CINXE.COM
Ecuațiile lui Maxwell - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="ro" dir="ltr"> <head> <meta charset="UTF-8"> <title>Ecuațiile lui Maxwell - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )rowikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","ianuarie","februarie","martie","aprilie","mai","iunie","iulie","august","septembrie","octombrie","noiembrie","decembrie"],"wgRequestId":"aa1c64f9-7b04-4abc-973a-81ee86b23b22","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Ecuațiile_lui_Maxwell","wgTitle":"Ecuațiile lui Maxwell","wgCurRevisionId":15535379,"wgRevisionId":15535379,"wgArticleId":281156,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive template wayback links","Articole Wikipedia cu identificatori BNF","Articole Wikipedia cu identificatori GND","Articole Wikipedia cu identificatori LCCN","Articole Wikipedia cu identificatori NKC","Articole Wikipedia cu control de autoritate","Pagini ce folosesc legături automate către ISBN","Electrodinamică","Ecuații ale fizicii"],"wgPageViewLanguage":"ro","wgPageContentLanguage":"ro","wgPageContentModel":"wikitext" ,"wgRelevantPageName":"Ecuațiile_lui_Maxwell","wgRelevantArticleId":281156,"wgTempUserName":null,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ro","pageLanguageDir":"ltr","pageVariantFallbacks":"ro"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":8000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q51501","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgSiteNoticeId":"2.2"};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ro&modules=ext.cite.styles%7Cext.dismissableSiteNotice.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=ro&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ro&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Ecuațiile lui Maxwell - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ro.m.wikipedia.org/wiki/Ecua%C8%9Biile_lui_Maxwell"> <link rel="alternate" type="application/x-wiki" title="Modificare" href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (ro)"> <link rel="EditURI" type="application/rsd+xml" href="//ro.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ro.wikipedia.org/wiki/Ecua%C8%9Biile_lui_Maxwell"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ro"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Abonare Atom" href="/w/index.php?title=Special:Schimb%C4%83ri_recente&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Ecuațiile_lui_Maxwell rootpage-Ecuațiile_lui_Maxwell skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Sari la conținut</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Meniul principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Meniul principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Meniul principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">mută în bara laterală</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">ascunde</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigare </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Pagina_principal%C4%83" title="Vedeți pagina principală [z]" accesskey="z"><span>Pagina principală</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:Schimb%C4%83ri_recente" title="Lista ultimelor schimbări realizate în acest wiki [r]" accesskey="r"><span>Schimbări recente</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Wikipedia:Cafenea" title="Informații despre evenimentele curente"><span>Cafenea</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Aleatoriu" title="Afișează o pagină aleatoare [x]" accesskey="x"><span>Articol aleatoriu</span></a></li><li id="n-Facebook" class="mw-list-item"><a href="https://www.facebook.com/WikipediaRomana" rel="nofollow"><span>Facebook</span></a></li> </ul> </div> </div> <div id="p-Participare" class="vector-menu mw-portlet mw-portlet-Participare" > <div class="vector-menu-heading"> Participare </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Cum-încep-pe-Wikipedia" class="mw-list-item"><a href="/wiki/Ajutor:Bun_venit"><span>Cum încep pe Wikipedia</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Ajutor:Cuprins" title="Locul în care găsiți ajutor"><span>Ajutor</span></a></li><li id="n-Portals" class="mw-list-item"><a href="/wiki/Portal:R%C4%83sfoire"><span>Portaluri tematice</span></a></li><li id="n-Articole-cerute" class="mw-list-item"><a href="/wiki/Wikipedia:Articole_cerute"><span>Articole cerute</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Pagina_principal%C4%83" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="enciclopedia liberă" src="/static/images/mobile/copyright/wikipedia-tagline-ro.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:C%C4%83utare" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Căutare în Wikipedia [c]" accesskey="c"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Căutare</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Căutare în Wikipedia" aria-label="Căutare în Wikipedia" autocapitalize="sentences" title="Căutare în Wikipedia [c]" accesskey="c" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Căutare"> </div> <button class="cdx-button cdx-search-input__end-button">Căutare</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Unelte personale"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aspect"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aspect" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aspect</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_ro.wikipedia.org&uselang=ro" class=""><span>Donații</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%C3%8Enregistrare&returnto=Ecua%C8%9Biile+lui+Maxwell" title="Vă încurajăm să vă creați un cont și să vă autentificați; totuși, nu este obligatoriu" class=""><span>Creare cont</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:Autentificare&returnto=Ecua%C8%9Biile+lui+Maxwell" title="Sunteți încurajat să vă autentificați, deși acest lucru nu este obligatoriu. [o]" accesskey="o" class=""><span>Autentificare</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out user-links-collapsible-item" title="Mai multe opțiuni" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Unelte personale" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Unelte personale</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Meniul de utilizator" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_ro.wikipedia.org&uselang=ro"><span>Donații</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%C3%8Enregistrare&returnto=Ecua%C8%9Biile+lui+Maxwell" title="Vă încurajăm să vă creați un cont și să vă autentificați; totuși, nu este obligatoriu"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Creare cont</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:Autentificare&returnto=Ecua%C8%9Biile+lui+Maxwell" title="Sunteți încurajat să vă autentificați, deși acest lucru nu este obligatoriu. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Autentificare</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><div id="mw-dismissablenotice-anonplace"></div><script>(function(){var node=document.getElementById("mw-dismissablenotice-anonplace");if(node){node.outerHTML="\u003Cdiv class=\"mw-dismissable-notice\"\u003E\u003Cdiv class=\"mw-dismissable-notice-close\"\u003E[\u003Ca tabindex=\"0\" role=\"button\"\u003Eascunde\u003C/a\u003E]\u003C/div\u003E\u003Cdiv class=\"mw-dismissable-notice-body\"\u003E\u003C!-- CentralNotice --\u003E\u003Cdiv id=\"localNotice\" data-nosnippet=\"\"\u003E\u003Cdiv class=\"anonnotice\" lang=\"ro\" dir=\"ltr\"\u003E\u003Cdiv class=\"plainlinks\" style=\"border: 1px solid #ddd; margin: 0 0 3px;\"\u003E\n\u003Cdiv class=\"nomobile\" style=\"float:right\"\u003E\n\u003Cspan typeof=\"mw:File\"\u003E\u003Ca href=\"/wiki/Wikipedia:Concurs_de_scriere\" title=\"Wikipedia:Concurs de scriere\"\u003E\u003Cimg src=\"//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Concurs_de_scriere.png/126px-Concurs_de_scriere.png\" decoding=\"async\" width=\"126\" height=\"95\" class=\"mw-file-element\" srcset=\"//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Concurs_de_scriere.png/189px-Concurs_de_scriere.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/55/Concurs_de_scriere.png/251px-Concurs_de_scriere.png 2x\" data-file-width=\"506\" data-file-height=\"383\" /\u003E\u003C/a\u003E\u003C/span\u003E\u003C/div\u003E\n\u003Cdiv style=\"color: grey; max-width:1280px; margin: 12px auto; font-family: Tahoma, \u0026#39;DejaVu Sans Condensed\u0026#39;, sans-serif; text-align: center; font-size: 12pt; position: relative;\"\u003EA început o nouă ediție a concursului de scriere! Sunteți cu drag invitați să participați la ediția cu numărul 22, cu articole scrise sau dezvoltate considerabil între 1 aprilie și 30 noiembrie 2024. Pentru înscriere de articole la concurs (nominalizări), condiții de eligibilitate, punctare și alte detalii, vă rugăm să accesați \u003Cb\u003E\u003Ca href=\"/wiki/Wikipedia:Concurs_de_scriere\" title=\"Wikipedia:Concurs de scriere\"\u003Epagina\u0026#160;concursului\u003C/a\u003E\u003C/b\u003E.\u003C/div\u003E\n\u003Cdiv style=\"clear: both;\"\u003E\u003C/div\u003E\n\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E";}}());</script></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Cuprins" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Cuprins</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">mută în bara laterală</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">ascunde</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Început</div> </a> </li> <li id="toc-Ecuațiile_lui_Maxwell_în_forma_generală" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ecuațiile_lui_Maxwell_în_forma_generală"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Ecuațiile lui Maxwell în forma generală</span> </div> </a> <ul id="toc-Ecuațiile_lui_Maxwell_în_forma_generală-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ecuațiile_lui_Maxwell_într-un_mediu_material" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ecuațiile_lui_Maxwell_într-un_mediu_material"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Ecuațiile lui Maxwell într-un mediu material</span> </div> </a> <ul id="toc-Ecuațiile_lui_Maxwell_într-un_mediu_material-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Note" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Note"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Note</span> </div> </a> <ul id="toc-Note-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliografie" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliografie"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Bibliografie</span> </div> </a> <ul id="toc-Bibliografie-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vezi_și" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Vezi_și"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Vezi și</span> </div> </a> <ul id="toc-Vezi_și-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Legături_externe" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Legături_externe"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Legături externe</span> </div> </a> <ul id="toc-Legături_externe-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Cuprins" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Comută cuprinsul" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Comută cuprinsul</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Ecuațiile lui Maxwell</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Mergeți la un articol în altă limbă. Disponibil în 77 limbi" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-77" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">77 limbi</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Maxwell_se_vergelykings" title="Maxwell se vergelykings – afrikaans" lang="af" hreflang="af" data-title="Maxwell se vergelykings" data-language-autonym="Afrikaans" data-language-local-name="afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Maxwell-Gleichungen" title="Maxwell-Gleichungen – germană (Elveția)" lang="gsw" hreflang="gsw" data-title="Maxwell-Gleichungen" data-language-autonym="Alemannisch" data-language-local-name="germană (Elveția)" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D8%A7%D8%AA_%D9%85%D8%A7%D9%83%D8%B3%D9%88%D9%8A%D9%84" title="معادلات ماكسويل – arabă" lang="ar" hreflang="ar" data-title="معادلات ماكسويل" data-language-autonym="العربية" data-language-local-name="arabă" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Ecuaciones_de_Maxwell" title="Ecuaciones de Maxwell – asturiană" lang="ast" hreflang="ast" data-title="Ecuaciones de Maxwell" data-language-autonym="Asturianu" data-language-local-name="asturiană" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Maksvell_t%C9%99nlikl%C9%99ri" title="Maksvell tənlikləri – azeră" lang="az" hreflang="az" data-title="Maksvell tənlikləri" data-language-autonym="Azərbaycanca" data-language-local-name="azeră" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D9%85%D8%A7%DA%A9%D8%B3%D9%88%D9%84_%D9%85%D9%88%D8%B9%D8%A7%D8%AF%DB%8C%D9%84%D9%87%E2%80%8C%D9%84%D8%B1%DB%8C" title="ماکسول موعادیلهلری – South Azerbaijani" lang="azb" hreflang="azb" data-title="ماکسول موعادیلهلری" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-be badge-Q17437796 badge-featuredarticle mw-list-item" title="articol de calitate"><a href="https://be.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D1%9E%D0%BD%D0%B5%D0%BD%D0%BD%D1%96_%D0%9C%D0%B0%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%B0" title="Ураўненні Максвела – belarusă" lang="be" hreflang="be" data-title="Ураўненні Максвела" data-language-autonym="Беларуская" data-language-local-name="belarusă" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A0%D0%B0%D1%9E%D0%BD%D0%B0%D0%BD%D1%8C%D0%BD%D1%96_%D0%9C%D0%B0%D0%BA%D1%81%D1%9E%D1%8D%D0%BB%D0%B0" title="Раўнаньні Максўэла – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Раўнаньні Максўэла" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9C%D0%B0%D0%BA%D1%81%D1%83%D0%B5%D0%BB" title="Уравнения на Максуел – bulgară" lang="bg" hreflang="bg" data-title="Уравнения на Максуел" data-language-autonym="Български" data-language-local-name="bulgară" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AE%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%95%E0%A7%8D%E0%A6%B8%E0%A6%93%E0%A6%AF%E0%A6%BC%E0%A7%87%E0%A6%B2%E0%A7%87%E0%A6%B0_%E0%A6%B8%E0%A6%AE%E0%A7%80%E0%A6%95%E0%A6%B0%E0%A6%A3%E0%A6%B8%E0%A6%AE%E0%A7%82%E0%A6%B9" title="ম্যাক্সওয়েলের সমীকরণসমূহ – bengaleză" lang="bn" hreflang="bn" data-title="ম্যাক্সওয়েলের সমীকরণসমূহ" data-language-autonym="বাংলা" data-language-local-name="bengaleză" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Maxwellove_jedna%C4%8Dine" title="Maxwellove jednačine – bosniacă" lang="bs" hreflang="bs" data-title="Maxwellove jednačine" data-language-autonym="Bosanski" data-language-local-name="bosniacă" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Equacions_de_Maxwell" title="Equacions de Maxwell – catalană" lang="ca" hreflang="ca" data-title="Equacions de Maxwell" data-language-autonym="Català" data-language-local-name="catalană" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Maxwellovy_rovnice" title="Maxwellovy rovnice – cehă" lang="cs" hreflang="cs" data-title="Maxwellovy rovnice" data-language-autonym="Čeština" data-language-local-name="cehă" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9Ca%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%BB_%D1%82%D0%B0%D0%BD%D0%BB%C4%83%D1%85%C4%95%D1%81%D0%B5%D0%BC" title="Мaксвелл танлăхĕсем – ciuvașă" lang="cv" hreflang="cv" data-title="Мaксвелл танлăхĕсем" data-language-autonym="Чӑвашла" data-language-local-name="ciuvașă" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Maxwells_ligninger" title="Maxwells ligninger – daneză" lang="da" hreflang="da" data-title="Maxwells ligninger" data-language-autonym="Dansk" data-language-local-name="daneză" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Maxwell-Gleichungen" title="Maxwell-Gleichungen – germană" lang="de" hreflang="de" data-title="Maxwell-Gleichungen" data-language-autonym="Deutsch" data-language-local-name="germană" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CE%BE%CE%B9%CF%83%CF%8E%CF%83%CE%B5%CE%B9%CF%82_%CE%9C%CE%AC%CE%BE%CE%B3%CE%BF%CF%85%CE%B5%CE%BB" title="Εξισώσεις Μάξγουελ – greacă" lang="el" hreflang="el" data-title="Εξισώσεις Μάξγουελ" data-language-autonym="Ελληνικά" data-language-local-name="greacă" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Maxwell%27s_equations" title="Maxwell's equations – engleză" lang="en" hreflang="en" data-title="Maxwell's equations" data-language-autonym="English" data-language-local-name="engleză" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Ekvacioj_de_Maxwell" title="Ekvacioj de Maxwell – esperanto" lang="eo" hreflang="eo" data-title="Ekvacioj de Maxwell" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es badge-Q17437798 badge-goodarticle mw-list-item" title="articol bun"><a href="https://es.wikipedia.org/wiki/Ecuaciones_de_Maxwell" title="Ecuaciones de Maxwell – spaniolă" lang="es" hreflang="es" data-title="Ecuaciones de Maxwell" data-language-autonym="Español" data-language-local-name="spaniolă" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Maxwelli_v%C3%B5rrandid" title="Maxwelli võrrandid – estonă" lang="et" hreflang="et" data-title="Maxwelli võrrandid" data-language-autonym="Eesti" data-language-local-name="estonă" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Maxwellen_ekuazioak" title="Maxwellen ekuazioak – bască" lang="eu" hreflang="eu" data-title="Maxwellen ekuazioak" data-language-autonym="Euskara" data-language-local-name="bască" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D8%A7%D8%AA_%D9%85%D8%A7%DA%A9%D8%B3%D9%88%D9%84" title="معادلات ماکسول – persană" lang="fa" hreflang="fa" data-title="معادلات ماکسول" data-language-autonym="فارسی" data-language-local-name="persană" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Maxwellin_yht%C3%A4l%C3%B6t" title="Maxwellin yhtälöt – finlandeză" lang="fi" hreflang="fi" data-title="Maxwellin yhtälöt" data-language-autonym="Suomi" data-language-local-name="finlandeză" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/%C3%89quations_de_Maxwell" title="Équations de Maxwell – franceză" lang="fr" hreflang="fr" data-title="Équations de Maxwell" data-language-autonym="Français" data-language-local-name="franceză" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Ecuaci%C3%B3ns_de_Maxwell" title="Ecuacións de Maxwell – galiciană" lang="gl" hreflang="gl" data-title="Ecuacións de Maxwell" data-language-autonym="Galego" data-language-local-name="galiciană" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A9%D7%95%D7%95%D7%90%D7%95%D7%AA_%D7%9E%D7%A7%D7%A1%D7%95%D7%95%D7%9C" title="משוואות מקסוול – ebraică" lang="he" hreflang="he" data-title="משוואות מקסוול" data-language-autonym="עברית" data-language-local-name="ebraică" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AE%E0%A5%88%E0%A4%95%E0%A5%8D%E0%A4%B8%E0%A4%B5%E0%A5%87%E0%A4%B2_%E0%A4%95%E0%A5%87_%E0%A4%B8%E0%A4%AE%E0%A5%80%E0%A4%95%E0%A4%B0%E0%A4%A3" title="मैक्सवेल के समीकरण – hindi" lang="hi" hreflang="hi" data-title="मैक्सवेल के समीकरण" data-language-autonym="हिन्दी" data-language-local-name="hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Maxwellove_jednad%C5%BEbe" title="Maxwellove jednadžbe – croată" lang="hr" hreflang="hr" data-title="Maxwellove jednadžbe" data-language-autonym="Hrvatski" data-language-local-name="croată" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Ekwasyon_Maxwell" title="Ekwasyon Maxwell – haitiană" lang="ht" hreflang="ht" data-title="Ekwasyon Maxwell" data-language-autonym="Kreyòl ayisyen" data-language-local-name="haitiană" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Maxwell-egyenletek" title="Maxwell-egyenletek – maghiară" lang="hu" hreflang="hu" data-title="Maxwell-egyenletek" data-language-autonym="Magyar" data-language-local-name="maghiară" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%84%D5%A1%D6%84%D5%BD%D5%BE%D5%A5%D5%AC%D5%AB_%D5%B0%D5%A1%D5%BE%D5%A1%D5%BD%D5%A1%D6%80%D5%B8%D6%82%D5%B4%D5%B6%D5%A5%D6%80" title="Մաքսվելի հավասարումներ – armeană" lang="hy" hreflang="hy" data-title="Մաքսվելի հավասարումներ" data-language-autonym="Հայերեն" data-language-local-name="armeană" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Equationes_de_Maxwell" title="Equationes de Maxwell – interlingua" lang="ia" hreflang="ia" data-title="Equationes de Maxwell" data-language-autonym="Interlingua" data-language-local-name="interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Persamaan_Maxwell" title="Persamaan Maxwell – indoneziană" lang="id" hreflang="id" data-title="Persamaan Maxwell" data-language-autonym="Bahasa Indonesia" data-language-local-name="indoneziană" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/J%C3%B6fnur_Maxwells" title="Jöfnur Maxwells – islandeză" lang="is" hreflang="is" data-title="Jöfnur Maxwells" data-language-autonym="Íslenska" data-language-local-name="islandeză" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Equazioni_di_Maxwell" title="Equazioni di Maxwell – italiană" lang="it" hreflang="it" data-title="Equazioni di Maxwell" data-language-autonym="Italiano" data-language-local-name="italiană" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%9E%E3%82%AF%E3%82%B9%E3%82%A6%E3%82%A7%E3%83%AB%E3%81%AE%E6%96%B9%E7%A8%8B%E5%BC%8F" title="マクスウェルの方程式 – japoneză" lang="ja" hreflang="ja" data-title="マクスウェルの方程式" data-language-autonym="日本語" data-language-local-name="japoneză" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9B%E1%83%90%E1%83%A5%E1%83%A1%E1%83%95%E1%83%94%E1%83%9A%E1%83%98%E1%83%A1_%E1%83%92%E1%83%90%E1%83%9C%E1%83%A2%E1%83%9D%E1%83%9A%E1%83%94%E1%83%91%E1%83%94%E1%83%91%E1%83%98" title="მაქსველის განტოლებები – georgiană" lang="ka" hreflang="ka" data-title="მაქსველის განტოლებები" data-language-autonym="ქართული" data-language-local-name="georgiană" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%BB_%D1%82%D0%B5%D2%A3%D0%B4%D0%B5%D1%83%D1%96" title="Максвелл теңдеуі – kazahă" lang="kk" hreflang="kk" data-title="Максвелл теңдеуі" data-language-autonym="Қазақша" data-language-local-name="kazahă" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%AE%E0%B3%8D%E0%B2%AF%E0%B2%BE%E0%B2%95%E0%B3%8D%E0%B2%B8%E0%B3%8D%E2%80%8C%E0%B2%B5%E0%B3%86%E0%B2%B2%E0%B3%8D%E2%80%8C%E0%B2%A8_%E0%B2%B8%E0%B2%AE%E0%B3%80%E0%B2%95%E0%B2%B0%E0%B2%A3%E0%B2%97%E0%B2%B3%E0%B3%81" title="ಮ್ಯಾಕ್ಸ್ವೆಲ್ನ ಸಮೀಕರಣಗಳು – kannada" lang="kn" hreflang="kn" data-title="ಮ್ಯಾಕ್ಸ್ವೆಲ್ನ ಸಮೀಕರಣಗಳು" data-language-autonym="ಕನ್ನಡ" data-language-local-name="kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A7%A5%EC%8A%A4%EC%9B%B0_%EB%B0%A9%EC%A0%95%EC%8B%9D" title="맥스웰 방정식 – coreeană" lang="ko" hreflang="ko" data-title="맥스웰 방정식" data-language-autonym="한국어" data-language-local-name="coreeană" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Aequationes_Maxwellianae" title="Aequationes Maxwellianae – latină" lang="la" hreflang="la" data-title="Aequationes Maxwellianae" data-language-autonym="Latina" data-language-local-name="latină" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/W%C3%A8tte_van_Maxwell" title="Wètte van Maxwell – limburgheză" lang="li" hreflang="li" data-title="Wètte van Maxwell" data-language-autonym="Limburgs" data-language-local-name="limburgheză" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Maksvelo_lygtys" title="Maksvelo lygtys – lituaniană" lang="lt" hreflang="lt" data-title="Maksvelo lygtys" data-language-autonym="Lietuvių" data-language-local-name="lituaniană" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Maksvela_vien%C4%81dojumi" title="Maksvela vienādojumi – letonă" lang="lv" hreflang="lv" data-title="Maksvela vienādojumi" data-language-autonym="Latviešu" data-language-local-name="letonă" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk badge-Q17437798 badge-goodarticle mw-list-item" title="articol bun"><a href="https://mk.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%BE%D0%B2%D0%B8_%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D0%BA%D0%B8" title="Максвелови равенки – macedoneană" lang="mk" hreflang="mk" data-title="Максвелови равенки" data-language-autonym="Македонски" data-language-local-name="macedoneană" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%AE%E0%A5%85%E0%A4%95%E0%A5%8D%E0%A4%B8%E0%A4%B5%E0%A5%87%E0%A4%B2%E0%A4%9A%E0%A5%80_%E0%A4%B8%E0%A4%AE%E0%A5%80%E0%A4%95%E0%A4%B0%E0%A4%A3%E0%A5%87" title="मॅक्सवेलची समीकरणे – marathi" lang="mr" hreflang="mr" data-title="मॅक्सवेलची समीकरणे" data-language-autonym="मराठी" data-language-local-name="marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Persamaan_Maxwell" title="Persamaan Maxwell – malaeză" lang="ms" hreflang="ms" data-title="Persamaan Maxwell" data-language-autonym="Bahasa Melayu" data-language-local-name="malaeză" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%AE%E0%A4%BE%E0%A4%95%E0%A5%8D%E0%A4%B8%E0%A4%B5%E0%A5%87%E0%A4%B2_%E0%A4%B8%E0%A4%AE%E0%A5%80%E0%A4%95%E0%A4%B0%E0%A4%A3" title="माक्सवेल समीकरण – nepaleză" lang="ne" hreflang="ne" data-title="माक्सवेल समीकरण" data-language-autonym="नेपाली" data-language-local-name="nepaleză" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Wetten_van_Maxwell" title="Wetten van Maxwell – neerlandeză" lang="nl" hreflang="nl" data-title="Wetten van Maxwell" data-language-autonym="Nederlands" data-language-local-name="neerlandeză" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Maxwells_likningar" title="Maxwells likningar – norvegiană nynorsk" lang="nn" hreflang="nn" data-title="Maxwells likningar" data-language-autonym="Norsk nynorsk" data-language-local-name="norvegiană nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Maxwells_likninger" title="Maxwells likninger – norvegiană bokmål" lang="nb" hreflang="nb" data-title="Maxwells likninger" data-language-autonym="Norsk bokmål" data-language-local-name="norvegiană bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%AE%E0%A9%88%E0%A8%95%E0%A8%B8%E0%A8%B5%E0%A9%88%E0%A9%B1%E0%A8%B2_%E0%A8%A6%E0%A9%80%E0%A8%86%E0%A8%82_%E0%A8%B8%E0%A8%AE%E0%A9%80%E0%A8%95%E0%A8%B0%E0%A8%A8%E0%A8%BE%E0%A8%82" title="ਮੈਕਸਵੈੱਲ ਦੀਆਂ ਸਮੀਕਰਨਾਂ – punjabi" lang="pa" hreflang="pa" data-title="ਮੈਕਸਵੈੱਲ ਦੀਆਂ ਸਮੀਕਰਨਾਂ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/R%C3%B3wnania_Maxwella" title="Równania Maxwella – poloneză" lang="pl" hreflang="pl" data-title="Równania Maxwella" data-language-autonym="Polski" data-language-local-name="poloneză" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Equa%C3%A7%C3%B5es_de_Maxwell" title="Equações de Maxwell – portugheză" lang="pt" hreflang="pt" data-title="Equações de Maxwell" data-language-autonym="Português" data-language-local-name="portugheză" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru badge-Q17437796 badge-featuredarticle mw-list-item" title="articol de calitate"><a href="https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%9C%D0%B0%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%BB%D0%B0" title="Уравнения Максвелла – rusă" lang="ru" hreflang="ru" data-title="Уравнения Максвелла" data-language-autonym="Русский" data-language-local-name="rusă" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Maxwellove_jednad%C5%BEbe" title="Maxwellove jednadžbe – sârbo-croată" lang="sh" hreflang="sh" data-title="Maxwellove jednadžbe" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="sârbo-croată" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Maxwell%27s_equations" title="Maxwell's equations – Simple English" lang="en-simple" hreflang="en-simple" data-title="Maxwell's equations" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Maxwellove_rovnice" title="Maxwellove rovnice – slovacă" lang="sk" hreflang="sk" data-title="Maxwellove rovnice" data-language-autonym="Slovenčina" data-language-local-name="slovacă" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Maxwellove_ena%C4%8Dbe" title="Maxwellove enačbe – slovenă" lang="sl" hreflang="sl" data-title="Maxwellove enačbe" data-language-autonym="Slovenščina" data-language-local-name="slovenă" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Ekuacionet_e_Maksuellit" title="Ekuacionet e Maksuellit – albaneză" lang="sq" hreflang="sq" data-title="Ekuacionet e Maksuellit" data-language-autonym="Shqip" data-language-local-name="albaneză" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%BE%D0%B2%D0%B5_%D1%98%D0%B5%D0%B4%D0%BD%D0%B0%D1%87%D0%B8%D0%BD%D0%B5" title="Максвелове једначине – sârbă" lang="sr" hreflang="sr" data-title="Максвелове једначине" data-language-autonym="Српски / srpski" data-language-local-name="sârbă" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Maxwells_ekvationer" title="Maxwells ekvationer – suedeză" lang="sv" hreflang="sv" data-title="Maxwells ekvationer" data-language-autonym="Svenska" data-language-local-name="suedeză" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AE%BE%E0%AE%95%E0%AF%8D%E0%AE%9A%E0%AF%81%E0%AE%B5%E0%AF%86%E0%AE%B2%E0%AF%8D%E0%AE%B2%E0%AE%BF%E0%AE%A9%E0%AF%8D_%E0%AE%9A%E0%AE%AE%E0%AE%A9%E0%AF%8D%E0%AE%AA%E0%AE%BE%E0%AE%9F%E0%AF%81%E0%AE%95%E0%AE%B3%E0%AF%8D" title="மாக்சுவெல்லின் சமன்பாடுகள் – tamilă" lang="ta" hreflang="ta" data-title="மாக்சுவெல்லின் சமன்பாடுகள்" data-language-autonym="தமிழ்" data-language-local-name="tamilă" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%AE%E0%B0%BE%E0%B0%95%E0%B1%8D%E0%B0%B8%E0%B1%8D%E0%B0%B5%E0%B1%86%E0%B0%B2%E0%B1%8D_%E0%B0%B8%E0%B0%AE%E0%B1%80%E0%B0%95%E0%B0%B0%E0%B0%A3%E0%B0%BE%E0%B0%B2%E0%B1%81" title="మాక్స్వెల్ సమీకరణాలు – telugu" lang="te" hreflang="te" data-title="మాక్స్వెల్ సమీకరణాలు" data-language-autonym="తెలుగు" data-language-local-name="telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AA%E0%B8%A1%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B9%81%E0%B8%A1%E0%B8%81%E0%B8%8B%E0%B9%8C%E0%B9%80%E0%B8%A7%E0%B8%A5%E0%B8%A5%E0%B9%8C" title="สมการของแมกซ์เวลล์ – thailandeză" lang="th" hreflang="th" data-title="สมการของแมกซ์เวลล์" data-language-autonym="ไทย" data-language-local-name="thailandeză" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Mga_ekwasyon_ni_Maxwell" title="Mga ekwasyon ni Maxwell – tagalog" lang="tl" hreflang="tl" data-title="Mga ekwasyon ni Maxwell" data-language-autonym="Tagalog" data-language-local-name="tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Maxwell_denklemleri" title="Maxwell denklemleri – turcă" lang="tr" hreflang="tr" data-title="Maxwell denklemleri" data-language-autonym="Türkçe" data-language-local-name="turcă" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/Makswell_tigezl%C3%A4m%C3%A4l%C3%A4re" title="Makswell tigezlämäläre – tătară" lang="tt" hreflang="tt" data-title="Makswell tigezlämäläre" data-language-autonym="Татарча / tatarça" data-language-local-name="tătară" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D1%96%D0%B2%D0%BD%D1%8F%D0%BD%D0%BD%D1%8F_%D0%9C%D0%B0%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%BB%D0%B0" title="Рівняння Максвелла – ucraineană" lang="uk" hreflang="uk" data-title="Рівняння Максвелла" data-language-autonym="Українська" data-language-local-name="ucraineană" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%DB%8C%DA%A9%D8%B3%D9%88%DB%8C%D9%84_%D9%85%D8%B3%D8%A7%D9%88%D8%A7%D8%AA" title="میکسویل مساوات – urdu" lang="ur" hreflang="ur" data-title="میکسویل مساوات" data-language-autonym="اردو" data-language-local-name="urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Maxwell_tenglamalari" title="Maxwell tenglamalari – uzbecă" lang="uz" hreflang="uz" data-title="Maxwell tenglamalari" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="uzbecă" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%C6%B0%C6%A1ng_tr%C3%ACnh_Maxwell" title="Phương trình Maxwell – vietnameză" lang="vi" hreflang="vi" data-title="Phương trình Maxwell" data-language-autonym="Tiếng Việt" data-language-local-name="vietnameză" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E9%BA%A6%E5%85%8B%E6%96%AF%E9%9F%A6%E6%96%B9%E7%A8%8B%E7%BB%84" title="麦克斯韦方程组 – chineză wu" lang="wuu" hreflang="wuu" data-title="麦克斯韦方程组" data-language-autonym="吴语" data-language-local-name="chineză wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%9E%D7%90%D7%A7%D7%A1%D7%95%D7%95%D7%A2%D7%9C%D7%A1_%D7%92%D7%9C%D7%B2%D7%9B%D7%95%D7%A0%D7%92%D7%A2%D7%9F" title="מאקסוועלס גלײכונגען – idiș" lang="yi" hreflang="yi" data-title="מאקסוועלס גלײכונגען" data-language-autonym="ייִדיש" data-language-local-name="idiș" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh badge-Q17437798 badge-goodarticle mw-list-item" title="articol bun"><a href="https://zh.wikipedia.org/wiki/%E9%A6%AC%E5%85%8B%E5%A3%AB%E5%A8%81%E6%96%B9%E7%A8%8B%E7%B5%84" title="馬克士威方程組 – chineză" lang="zh" hreflang="zh" data-title="馬克士威方程組" data-language-autonym="中文" data-language-local-name="chineză" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%BA%A5%E5%A3%AB%E7%B6%AD%E6%96%B9%E7%A8%8B%E7%B5%84" title="麥士維方程組 – cantoneză" lang="yue" hreflang="yue" data-title="麥士維方程組" data-language-autonym="粵語" data-language-local-name="cantoneză" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q51501#sitelinks-wikipedia" title="Modifică legăturile interlinguale" class="wbc-editpage">Modifică legăturile</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Spații de nume"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ecua%C8%9Biile_lui_Maxwell" title="Vedeți conținutul paginii [a]" accesskey="a"><span>Articol</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discu%C8%9Bie:Ecua%C8%9Biile_lui_Maxwell" rel="discussion" title="Discuții despre această pagină [t]" accesskey="t"><span>Discuție</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">română</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Vizualizări"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ecua%C8%9Biile_lui_Maxwell"><span>Lectură</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&veaction=edit" title="Modificați această pagină cu EditorulVizual [v]" accesskey="v"><span>Modificare</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&action=edit" title="Modificați codul sursă al acestei pagini [e]" accesskey="e"><span>Modificare sursă</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&action=history" title="Versiunile anterioare ale paginii și autorii lor. [h]" accesskey="h"><span>Istoric</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Unelte" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Unelte</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Unelte</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">mută în bara laterală</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">ascunde</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Mai multe opțiuni" > <div class="vector-menu-heading"> Acțiuni </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Ecua%C8%9Biile_lui_Maxwell"><span>Lectură</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&veaction=edit" title="Modificați această pagină cu EditorulVizual [v]" accesskey="v"><span>Modificare</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&action=edit" title="Modificați codul sursă al acestei pagini [e]" accesskey="e"><span>Modificare sursă</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&action=history"><span>Istoric</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:Ce_se_leag%C4%83_aici/Ecua%C8%9Biile_lui_Maxwell" title="Lista tuturor paginilor wiki care conduc spre această pagină [j]" accesskey="j"><span>Ce trimite aici</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:Modific%C4%83ri_corelate/Ecua%C8%9Biile_lui_Maxwell" rel="nofollow" title="Schimbări recente în legătură cu această pagină [k]" accesskey="k"><span>Schimbări corelate</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:Trimite_fi%C8%99ier" title="Încărcare fișiere [u]" accesskey="u"><span>Trimite fișier</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:Pagini_speciale" title="Lista tuturor paginilor speciale [q]" accesskey="q"><span>Pagini speciale</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&oldid=15535379" title="Legătură permanentă către această versiune a acestei pagini"><span>Legătură permanentă</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&action=info" title="Mai multe informații despre această pagină"><span>Informații despre pagină</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:Citeaz%C4%83&page=Ecua%C8%9Biile_lui_Maxwell&id=15535379&wpFormIdentifier=titleform" title="Informații cu privire la modul de citare a acestei pagini"><span>Citează acest articol</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fro.wikipedia.org%2Fwiki%2FEcua%25C8%259Biile_lui_Maxwell"><span>Obține URL scurtat</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fro.wikipedia.org%2Fwiki%2FEcua%25C8%259Biile_lui_Maxwell"><span>Descărcați codul QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Tipărire/exportare </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Special:Carte&bookcmd=book_creator&referer=Ecua%C8%9Biile+lui+Maxwell"><span>Creare carte</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Ecua%C8%9Biile_lui_Maxwell&action=show-download-screen"><span>Descărcare ca PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&printable=yes" title="Versiunea de tipărit a acestei pagini [p]" accesskey="p"><span>Versiune de tipărit</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> În alte proiecte </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Maxwell%27s_equations" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q51501" title="Legătură către elementul asociat din depozitul de date [g]" accesskey="g"><span>Element Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aspect"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aspect</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">mută în bara laterală</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">ascunde</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">De la Wikipedia, enciclopedia liberă</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ro" dir="ltr"><p><b>Ecuațiile lui Maxwell</b> constituie fundamentarea matematică a principiilor <a href="/wiki/Electrodinamic%C4%83" title="Electrodinamică">electrodinamicii</a> clasice, teoria <a href="/wiki/Scar%C4%83_macroscopic%C4%83" title="Scară macroscopică">macroscopică</a> a câmpului electromagnetic. În memoriul intitulat <i>O teorie dinamică a câmpului electromagnetic (A Dynamical Theory of the Electromagnetic Field)</i>, publicat în <a href="/wiki/1864" title="1864">1864</a>, <a href="/wiki/James_Clerk_Maxwell" title="James Clerk Maxwell">Maxwell</a> a formulat „ecuațiile generale ale câmpului electromagnetic” ca „douăzeci de ecuații” pentru „douăzeci de cantități variabile”, precizând că „aceste ecuații sunt deci suficiente pentru a determina toate cantitățile care apar în ele, dacă ne sunt cunoscute condițiile problemei.” <sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Ele au fost reformulate în <a href="/wiki/1884" title="1884">1884</a>, după moartea lui Maxwell, de <a href="/wiki/Oliver_Heaviside" title="Oliver Heaviside">Heaviside</a>, ca ecuații pentru mărimile cu semnificație fizică directă (câmpul electric și câmpul magnetic), folosind notația compactă a <a href="/wiki/Calcul_vectorial" title="Calcul vectorial">analizei vectoriale</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Ecuațiile_lui_Maxwell_în_forma_generală"><span id="Ecua.C8.9Biile_lui_Maxwell_.C3.AEn_forma_general.C4.83"></span>Ecuațiile lui Maxwell în forma generală</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&veaction=edit&section=1" title="Modifică secțiunea: Ecuațiile lui Maxwell în forma generală" class="mw-editsection-visualeditor"><span>modificare</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&action=edit&section=1" title="Edit section's source code: Ecuațiile lui Maxwell în forma generală"><span>modificare sursă</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="dezambiguizare rellink boilerplate seealso">Articol principal: <a href="/wiki/Electrodinamic%C4%83" title="Electrodinamică">Electrodinamică</a>.</div><style data-mw-deduplicate="TemplateStyles:r16505893">@media screen{html.skin-theme-clientpref-night .mw-parser-output .rellink{display:flex}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .rellink{display:flex}}</style> <p>Sub forma de <a href="/wiki/Ecua%C8%9Bie_diferen%C8%9Bial%C4%83" title="Ecuație diferențială">ecuații diferențiale</a> (în variabilele independente poziție <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/020e7eadc575495b6fddb0d255e5076d67f4c767" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.489ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} \,}"></span> și timp <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/946383a7c6d1876177c662a95b369ced2ad99cd9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.227ex; height:2.009ex;" alt="{\displaystyle t\,}"></span>), ecuațiile lui Maxwell leagă câmpul electromagnetic (vectorul <a href="/wiki/C%C3%A2mp_electric" title="Câmp electric">câmp electric</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3657d4fa1b27599f223b269a77fd589a0946c62a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.144ex; height:2.176ex;" alt="{\displaystyle \mathbf {E} \,}"></span> și vectorul <a href="/wiki/C%C3%A2mp_magnetic" title="Câmp magnetic">câmp magnetic</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/226f65ba2bf61c4a82a8e299d14b3b2e0e85c595" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.288ex; height:2.176ex;" alt="{\displaystyle \mathbf {B} \,}"></span>) de sursele sale (densitatea de <a href="/wiki/Sarcin%C4%83_electric%C4%83" title="Sarcină electrică">sarcină electrică</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1d651c28959a0f15127c097ff4488b123d9e708" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.589ex; height:2.176ex;" alt="{\displaystyle \rho \,}"></span> și densitatea de <a href="/wiki/Curent_electric" title="Curent electric">curent electric</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {J} \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">J</mi> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {J} \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0dab38b796c4d9f3cc85c7acc274bf2e5e6c76e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.768ex; height:2.176ex;" alt="{\displaystyle \mathbf {J} \,}"></span>). Sub forma de <a href="/wiki/Ecua%C8%9Bie_integral%C4%83" title="Ecuație integrală">ecuații integrale</a>, ele leagă fluxul printr-o suprafață închisă <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/933054f2b86e79da95030b113a7c7dfdff643268" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.886ex; height:2.176ex;" alt="{\displaystyle S\,}"></span> și circulația în lungul unei curbe închise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/785a192e3331793e37b1be0c5315d196da1a7049" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.153ex; height:2.176ex;" alt="{\displaystyle C\,}"></span>, pentru vectorii câmp electric și câmp magnetic, de sarcina electrică <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b23c85e3da723c6f662dfd28b9ea209f3f0df613" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.225ex; height:2.509ex;" alt="{\displaystyle Q\,}"></span> din volumul delimitat de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/933054f2b86e79da95030b113a7c7dfdff643268" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.886ex; height:2.176ex;" alt="{\displaystyle S\,}"></span>, de curentul electric <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/988f6ada07675268dc7164f44f469dbec6e00b8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.559ex; height:2.176ex;" alt="{\displaystyle I\,}"></span> printr-o suprafață <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,S_{C}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,S_{C}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f7a4eeccb765d8eb609515e3bdd4c6312c24775" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.68ex; height:2.509ex;" alt="{\displaystyle \,S_{C}\,}"></span> delimitată de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/785a192e3331793e37b1be0c5315d196da1a7049" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.153ex; height:2.176ex;" alt="{\displaystyle C\,}"></span>, precum și de variația în timp a fluxului electromagnetic prin această suprafață. </p><p><a href="/wiki/Dimensiunea_m%C4%83rimii" class="mw-redirect" title="Dimensiunea mărimii">Dimensiunile</a> mărimilor electromagnetice și coeficienții cu care ele apar în ecuațiile lui Maxwell depind de <a href="/wiki/Sistem_de_unit%C4%83%C8%9Bi" class="mw-redirect" title="Sistem de unități">sistemul de unități</a> adoptat. <a href="/wiki/Sistemul_interna%C8%9Bional_de_unit%C4%83%C8%9Bi" title="Sistemul internațional de unități">Sistemul internațional de unități</a>, utilizat cu preponderență în aplicații și pe care se bazează tabelul următor, definește două <a href="/wiki/Constant%C4%83_fizic%C4%83" title="Constantă fizică">constante fizice</a> fundamentale: permeabilitatea magnetică a vidului <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{0}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{0}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6964c55c4dd413c9ea5c1b0db961dae2b47f887c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.843ex; height:2.176ex;" alt="{\displaystyle \mu _{0}\,}"></span> și permitivitatea electrică a vidului <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon _{0}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon _{0}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcf9854c0de85b948ef1f3d7623f529da1f3b0d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.385ex; height:2.009ex;" alt="{\displaystyle \epsilon _{0}\,}"></span>. În studiile teoretice sunt utilizate adesea <a href="/wiki/Sistemul_de_unit%C4%83%C8%9Bi_Gauss" class="mw-redirect" title="Sistemul de unități Gauss">sistemul de unități Gauss</a> și <a href="/wiki/Sistemul_de_unit%C4%83%C8%9Bi_Heaviside-Lorentz" class="mw-redirect" title="Sistemul de unități Heaviside-Lorentz">sistemul de unități Heaviside-Lorentz</a>. </p> <table class="wikitable"> <caption style="padding:1em">Ecuațiile lui Maxwell (în forma generală) </caption> <tbody><tr> <th style="padding:1em">ecuații diferențiale </th> <th style="padding:1em">ecuații integrale </th></tr> <tr> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {E} ={\frac {1}{\epsilon _{0}}}\rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mfrac> </mrow> <mi>ρ<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {E} ={\frac {1}{\epsilon _{0}}}\rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c3f28af564c085c84e3f134ad9d4eafcc5829d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:12.507ex; height:5.509ex;" alt="{\displaystyle \nabla \cdot \mathbf {E} ={\frac {1}{\epsilon _{0}}}\rho }"></span> </td> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint _{S}\mathbf {E} \,d\mathbf {S} ={\frac {1}{\epsilon _{0}}}\,Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint _{S}\mathbf {E} \,d\mathbf {S} ={\frac {1}{\epsilon _{0}}}\,Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0998025ec2e98e1c6dccdd94523dee8c0b2a0086" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:15.976ex; height:5.676ex;" alt="{\displaystyle \oint _{S}\mathbf {E} \,d\mathbf {S} ={\frac {1}{\epsilon _{0}}}\,Q}"></span> </td></tr> <tr> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eb118e22c941e34f5537dbbdcaa3d7ba23603e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.495ex; height:5.509ex;" alt="{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}"></span> </td> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint _{C}\mathbf {E} \,d{\boldsymbol {\ell }}=-{\frac {d}{dt}}\int _{S_{C}}\mathbf {B} \,d\mathbf {S_{C}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ℓ<!-- ℓ --></mi> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint _{C}\mathbf {E} \,d{\boldsymbol {\ell }}=-{\frac {d}{dt}}\int _{S_{C}}\mathbf {B} \,d\mathbf {S_{C}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07fd7010ba7d3313a022aa78e42f2620472b33c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.493ex; height:6.176ex;" alt="{\displaystyle \oint _{C}\mathbf {E} \,d{\boldsymbol {\ell }}=-{\frac {d}{dt}}\int _{S_{C}}\mathbf {B} \,d\mathbf {S_{C}} }"></span> </td></tr> <tr> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {B} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {B} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16ee950683349dacdd9e9c262ff6133812747edd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.777ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot \mathbf {B} =0}"></span> </td> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint _{S}\mathbf {B} \,d\mathbf {S} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint _{S}\mathbf {B} \,d\mathbf {S} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ae1e8001a8af6d447ab3f81eeb139c86a51a04b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:12.222ex; height:5.676ex;" alt="{\displaystyle \oint _{S}\mathbf {B} \,d\mathbf {S} =0}"></span> </td></tr> <tr> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {B} =\mu _{0}\,\mathbf {J} +\mu _{0}\epsilon _{0}\,{\frac {\partial \mathbf {E} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">J</mi> </mrow> <mo>+</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {B} =\mu _{0}\,\mathbf {J} +\mu _{0}\epsilon _{0}\,{\frac {\partial \mathbf {E} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae22e2a278293add12c8bd389bb0f2b05caced31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:25.593ex; height:5.509ex;" alt="{\displaystyle \nabla \times \mathbf {B} =\mu _{0}\,\mathbf {J} +\mu _{0}\epsilon _{0}\,{\frac {\partial \mathbf {E} }{\partial t}}}"></span> </td> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint _{C}\mathbf {B} \,d{\boldsymbol {\ell }}=\mu _{0}\,I+\mu _{0}\epsilon _{0}\,{\frac {d}{dt}}\int _{S_{C}}\mathbf {E} \,d\mathbf {S_{C}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ℓ<!-- ℓ --></mi> </mrow> <mo>=</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>I</mi> <mo>+</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint _{C}\mathbf {B} \,d{\boldsymbol {\ell }}=\mu _{0}\,I+\mu _{0}\epsilon _{0}\,{\frac {d}{dt}}\int _{S_{C}}\mathbf {E} \,d\mathbf {S_{C}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/020ebd6eddda62da144879283f928039bdb46d31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:36.382ex; height:6.176ex;" alt="{\displaystyle \oint _{C}\mathbf {B} \,d{\boldsymbol {\ell }}=\mu _{0}\,I+\mu _{0}\epsilon _{0}\,{\frac {d}{dt}}\int _{S_{C}}\mathbf {E} \,d\mathbf {S_{C}} }"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Ecuațiile_lui_Maxwell_într-un_mediu_material"><span id="Ecua.C8.9Biile_lui_Maxwell_.C3.AEntr-un_mediu_material"></span>Ecuațiile lui Maxwell într-un mediu material</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&veaction=edit&section=2" title="Modifică secțiunea: Ecuațiile lui Maxwell într-un mediu material" class="mw-editsection-visualeditor"><span>modificare</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&action=edit&section=2" title="Edit section's source code: Ecuațiile lui Maxwell într-un mediu material"><span>modificare sursă</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>În tabelul precedent apar densitatea de sarcină și densitatea de curent <i>totale</i>; ele includ atât sursele <i>libere</i> (sarcini și curenți la scară macroscopică), cât și sursele <i>legate</i> (induse la scară <a href="/wiki/Scar%C4%83_microscopic%C4%83" title="Scară microscopică">microscopică</a> în mediul material de câmpul electromagnetic, prin polarizare și magnetizare). În aplicații este convenabil să apară explicit doar sursele libere; celelalte sunt absorbite în două câmpuri auxiliare, câmpul electric indus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {D} \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {D} \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46cbba5ca6fdfb78d6e28b16eb037bd2f5c95b20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.437ex; height:2.176ex;" alt="{\displaystyle \mathbf {D} \,}"></span> și câmpul magnetic indus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {H} \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {H} \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be12f1f199b1ac901e4ca865296424decc1ff9fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.479ex; height:2.176ex;" alt="{\displaystyle \mathbf {H} \,}"></span>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Prin aceasta numărul funcțiilor necunoscute se dublează; pentru a obține o soluție a ecuațiilor lui Maxwell trebuie specificată dependența câmpurilor induse de câmpurile fundamentale, prin <i>relații de material</i> de forma <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {D} =\mathbf {D} \left(\mathbf {E} \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {D} =\mathbf {D} \left(\mathbf {E} \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4b04dadfd249b40f4e9d4d25907887ffc977784" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.151ex; height:2.843ex;" alt="{\displaystyle \mathbf {D} =\mathbf {D} \left(\mathbf {E} \right)}"></span> și <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {H} =\mathbf {H} \left(\mathbf {B} \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {H} =\mathbf {H} \left(\mathbf {B} \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/196207fd724e3e76b14d4f6f513beb2035118074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.379ex; height:2.843ex;" alt="{\displaystyle \mathbf {H} =\mathbf {H} \left(\mathbf {B} \right)}"></span>. În tabelul care urmează, sursele <i>libere</i> (în <a href="/wiki/Limba_englez%C4%83" title="Limba engleză">engleză</a> <i>free</i>) sunt distinse prin indicele <i>f</i>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{f},\,\mathbf {J} _{f},\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{f},\,\mathbf {J} _{f},\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e41bbd5ce41f1ea36a84e06bf91da9af4fab2ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.31ex; height:2.843ex;" alt="{\displaystyle \rho _{f},\,\mathbf {J} _{f},\,}"></span> respectiv <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{f},\,I_{f}.\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{f},\,I_{f}.\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1aa1ad65e76e495e2b46246808c71d9cd103985" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.589ex; height:2.843ex;" alt="{\displaystyle Q_{f},\,I_{f}.\,}"></span> </p> <table class="wikitable"> <caption style="padding:1em">Ecuațiile lui Maxwell (într-un mediu material) </caption> <tbody><tr> <th style="padding:1em">ecuații diferențiale </th> <th style="padding:1em">ecuații integrale </th></tr> <tr> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {D} =\rho _{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>=</mo> <msub> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {D} =\rho _{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/556841060462dafa6265eb2815d7cb4b52891c6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.101ex; height:2.843ex;" alt="{\displaystyle \nabla \cdot \mathbf {D} =\rho _{f}}"></span> </td> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint _{S}\mathbf {D} \,d\mathbf {S} =Q_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint _{S}\mathbf {D} \,d\mathbf {S} =Q_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d977608ce6c2a4656593087fbf180909e8f996a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:14.183ex; height:5.676ex;" alt="{\displaystyle \oint _{S}\mathbf {D} \,d\mathbf {S} =Q_{f}}"></span> </td></tr> <tr> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eb118e22c941e34f5537dbbdcaa3d7ba23603e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.495ex; height:5.509ex;" alt="{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}"></span> </td> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint _{C}\mathbf {E} \,d{\boldsymbol {\ell }}=-{\frac {d}{dt}}\int _{S_{C}}\mathbf {B} \,d\mathbf {S_{C}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ℓ<!-- ℓ --></mi> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint _{C}\mathbf {E} \,d{\boldsymbol {\ell }}=-{\frac {d}{dt}}\int _{S_{C}}\mathbf {B} \,d\mathbf {S_{C}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07fd7010ba7d3313a022aa78e42f2620472b33c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.493ex; height:6.176ex;" alt="{\displaystyle \oint _{C}\mathbf {E} \,d{\boldsymbol {\ell }}=-{\frac {d}{dt}}\int _{S_{C}}\mathbf {B} \,d\mathbf {S_{C}} }"></span> </td></tr> <tr> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \mathbf {B} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \mathbf {B} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16ee950683349dacdd9e9c262ff6133812747edd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.777ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot \mathbf {B} =0}"></span> </td> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint _{S}\mathbf {B} \,d\mathbf {S} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint _{S}\mathbf {B} \,d\mathbf {S} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ae1e8001a8af6d447ab3f81eeb139c86a51a04b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:12.222ex; height:5.676ex;" alt="{\displaystyle \oint _{S}\mathbf {B} \,d\mathbf {S} =0}"></span> </td></tr> <tr> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times \mathbf {H} =\mathbf {J} _{f}+{\frac {\partial \mathbf {D} }{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times \mathbf {H} =\mathbf {J} _{f}+{\frac {\partial \mathbf {D} }{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3259c98becc34ab9b054509d03271e60dbace602" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.528ex; height:5.509ex;" alt="{\displaystyle \nabla \times \mathbf {H} =\mathbf {J} _{f}+{\frac {\partial \mathbf {D} }{\partial t}}}"></span> </td> <td style="padding:1em"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint _{C}\mathbf {H} \,d{\boldsymbol {\ell }}=I_{f}+{\frac {d}{dt}}\int _{S_{C}}\mathbf {D} \,d\mathbf {S_{C}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ℓ<!-- ℓ --></mi> </mrow> <mo>=</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint _{C}\mathbf {H} \,d{\boldsymbol {\ell }}=I_{f}+{\frac {d}{dt}}\int _{S_{C}}\mathbf {D} \,d\mathbf {S_{C}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58ff467493393f5a7dc516aedca5c67e46e44d04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:30.168ex; height:6.176ex;" alt="{\displaystyle \oint _{C}\mathbf {H} \,d{\boldsymbol {\ell }}=I_{f}+{\frac {d}{dt}}\int _{S_{C}}\mathbf {D} \,d\mathbf {S_{C}} }"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Note">Note</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&veaction=edit&section=3" title="Modifică secțiunea: Note" class="mw-editsection-visualeditor"><span>modificare</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&action=edit&section=3" title="Edit section's source code: Note"><span>modificare sursă</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><b><a href="#cite_ref-1">^</a></b> <span class="reference-text"><i>The Scientific Papers of James Clerk Maxwell</i>, pp. 554–562.</span> </li> <li id="cite_note-2"><b><a href="#cite_ref-2">^</a></b> <span class="reference-text">O parte din literatura de specialitate (de exemplu Jackson, p. 271) continuă să folosească denumirile tradiționale: <i>deplasare electrică</i> pentru <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \mathbf {D} \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \mathbf {D} \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c6412174f246b3bc32906635e12af6641bcfab7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.836ex; height:1.676ex;" alt="{\displaystyle \scriptstyle \mathbf {D} \,}"></span> și <i>câmp magnetic</i> pentru <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \mathbf {H} \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \mathbf {H} \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a629b66bd6206cf6a3fe789f3ff70b07db79247" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.866ex; height:1.676ex;" alt="{\displaystyle \scriptstyle \mathbf {H} \,}"></span>, iar câmpul magnetic <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \mathbf {B} \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \mathbf {B} \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df9007f542cf7e4b0f609f6e24089e1ae9e80c85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.731ex; height:1.676ex;" alt="{\displaystyle \scriptstyle \mathbf {B} \,}"></span> este redenumit, în mod impropriu, <i>inducție magnetică</i>. Această terminologie creează confuzie (Griffiths, p. 271).</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliografie">Bibliografie</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&veaction=edit&section=4" title="Modifică secțiunea: Bibliografie" class="mw-editsection-visualeditor"><span>modificare</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&action=edit&section=4" title="Edit section's source code: Bibliografie"><span>modificare sursă</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Richard_Feynman" title="Richard Feynman">Feynman, Richard P.</a>; Leighton, Robert B.; Sands, Matthew: <i>The Feynman Lectures on Physics</i>, New Millenium Edition, Vol. II, Basic Books, New York, 2010. <a href="/wiki/Special:Referin%C8%9Be_%C3%AEn_c%C4%83r%C8%9Bi/9780465024148" class="internal mw-magiclink-isbn">ISBN 978-0-465-02414-8</a></li> <li>Griffiths, David J.: <i>Introduction to Electrodynamics</i>, Pearson Cummings, San Francisco, 2008. <a href="/wiki/Special:Referin%C8%9Be_%C3%AEn_c%C4%83r%C8%9Bi/0139199608" class="internal mw-magiclink-isbn">ISBN 0-13-919960-8</a></li> <li>Jackson, John David: <i>Classical Electrodynamics</i>, ed. 3-a, Wiley, New York, 1998. <a href="/wiki/Special:Referin%C8%9Be_%C3%AEn_c%C4%83r%C8%9Bi/047130932X" class="internal mw-magiclink-isbn">ISBN 0-471-30932-X</a></li> <li><i>The Scientific Papers of James Clerk Maxwell</i>, ed. W.D. Niven, Vol. I, Cambridge University Press, 1890, p. 500. <a rel="nofollow" class="external text" href="http://archive.org/details/scientificpapers01maxwuoft">e-book</a> și <a rel="nofollow" class="external text" href="http://openlibrary.org/books/OL7027396M/The_scientific_papers">e-book</a></li> <li><a href="/wiki/Valeriu_Novacu" title="Valeriu Novacu">Novacu, Valeriu</a>: <i>Electrodinamica</i>, Editura didactică si pedagogică, București, 1966.</li> <li>Stratton, Julius Adams: <i>Electromagnetic Theory</i>, McGraw-Hill, New York, 1941.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Vezi_și"><span id="Vezi_.C8.99i"></span>Vezi și</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&veaction=edit&section=5" title="Modifică secțiunea: Vezi și" class="mw-editsection-visualeditor"><span>modificare</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&action=edit&section=5" title="Edit section's source code: Vezi și"><span>modificare sursă</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Electrodinamic%C4%83" title="Electrodinamică">Electrodinamică</a></li> <li><a href="/wiki/Electromagnetism" title="Electromagnetism">Electromagnetism</a></li> <li><a href="/wiki/Integral%C4%83_multipl%C4%83" title="Integrală multiplă">Integrală multiplă</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Legături_externe"><span id="Leg.C4.83turi_externe"></span>Legături externe</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&veaction=edit&section=6" title="Modifică secțiunea: Legături externe" class="mw-editsection-visualeditor"><span>modificare</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&action=edit&section=6" title="Edit section's source code: Legături externe"><span>modificare sursă</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.maxwells-equations.com/">Maxwell's equations</a></li> <li><a rel="nofollow" class="external text" href="http://www.cse.secs.oakland.edu/haskell/SpecialRelativity.htm">Special Relativity and Maxwell's Equations</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080101005238/http://www.cse.secs.oakland.edu/haskell/SpecialRelativity.htm">Arhivat</a> în <time datetime="2008-01-01">1 ianuarie 2008</time>, la <a href="/wiki/Wayback_Machine" class="mw-redirect" title="Wayback Machine">Wayback Machine</a>.</li></ul> <p><br /> </p> <table class="navbox" cellspacing="0" style=""> <tbody><tr> <td style="padding:2px;"> <table cellspacing="0" class="nowraplinks collapsible" style="width:100%;background:transparent;color:inherit;;"> <tbody><tr> <th style=";" colspan="2" class="navbox-title"><div style="float:left; width:6em;text-align:left;"><div class="noprint plainlinks" style="padding:0; font-size:xx-small; color:var(--color-base, #000); white-space:nowrap; ;"><span style=";;border:none;"><a href="/wiki/Format:Electromagnetism" title="Format:Electromagnetism"><span title="Vizualizare format" style=";;border:none;;">v</span></a> <span style="font-size:80%;">•</span> <a href="/w/index.php?title=Discu%C8%9Bie_Format:Electromagnetism&action=edit&redlink=1" class="new" title="Discuție Format:Electromagnetism — pagină inexistentă"><span title="Discuție format" style=";;border:none;;">d</span></a> <span style="font-size:80%;">•</span> <a class="external text" href="https://ro.wikipedia.org/w/index.php?title=Format:Electromagnetism&action=edit"><span title="Acest format se poate modifica. Folosiți butonul de previzualizare înainte de a salva." style=";;border:none;;">m</span></a></span></div></div><span class="" style="font-size: 110%;"><a href="/wiki/Electromagnetism" title="Electromagnetism">Electromagnetism</a></span> </th></tr> <tr style="height:2px;"> <td> </td></tr> <tr> <td class="navbox-group" style=";;"><a href="/wiki/Electrostatic%C4%83" title="Electrostatică">Electrostatică</a> </td> <td style="text-align:left;border-left:2px solid #fdfdfd;width:100%;padding:0px;;;" class="navbox-list navbox-odd"> <div style="padding:0em 0.25em"> <div> <p><span style="white-space:nowrap;"><a href="/wiki/C%C3%A2mp_electric" title="Câmp electric">Câmp electric</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Electret" title="Electret">Electret</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Flux_electric" title="Flux electric">Flux electric</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Generator_electrostatic" title="Generator electrostatic">Generator electrostatic</a>  <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Izolator_(electricitate)" class="mw-redirect" title="Izolator (electricitate)">Izolator (electricitate)</a>  <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Legea_lui_Coulomb" title="Legea lui Coulomb">Legea lui Coulomb</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Moment_electric_dipolar" title="Moment electric dipolar">Moment electric dipolar</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Poten%C8%9Bial_electric" title="Potențial electric">Potențial electric</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Sarcin%C4%83_electric%C4%83" title="Sarcină electrică">Sarcină electrică</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Teorema_lui_Earnshaw" title="Teorema lui Earnshaw">Teorema lui Earnshaw</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Triboelectricitate" title="Triboelectricitate">Triboelectricitate</a></span> </p> </div></div> </td></tr> <tr style="height:2px"> <td> </td></tr> <tr> <td class="navbox-group" style=";;"><a href="/wiki/Magnetostatic%C4%83" title="Magnetostatică">Magnetostatică</a> </td> <td style="text-align:left;border-left:2px solid #fdfdfd;width:100%;padding:0px;;;" class="navbox-list navbox-even"><div style="padding:0em 0.25em"> <div> <p><span style="white-space:nowrap;"><a href="/wiki/C%C3%A2mp_magnetic" title="Câmp magnetic">Câmp magnetic</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/C%C3%A2mp_electromagnetic" title="Câmp electromagnetic">Câmp electromagnetic</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Curent_electric" title="Curent electric">Curent electric</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Flux_magnetic" title="Flux magnetic">Flux magnetic</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Legea_Biot-Savart" title="Legea Biot-Savart">Legea Biot-Savart</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/w/index.php?title=Legea_lui_Amp%C3%A8re_(circuit)&action=edit&redlink=1" class="new" title="Legea lui Ampère (circuit) — pagină inexistentă">Legea lui Ampère (circuit)</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/w/index.php?title=Legea_lui_Amp%C3%A8re_(for%C8%9B%C4%83)&action=edit&redlink=1" class="new" title="Legea lui Ampère (forță) — pagină inexistentă">Legea lui Ampère (forță)</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Magnet" title="Magnet">Magnet</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Magnetism" title="Magnetism">Magnetism</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Moment_magnetic" title="Moment magnetic">Moment magnetic</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Intensitate_a_c%C3%A2mpului_magnetic" title="Intensitate a câmpului magnetic">Intensitate a câmpului magnetic</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Permeabilitate_magnetic%C4%83" title="Permeabilitate magnetică">Permeabilitate magnetică</a></span> </p> </div></div> </td></tr> <tr style="height:2px"> <td> </td></tr> <tr> <td class="navbox-group" style=";;"><a href="/wiki/Electrodinamic%C4%83" title="Electrodinamică">Electrodinamică</a> </td> <td style="text-align:left;border-left:2px solid #fdfdfd;width:100%;padding:0px;;;" class="navbox-list navbox-odd"><div style="padding:0em 0.25em"> <div> <p><span style="white-space:nowrap;"><a class="mw-selflink selflink">Ecuațiile lui Maxwell</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Electron" title="Electron">Electron</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/For%C8%9B%C4%83_Lorentz" title="Forță Lorentz">Forță Lorentz</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Induc%C8%9Bie_electromagnetic%C4%83" title="Inducție electromagnetică">Inducție electromagnetică</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Legea_induc%C8%9Biei_electromagnetice" title="Legea inducției electromagnetice">Legea inducției electromagnetice</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Optic%C4%83_ondulatorie" title="Optică ondulatorie">Optică ondulatorie</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Sistemul_de_unit%C4%83%C8%9Bi_CGS_%C3%AEn_electromagnetism" title="Sistemul de unități CGS în electromagnetism">Sistemul de unități CGS în electromagnetism</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/w/index.php?title=Teorema_lui_Poynting&action=edit&redlink=1" class="new" title="Teorema lui Poynting — pagină inexistentă">Teorema lui Poynting</a></span> </p> </div></div> </td></tr> <tr style="height:2px"> <td> </td></tr> <tr> <td class="navbox-group" style=";;">Circuite electrice<br /><a href="/wiki/Electrotehnic%C4%83" title="Electrotehnică">Electrotehnică</a> </td> <td style="text-align:left;border-left:2px solid #fdfdfd;width:100%;padding:0px;;;" class="navbox-list navbox-even"><div style="padding:0em 0.25em"> <div> <p><span style="white-space:nowrap;"><a href="/wiki/Bobin%C4%83" title="Bobină">Bobină</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Electromagnet" title="Electromagnet">Electromagnet</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Transformator" title="Transformator">Transformator</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Condensator_electric" title="Condensator electric">Condensator electric</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Bobin%C4%83_Helmholtz" title="Bobină Helmholtz">Bobină Helmholtz</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Inductan%C8%9B%C4%83" title="Inductanță">Inductanță</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Legea_lui_Lenz" title="Legea lui Lenz">Legea lui Lenz</a></span> </p> </div></div> </td></tr> <tr style="height:2px"> <td> </td></tr> <tr> <td class="navbox-group" style=";;">Unde electromagnetice<br /><a href="/wiki/Radiotehnic%C4%83" title="Radiotehnică">Radiotehnică</a> </td> <td style="text-align:left;border-left:2px solid #fdfdfd;width:100%;padding:0px;;;" class="navbox-list navbox-odd"><div style="padding:0em 0.25em"> <div> <p><span style="white-space:nowrap;"><a href="/wiki/Dispersia_undelor_electromagnetice" title="Dispersia undelor electromagnetice">Dispersia undelor electromagnetice</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Radia%C8%9Bie" title="Radiație">Radiație</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Radia%C8%9Bie_electromagnetic%C4%83" title="Radiație electromagnetică">Radiație electromagnetică</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Radia%C8%9Bie_gamma" class="mw-redirect" title="Radiație gamma">Radiație gamma</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Radiodifuziune" title="Radiodifuziune">Radiodifuziune</a> <span style="font-weight:bold;">·</span> </span> <span style="white-space:nowrap;"><a href="/wiki/Radioloca%C8%9Bie" title="Radiolocație">Radiolocație</a> <span style="font-weight:bold;">·</span> </span> </p> </div></div> </td></tr></tbody></table> </td></tr></tbody></table><style data-mw-deduplicate="TemplateStyles:r16513826">.mw-parser-output .navbox{margin:0 auto 0}@media screen{html.skin-theme-clientpref-night .mw-parser-output .navbox-abovebelow[style],html.skin-theme-clientpref-night .mw-parser-output .navbox-group[style],html.skin-theme-clientpref-night .mw-parser-output .navbox-image[style],html.skin-theme-clientpref-night .mw-parser-output .navbox-list[style]{background:inherit!important;color:inherit!important;border-top:2px solid #fdfdfd!important}html.skin-theme-clientpref-night .mw-parser-output .navbox[style],html.skin-theme-clientpref-night .mw-parser-output .navbox-subgroup[style],html.skin-theme-clientpref-night .mw-parser-output .navbox-group[style],html.skin-theme-clientpref-night .mw-parser-output .navbox-even[style],html.skin-theme-clientpref-night .mw-parser-output .navbox-abovebelow[style],html.skin-theme-clientpref-night .mw-parser-output .navbox-title[style]{background:inherit!important;color:inherit!important;border-color:#54595d!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbox-abovebelow[style],html.skin-theme-clientpref-os .mw-parser-output .navbox-group[style],html.skin-theme-clientpref-os .mw-parser-output .navbox-image[style],html.skin-theme-clientpref-os .mw-parser-output .navbox-list[style]{background:inherit!important;color:inherit!important;border-top:2px solid #fdfdfd!important}html.skin-theme-clientpref-os .mw-parser-output .navbox[style],html.skin-theme-clientpref-os .mw-parser-output .navbox-subgroup[style],html.skin-theme-clientpref-os .mw-parser-output .navbox-group[style],html.skin-theme-clientpref-os .mw-parser-output .navbox-even[style],html.skin-theme-clientpref-os .mw-parser-output .navbox-abovebelow[style],html.skin-theme-clientpref-os .mw-parser-output .navbox-title[style]{background:inherit!important;color:inherit!important;border-color:#54595d!important}}</style> <div role="navigation" class="navbox" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Ajutor:Control_de_autoritate" title="Ajutor:Control de autoritate">Control de autoritate</a></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="nowrap"><a href="/wiki/Biblioth%C3%A8que_nationale_de_France" title="Bibliothèque nationale de France">BNF</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb12043257h">cb12043257h</a> <a rel="nofollow" class="external text" href="http://data.bnf.fr/ark:/12148/cb12043257h">(data)</a></span></span></li> <li><span class="nowrap"><a href="/wiki/Integrated_Authority_File" class="mw-redirect" title="Integrated Authority File">GND</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4221398-8">4221398-8</a></span></span></li> <li><span class="nowrap"><a href="/wiki/Library_of_Congress_Control_Number" class="mw-redirect" title="Library of Congress Control Number">LCCN</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/subjects/sh85082387">sh85082387</a></span></span></li> <li><span class="nowrap"><a href="/wiki/National_Library_of_the_Czech_Republic" class="mw-redirect" title="National Library of the Czech Republic">NKC</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph218895&CON_LNG=ENG">ph218895</a></span></span></li></ul> </div></td><td class="navbox-image" rowspan="1" style="width:1px;padding:0px 0px 0px 2px"><div><span class="skin-invert" typeof="mw:File/Frameless"><a href="/wiki/Ajutor:Control_de_autoritate" title="Ajutor:Control de autoritate"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/OOjs_UI_icon_helpNotice-ltr.svg/20px-OOjs_UI_icon_helpNotice-ltr.svg.png" decoding="async" width="20" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/OOjs_UI_icon_helpNotice-ltr.svg/30px-OOjs_UI_icon_helpNotice-ltr.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fd/OOjs_UI_icon_helpNotice-ltr.svg/40px-OOjs_UI_icon_helpNotice-ltr.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐85db4f49b5‐5q9qc Cached time: 20241114081913 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.173 seconds Real time usage: 0.283 seconds Preprocessor visited node count: 1141/1000000 Post‐expand include size: 48556/2097152 bytes Template argument size: 27124/2097152 bytes Highest expansion depth: 11/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 4796/5000000 bytes Lua time usage: 0.042/10.000 seconds Lua memory usage: 1281908/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 160.118 1 -total 40.18% 64.333 1 Format:Electromagnetism 38.06% 60.949 1 Format:Casetă_de_navigare_simplă 29.06% 46.533 1 Format:Control_de_autoritate 18.66% 29.883 1 Format:Articol_principal 9.59% 15.361 1 Format:Webarchive 5.57% 8.920 44 Format:Nowrap 3.10% 4.966 1 Format:Tnavbar 2.32% 3.708 2 Format:!) 1.41% 2.260 40 Format:· --> <!-- Saved in parser cache with key rowiki:pcache:idhash:281156-0!canonical and timestamp 20241114081913 and revision id 15535379. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Adus de la <a dir="ltr" href="https://ro.wikipedia.org/w/index.php?title=Ecuațiile_lui_Maxwell&oldid=15535379">https://ro.wikipedia.org/w/index.php?title=Ecuațiile_lui_Maxwell&oldid=15535379</a></div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Special:Categorii" title="Special:Categorii">Categorii</a>: <ul><li><a href="/wiki/Categorie:Electrodinamic%C4%83" title="Categorie:Electrodinamică">Electrodinamică</a></li><li><a href="/wiki/Categorie:Ecua%C8%9Bii_ale_fizicii" title="Categorie:Ecuații ale fizicii">Ecuații ale fizicii</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categorii ascunse: <ul><li><a href="/wiki/Categorie:Webarchive_template_wayback_links" title="Categorie:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Categorie:Articole_Wikipedia_cu_identificatori_BNF" title="Categorie:Articole Wikipedia cu identificatori BNF">Articole Wikipedia cu identificatori BNF</a></li><li><a href="/wiki/Categorie:Articole_Wikipedia_cu_identificatori_GND" title="Categorie:Articole Wikipedia cu identificatori GND">Articole Wikipedia cu identificatori GND</a></li><li><a href="/wiki/Categorie:Articole_Wikipedia_cu_identificatori_LCCN" title="Categorie:Articole Wikipedia cu identificatori LCCN">Articole Wikipedia cu identificatori LCCN</a></li><li><a href="/wiki/Categorie:Articole_Wikipedia_cu_identificatori_NKC" title="Categorie:Articole Wikipedia cu identificatori NKC">Articole Wikipedia cu identificatori NKC</a></li><li><a href="/wiki/Categorie:Articole_Wikipedia_cu_control_de_autoritate" title="Categorie:Articole Wikipedia cu control de autoritate">Articole Wikipedia cu control de autoritate</a></li><li><a href="/wiki/Categorie:Pagini_ce_folosesc_leg%C4%83turi_automate_c%C4%83tre_ISBN" title="Categorie:Pagini ce folosesc legături automate către ISBN">Pagini ce folosesc legături automate către ISBN</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Ultima editare a paginii a fost efectuată la 18 martie 2023, ora 13:08.</li> <li id="footer-info-copyright">Acest text este disponibil sub licența <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ro">Creative Commons cu atribuire și distribuire în condiții identice</a>; pot exista și clauze suplimentare. Vedeți detalii la <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Termenii de utilizare</a>.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Politica de confidențialitate</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Despre">Despre Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Termeni">Termeni</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Cod de conduită</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Dezvoltatori</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ro.wikipedia.org">Statistici</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Declarație cookie</a></li> <li id="footer-places-mobileview"><a href="//ro.m.wikipedia.org/w/index.php?title=Ecua%C8%9Biile_lui_Maxwell&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versiune mobilă</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-7fc47fc68d-9wn84","wgBackendResponseTime":132,"wgPageParseReport":{"limitreport":{"cputime":"0.173","walltime":"0.283","ppvisitednodes":{"value":1141,"limit":1000000},"postexpandincludesize":{"value":48556,"limit":2097152},"templateargumentsize":{"value":27124,"limit":2097152},"expansiondepth":{"value":11,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":4796,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 160.118 1 -total"," 40.18% 64.333 1 Format:Electromagnetism"," 38.06% 60.949 1 Format:Casetă_de_navigare_simplă"," 29.06% 46.533 1 Format:Control_de_autoritate"," 18.66% 29.883 1 Format:Articol_principal"," 9.59% 15.361 1 Format:Webarchive"," 5.57% 8.920 44 Format:Nowrap"," 3.10% 4.966 1 Format:Tnavbar"," 2.32% 3.708 2 Format:!)"," 1.41% 2.260 40 Format:·"]},"scribunto":{"limitreport-timeusage":{"value":"0.042","limit":"10.000"},"limitreport-memusage":{"value":1281908,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-85db4f49b5-5q9qc","timestamp":"20241114081913","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Ecua\u021biile lui Maxwell","url":"https:\/\/ro.wikipedia.org\/wiki\/Ecua%C8%9Biile_lui_Maxwell","sameAs":"http:\/\/www.wikidata.org\/entity\/Q51501","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q51501","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2007-11-17T00:35:12Z","dateModified":"2023-03-18T11:08:38Z"}</script> </body> </html>