20second%20generation%20%28MSG%29" title=" meteosat second generation (MSG)"> meteosat second generation (MSG)</a> </p> <a href="https://publications.waset.org/abstracts/16434/meteosat-second-generation-image-compression-based-on-the-radon-transform-and-linear-predictive-coding-comparison-and-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4793</span> Image Steganography Using Predictive Coding for Secure Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baljit%20Singh%20Khehra">Baljit Singh Khehra</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagreeti%20Kaur"> Jagreeti Kaur </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, steganographic strategy is used to hide the text file inside an image. To increase the storage limit, predictive coding is utilized to implant information. In the proposed plan, one can exchange secure information by means of predictive coding methodology. The predictive coding produces high stego-image. The pixels are utilized to insert mystery information in it. The proposed information concealing plan is powerful as contrasted with the existing methodologies. By applying this strategy, a provision helps clients to productively conceal the information. Entropy, standard deviation, mean square error and peak signal noise ratio are the parameters used to evaluate the proposed methodology. The results of proposed approach are quite promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryptography" title="cryptography">cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=steganography" title=" steganography"> steganography</a>, <a href="https://publications.waset.org/abstracts/search?q=reversible%20image" title=" reversible image"> reversible image</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20coding" title=" predictive coding"> predictive coding</a> </p> <a href="https://publications.waset.org/abstracts/9850/image-steganography-using-predictive-coding-for-secure-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4792</span> Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Sindareh%20Esfahani">Peyman Sindareh Esfahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffery%20Kurt%20Pieper"> Jeffery Kurt Pieper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the <em>l</em><sub>2</sub>-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20fractional%20transformation" title="linear fractional transformation">linear fractional transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequality" title=" linear matrix inequality"> linear matrix inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20model%20predictive%20control" title=" robust model predictive control"> robust model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control" title=" state feedback control"> state feedback control</a> </p> <a href="https://publications.waset.org/abstracts/69466/online-robust-model-predictive-control-for-linear-fractional-transformation-systems-using-linear-matrix-inequalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4791</span> Sampled-Data Model Predictive Tracking Control for Mobile Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wookyong%20Kwon">Wookyong Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangmoon%20Lee"> Sangmoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title="model predictive control">model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=sampled-data%20control" title=" sampled-data control"> sampled-data control</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20parameter%20varying%20systems" title=" linear parameter varying systems"> linear parameter varying systems</a>, <a href="https://publications.waset.org/abstracts/search?q=LPV" title=" LPV"> LPV</a> </p> <a href="https://publications.waset.org/abstracts/71683/sampled-data-model-predictive-tracking-control-for-mobile-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4790</span> Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto">Tomoaki Hashimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20simulations" title="computational simulations">computational simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20control" title=" predictive control"> predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20systems" title=" stochastic systems"> stochastic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-time%20systems" title=" discrete-time systems"> discrete-time systems</a> </p> <a href="https://publications.waset.org/abstracts/35462/computational-simulations-on-stability-of-model-predictive-control-for-linear-discrete-time-stochastic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4789</span> Analysis of Vocal Fold Vibrations from High-Speed Digital Images Based on Dynamic Time Warping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20A.%20Rahman">A. I. A. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh-Hussain%20Salleh"> Sh-Hussain Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ahmad"> K. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Anuar"> K. Anuar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of vocal fold vibration is essential for understanding the mechanism of voice production and for improving clinical assessment of voice disorders. This paper presents a Dynamic Time Warping (DTW) based approach to analyze and objectively classify vocal fold vibration patterns. The proposed technique was designed and implemented on a Glottal Area Waveform (GAW) extracted from high-speed laryngeal images by delineating the glottal edges for each image frame. Feature extraction from the GAW was performed using Linear Predictive Coding (LPC). Several types of voice reference templates from simulations of clear, breathy, fry, pressed and hyperfunctional voice productions were used. The patterns of the reference templates were first verified using the analytical signal generated through Hilbert transformation of the GAW. Samples from normal speakers’ voice recordings were then used to evaluate and test the effectiveness of this approach. The classification of the voice patterns using the technique of LPC and DTW gave the accuracy of 81%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20time%20warping" title="dynamic time warping">dynamic time warping</a>, <a href="https://publications.waset.org/abstracts/search?q=glottal%20area%20waveform" title=" glottal area waveform"> glottal area waveform</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding" title=" linear predictive coding"> linear predictive coding</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20laryngeal%20images" title=" high-speed laryngeal images"> high-speed laryngeal images</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilbert%20transform" title=" Hilbert transform"> Hilbert transform</a> </p> <a href="https://publications.waset.org/abstracts/9923/analysis-of-vocal-fold-vibrations-from-high-speed-digital-images-based-on-dynamic-time-warping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4788</span> Examining Predictive Coding in the Hierarchy of Visual Perception in the Autism Spectrum Using Fast Periodic Visual Stimulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20L.%20Stewart">Min L. Stewart</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Johnston"> Patrick Johnston</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predictive coding has been proposed as a general explanatory framework for understanding the neural mechanisms of perception. As such, an underweighting of perceptual priors has been hypothesised to underpin a range of differences in inferential and sensory processing in autism spectrum disorders. However, empirical evidence to support this has not been well established. The present study uses an electroencephalography paradigm involving changes of facial identity and person category (actors etc.) to explore how levels of autistic traits (AT) affect predictive coding at multiple stages in the visual processing hierarchy. The study uses a rapid serial presentation of faces, with hierarchically structured sequences involving both periodic and aperiodic repetitions of different stimulus attributes (i.e., person identity and person category) in order to induce contextual expectations relating to these attributes. It investigates two main predictions: (1) significantly larger and late neural responses to change of expected visual sequences in high-relative to low-AT, and (2) significantly reduced neural responses to violations of contextually induced expectation in high- relative to low-AT. Preliminary frequency analysis data comparing high and low-AT show greater and later event-related-potentials (ERPs) in occipitotemporal areas and prefrontal areas in high-AT than in low-AT for periodic changes of facial identity and person category but smaller ERPs over the same areas in response to aperiodic changes of identity and category. The research advances our understanding of how abnormalities in predictive coding might underpin aberrant perceptual experience in autism spectrum. This is the first stage of a research project that will inform clinical practitioners in developing better diagnostic tests and interventions for people with autism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20visual%20processing" title="hierarchical visual processing">hierarchical visual processing</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20processing" title=" face processing"> face processing</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptual%20hierarchy" title=" perceptual hierarchy"> perceptual hierarchy</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20error" title=" prediction error"> prediction error</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20coding" title=" predictive coding"> predictive coding</a> </p> <a href="https://publications.waset.org/abstracts/107770/examining-predictive-coding-in-the-hierarchy-of-visual-perception-in-the-autism-spectrum-using-fast-periodic-visual-stimulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4787</span> Detection of Autistic Children&#039;s Voice Based on Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Royan%20Dawud%20Aldian">Royan Dawud Aldian</a>, <a href="https://publications.waset.org/abstracts/search?q=Endah%20Purwanti"> Endah Purwanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Soegianto%20Soelistiono"> Soegianto Soelistiono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism" title="autism">autism</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=backpropagation" title=" backpropagation"> backpropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=linier%20predictive%20coding" title=" linier predictive coding"> linier predictive coding</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20fourier%20transform" title=" fast fourier transform"> fast fourier transform</a> </p> <a href="https://publications.waset.org/abstracts/1699/detection-of-autistic-childrens-voice-based-on-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4786</span> Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taiki%20Baba">Taiki Baba</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto"> Tomoaki Hashimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title="model predictive control">model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20systems" title=" stochastic systems"> stochastic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20constraints" title=" probabilistic constraints"> probabilistic constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20dither%20quantization" title=" random dither quantization"> random dither quantization</a> </p> <a href="https://publications.waset.org/abstracts/78538/numerical-simulations-on-feasibility-of-stochastic-model-predictive-control-for-linear-discrete-time-systems-with-random-dither-quantization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4785</span> Fault-Tolerant Predictive Control for Polytopic LPV Systems Subject to Sensor Faults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Bououden">Sofiane Bououden</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilyes%20Boulkaibet"> Ilyes Boulkaibet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a robust fault-tolerant predictive control (FTPC) strategy is proposed for systems with linear parameter varying (LPV) models and input constraints subject to sensor faults. Generally, virtual observers are used for improving the observation precision and reduce the impacts of sensor faults and uncertainties in the system. However, this type of observer lacks certain system measurements which substantially reduce its accuracy. To deal with this issue, a real observer is then designed based on the virtual observer, and consequently a real observer-based robust predictive control is designed for polytopic LPV systems. Moreover, the proposed observer can entirely assure that all system states and sensor faults are estimated. As a result, and based on both observers, a robust fault-tolerant predictive control is then established via the Lyapunov method where sufficient conditions are proposed, for stability analysis and control purposes, in linear matrix inequalities (LMIs) form. Finally, simulation results are given to show the effectiveness of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20parameter%20varying%20systems" title="linear parameter varying systems">linear parameter varying systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fault-tolerant%20predictive%20control" title=" fault-tolerant predictive control"> fault-tolerant predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=observer-based%20control" title=" observer-based control"> observer-based control</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20faults" title=" sensor faults"> sensor faults</a>, <a href="https://publications.waset.org/abstracts/search?q=input%20constraints" title=" input constraints"> input constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities" title=" linear matrix inequalities"> linear matrix inequalities</a> </p> <a href="https://publications.waset.org/abstracts/139019/fault-tolerant-predictive-control-for-polytopic-lpv-systems-subject-to-sensor-faults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4784</span> Model Predictive Control of Turbocharged Diesel Engine with Exhaust Gas Recirculation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Yavas">U. Yavas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gokasan"> M. Gokasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control of diesel engine&rsquo;s air path has drawn a lot of attention due to its multi input-multi output, closed coupled, non-linear relation. Today, precise control of amount of air to be combusted is a must in order to meet with tight emission limits and performance targets. In this study, passenger car size diesel engine is modeled by AVL Boost RT, and then simulated with standard, industry level PID controllers. Finally, linear model predictive control is designed and simulated. This study shows the importance of modeling and control of diesel engines with flexible algorithm development in computer based systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=predictive%20control" title="predictive control">predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20control" title=" engine control"> engine control</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20modeling" title=" engine modeling"> engine modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20control" title=" PID control"> PID control</a>, <a href="https://publications.waset.org/abstracts/search?q=feedforward%20compensation" title=" feedforward compensation"> feedforward compensation</a> </p> <a href="https://publications.waset.org/abstracts/34455/model-predictive-control-of-turbocharged-diesel-engine-with-exhaust-gas-recirculation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">636</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4783</span> Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto">Tomoaki Hashimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title="optimal control">optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20systems" title=" stochastic systems"> stochastic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20dither" title=" random dither"> random dither</a>, <a href="https://publications.waset.org/abstracts/search?q=quantization" title=" quantization"> quantization</a> </p> <a href="https://publications.waset.org/abstracts/63970/stochastic-model-predictive-control-for-linear-discrete-time-systems-with-random-dither-quantization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4782</span> A Robust Model Predictive Control for a Photovoltaic Pumping System Subject to Actuator Saturation Nonlinearity and Parameter Uncertainties: A Linear Matrix Inequality Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Bououden">Sofiane Bououden</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilyes%20Boulkaibet"> Ilyes Boulkaibet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a robust model predictive controller (RMPC) for uncertain nonlinear system under actuator saturation is designed to control a DC-DC buck converter in PV pumping application, where this system is subject to actuator saturation and parameter uncertainties. The considered nonlinear system contains a linear constant part perturbed by an additive state-dependent nonlinear term. Based on the saturating actuator property, an appropriate linear feedback control law is constructed and used to minimize an infinite horizon cost function within the framework of linear matrix inequalities. The proposed approach has successfully provided a solution to the optimization problem that can stabilize the nonlinear plants. Furthermore, sufficient conditions for the existence of the proposed controller guarantee the robust stability of the system in the presence of polytypic uncertainties. In addition, the simulation results have demonstrated the efficiency of the proposed control scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV%20pumping%20system" title="PV pumping system">PV pumping system</a>, <a href="https://publications.waset.org/abstracts/search?q=DC-DC%20buck%20converter" title=" DC-DC buck converter"> DC-DC buck converter</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20model%20predictive%20controller" title=" robust model predictive controller"> robust model predictive controller</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20system" title=" nonlinear system"> nonlinear system</a>, <a href="https://publications.waset.org/abstracts/search?q=actuator%20saturation" title=" actuator saturation"> actuator saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequality" title=" linear matrix inequality"> linear matrix inequality</a> </p> <a href="https://publications.waset.org/abstracts/141317/a-robust-model-predictive-control-for-a-photovoltaic-pumping-system-subject-to-actuator-saturation-nonlinearity-and-parameter-uncertainties-a-linear-matrix-inequality-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4781</span> Agriculture Yield Prediction Using Predictive Analytic Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagini%20Sabbineni">Nagini Sabbineni</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajini%20T.%20V.%20Kanth"> Rajini T. V. Kanth</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Kiranmayee"> B. V. Kiranmayee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture%20yield%20growth" title="agriculture yield growth">agriculture yield growth</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture%20yield%20prediction" title=" agriculture yield prediction"> agriculture yield prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=explorative%20data%20analysis" title=" explorative data analysis"> explorative data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20models" title=" predictive models"> predictive models</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20models" title=" regression models"> regression models</a> </p> <a href="https://publications.waset.org/abstracts/54159/agriculture-yield-prediction-using-predictive-analytic-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4780</span> Robust Image Design Based Steganographic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadiq%20J.%20Abou-Loukh">Sadiq J. Abou-Loukh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20M.%20Habbi"> Hanan M. Habbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a steganography to hide the transmitted information without excite suspicious and also illustrates the level of secrecy that can be increased by using cryptography techniques. The proposed system has been implemented firstly by encrypted image file one time pad key and secondly encrypted message that hidden to perform encryption followed by image embedding. Then the new image file will be created from the original image by using four triangles operation, the new image is processed by one of two image processing techniques. The proposed two processing techniques are thresholding and differential predictive coding (DPC). Afterwards, encryption or decryption keys are generated by functional key generator. The generator key is used one time only. Encrypted text will be hidden in the places that are not used for image processing and key generation system has high embedding rate (0.1875 character/pixel) for true color image (24 bit depth). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=encryption" title="encryption">encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=thresholding" title=" thresholding"> thresholding</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%0D%0Apredictive%20coding" title=" differential predictive coding"> differential predictive coding</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20triangles%20operation" title=" four triangles operation "> four triangles operation </a> </p> <a href="https://publications.waset.org/abstracts/16654/robust-image-design-based-steganographic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4779</span> Sensor Fault-Tolerant Model Predictive Control for Linear Parameter Varying Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yushuai%20Wang">Yushuai Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Xu"> Feng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junbo%20Tan"> Junbo Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xueqian%20Wang"> Xueqian Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Liang"> Bin Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (RMPC) and set theoretic fault detection and isolation (FDI) is extended to linear parameter varying (LPV) systems. First, a group of set-valued observers are designed for passive fault detection (FD) and the observer gains are obtained through minimizing the size of invariant set of state estimation-error dynamics. Second, an input set for fault isolation (FI) is designed offline through set theory for actively isolating faults after FD. Third, an RMPC controller based on state estimation for LPV systems is designed to control the system in the presence of disturbance and measurement noise and tolerate faults. Besides, an FTC algorithm is proposed to maintain the plant operate in the corresponding mode when the fault occurs. Finally, a numerical example is used to show the effectiveness of the proposed results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title="fault detection">fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20parameter%20varying" title=" linear parameter varying"> linear parameter varying</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title=" model predictive control"> model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=set%20theory" title=" set theory"> set theory</a> </p> <a href="https://publications.waset.org/abstracts/134234/sensor-fault-tolerant-model-predictive-control-for-linear-parameter-varying-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4778</span> On the Construction of Some Optimal Binary Linear Codes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Skezeer%20John%20B.%20Paz">Skezeer John B. Paz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ederlina%20G.%20Nocon"> Ederlina G. Nocon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finding an optimal binary linear code is a central problem in coding theory. A binary linear code C = [n, k, d] is called optimal if there is no linear code with higher minimum distance d given the length n and the dimension k. There are bounds giving limits for the minimum distance d of a linear code of fixed length n and dimension k. The lower bound which can be taken by construction process tells that there is a known linear code having this minimum distance. The upper bound is given by theoretic results such as Griesmer bound. One way to find an optimal binary linear code is to make the lower bound of d equal to its higher bound. That is, to construct a binary linear code which achieves the highest possible value of its minimum distance d, given n and k. Some optimal binary linear codes were presented by Andries Brouwer in his published table on bounds of the minimum distance d of binary linear codes for 1 ≤ n ≤ 256 and k ≤ n. This was further improved by Markus Grassl by giving a detailed construction process for each code exhibiting the lower bound. In this paper, we construct new optimal binary linear codes by using some construction processes on existing binary linear codes. Particularly, we developed an algorithm applied to the codes already constructed to extend the list of optimal binary linear codes up to 257 ≤ n ≤ 300 for k ≤ 7. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bounds%20of%20linear%20codes" title="bounds of linear codes">bounds of linear codes</a>, <a href="https://publications.waset.org/abstracts/search?q=Griesmer%20bound" title=" Griesmer bound"> Griesmer bound</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20of%20linear%20codes" title=" construction of linear codes"> construction of linear codes</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20binary%20linear%20codes" title=" optimal binary linear codes"> optimal binary linear codes</a> </p> <a href="https://publications.waset.org/abstracts/31628/on-the-construction-of-some-optimal-binary-linear-codes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">755</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4777</span> Identifying Protein-Coding and Non-Coding Regions in Transcriptomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angela%20U.%20Makolo">Angela U. Makolo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sequence%20alignment-free%20model" title="sequence alignment-free model">sequence alignment-free model</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20thresholding%20classification" title=" dynamic thresholding classification"> dynamic thresholding classification</a>, <a href="https://publications.waset.org/abstracts/search?q=input%20randomization" title=" input randomization"> input randomization</a>, <a href="https://publications.waset.org/abstracts/search?q=genome%20annotation" title=" genome annotation"> genome annotation</a> </p> <a href="https://publications.waset.org/abstracts/183177/identifying-protein-coding-and-non-coding-regions-in-transcriptomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4776</span> A Study on Puzzle-Based Game to Teach Elementary Students to Code</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaisoon%20Baek">Jaisoon Baek</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyuhwan%20Oh"> Gyuhwan Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we developed a puzzle game based on coding and a web-based management system to observe the user's learning status in real time and maximize the understanding of the coding of elementary students. We have improved upon and existing coding game which cannot be connected to textual language coding or comprehends learning state. We analyzed the syntax of various coding languages for the curriculum and provided a menu to convert icon into textual coding languages. In addition, the management system includes multiple types of tutoring, real-time analysis of user play data and feedback. Following its application in regular elementary school software classes, students reported positive effects on understanding and interest in coding were shown by students. It is expected that this will contribute to quality improvement in software education by providing contents with proven educational value by breaking away from simple learning-oriented coding games. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coding%20education" title="coding education">coding education</a>, <a href="https://publications.waset.org/abstracts/search?q=serious%20game" title=" serious game"> serious game</a>, <a href="https://publications.waset.org/abstracts/search?q=coding" title=" coding"> coding</a>, <a href="https://publications.waset.org/abstracts/search?q=education%20management%20system" title=" education management system"> education management system</a> </p> <a href="https://publications.waset.org/abstracts/103630/a-study-on-puzzle-based-game-to-teach-elementary-students-to-code" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4775</span> Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingyu%20Xie">Mingyu Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Mietek%20Brdys"> Mietek Brdys</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title="model predictive control">model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20control%20structure" title=" hierarchical control structure"> hierarchical control structure</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20with%20DBPs%20objectives" title=" water quality with DBPs objectives"> water quality with DBPs objectives</a> </p> <a href="https://publications.waset.org/abstracts/32624/nonlinear-model-predictive-control-of-water-quality-in-drinking-water-distribution-systems-with-dbps-objetives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4774</span> Computational Thinking Based Coding Environment for Coding and Free Semester Mathematics Education in Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Hyuk%20Cho">Han Hyuk Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanik%20Jo"> Hanik Jo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, coding education has been globally emphasized, and the Free Semester System and coding education were introduced to the public schools from the beginning of 2016 and 2018 respectively in Korea. With the introduction of the Free Semester System and the rising demand of Computational Thinking (CT) capacity, this paper aims to design ‘Coding Environment’ and Minecraft-like Turtlecraft in which learners can design and construct mathematical objects through mathematical symbolic expressions. Students can transfer the constructed mathematical objects to the Turtlecraft environment (open-source codingmath website), and also can print them out through 3D printers. Furthermore, we design learnable mathematics and coding curriculum by representing the figurate numbers and patterns in terms of executable expression in the coding context and connecting them to algebraic symbols, which will allow students to experience mathematical patterns and symbolic coding expressions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coding%20education" title="coding education">coding education</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20thinking" title=" computational thinking"> computational thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematics%20education" title=" mathematics education"> mathematics education</a>, <a href="https://publications.waset.org/abstracts/search?q=TurtleMAL%20and%20Turtlecraft" title=" TurtleMAL and Turtlecraft"> TurtleMAL and Turtlecraft</a> </p> <a href="https://publications.waset.org/abstracts/96410/computational-thinking-based-coding-environment-for-coding-and-free-semester-mathematics-education-in-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4773</span> Model Predictive Control Applied to Thermal Regulation of Thermoforming Process Based on the Armax Linear Model and a Quadratic Criterion Formulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moaine%20Jebara">Moaine Jebara</a>, <a href="https://publications.waset.org/abstracts/search?q=Lionel%20Boillereaux"> Lionel Boillereaux</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20%20Belhabib"> Sofiane Belhabib</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Havet"> Michel Havet</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Sarda"> Alain Sarda</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20%20Mousseau"> Pierre Mousseau</a>, <a href="https://publications.waset.org/abstracts/search?q=R%C3%A9mi%20Deterre"> Rémi Deterre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy consumption efficiency is a major concern for the material processing industry such as thermoforming process and molding. Indeed, these systems should deliver the right amount of energy at the right time to the processed material. Recent technical development, as well as the particularities of the heating system dynamics, made the Model Predictive Control (MPC) one of the best candidates for thermal control of several production processes like molding and composite thermoforming to name a few. The main principle of this technique is to use a dynamic model of the process inside the controller in real time in order to anticipate the future behavior of the process which allows the current timeslot to be optimized while taking future timeslots into account. This study presents a procedure based on a predictive control that brings balance between optimality, simplicity, and flexibility of its implementation. The development of this approach is progressive starting from the case of a single zone before its extension to the multizone and/or multisource case, taking thus into account the thermal couplings between the adjacent zones. After a quadratic formulation of the MPC criterion to ensure the thermal control, the linear expression is retained in order to reduce calculation time thanks to the use of the ARMAX linear decomposition methods. The effectiveness of this approach is illustrated by experiment and simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20decomposition%20methods" title=" linear decomposition methods"> linear decomposition methods</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title=" model predictive control"> model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=mold%20heating%20systems" title=" mold heating systems"> mold heating systems</a> </p> <a href="https://publications.waset.org/abstracts/63419/model-predictive-control-applied-to-thermal-regulation-of-thermoforming-process-based-on-the-armax-linear-model-and-a-quadratic-criterion-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4772</span> A High Compression Ratio for a Losseless Image Compression Based on the Arithmetic Coding with the Sorted Run Length Coding: Meteosat Second Generation Image Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cherifi%20Mehdi">Cherifi Mehdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahdir%20Mourad"> Lahdir Mourad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameur%20Soltane"> Ameur Soltane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image compression is the heart of several multimedia techniques. It is used to reduce the number of bits required to represent an image. Meteosat Second Generation (MSG) satellite allows the acquisition of 12 image files every 15 minutes and that results in a large databases sizes. In this paper, a novel image compression method based on the arithmetic coding with the sorted Run Length Coding (SRLC) for MSG images is proposed. The SRLC allows us to find the occurrence of the consecutive pixels of the original image to create a sorted run. The arithmetic coding allows the encoding of the sorted data of the previous stage to retrieve a unique code word that represents a binary code stream in the sorted order to boost the compression ratio. Through this article, we show that our method can perform the best results concerning compression ratio and bit rate unlike the method based on the Run Length Coding (RLC) and the arithmetic coding. Evaluation criteria like the compression ratio and the bit rate allow the confirmation of the efficiency of our method of image compression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title="image compression">image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=arithmetic%20coding" title=" arithmetic coding"> arithmetic coding</a>, <a href="https://publications.waset.org/abstracts/search?q=Run%20Length%20Coding" title=" Run Length Coding"> Run Length Coding</a>, <a href="https://publications.waset.org/abstracts/search?q=RLC" title=" RLC"> RLC</a>, <a href="https://publications.waset.org/abstracts/search?q=Sorted%20Run%20Length%20Coding" title=" Sorted Run Length Coding"> Sorted Run Length Coding</a>, <a href="https://publications.waset.org/abstracts/search?q=SRLC" title=" SRLC"> SRLC</a>, <a href="https://publications.waset.org/abstracts/search?q=Meteosat%20Second%20Generation" title=" Meteosat Second Generation"> Meteosat Second Generation</a>, <a href="https://publications.waset.org/abstracts/search?q=MSG" title=" MSG"> MSG</a> </p> <a href="https://publications.waset.org/abstracts/16704/a-high-compression-ratio-for-a-losseless-image-compression-based-on-the-arithmetic-coding-with-the-sorted-run-length-coding-meteosat-second-generation-image-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4771</span> Spread Spectrum with Notch Frequency Using Pulse Coding Method for Switching Converter of Communication Equipment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasunori%20Kobori">Yasunori Kobori</a>, <a href="https://publications.waset.org/abstracts/search?q=Futoshi%20Fukaya"> Futoshi Fukaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Takuya%20Arafune"> Takuya Arafune</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobukazu%20Tsukiji"> Nobukazu Tsukiji</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobukazu%20Takai"> Nobukazu Takai</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruo%20Kobayashi"> Haruo Kobayashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes an EMI spread spectrum technique to enable to set notch frequencies using pulse coding method for DC-DC switching converters of communication equipment. The notches in the spectrum of the switching pulses appear at the frequencies obtained from empirically derived equations with the proposed spread spectrum technique using the pulse coding methods, the PWM (Pulse Width Modulation) coding or the PCM (Pulse Cycle Modulation) coding. This technique would be useful for the switching converters in the communication equipment which receives standard radio waves, without being affected by noise from the switching converters. In our proposed technique, the notch frequencies in the spectrum depend on the pulse coding method. We have investigated this technique to apply to the switching converters and found that there is good relationship agreement between the notch frequencies and the empirical equations. The notch frequencies with the PWM coding is equal to the equation F=k/(WL-WS). With the PCM coding, that is equal to the equation F=k/(TL-TS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=notch%20frequency" title="notch frequency">notch frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20coding" title=" pulse coding"> pulse coding</a>, <a href="https://publications.waset.org/abstracts/search?q=spread%20spectrum" title=" spread spectrum"> spread spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=switching%20converter" title=" switching converter"> switching converter</a> </p> <a href="https://publications.waset.org/abstracts/44582/spread-spectrum-with-notch-frequency-using-pulse-coding-method-for-switching-converter-of-communication-equipment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4770</span> Medical Image Compression by Region of Interest Based on DT-CWT Using Run-length Coding and Huffman Coding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Seddiki">Ali Seddiki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Djebbouri"> Mohamed Djebbouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Driss%20Guerchi"> Driss Guerchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. In some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to quality purpose compression in the region of interest of scintigraphic images based on dual tree complex wavelet transform (DT-CWT) using Run-Length coding (RLE) and Huffman coding (HC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DT-CWT" title="DT-CWT">DT-CWT</a>, <a href="https://publications.waset.org/abstracts/search?q=region%20of%20interest" title=" region of interest"> region of interest</a>, <a href="https://publications.waset.org/abstracts/search?q=run%20length%20coding" title=" run length coding"> run length coding</a>, <a href="https://publications.waset.org/abstracts/search?q=Scintigraphic%20images" title=" Scintigraphic images"> Scintigraphic images</a> </p> <a href="https://publications.waset.org/abstracts/40076/medical-image-compression-by-region-of-interest-based-on-dt-cwt-using-run-length-coding-and-huffman-coding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4769</span> Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomyslav%20Sledevi%C4%8D">Tomyslav Sledevič</a>, <a href="https://publications.waset.org/abstracts/search?q=Art%C5%ABras%20Serackis"> Artūras Serackis</a>, <a href="https://publications.waset.org/abstracts/search?q=Gintautas%20Tamulevi%C4%8Dius"> Gintautas Tamulevičius</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalius%20Navakauskas"> Dalius Navakauskas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in the speaker-dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signals to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients give best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose, the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfies the real-time requirements and is suitable for applications in embedded systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isolated%20word%20recognition" title="isolated word recognition">isolated word recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=features%20extraction" title=" features extraction"> features extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=MFCC" title=" MFCC"> MFCC</a>, <a href="https://publications.waset.org/abstracts/search?q=LFCC" title=" LFCC"> LFCC</a>, <a href="https://publications.waset.org/abstracts/search?q=LPCC" title=" LPCC"> LPCC</a>, <a href="https://publications.waset.org/abstracts/search?q=LPC" title=" LPC"> LPC</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA" title=" FPGA"> FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=DTW" title=" DTW"> DTW</a> </p> <a href="https://publications.waset.org/abstracts/2136/evaluation-of-features-extraction-algorithms-for-a-real-time-isolated-word-recognition-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4768</span> Improved Performance Using Adaptive Pre-Coding in the Cellular Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong-Jun%20Kim">Yong-Jun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Hyun%20Ro"> Jae-Hyun Ro</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Bin%20Ha"> Chang-Bin Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoung-Kyu%20Song"> Hyoung-Kyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes the cooperative transmission scheme with pre-coding because the cellular communication requires high reliability. The cooperative transmission scheme uses pre-coding method with limited feedback information among small cells. Particularly, the proposed scheme has adaptive mode according to the position of mobile station. Thus, demand of recent wireless communication is resolved by this scheme. From the simulation results, the proposed scheme has better performance compared to the conventional scheme in the cellular network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CDD" title="CDD">CDD</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20network" title=" cellular network"> cellular network</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-coding" title=" pre-coding"> pre-coding</a>, <a href="https://publications.waset.org/abstracts/search?q=SPC" title=" SPC"> SPC</a> </p> <a href="https://publications.waset.org/abstracts/42216/improved-performance-using-adaptive-pre-coding-in-the-cellular-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4767</span> Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ameur%20Abdelkader">Ameur Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Abed%20Bouarfa%20Hafida"> Abed Bouarfa Hafida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables&nbsp;and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=predictive%20analysis" title="predictive analysis">predictive analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20analysis%20algorithms" title=" predictive analysis algorithms"> predictive analysis algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=CART%20algorithm" title=" CART algorithm"> CART algorithm</a> </p> <a href="https://publications.waset.org/abstracts/101647/predictive-analysis-for-big-data-extension-of-classification-and-regression-trees-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4766</span> Usage of Channel Coding Techniques for Peak-to-Average Power Ratio Reduction in Visible Light Communications Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20L.%20D.%20N.%20M.%20de%20Silva">P. L. D. N. M. de Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Edirisinghe"> S. G. Edirisinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Weerasuriya"> R. Weerasuriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High peak-to-average power ratio (PAPR) is a concern of orthogonal frequency division multiplexing (OFDM) based visible light communication (VLC) systems. Discrete Fourier Transform spread (DFT-s) OFDM is an alternative single carrier modulation scheme which would address this concern. Employing channel coding techniques is another mechanism to reduce the PAPR. Previous research has been conducted to study the impact of these techniques separately. However, to the best of the knowledge of the authors, no study has been done so far to identify the improvement which can be harnessed by hybridizing these two techniques for VLC systems. Therefore, this is a novel study area under this research. In addition, channel coding techniques such as Polar codes and Turbo codes have been tested in the VLC domain. However, other efficient techniques such as Hamming coding and Convolutional coding have not been studied too. Therefore, the authors present the impact of the hybrid of DFT-s OFDM and Channel coding (Hamming coding and Convolutional coding) on PAPR in VLC systems using Matlab simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20coding" title="convolutional coding">convolutional coding</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20Fourier%20transform%20spread%20orthogonal%20frequency%20division%20multiplexing" title=" discrete Fourier transform spread orthogonal frequency division multiplexing"> discrete Fourier transform spread orthogonal frequency division multiplexing</a>, <a href="https://publications.waset.org/abstracts/search?q=hamming%20coding" title=" hamming coding"> hamming coding</a>, <a href="https://publications.waset.org/abstracts/search?q=peak-to-average%20power%20ratio" title=" peak-to-average power ratio"> peak-to-average power ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light%20communications" title=" visible light communications"> visible light communications</a> </p> <a href="https://publications.waset.org/abstracts/150222/usage-of-channel-coding-techniques-for-peak-to-average-power-ratio-reduction-in-visible-light-communications-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4765</span> Feature Analysis of Predictive Maintenance Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaoan%20Wang">Zhaoan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20supply%20chain" title="automated supply chain">automated supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20manufacturing" title=" intelligent manufacturing"> intelligent manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20maintenance%20machine%20learning" title=" predictive maintenance machine learning"> predictive maintenance machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20engineering" title=" feature engineering"> feature engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20interpretation" title=" model interpretation"> model interpretation</a> </p> <a href="https://publications.waset.org/abstracts/129853/feature-analysis-of-predictive-maintenance-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding&amp;page=159">159</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding&amp;page=160">160</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10