CINXE.COM

Stress-induced Ceramide-activated Protein Phosphatase Can Compensate for Loss of Amphiphysin-like Activity In Saccharomyces cerevisiae and Functions to Reinitiate Endocytosis - PMC

<!DOCTYPE html> <html lang="en" > <head > <meta charset="UTF-8" /> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta name="HandheldFriendly" content="True" /> <meta name="MobileOptimized" content="320" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <link rel="stylesheet" href="/static/assets/style-70b9163a.css" /> <script type="module" crossorigin="" src="/static/assets/base_style-ec2bc71e.js"></script> <link rel="stylesheet" href="/static/assets/style-ef962842.css" /> <link rel="stylesheet" href="/static/assets/style-3ade8b5c.css" /> <script type="module" crossorigin="" src="/static/assets/article_style-d757a0dd.js"></script> <style> @media screen and (min-width: 64em) { div.pmc-wm { background: repeat-y; background-image: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' width='20' height='350' xmlns:xlink='http://www.w3.org/1999/xlink'%3E%3Cdefs%3E%3Cfilter x='-.02' y='0' width='1.05' height='1' id='c'%3E%3CfeFlood flood-color='%23FFF'/%3E%3CfeComposite in='SourceGraphic'/%3E%3C/filter%3E%3Ctext id='b' font-family='Helvetica' font-size='11pt' style='opacity:1;fill:%23005ea2;stroke:none;text-anchor:middle' x='175' y='14'%3E%3C/text%3E%3Cpath id='a' style='fill:%23005ea2' d='M0 8h350v3H0z'/%3E%3C/defs%3E%3Cuse xlink:href='%23a' transform='rotate(90 10 10)'/%3E%3Cuse xlink:href='%23b' transform='rotate(90 10 10)' filter='url(%23c)'/%3E%3C/svg%3E"); padding-left: 3rem; } } </style> <link rel="apple-touch-icon" sizes="180x180" href="/static/img/favicons/apple-touch-icon.png" /> <link rel="icon" type="image/png" sizes="48x48" href="/static/img/favicons/favicon-48x48.png" /> <link rel="icon" type="image/png" sizes="32x32" href="/static/img/favicons/favicon-32x32.png" /> <link rel="icon" type="image/png" sizes="16x16" href="/static/img/favicons/favicon-16x16.png" /> <link rel="manifest" href="/static/img/favicons/site.webmanifest" /> <link rel="mask-icon" href="/static/img/favicons/safari-pinned-tab.svg" color="#0071bc" /> <meta name="msapplication-config" content="/static/img/favicons/browserconfig.xml" /> <meta name="theme-color" content="#ffffff" /> <title> Stress-induced Ceramide-activated Protein Phosphatase Can Compensate for Loss of Amphiphysin-like Activity In Saccharomyces cerevisiae and Functions to Reinitiate Endocytosis - PMC </title> <!-- Logging params: Pinger defaults --> <meta name="ncbi_app" content="cloudpmc-viewer" /> <meta name="ncbi_db" content="pmc" /> <meta name="ncbi_phid" content="6E4BD097746C192305D097002ADA5097.m_1" /> <!-- Logging params: Pinger custom --> <meta name="ncbi_pdid" content="article" /> <link rel="preconnect" href="https://www.google-analytics.com" /> <link rel="dns-prefetch" href="https://cdn.ncbi.nlm.nih.gov" /> <link rel="preconnect" href="https://code.jquery.com" /> <meta name="ncbi_domain" content="jbc"> <meta name="ncbi_type" content="fulltext"> <meta name="ncbi_pcid" content="journal"> <link rel="canonical" href="https://pmc.ncbi.nlm.nih.gov/articles/PMC2673262/"> <meta name="robots" content="INDEX,NOFOLLOW,NOARCHIVE"> <meta name="citation_journal_title" content="The Journal of Biological Chemistry"> <meta name="citation_title" content="Stress-induced Ceramide-activated Protein Phosphatase Can Compensate for Loss of Amphiphysin-like Activity In Saccharomyces cerevisiae and Functions to Reinitiate Endocytosis"> <meta name="citation_author" content="Paula C McCourt"> <meta name="citation_author_institution" content="Pharmacogenomics Division, Medical Diagnostics Laboratories, LLC, Hamilton, New Jersey 08690 and the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102"> <meta name="citation_author" content="Jeanelle M Morgan"> <meta name="citation_author_institution" content="Pharmacogenomics Division, Medical Diagnostics Laboratories, LLC, Hamilton, New Jersey 08690 and the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102"> <meta name="citation_author" content="Joseph T Nickels, Jr"> <meta name="citation_author_institution" content="Pharmacogenomics Division, Medical Diagnostics Laboratories, LLC, Hamilton, New Jersey 08690 and the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102"> <meta name="citation_publication_date" content="2009 May 1"> <meta name="citation_volume" content="284"> <meta name="citation_issue" content="18"> <meta name="citation_firstpage" content="11930"> <meta name="citation_doi" content="10.1074/jbc.M900857200"> <meta name="citation_pmid" content="19254955"> <meta name="citation_abstract_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC2673262/"> <meta name="citation_fulltext_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC2673262/"> <meta name="citation_pdf_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC2673262/pdf/11930.pdf"> <meta name="description" content="Saccharomyces cerevisiae cells lacking the amphiphysin-like orthologs, Rvs161 or Rvs167, are unable to thrive under many stress conditions. Here we show cells lacking Rvs161 require Cdc55, the B subunit of the yeast ceramide-activated protein ..."> <meta name="og:title" content="Stress-induced Ceramide-activated Protein Phosphatase Can Compensate for Loss of Amphiphysin-like Activity In Saccharomyces cerevisiae and Functions to Reinitiate Endocytosis"> <meta name="og:type" content="article"> <meta name="og:site_name" content="PubMed Central (PMC)"> <meta name="og:description" content="Saccharomyces cerevisiae cells lacking the amphiphysin-like orthologs, Rvs161 or Rvs167, are unable to thrive under many stress conditions. Here we show cells lacking Rvs161 require Cdc55, the B subunit of the yeast ceramide-activated protein ..."> <meta name="og:url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC2673262/"> <meta name="og:image" content="https://cdn.ncbi.nlm.nih.gov/pmc/cms/images/pmc-card-share.jpg?_=0"> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@ncbi"> </head> <body > <a class="usa-skipnav " href="#main-content"> Skip to main content </a> <section class="usa-banner " aria-label="Official website of the United States government" > <div class="usa-accordion"> <header class="usa-banner__header"> <div class="usa-banner__inner"> <div class="grid-col-auto"> <img aria-hidden="true" class="usa-banner__header-flag" src="/static/img/us_flag.svg" alt="" /> </div> <div class="grid-col-fill tablet:grid-col-auto" aria-hidden="true"> <p class="usa-banner__header-text"> An official website of the United States government </p> <span class="usa-banner__header-action">Here's how you know</span> </div> <button type="button" class="usa-accordion__button usa-banner__button " aria-expanded="false" aria-controls="gov-banner-default" data-testid="storybook-django-banner" > <span class="usa-banner__button-text">Here's how you know</span> </button> </div> </header> <div class="usa-banner__content usa-accordion__content" id="gov-banner-default" hidden> <div class="grid-row grid-gap-lg"> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-dot-gov.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Official websites use .gov</strong> <br /> A <strong>.gov</strong> website belongs to an official government organization in the United States. </p> </div> </div> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-https.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Secure .gov websites use HTTPS</strong> <br /> A <strong>lock</strong> ( <span class="icon-lock"> <svg xmlns="http://www.w3.org/2000/svg" width="52" height="64" viewBox="0 0 52 64" class="usa-banner__lock-image" role="graphics-symbol" aria-labelledby="banner-lock-description" focusable="false"> <title id="banner-lock-title">Lock</title> <desc id="banner-lock-description"> Locked padlock icon </desc> <path fill="#000000" fill-rule="evenodd" d="M26 0c10.493 0 19 8.507 19 19v9h3a4 4 0 0 1 4 4v28a4 4 0 0 1-4 4H4a4 4 0 0 1-4-4V32a4 4 0 0 1 4-4h3v-9C7 8.507 15.507 0 26 0zm0 8c-5.979 0-10.843 4.77-10.996 10.712L15 19v9h22v-9c0-6.075-4.925-11-11-11z" /> </svg> </span>) or <strong>https://</strong> means you've safely connected to the .gov website. Share sensitive information only on official, secure websites. </p> </div> </div> </div> </div> </div> </section> <div class="usa-overlay"> </div> <header class="usa-header usa-header--extended usa-header--wide" data-testid="header" data-header > <div class="ncbi-header"> <div class="ncbi-header__container"> <a class="ncbi-header__logo-container" href="/"> <img alt=" PMC home page " class="ncbi-header__logo-image" src="/static/img/ncbi-logos/nih-nlm-ncbi--white.svg" /> </a> <!-- Mobile menu hamburger button --> <button type="button" class="usa-menu-btn ncbi-header__hamburger-button " aria-label="Show menu" data-testid="navMenuButton" > <svg aria-hidden="true" class="ncbi-hamburger-icon" fill="none" focusable="false" height="21" viewBox="0 0 31 21" width="31" xmlns="http://www.w3.org/2000/svg"> <path clip-rule="evenodd" d="M0.125 20.75H30.875V17.3333H0.125V20.75ZM0.125 12.2083H30.875V8.79167H0.125V12.2083ZM0.125 0.25V3.66667H30.875V0.25H0.125Z" fill="#F1F1F1" fill-rule="evenodd" /> </svg> </button> <!-- Desktop buttons--> <div class="ncbi-header__desktop-buttons"> <!-- Desktop search button --> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button " aria-expanded="false" aria-controls="search-field-desktop-navigation" aria-label="Show search overlay" data-testid="toggleSearchPanelButton" data-toggle-search-panel-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#search" /> </svg> Search </button> <!-- Desktop login dropdown --> <div class="ncbi-header__login-dropdown"> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button ncbi-header__login-dropdown-button " aria-expanded="false" aria-controls="login-dropdown-menu" aria-label="Show login menu" data-testid="toggleLoginMenuDropdown" data-desktop-login-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#person" /> </svg> <span data-login-dropdown-text>Log in</span> <!-- Dropdown icon pointing up --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-less ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-up-arrow> <use xlink:href="/static/img/sprite.svg#expand_less" /> </svg> <!-- Dropdown icon pointing down --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-more ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-down-arrow> <use xlink:href="/static/img/sprite.svg#expand_more" /> </svg> </button> <!-- Login dropdown menu --> <ul class="usa-nav__submenu ncbi-header__login-dropdown-menu" id="login-dropdown-menu" data-desktop-login-menu-dropdown hidden> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> <li class="usa-nav__submenu-item"> <button type="button" class="usa-button usa-button--outline ncbi-header__login-dropdown-logout-button " data-testid="desktopLogoutButton" data-desktop-logout-button > Log out </button> </li> </ul> </div> </div> </div> </div> <!-- Search panel --> <div class="ncbi-search-panel ncbi--show-only-at-desktop" data-testid="searchPanel" data-header-search-panel hidden> <div class="ncbi-search-panel__container"> <form action="https://www.ncbi.nlm.nih.gov/search/all/" aria-describedby="search-field-desktop-navigation-help-text" autocomplete="off" class="usa-search usa-search--big ncbi-search-panel__form" data-testid="form" method="GET" role="search"> <label class="usa-sr-only" data-testid="label" for="search-field-desktop-navigation"> Search… </label> <input class="usa-input" data-testid="textInput" id="search-field-desktop-navigation" name="term" placeholder="Search NCBI" type="search" value="" /> <button type="submit" class="usa-button " data-testid="button" > <span class="usa-search__submit-text"> Search NCBI </span> </button> </form> </div> </div> <nav aria-label="Primary navigation" class="usa-nav"> <p class="usa-sr-only" id="primary-navigation-sr-only-title"> Primary site navigation </p> <!-- Mobile menu close button --> <button type="button" class="usa-nav__close ncbi-nav__close-button " aria-label="Close navigation menu" data-testid="navCloseButton" > <img src="/static/img/usa-icons/close.svg" alt="Close" /> </button> <!-- Mobile search component --> <form class="usa-search usa-search--small ncbi--hide-at-desktop margin-top-6" role="search"> <label class="usa-sr-only" for="search-field"> Search </label> <input class="usa-input" id="search-field-mobile-navigation" type="search" placeholder="Search NCBI" name="search" /> <button type="submit" class="usa-button " > <!-- This SVG should be kept inline and not replaced with a link to the icon as otherwise it will render in the wrong color --> <img src="" class="usa-search__submit-icon" alt="Search" /> </button> </form> <!-- Primary navigation menu items --> <!-- This usa-nav__inner wrapper is required to correctly style the navigation items on Desktop --> <div class="ncbi-nav__mobile-login-menu ncbi--hide-at-desktop" data-mobile-login-menu hidden> <p class="ncbi-nav__mobile-login-menu-status"> Logged in as: <strong class="ncbi-nav__mobile-login-menu-email" data-mobile-login-email-text></strong> </p> <ul class="usa-nav__primary usa-accordion"> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> </ul> </div> <button type="button" class="usa-button ncbi-nav__mobile-login-button ncbi--hide-at-desktop " data-testid="mobileLoginButton" data-mobile-login-button > Log in </button> </nav> </header> <section class="pmc-header pmc-header--basic" aria-label="PMC Header with search box"> <div class="pmc-nav-container"> <div class="pmc-header__bar"> <div class="pmc-header__logo"> <a href="/" title="Home" aria-label="PMC Home"></a> </div> <button type="button" class="usa-button usa-button--unstyled pmc-header__search__button" aria-label="Open search" data-ga-category="search" data-ga-action="PMC" data-ga-label="pmc_search_panel_mobile" > <svg class="usa-icon width-4 height-4 pmc-icon__open" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#search"></use> </svg> <svg class="usa-icon width-4 height-4 pmc-icon__close" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="pmc-header__search"> <form class="usa-search usa-search--extra usa-search--article-right-column pmc-header__search__form" autocomplete="off" role="search"> <label class="usa-sr-only" for="pmc-search">Search PMC Full-Text Archive</label> <span class="autoComplete_wrapper flex-1"> <input class="usa-input width-full maxw-none" required="required" placeholder="Search PMC Full-Text Archive" id="pmc-search" type="search" name="term" data-autocomplete-url="/search/autocomplete/"/> </span> <button class="usa-button" type="submit" formaction="https://www.ncbi.nlm.nih.gov/pmc/" data-ga-category="search" data-ga-action="PMC" data-ga-label="PMC_search_button" > <span class="usa-search__submit-text">Search in PMC</span> <img src="/static/img/usa-icons-bg/search--white.svg" class="usa-search__submit-icon" alt="Search" /> </button> </form> <ul class="pmc-header__search__menu"> <li> <a class="usa-link" href="https://www.ncbi.nlm.nih.gov/pmc/advanced/" data-ga-action="featured_link" data-ga-label="advanced_search"> Advanced Search </a> </li> <li> <a class="usa-link" href="/journals/" data-ga-action="featured_link" data-ga-label="journal list"> Journal List </a> </li> <li> <a class="usa-link" href="/about/userguide/" data-ga-action="featured_link" data-ga-label="user guide"> User Guide </a> </li> </ul> </div> </div> </section> <div class="usa-section padding-top-0 desktop:padding-top-6 pmc-article-section" data-article-db="pmc" data-article-id="2673262"> <div class="grid-container pmc-actions-bar" aria-label="Actions bar" role="complementary"> <div class="grid-row"> <div class="grid-col-fill display-flex"> <div class="display-flex"> <ul class="usa-list usa-list--unstyled usa-list--horizontal"> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open resources" data-extra-class="is-visible-resources" data-ga-category="resources_accordion" data-ga-action="click" data-ga-label="mobile_icon" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#more_vert"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <a href="https://doi.org/10.1074/jbc.M900857200" class="usa-link display-flex" role="button" target="_blank" rel="noreferrer noopener" aria-label="View on publisher site" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#launch"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <a href="pdf/11930.pdf" class="usa-link display-flex" role="button" aria-label="Download PDF" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button class="usa-button usa-button--unstyled collections-dialog-trigger collections-button display-flex collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_mobile" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC2673262%2F%23open-collections-dialog" data-in-collections="false" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button role="button" class="usa-button usa-button--unstyled citation-dialog-trigger display-flex" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_mobile" data-all-citations-url="/resources/citations/2673262/" data-citation-style="nlm" data-download-format-link="/resources/citations/2673262/export/" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> </button> </li> <li class="pmc-permalink display-flex"> <button type="button" class="usa-button usa-button--unstyled display-flex" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC2673262/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </div> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open article navigation" data-extra-class="is-visible-in-page" data-ga-category="actions" data-ga-action="open" data-ga-label="article_nav_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#list"></use> </svg> </button> </div> </div> </div> <div class="grid-container desktop:padding-left-6"> <div id="article-container" class="grid-row grid-gap"> <div class="grid-col-12 desktop:grid-col-8 order-2 pmc-layout__content"> <div class="grid-container padding-left-0 padding-right-0"> <div class="grid-row desktop:margin-left-neg-6"> <div class="grid-col-12"> <div class="pmc-layout__disclaimer" role="complementary" aria-label="Disclaimer note"> As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.<br/> Learn more: <a class="usa-link" data-ga-category="Link click" data-ga-action="Disclaimer" data-ga-label="New disclaimer box" href="/about/disclaimer/">PMC Disclaimer</a> | <a class="usa-link" data-ga-category="Link click" data-ga-action="PMC Copyright Notice" data-ga-label="New disclaimer box" href="/about/copyright/"> PMC Copyright Notice </a> </div> </div> </div> <div class="grid-row pmc-wm desktop:margin-left-neg-6"> <!-- Main content --> <main id="main-content" class="usa-layout-docs__main usa-layout-docs grid-col-12 pmc-layout pmc-prose padding-0" > <section class="pmc-journal-banner text-center line-height-none" aria-label="Journal banner"><img src="https://cdn.ncbi.nlm.nih.gov/pmc/banners/logo-jbc.png" alt="The Journal of Biological Chemistry logo" usemap="#pmc-banner-imagemap" width="500" height="75"><map name="pmc-banner-imagemap"><area alt="Link to The Journal of Biological Chemistry" title="Link to The Journal of Biological Chemistry" shape="default" href="http://www.jbc.org" target="_blank" rel="noopener noreferrer"></map></section><article lang="en"><section aria-label="Article citation and metadata"><section class="pmc-layout__citation font-secondary font-xs"><div> <div class="display-inline-block"><button type="button" class="cursor-pointer text-no-underline bg-transparent border-0 padding-0 text-left margin-0 text-normal text-primary" aria-controls="journal_context_menu">J Biol Chem</button></div>. 2009 May 1;284(18):11930–11941. doi: <a href="https://doi.org/10.1074/jbc.M900857200" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">10.1074/jbc.M900857200</a> </div> <nav id="journal_context_menu" hidden="hidden"><ul class="menu-list font-family-ui" role="menu"> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/pmc/?term=%22J%20Biol%20Chem%22%5Bjour%5D" class="usa-link" role="menuitem">Search in PMC</a></li> <li role="presentation"><a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22J%20Biol%20Chem%22%5Bjour%5D" lang="en" class="usa-link" role="menuitem">Search in PubMed</a></li> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/nlmcatalog?term=%22J%20Biol%20Chem%22%5BTitle%20Abbreviation%5D" class="usa-link" role="menuitem">View in NLM Catalog</a></li> <li role="presentation"><a href="?term=%22J%20Biol%20Chem%22%5Bjour%5D" class="usa-link" role="menuitem" data-add-to-search="true">Add to search</a></li> </ul></nav></section><section class="front-matter"><div class="ameta p font-secondary font-xs"> <hgroup><h1>Stress-induced Ceramide-activated Protein Phosphatase Can Compensate for Loss of Amphiphysin-like Activity In <em>Saccharomyces cerevisiae</em> and Functions to Reinitiate Endocytosis<sup><a href="#fn1" class="usa-link">*</a></sup> </h1></hgroup><div class="cg p"> <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22McCourt%20PC%22%5BAuthor%5D" class="usa-link" aria-describedby="id1"><span class="name western">Paula C McCourt</span></a><div hidden="hidden" id="id1"> <h3><span class="name western">Paula C McCourt</span></h3> <div class="p"> <sup>‡</sup>Pharmacogenomics Division, Medical Diagnostics Laboratories, LLC, Hamilton, New Jersey 08690 and the <sup>§</sup>Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22McCourt%20PC%22%5BAuthor%5D" class="usa-link"><span class="name western">Paula C McCourt</span></a> </div> </div> <sup>‡,§</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Morgan%20JM%22%5BAuthor%5D" class="usa-link" aria-describedby="id2"><span class="name western">Jeanelle M Morgan</span></a><div hidden="hidden" id="id2"> <h3><span class="name western">Jeanelle M Morgan</span></h3> <div class="p"> <sup>‡</sup>Pharmacogenomics Division, Medical Diagnostics Laboratories, LLC, Hamilton, New Jersey 08690 and the <sup>§</sup>Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Morgan%20JM%22%5BAuthor%5D" class="usa-link"><span class="name western">Jeanelle M Morgan</span></a> </div> </div> <sup>§</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Nickels%20JT%22%5BAuthor%5D" class="usa-link" aria-describedby="id3"><span class="name western">Joseph T Nickels Jr</span></a><div hidden="hidden" id="id3"> <h3><span class="name western">Joseph T Nickels Jr</span></h3> <div class="p"> <sup>‡</sup>Pharmacogenomics Division, Medical Diagnostics Laboratories, LLC, Hamilton, New Jersey 08690 and the <sup>§</sup>Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Nickels%20JT%22%5BAuthor%5D" class="usa-link"><span class="name western">Joseph T Nickels Jr</span></a> </div> </div> <sup>‡,§,</sup><sup>1</sup> </div> <ul class="d-buttons inline-list"> <li><button class="d-button" aria-controls="aip_a" aria-expanded="false">Author information</button></li> <li><button class="d-button" aria-controls="anp_a" aria-expanded="false">Article notes</button></li> <li><button class="d-button" aria-controls="clp_a" aria-expanded="false">Copyright and License information</button></li> </ul> <div class="d-panels font-secondary-light"> <div id="aip_a" class="d-panel p" style="display: none"> <div class="p" id="N0x1c71050N0x1db31f0"> <sup>‡</sup>Pharmacogenomics Division, Medical Diagnostics Laboratories, LLC, Hamilton, New Jersey 08690 and the <sup>§</sup>Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102</div> <div class="author-notes p"><div class="fn" id="cor1"> <sup>1</sup><p class="display-inline"> To whom correspondence should be addressed: Pharmacogenomics Division, Medical Diagnostics Laboratories, LLC, 2439 Kuser Road, Hamilton, NJ 08690. Tel.: 609-570-1046; Fax: 609-570-1030; E-mail: <span>jnickels@mdlab.com</span>. </p> </div></div> </div> <div id="anp_a" class="d-panel p" style="display: none"><div class="notes p"><section id="historyarticle-meta1" class="history"><p>Received 2009 Feb 5.</p></section></div></div> <div id="clp_a" class="d-panel p" style="display: none"> <div>Copyright © 2009, The American Society for Biochemistry and Molecular Biology, Inc.</div> <div class="p"><a href="/about/copyright/" class="usa-link">PMC Copyright notice</a></div> </div> </div> <div>PMCID: PMC2673262  PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/19254955/" class="usa-link">19254955</a> </div> </div></section></section><section aria-label="Article content"><section class="body main-article-body"><section class="abstract" id="abstract1"><h2>Abstract</h2> <p><em>Saccharomyces cerevisiae</em> cells lacking the amphiphysin-like orthologs, Rvs161 or Rvs167, are unable to thrive under many stress conditions. Here we show cells lacking Rvs161 require Cdc55, the B subunit of the yeast ceramide-activated protein phosphatase, for viability under heat stress. By using specific <em>rvs</em> mutant alleles, we linked this lethal genetic interaction to loss of Rvs161 endocytic domain function. Recessive mutations in the sphingolipid pathway, such as deletion of the very long-chain fatty acid elongase, Sur4, suppress the osmotic growth defect of <em>rvs161</em> cells. We demonstrate that Cdc55 is required for <em>sur4</em>-dependent suppressor activity and that protein phosphatase activation, through overexpression of <em>CDC55</em> alone, can also remediate this defect. Loss of <em>SUR4</em> in <em>rvs161</em> cells reinitiates Ste3 a-factor receptor endocytosis and requires Cdc55 function to do so. Moreover, overexpression of <em>CDC55</em> reinitiates Ste3 endocytic-dependent degradation and restores fluid phase endocytosis in <em>rvs161</em> cells. In contrast, loss of <em>SUR4</em> or <em>CDC55</em> overexpression does not remediate the actin polarization defects of osmotic stressed <em>rvs161</em> cells. Importantly, remediation of <em>rvs161</em> defects by protein phosphatase activation requires the ceramide-activated protein phosphatase catalytic subunit, Sit4, and the protein phosphatase 2A catalytic subunits, Pph21/Pph22. Finally, genetic analyses reveal a synthetic lethal interaction between loss of <em>CDC55</em> and gene deletions lethal with <em>rvs161</em>, all of which function in endocytosis.</p></section><hr class="headless"> <p>The <em>Saccharomyces cerevisiae</em> amphiphysin orthologs, Rvs161 and Rvs167, are members of the BAR (<span class="text-underline">B</span>IN/<span class="text-underline">A</span>mphiphysin/<span class="text-underline">R</span>VS domain)<a href="#fn2" class="usa-link">2</a> family of proteins (<a href="#ref1" class="usa-link" aria-describedby="ref1">1</a>–<a href="#ref3" class="usa-link" aria-describedby="ref3">3</a>, <a href="#ref4" class="usa-link" aria-describedby="ref4">4</a>, <a href="#ref5" class="usa-link" aria-describedby="ref5">5</a>). BAR proteins function to regulate early endocytosis and the actin cytoskeleton, likely through facilitating the development of a tubulovesicular membrane system required for clathrin-mediated endocytosis and regulation of membrane dynamics (<a href="#ref3" class="usa-link" aria-describedby="ref3">3</a>, <a href="#ref4" class="usa-link" aria-describedby="ref4">4</a>, <a href="#ref6" class="usa-link" aria-describedby="ref6">6</a>–<a href="#ref11" class="usa-link" aria-describedby="ref11">11</a>). Failure to form these tubular structures leads to defects in intracellular trafficking (<a href="#ref11" class="usa-link" aria-describedby="ref11">11</a>).</p> <p>In <em>S. cerevisiae</em>, the <em>RVS161/END6</em> gene (<a href="#tbl1" class="usa-link">Table 1</a>) was identified by isolating recessive mutations causing <span class="text-underline">r</span>educed <span class="text-underline">v</span>iability upon <span class="text-underline">s</span>tarvation (<a href="#ref12" class="usa-link" aria-describedby="ref12">12</a>) but was subsequently shown to be involved in actin cytoskeleton polarization (<a href="#ref13" class="usa-link" aria-describedby="ref13">13</a>), cell polarity (<a href="#ref14" class="usa-link" aria-describedby="ref14">14</a>), endocytosis (<a href="#ref15" class="usa-link" aria-describedby="ref15">15</a>), and secretory vesicle trafficking (<a href="#ref16" class="usa-link" aria-describedby="ref16">16</a>). Mutations in <em>RVS161</em> are highly pleiotropic, resulting in delocalization of the actin cytoskeleton (<a href="#ref13" class="usa-link" aria-describedby="ref13">13</a>), high salt sensitivity (<a href="#ref12" class="usa-link" aria-describedby="ref12">12</a>), mating/cell fusion defects (<a href="#ref17" class="usa-link" aria-describedby="ref17">17</a>), and a random budding pattern in diploid cells (<a href="#ref13" class="usa-link" aria-describedby="ref13">13</a>); however, the <em>RVS161</em> gene is not essential for cell viability (<a href="#ref12" class="usa-link" aria-describedby="ref12">12</a>).</p> <section class="tw xbox font-sm" id="tbl1"><h2 class="obj_head">TABLE 1.</h2> <div class="caption p"><p><strong>Description of yeast gene acronyms referred to in the text</strong></p></div> <div class="tbl-box p" tabindex="0"><table class="content" frame="hsides" rules="groups"> <thead><tr> <th colspan="1" rowspan="1" align="center" valign="top"><strong>Acronym</strong></th> <th colspan="1" rowspan="1" align="center" valign="top"> <strong>Acronym translation</strong><a href="#tblfn1" class="usa-link"><strong><sup><em>a</em></sup></strong></a> </th> <th colspan="1" rowspan="1" align="center" valign="top"> <strong>Biological process</strong><a href="#tblfn1" class="usa-link"><strong><sup><em>a</em></sup></strong></a> </th> <th colspan="1" rowspan="1" align="center" valign="top"> <strong>Function</strong><a href="#tblfn1" class="usa-link"><strong><sup><em>a</em></sup></strong></a> </th> </tr></thead> <tbody> <tr> <td colspan="1" rowspan="1" align="left" valign="top"> ABP1 </td> <td colspan="1" rowspan="1" align="left" valign="top"> Actin Binding Protein </td> <td colspan="1" rowspan="1" align="left" valign="top"> Actin cortical patch assembly; establishment of cell polarity </td> <td colspan="1" rowspan="1" align="left" valign="top"> Actin-binding protein; activation of the Arp2/3 complex </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>CDC55</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> Cell Division Cycle </td> <td colspan="1" rowspan="1" align="left" valign="top"> Protein amino acid dephosphorylation; actin filament organization; translation; cell bud growth; pseudohyphal growth; mitotic cell cycle spindle assembly checkpoint; negative regulation of exit from mitosis </td> <td colspan="1" rowspan="1" align="left" valign="top"> B regulatory subunit of protein phosphatase 2A and ceramide-activated protein phosphatase; protein serine/threonine phosphatase activity </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>EXO70</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> EXOcyst </td> <td colspan="1" rowspan="1" align="left" valign="top"> Bipolar bud site selection; cytokinesis; exocytosis; Golgi to plasma membrane transport vesicle docking during exocytosis; vesicle fusion </td> <td colspan="1" rowspan="1" align="left" valign="top"> Phosphatidylinositol 4,5-bisphosphate binding; protein binding </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>PEP4</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> carboxyPEPtidase Y-deficient </td> <td colspan="1" rowspan="1" align="left" valign="top"> Cellular response to starvation; microautophagy; formation of a cellular spore during sporulation; vacuolar protein catabolic process </td> <td colspan="1" rowspan="1" align="left" valign="top"> Vacuolar aspartyl protease (proteinase A) </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"> <em>PPH21</em> and <em>PPH22</em> </td> <td colspan="1" rowspan="1" align="left" valign="top"> Protein PHosphatase </td> <td colspan="1" rowspan="1" align="left" valign="top"> Actin filament organization; cell bud growth; G<sub>1</sub>/S transition of mitotic cell cycle; mitotic cell cycle spindle assembly checkpoint; protein amino acid dephosphorylation; translation </td> <td colspan="1" rowspan="1" align="left" valign="top"> Catalytic subunit C of protein phosphatase 2A; protein serine/threonine phosphatase activity; functionally redundant </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>RTS1</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> <em>Rox</em> Three Suppressor </td> <td colspan="1" rowspan="1" align="left" valign="top"> Meiotic chromosome cohesion translation protein amino acid dephosphorylation </td> <td colspan="1" rowspan="1" align="left" valign="top"> B regulatory subunit of PP2A </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>RVS161</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> Reduced Viability upon nutrient Starvation </td> <td colspan="1" rowspan="1" align="left" valign="top"> Endocytosis; polar budding; response to osmotic stress; mating </td> <td colspan="1" rowspan="1" align="left" valign="top"> Cytoskeletal protein binding </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>RVS167</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> Reduced Viability upon nutrient Starvation </td> <td colspan="1" rowspan="1" align="left" valign="top"> Endocytosis; polar budding; response to osmotic stress </td> <td colspan="1" rowspan="1" align="left" valign="top"> Cytoskeletal protein binding </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>SAC6</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> Suppressor of ACtin mutations </td> <td colspan="1" rowspan="1" align="left" valign="top"> Actin filament organization endocytosis; polar budding; response to osmotic stress </td> <td colspan="1" rowspan="1" align="left" valign="top"> Actin filament binding; protein binding, bridging </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>SEC8</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> SECretory </td> <td colspan="1" rowspan="1" align="left" valign="top"> Bipolar bud site selection; cytokinesis; exocytosis; Golgi to plasma membrane transport vesicle docking during exocytosis; vesicle fusion </td> <td colspan="1" rowspan="1" align="left" valign="top"> Protein binding </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>SEC20</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> SECretory </td> <td colspan="1" rowspan="1" align="left" valign="top"> SNAP receptor activity </td> <td colspan="1" rowspan="1" align="left" valign="top"> Vesicle fusion; retrograde vesicle-mediated transport, Golgi to endoplasmic reticulum </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>SIT4</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> Sporulation-Induced Transcript </td> <td colspan="1" rowspan="1" align="left" valign="top"> G<sub>1</sub>/S transition of the mitotic cycle; actin cytoskeleton and cell wall organization; dephosphorylation; response to oxidative stress; protein kinase cascade; TOR signaling pathway; DNA repair; replicative cell aging </td> <td colspan="1" rowspan="1" align="left" valign="top"> Type 2A-related serine-threonine phosphatase </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>SLA1</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> Synthetically Lethal with ABP1 </td> <td colspan="1" rowspan="1" align="left" valign="top"> Actin cortical patch assembly; actin filament organization cell wall; organization and biogenesis; endocytosis </td> <td colspan="1" rowspan="1" align="left" valign="top"> Cytoskeletal protein-binding protein; interacts with proteins regulating actin dynamics and endocytosis </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>SLA2</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> Synthetically Lethal with ABP1 </td> <td colspan="1" rowspan="1" align="left" valign="top"> Actin filament organization; cell polarization cell wall organization and biogenesis; endocytosis; exocytosis </td> <td colspan="1" rowspan="1" align="left" valign="top"> Transmembrane actin-binding protein; links actin to clathrin </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>STE3</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> STErile </td> <td colspan="1" rowspan="1" align="left" valign="top"> Pheromone-dependent signal transduction during conjugation with cellular fusion; transcribed in alpha cells </td> <td colspan="1" rowspan="1" align="left" valign="top"> Receptor for a factor; mediates pheromone response through MAP kinase cascade </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>SUR4</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> SUppressor of Rvs </td> <td colspan="1" rowspan="1" align="left" valign="top"> Fatty acid elongation; sphingolipid biosynthesis </td> <td colspan="1" rowspan="1" align="left" valign="top"> Fatty acid elongase activity </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>TPD3</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> tRNA Processing Deficient </td> <td colspan="1" rowspan="1" align="left" valign="top"> Actin filament organization; cell bud growth; mitotic cell cycle spindle assembly checkpoint protein amino acid dephosphorylation; translation </td> <td colspan="1" rowspan="1" align="left" valign="top"> Regulatory subunit A of protein phosphatase 2A and ceramide-activated protein phosphatase protein serine/threonine phosphatase activity </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>VPS20</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> Vacuolar Protein Sorting </td> <td colspan="1" rowspan="1" align="left" valign="top"> Late endosome to vacuole transport; ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway </td> <td colspan="1" rowspan="1" align="left" valign="top"> Myristoylated subunit of ESCRTIII, the endosomal sorting complex </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>VPS21</em></td> <td colspan="1" rowspan="1" align="left" valign="top"> Vacuolar Protein Sorting </td> <td colspan="1" rowspan="1" align="left" valign="top"> Transport during endocytosis; protein-vacuolar targeting </td> <td colspan="1" rowspan="1" align="left" valign="top"> GTPase activity </td> </tr> </tbody> </table></div> <div class="p text-right font-secondary"><a href="table/tbl1/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <div class="tw-foot p"><div class="fn" id="tblfn1"> <sup>a</sup><p class="display-inline">Obtained from the <em>S. cerevisiae</em> genome database.</p> </div></div></section><p>Almost all <em>rvs161</em>-related phenotypes are suppressed by mutations in the sphingolipid biosynthetic pathway (<a href="#ref18" class="usa-link" aria-describedby="ref18">18</a>). For instance, loss of the <em>SUR4/ELO3/VBM1</em> gene, which encodes a very long-chain fatty acid elongase required for the production of the C26 fatty acids found only in yeast complex sphingolipids, alters sphingolipid biosynthesis (<em>sur4</em> cells accumulate the long-chain base, phytosphingosine (<a href="#ref19" class="usa-link" aria-describedby="ref19">19</a>)) and suppresses <em>rvs</em> defects (<a href="#ref18" class="usa-link" aria-describedby="ref18">18</a>, <a href="#ref20" class="usa-link" aria-describedby="ref20">20</a>). Sphingolipids are essential lipids and are conserved structurally throughout evolution (<a href="#ref21" class="usa-link" aria-describedby="ref21">21</a>). In addition to roles as structural components of membranes (<a href="#ref22" class="usa-link" aria-describedby="ref22">22</a>), sphingolipids act as signaling molecules regulating biological processes, such as cell growth, endocytosis, differentiation, stress, and apoptosis; the sphingolipid, ceramide, and multiple long-chain sphingoid bases are key signaling intermediates regulating these events in mammalian cells and in <em>S. cerevisiae</em> (<a href="#ref23" class="usa-link" aria-describedby="ref23">23</a>–<a href="#ref28" class="usa-link" aria-describedby="ref28">28</a>).</p> <p>In <em>S. cerevisiae</em>, ceramide serves as the backbone for all complex sphingolipids, and its transient accumulation may be a signal to adapt to cellular stresses such as heat (<a href="#ref29" class="usa-link" aria-describedby="ref29">29</a>–<a href="#ref32" class="usa-link" aria-describedby="ref32">32</a>), amino acid deprivation (<a href="#ref33" class="usa-link" aria-describedby="ref33">33</a>), and cell cycle arrest (<a href="#ref34" class="usa-link" aria-describedby="ref34">34</a>). Several ceramide-regulated enzymes have been identified (<a href="#ref35" class="usa-link" aria-describedby="ref35">35</a>, <a href="#ref36" class="usa-link" aria-describedby="ref36">36</a>), including the conserved ceramide-activated protein phosphatase (CAPP) (<a href="#ref37" class="usa-link" aria-describedby="ref37">37</a>–<a href="#ref41" class="usa-link" aria-describedby="ref41">41</a>), which was identified as a member of the mammalian 2A class of serine/threonine protein phosphatases (PP2A) (<a href="#ref42" class="usa-link" aria-describedby="ref42">42</a>). Ubiquitous among all eukaryotes, PP2A is a heterotrimer composed of two regulatory subunits (A and B), and a catalytic subunit (C) (<a href="#ref43" class="usa-link" aria-describedby="ref43">43</a>, <a href="#ref44" class="usa-link" aria-describedby="ref44">44</a>). In yeast, the B regulatory subunit of PP2A is encoded by two genes, <em>CDC55</em> and <em>RTS1</em> (<a href="#ref45" class="usa-link" aria-describedby="ref45">45</a>–<a href="#ref47" class="usa-link" aria-describedby="ref47">47</a>), the A scaffolding subunit is encoded by <em>TPD3</em> (<a href="#ref48" class="usa-link" aria-describedby="ref48">48</a>), and the C catalytic subunit is redundantly encoded by <em>PPH21</em> and <em>PPH22</em> (<a href="#ref49" class="usa-link" aria-describedby="ref49">49</a>).</p> <p>Yeast CAPP is thought to be comprised of the subunits, Tpd3 (A), Cdc55 (B), and Sit4 (C), and its activation by addition of exogenous short-chain ceramides results in G<sub>1</sub> arrest (<a href="#ref50" class="usa-link" aria-describedby="ref50">50</a>). Putative CAPP activation through the addition of C<sub>2</sub>-ceramide, <em>SUR4/ELO3/VBM1</em> gene inactivation, or overexpression of <em>SIT4</em> can rescue the endocytic defects of cells lacking the Tlg1 or Tlg2 t-SNAREs involved in endocytosis (<a href="#ref51" class="usa-link" aria-describedby="ref51">51</a>) and confers normal growth and secretion to cells lacking the exocytic v-SNAREs, Snc1 and Snc2 (<a href="#ref52" class="usa-link" aria-describedby="ref52">52</a>). On the other hand, deletion of the CAPP B subunit, <em>CDC55</em>, or the catalytic subunits of PP2A abolishes the sphingoid base requirement in endocytosis (<a href="#ref53" class="usa-link" aria-describedby="ref53">53</a>). So the exact role of CAPP in regulating endocytosis is unclear. PP2A seems to regulate endocytosis in mammalian cells, and activation of PP2A is necessary for dynamin 2 dephosphorylation, resulting in the clathrin-dependent endocytosis of Na<sup>+</sup>-ATPase and K<sup>+</sup>-ATPase molecules (<a href="#ref54" class="usa-link" aria-describedby="ref54">54</a>).</p> <p>How defects in sphingolipid biosynthesis suppress <em>rvs</em> phenotypes is unclear and likely very complex. Deletion of sphingolipid genes suppresses the actin depolarization and growth defects of osmotic stressed <em>rvs161</em> cells (<a href="#ref55" class="usa-link" aria-describedby="ref55">55</a>). However, steady-state actin cytoskeletal defects persist in <em>rvs161 sur4</em> cells under conditions of glucose starvation, yet these cells are viable (<a href="#ref20" class="usa-link" aria-describedby="ref20">20</a>). Thus, understanding the molecular basis for how this suppression mechanism works should give valuable insight into how sphingolipid metabolites function as signaling lipids regulating many diverse cell events (<a href="#ref23" class="usa-link" aria-describedby="ref23">23</a>–<a href="#ref28" class="usa-link" aria-describedby="ref28">28</a>).</p> <p>To further understand how mutating sphingolipid biosynthesis suppresses <em>rvs</em> defects, we determined the roles of PP2A/CAPP in this process. Here we show that PP2A/CAPP activation, through overexpression of <em>CDC55</em> or loss of <em>SUR4</em>, is an essential prerequisite for suppressing <em>rvs</em> growth defects. Suppression requires the PP2A catalytic subunits, Pph21/Pph22, and/or the CAPP catalytic subunit, Sit4. Importantly, CAPP/PP2A activation reinitiates endocytosis but does not remediate the actin polarization defects of <em>rvs161</em> cells. We propose that sphingolipid-dependent PP2A/CAPP activation results in the reinitiation of endocytosis, and this is essential for cells to thrive under stress in the absence of amphiphysin function.</p> <section id="sec1"><h2 class="pmc_sec_title">EXPERIMENTAL PROCEDURES</h2> <p><em>Strains and Plasmids</em>—The <em>S. cerevisiae</em> strains used in this study were derived from W303 (<em>MAT</em>a <em>ura3-1 leu2–3, 112 his3–11,15 trp1-1 ade2-1 can1–100</em>) or MY2792 (<em>MAT</em>a <em>ura3–52 leu2-1 his3–200</em>) backgrounds (<a href="#ref17" class="usa-link" aria-describedby="ref17">17</a>). Yeast strains were transformed with the <em>Yep24-CDC55-URA3</em> or <em>Yep24-URA3</em> vector using the procedure described by Ito <em>et al.</em> (<a href="#ref56" class="usa-link" aria-describedby="ref56">56</a>). For routine propagation of plasmids, <em>Escherichia coli</em> XL1-Blue cells were used and grown in LB medium supplemented with ampicillin (200 μg/ml). Yeast haploid <em>rvs161, sur4, cdc55, sit4, pph21, pph22, tpd3</em>, and <em>pep4</em> null mutants were generated by the one-step disruption method of Rothstein (<a href="#ref57" class="usa-link" aria-describedby="ref57">57</a>). <em>GAL-STE3-HA</em> strains were constructed using the PCR cassette pFA6a-<em>TRP1-GAL1</em> (<a href="#ref58" class="usa-link" aria-describedby="ref58">58</a>). Integrating <em>YIp-GPD-CDC55-URA3</em> and <em>YIp-GPD-URA3</em> into the <em>ura3–52</em> locus, respectively, generated strains containing <em>GPD-CDC55</em> and <em>GPD</em>. The <em>sla1, sla2, vps20, vps21, rvs167, abp1</em>, and <em>sac6</em> null strains were generated by several backcrosses of W303 to haploid null strains obtained from the Research Genetics Yeast Strain Collection.</p> <p><em>Media and Growth Conditions</em>—Yeast strains were grown in YP media (1% yeast extract, 2% bactopeptone) supplemented with either 2% glucose (YEPD), 2% glycerol, 2% glucose plus 3.4% NaCl, or 2% glucose plus 6% NaCl as indicated. Yeast strains were also grown in synthetic minimal media containing 0.67% yeast nitrogen base supplemented with the appropriate amino acids and carbon source. To assay for the ability to grow under different stress conditions, yeast strains were grown to exponential phase in YEPD or selective minimal media plus 2% glucose. 2 × 10<sup>5</sup> cells were spotted as 10-fold serial dilutions onto various media plates or streaked for single colonies and incubated at 30 °C or 37 °C as indicated. Cell growth was examined after 48 or 72 h as indicated.</p> <p><em>Fluorescence Microscopy of Polymerized Actin and Lucifer Yellow Internalization</em>—For all microscopic observations, yeast strains were grown to exponential phase in YEPD or ura<sup>–</sup> plus 2% glucose. For NaCl stress-induced experiments, cells were pelleted by centrifugation and resuspended in YEPD plus 3.4% NaCl, YEPD plus 6% NaCl, or ura<sup>–</sup> media containing 2% glucose plus 3.4% NaCl. Actin was stained with rhodamine phalloidin as described by Adams and Pringle (<a href="#ref59" class="usa-link" aria-describedby="ref59">59</a>) with some modifications.</p> <p>Briefly, cells grown to exponential phase were fixed by addition of formaldehyde to a final concentration of 3.7%. After 30 min, cells were pelleted by centrifugation, washed three times in 1× phosphate-buffered saline, pH 7.3, resuspended in 45 μl of 1× phosphate-buffered saline containing 3 units of Rhodamine-phalloidin (Molecular Probes), and incubated at room temperature for 2 h. Cells were then washed eight times with 1× phosphate-buffered saline and resuspended in 20 μl of 1× phosphate-buffered saline. To visualize the internalization of lucifer yellow (LY), 10<sup>7</sup> cells grown to exponential phase were resuspended in 90 μl of YEPD and stained with 10 μl of 40 mg/ml lucifer yellow solution (Sigma). The stained cells were then incubated at 30 °C for 1 h. Cells were then washed four times with ice-cold LY buffer (50 m<span class="font-variant-small-caps">m</span> sodium succinate, pH 5), resuspended in 10 μl of cold LY buffer, and stored on ice before visualization. The actin cytoskeleton and lucifer yellow internalization was visualized using a Leica DMRBE fluorescence microscope and rhodamine isothiocyanate optics and a PlanAPO 100× objective. Data were collected using a Hamamatsu DIG-15 charge-coupled digital camera and Open Labs software (version 2.1). For lucifer yellow internalization studies, a total of 350 cells were counted during each experiment and the values represented are the average values of three independent experiments.</p> <p><em>Classification of the Actin Polarization State of Cells</em>—Only cells with small buds were counted. Cells with actin patches concentrated in the small bud, with five or fewer patches in the mother cell and visible actin cables, were classified as polarized cells. Cells with most actin patches in the mother cell rather than in the small bud were classified as depolarized cells. A total of 350 cells was counted during each experiment, and the values are the average values of six independent experiments.</p> <p><em>Determination of Ste3 Stability</em>—The yeast strains used carry a functional <em>STE3</em>::<em>GAL1-STE3-HA</em>::<em>TRP1</em> chromosomal allele. Cultures grown to exponential phase in YEPD or ura<sup>–</sup> plus 2% glucose at 30 °C were pelleted, washed, and shifted to YP or ura<sup>–</sup> media containing 2% raffinose for 1.5 h. To induce expression of Ste3-HA, cultures were washed and shifted to YP or ura<sup>–</sup> media containing 2% galactose for 3 h. Cultures were then washed and shifted to YEPD, ura<sup>–</sup> plus 2% glucose, YEPD plus 3.4% NaCl, or ura<sup>–</sup> plus 2% glucose plus 3.4% NaCl for 2 h to shut off the expression of Ste3-HA. Samples were taken before induction and at the indicated times post initiation of shut-off with glucose. Ste3-HA level was assayed by Western analysis and immunoblotting using 16B12 mouse anti-HA antibody (Covance).</p> <p><em>Western Analysis</em>—Total cell extracts were obtained using a modified procedure from Hsiung <em>et al.</em> (<a href="#ref60" class="usa-link" aria-describedby="ref60">60</a>). Exponentially growing yeast cells were pelleted and resuspended in yeast lysis buffer (50 m<span class="font-variant-small-caps">m</span> Tris-HCl, pH 7.5, 150 m<span class="font-variant-small-caps">m</span> NaCl, 0.1% Nonidet P-40, 10% glycerol) containing 50 m<span class="font-variant-small-caps">m</span> sodium fluoride, protease inhibitors (0.4 m<span class="font-variant-small-caps">m</span> phenylmethylsulfonyl fluoride, 1 μg/ml pepstatin, 1 μg/ml leupeptin, and 1 μg/ml aprotinin), and phosphatase inhibitors (0.1 m<span class="font-variant-small-caps">m</span> sodium orthovanadate, 5 m<span class="font-variant-small-caps">m</span> EDTA, 5 m<span class="font-variant-small-caps">m</span> EGTA, and 10 m<span class="font-variant-small-caps">m</span> sodium pyrophosphate). Cells were then lysed with glass beads by using seven cycles of vortexing for 1 min followed by 1-min incubation on ice. Extracts were collected after centrifugation for 5 min at 3,000 rpm. The protein concentrations of the cell lysates were determined by the BCA protein assay (Pierce). Proteins were resolved by 10% SDS-PAGE and subsequently transferred to a nitrocellulose membrane. Membranes were blocked overnight at 4 °C with 5% nonfat dry milk in Buffer A (10 m<span class="font-variant-small-caps">m</span> Tris-HCl, pH 7.4, 150 m<span class="font-variant-small-caps">m</span> NaCl) plus 0.05% Tween 20. Incubations with primary and secondary antibodies were performed at room temperature for 1 h in buffer B (Buffer A containing 1% milk and 10% goat serum). Membranes were washed four times after antibody incubations with Buffer A containing 0.05% Tween 20. The primary antibody was monoclonal mouse 16B12 anti-HA (Covance, 1:500 dilution) and the secondary antibody was polyclonal goat anti-mouse horseradish peroxidase (Amersham Biosciences, 1:1000 dilution). Proteins were detected using ECL chemiluminescence (Amersham Biosciences). For a loading control, actin protein was detected using monoclonal rabbit anti-β-actin primary antibody (Rockland, 1:1000 dilution) and polyclonal goat anti-rabbit horseradish peroxidase secondary antibody (Amersham Biosciences, 1:2000 dilution).</p> <p><em>Protein Phosphatase Assay</em>—Phosphatase activity was measured for 15 min at 30 °C by following the dephosphorylation of phosphohistone in the absence and presence of C<sub>2</sub>-ceramide as previously described (<a href="#ref50" class="usa-link" aria-describedby="ref50">50</a>).</p> <p><em>Synthetic Lethal Interaction Studies</em>—Haploid matings between <em>cdc55</em> cells and strains harboring null alleles of genes having a lethal genetic interaction with loss of <em>RVS161</em> were carried out using standard procedures (<a href="#ref61" class="usa-link" aria-describedby="ref61">61</a>). Heterozygous diploids were sporulated, and double null haploid progeny were obtained by tetrad dissection. For each mating cross, the haploid segregants were allowed to grow on YEPD medium at 30 °C, and at least 96 asci were tested.</p></section><section id="sec2"><h2 class="pmc_sec_title">RESULTS</h2> <p><em>The B Regulatory Subunit of Yeast CAPP/PP2A, Cdc55, Is Required for the Viability of rvs161 Cells under Stress</em>—While we were exploring whether CAPP had a role in <em>sur4</em>-dependent suppression of <em>rvs</em> defects, we discovered <em>rvs161 cdc55</em> cells were inviable at 37 °C, while both <em>rvs161</em> and <em>cdc55</em> cells grew (<a href="#fig1" class="usa-link">Fig. 1<em>A</em></a>). In addition, we noted that loss of <em>CDC55</em> did not remediate high salt <em>rvs</em> growth defects (6% NaCl).</p> <figure class="fig xbox font-sm" id="fig1"><h3 class="obj_head">FIGURE 1.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=2673262_zbc0220974520001.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/2673262/95f38e13028f/zbc0220974520001.jpg" loading="lazy" height="467" width="416" alt="FIGURE 1."></a></p> <div class="p text-right font-secondary"><a href="figure/fig1/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>CDC55 is required for the viability of <em>rvs161</em> cells during conditions of stress.</strong> <em>A</em> and <em>B</em>, 10-fold serial dilutions of cells were spotted on YEPD or YEPD plus 6% salt (NaCl) solid media. Cells were grown for 3 days at 30 °C or 37 °C.</p></figcaption></figure><p>To understand why Cdc55 was required for growth of <em>rvs161</em> cells during stress, we examined how its loss affected the growth of cells harboring <em>rvs161</em> mutant alleles isolated by Brizzio <em>et al.</em> (<a href="#ref17" class="usa-link" aria-describedby="ref17">17</a>). These alleles cause either endocytosis (End<sup>–</sup> Fus<sup>+</sup>) or cell fusion/mating (End<sup>+</sup> Fus<sup>–</sup>) defects, thus separating specific Rvs161 functions. <em>R35C, R59K, R113K, P158S</em>, and <em>P166S</em> alleles cause endocytosis defects, whereas <em>A175P</em> and <em>P203Q</em> are cell fusion/mating-defective, based on several criteria (<a href="#ref17" class="usa-link" aria-describedby="ref17">17</a>). <em>CDC55</em> was deleted in the two cell fusion (<em>A175P</em> and <em>P203Q</em>) and three endocytosis mutants (<em>R35C, R113K</em>, and <em>P158S</em>), and we determined whether these strains could grow at 37 °C or when under osmotic stress.</p> <p><em>rvs161-R35C cdc55, rvs161-R113K cdc55</em>, and <em>rvs161-P158S cdc55 endo</em><sup>–</sup> cells were inviable at 37 °C (<a href="#fig1" class="usa-link">Fig. 1<em>B</em></a><em>, lanes 3 versus 4</em>). Loss of <em>CDC55</em> was also synthetic lethal in <em>rvs161-P203Q</em> fus<sup>–</sup> endo<sup>+</sup> cells at this temperature, suggesting this allele may give rise to subtle stress-induced defects, which become more severe in the absence of Cdc55 function. <em>rvs161-A175P cdc55</em> cells grew. Moreover, loss of <em>CDC55</em> did not suppress the osmotic growth defect of <em>rvs161-P158S, rvs161-R35C</em>, and <em>rvs161-R113K</em> cells, and actually compromised the growth of <em>rvs161-P203Q</em> cells (<a href="#fig1" class="usa-link">Fig. 1<em>B</em></a><em>, lanes 5 versus 6</em>). Thus CAPP and/or Cdc55-dependent PP2A are essential for cell growth under stress in the absence of Rvs161 endocytic function.</p> <p><em>Suppression of rvs161 Defects by Loss of SUR4 Requires CDC55</em>—Because <em>rvs161 endo</em><sup>–</sup> cells required Cdc55 during heat stress, we tested whether this B regulatory subunit had a role in <em>sur4</em>-dependent suppression of <em>rvs</em> defects. We focused on the <em>rvs</em> osmotic growth defect as a representative mutant phenotype (<a href="#ref18" class="usa-link" aria-describedby="ref18">18</a>). As previously published, loss of <em>SUR4</em> suppressed the high salt osmotic growth defect of <em>rvs161</em> cells (<a href="#ref18" class="usa-link" aria-describedby="ref18">18</a>, <a href="#ref20" class="usa-link" aria-describedby="ref20">20</a>) (<a href="#fig2" class="usa-link">Fig. 2<em>A</em></a>). Importantly, Cdc55 function was absolutely essential for <em>rvs161 sur4</em> cells to grow under this condition (<a href="#fig2" class="usa-link">Fig. 2<em>A</em></a><em>, rvs161 sur4 versus rvs161 sur4 cdc55</em>). Moreover, loss of Sur4 function remediated the high salt osmotic defect of <em>rvs161 R35C, rvs161 R113K</em>, and <em>rvs161 P158S</em> cells (<a href="#fig2" class="usa-link">Fig. 2<em>B</em></a><em>, lanes 1 versus 2</em>), and in all cases Cdc55 was required for this suppression (<a href="#fig2" class="usa-link">Fig. 2<em>B</em></a><em>, lanes 2 versus 3</em>).</p> <figure class="fig xbox font-sm" id="fig2"><h3 class="obj_head">FIGURE 2.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=2673262_zbc0220974520002.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/2673262/b3a5cf8f2715/zbc0220974520002.jpg" loading="lazy" height="1200" width="475" alt="FIGURE 2."></a></p> <div class="p text-right font-secondary"><a href="figure/fig2/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>sur4-dependent suppression of <em>rvs161</em> growth defects requires <em>CDC55</em>.</strong> <em>A</em> and <em>B</em>, Cells were grown and assayed as described for <a href="#fig1" class="usa-link">Fig. 1</a>.</p></figcaption></figure><p><em>The Putative CAPP Catalytic Subunit, Sit4, Is Not Required for Sur4-dependent Suppressor Activity</em>—It was important to determine what molecular species of PP2A/CAPP was required for <em>sur4-</em>dependent suppression. To delineate molecular structure, we first examined what was the consequence of deleting the PP2A catalytic subunits, Pph21 and Pph22 (<a href="#ref49" class="usa-link" aria-describedby="ref49">49</a>), or the putative CAPP catalytic subunit, Sit4 (<a href="#ref50" class="usa-link" aria-describedby="ref50">50</a>, <a href="#ref62" class="usa-link" aria-describedby="ref62">62</a>), on osmotic stress-induced growth of <em>rvs161 sur4</em> cells. Deletion of both Pph21 and Pph22, and not Sit4, attenuated <em>sur4</em>-dependent suppressor activity (<a href="#fig3" class="usa-link">Fig. 3</a>). Loss of function of the PP2A/CAPP A regulatory subunit, Tpd3, also resulted in loss of viability of <em>rvs161 sur4</em> cells (not shown). Thus, a heterotrimeric PP2A/CAPP species comprised of Tpd3/Cdc55/Pph21–22 is required for sphingolipid-dependent suppression of <em>rvs161</em> growth defects under osmotic stress.</p> <figure class="fig xbox font-sm" id="fig3"><h3 class="obj_head">FIGURE 3.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=2673262_zbc0220974520003.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/2673262/56e014754f7f/zbc0220974520003.jpg" loading="lazy" height="363" width="416" alt="FIGURE 3."></a></p> <div class="p text-right font-secondary"><a href="figure/fig3/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>CAPP and PP2A catalytic subunits are required for <em>sur4</em>-dependent suppression of <em>rvs161</em> growth defects.</strong> Each strain was streaked for single colonies on YEPD or YEPD plus 6% salt (NaCl) solid media. Cells were grown for 2–3 days at 30 °C.</p></figcaption></figure><p><em>Activation of PP2A/CAPP through Overexpression of CDC55 Suppresses Multiple Growth Defects of rvs161 Cells</em>—Our hypothesis is that during stress PP2A/CAPP is activated in a <em>sur4</em>-dependent manner and is essential in the absence of Rvs161 endocytic function. If this is the case, activation of PP2A/CAPP alone, through overexpression of Cdc55 should suppress <em>rvs</em> defects in the absence of any sphingolipid defects. Thus, we asked if increased expression of <em>CDC55</em> could compensate for loss of Rvs161. The <em>rvs161</em> mutant phenotypes examined were lack of growth under osmotic stress, under nutrient (glucose) starvation, and on a nonfermentable carbon source (not shown), as well as, the inability to mate (<a href="#ref18" class="usa-link" aria-describedby="ref18">18</a>).</p> <p>Wild-type and <em>rvs161</em> cells expressing either control <em>Yep24-URA3</em> or <em>Yep24-CDC55-URA3</em> were grown on selective medium containing 2% glucose, 2% glucose plus 6% NaCl, 2% glycerol, or 0.05% glucose, and viability was determined. <em>CDC55</em> overexpression alone suppressed all <em>rvs161</em> growth defects observed (<a href="#fig4" class="usa-link">Fig. 4</a>, <em>rvs161 Yep24 versus rvs161 Yep24-CDC55</em>). Overexpression or deletion of <em>CDC55</em> did not remediate the mating defects of <em>rvs161</em> cells when quantitative limited mating assays were used (not shown). We next asked what catalytic subunits were necessary for Cdc55-dependent suppressor activity. Suppression required the presence of the putative CAPP catalytic subunit, Sit4 (<a href="#fig4" class="usa-link">Fig. 4</a>, <em>rvs161 Yep-CDC55 versus rvs161 sit4 Yep-CDC55</em>) or the PP2A catalytic subunits, Pph21 and Pph22 (not shown). Thus, Cdc55 can form two CAPP species to suppress <em>rvs</em> defects that use the PP2A catalytic subunits, Pph21–22, or the putative CAPP subunit, Sit4.</p> <figure class="fig xbox font-sm" id="fig4"><h3 class="obj_head">FIGURE 4.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=2673262_zbc0220974520004.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/2673262/237328c4f80e/zbc0220974520004.jpg" loading="lazy" height="399" width="475" alt="FIGURE 4."></a></p> <div class="p text-right font-secondary"><a href="figure/fig4/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>Activation of CAPP, through overexpression of <em>CDC55</em>, suppresses multiple growth defects of <em>rvs161</em> cells.</strong> 10-fold serial dilutions of cells expressing either <em>Yep24-URA3</em> or <em>Yep24-CDC55-URA3</em> were spotted on synthetic rich (2% Glu), synthetic rich plus 6% salt (NaCl), or synthetic starvation (0.05% Glu) solid media and grown for 3 days at 30 °C.</p></figcaption></figure><p><em>Cdc55-dependent Suppressor Activity Does Not Function through Regulating Actin Polarization</em>—<em>rvs161</em> cells harbor defects in actin cytoskeletal structure (<a href="#ref13" class="usa-link" aria-describedby="ref13">13</a>), which contribute to the observed pleiotropic phenotypes. To ascertain how Cdc55 activation of PP2A/CAPP suppresses <em>rvs161</em> defects, we first asked whether it does so through regulating actin dynamics during stress. Cells were grown to exponential phase and shifted to media containing 3.4% NaCl, and at various times the actin cytoskeleton was visualized using rhodamine phalloidin.</p> <p>Under normal growth conditions, wild-type cells contained ∼91% polarized cells (<a href="#fig5" class="usa-link">Fig. 5<em>A</em></a>). Upon a shift to 3.4% NaCl, cells became depolarized by 30 min (5% polarized), and after 2 h adapted and repolarized their actin (60% polarized). <em>rvs161</em> cells were constitutively depolarized (14% polarized) under normal growth conditions (<a href="#fig5" class="usa-link">Fig. 5<em>A</em></a><em>, WT versus rvs161</em>). Shifting these cells to high salt resulted in the entire population becoming depolarized, and they remained depolarized. Cells lacking <em>CDC55</em> were polarized (76% polarized), became depolarized after 30 min in high salt, but were defective in repolarizing their actin after 2 h (28% polarized) (<a href="#fig5" class="usa-link">Fig. 5<em>A</em></a><em>, WT versus cdc55</em>). The actin dynamics of <em>rvs161 cdc55</em> cells mimicked <em>rvs161</em> cells (<a href="#fig5" class="usa-link">Fig. 5<em>A</em></a><em>, rvs161 versus rvs161 cdc55</em>).</p> <figure class="fig xbox font-sm" id="fig5"><h3 class="obj_head">FIGURE 5.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=2673262_zbc0220974520005.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/2673262/c6f68b6f2b85/zbc0220974520005.jpg" loading="lazy" height="526" width="477" alt="FIGURE 5."></a></p> <div class="p text-right font-secondary"><a href="figure/fig5/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>Cdc55-dependent <em>sur4</em> suppressor activity in <em>rvs161</em> cells does not function through regulating actin polarization.</strong> Strains were grown in YEPD or selective minimal media at 30 °C to exponential phase, and at time zero, NaCl was added to a final concentration of 3.4% (<em>A</em> and <em>B</em>) or 6% (<em>C</em>). Actin structure was visualized at the indicated times using Rhodamine-phalloidin and fluorescence microscopy. Histogram showing the average percentage of polarized cells <em>versus</em> total number of cells was determined (<em>n</em> = 350). <em>Error bars</em> represent the standard deviation. <em>D</em>, cells lacking Rvs161 are viable on 3.4% NaCl. 10-fold serial dilutions of cells were spotted on YEPD, 3.4% NaCl, and 6% NaCl solid media. Cells were grown for 3 days at 30 °C.</p></figcaption></figure><p>Interestingly, when we overexpressed <em>CDC55</em> in wild-type cells, either less cells depolarized their actin, or a greater number of cells repolarized more quickly after 30 min in high salt media (50% polarized) (<a href="#fig5" class="usa-link">Fig. 5, <em>A, WT versus B</em></a><em>, WT</em>+<em>Yep24-CDC55</em>). Moreover, the percentage of polarized cells observed in high salt after 2 h was almost identical to that seen under normal vegetative growth conditions (92% polarized). <em>CDC55</em> overexpression in <em>rvs161</em> cells did remediate <em>rvs</em>-associated actin polarization defects (77% polarized), but only under normal vegetative growth conditions. Under high salt conditions, actin was completely depolarized, and it remained depolarized (<a href="#fig5" class="usa-link">Fig. 5, <em>A, rvs161 versus B</em></a><em>, rvs161</em>+<em>Yep24-CDC55</em>). Similar results were seen in 6% NaCl. Thus, any regulation of actin dynamics by Cdc55 during stress requires Rvs161 function.</p> <p><em>Loss of SUR4 Does Not Remediate the Actin Polarization Defects of rvs161 Cells under Lethal Osmotic Stress Conditions</em>—Loss of <em>SUR4</em> suppresses the actin polarization defect of <em>rvs161</em> cells under osmotic stress, and it was suggested this remediation plays a role in <em>sur4</em>-dependent suppressor activity (<a href="#ref55" class="usa-link" aria-describedby="ref55">55</a>). However, studies were performed using 3.4% NaCl, a concentration sublethal for <em>rvs161</em> cells (<a href="#fig5" class="usa-link">Fig. 5<em>D</em></a>). If <em>sur4</em> suppressor activity functions through regulating actin depolarization/repolarization, and this is essential for <em>rvs161 sur4</em> cells to grow under stress conditions, it should regulate actin dynamics at a NaCl concentration lethal to <em>rvs161</em> cells, but not <em>rvs161 sur4</em> cells.</p> <p>We first examined actin dynamics in cells grown under sublethal 3.4% NaCl conditions. As published, the actin polarization defect of <em>rvs161</em> cells was suppressed (<a href="#fig5" class="usa-link">Fig. 5<em>A</em></a><em>, rvs161 versus rvs161 sur4</em>). However, Cdc55 function is not required for <em>rvs161 sur4</em> cells to grow at this salt concentration, because <em>rvs161 sur4 cdc55</em> cells are viable (not shown). Cdc55 is only required for <em>sur4</em>-dependent suppressor activity under lethal 6% NaCl conditions (<a href="#fig2" class="usa-link">Fig. 2<em>A</em></a>). Thus, we determined if loss of <em>SUR4</em> suppressed the actin polarization defect of <em>rvs161</em> cells grown under this lethal growth condition. This was not the case, because <em>rvs161 sur4</em> cells remained depolarized in 6% NaCl for 2 h (<a href="#fig5" class="usa-link">Fig. 5<em>C</em></a><em>, rvs161 versus rvs161 sur4</em>) and up to 5 h. Moreover, we observed steady-state actin defects in <em>rvs161 sur4</em> cells grown exponentially in media containing 6% NaCl (not shown). Based on these results, we conclude that <em>sur4</em>-dependent suppressor activity and subsequent PP2A/CAPP activation does not regulate actin dynamics to ensure <em>rvs161</em> cells remain viable under stress.</p> <p><em>Sur4-dependent Suppressor Activity in rvs161 Cells Reinitiates Endocytosis of the Pheromone Receptor, Ste3, and Requires Cdc55</em>—<em>rvs161</em> cells harbor defects in endocytosis (<a href="#ref15" class="usa-link" aria-describedby="ref15">15</a>). Neither the overexpression of <em>CDC55</em> nor loss of <em>SUR4</em> suppressed the actin polarization defects of <em>rvs161</em> cells. Thus we asked if the endocytosis defect of <em>rvs161</em> cells was affected. We did so by determining the stability of the membrane-associated a-factor pheromone receptor, Ste3. Ste3 is subject to two modes of endocytosis, constitutive (or ligand-independent) and ligand-stimulated (<a href="#ref63" class="usa-link" aria-describedby="ref63">63</a>–<a href="#ref67" class="usa-link" aria-describedby="ref67">67</a>), leading to vacuolar-dependent degradation. Ste3 stability assays are frequently used when studying mutants defective in endocytosis (<a href="#ref15" class="usa-link" aria-describedby="ref15">15</a>, <a href="#ref68" class="usa-link" aria-describedby="ref68">68</a>). We constructed strains carrying an endogenous chromosomal integrated galactose-inducible HA-tagged <em>STE3</em> allele. Cells were grown to exponential phase, pulse/chase experiments were performed by addition and removal of galactose, and stability of Ste3 was examined by Western analysis.</p> <p>Ste3 was unstable in wild-type cells, having a half-life of ∼20 min (<a href="#fig6" class="usa-link">Fig. 6<em>A</em></a>). In contrast, Ste3 levels in <em>rvs161</em> cells remained stable for up to 45 min and gradually declined at 60 min. These results are similar to those previously published (<a href="#ref15" class="usa-link" aria-describedby="ref15">15</a>, <a href="#ref66" class="usa-link" aria-describedby="ref66">66</a>). Loss of <em>SUR4</em> in <em>rvs161</em> cells reinitiated Ste3 degradation (<a href="#fig6" class="usa-link">Fig. 6<em>A</em></a><em>, rvs161 versus rvs161 sur4</em>), and <em>CDC55</em> was required for <em>sur4</em> suppressor activity (<a href="#fig6" class="usa-link">Fig. 6<em>A</em></a><em>, rvs161 sur4 versus rvs161 sur4 cdc55</em>). Although <em>sur4</em> and <em>cdc55</em> cells degraded Ste3 (<a href="#fig6" class="usa-link">Fig. 6<em>B</em></a>), <em>sur4 cdc55</em> cells harbored a severe defect (<a href="#fig6" class="usa-link">Fig. 6<em>B</em></a><em>, sur4 versus sur4 cdc55</em>). Thus Cdc55 function is essential for Ste3 degradation in cells lacking <em>SUR4</em> alone. Loss of <em>cdc55</em> in <em>rvs161</em> cells did not restore normal Ste3 degradation (<a href="#fig6" class="usa-link">Fig. 6<em>A</em></a><em>, rvs161 versus rvs161 cdc55</em>).</p> <figure class="fig xbox font-sm" id="fig6"><h3 class="obj_head">FIGURE 6.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=2673262_zbc0220974520006.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/2673262/be9d1733f18c/zbc0220974520006.jpg" loading="lazy" height="392" width="416" alt="FIGURE 6."></a></p> <div class="p text-right font-secondary"><a href="figure/fig6/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>CDC55 regulates the endocytosis of the a-factor receptor, Ste3.</strong> All strains carry a <em>STE3</em>::<em>GAL-STE3-HA</em>::<em>TRP1</em> allele. Strains were grown to exponential phase in YEPD or selective minimal media at 30 °C, shifted to YP or selective minimal media containing 2% raffinose for 1.5 h, and then shifted to YP or selective minimal media containing 2% galactose for 3 h to induce expression of Ste3-HA. To shut off expression of Ste3-HA, yeast strains were shifted to YEPD or selective media containing 2% glucose with (<em>E</em>) or without 3.4% NaCl (<em>A–D</em>). Samples were taken at the indicated times following the initial shut-off by glucose. Ste3-HA levels were determined by Western analysis. Actin levels (<em>lower panel</em>) were used as a loading control.</p></figcaption></figure><p><em>CDC55 Overexpression Restores Ste3 Endocytosis in rvs161 Cells</em>—We next determined whether <em>CDC55</em> overexpression and subsequent PP2A/CAPP activation leads to reinitiation of endocytosis. This was the case, as <em>CDC55</em> overexpression alone reduced Ste3 levels in <em>rvs161</em> cells grown under normal vegetative conditions. In fact, <em>rvs161</em> cells overexpressing <em>CDC55</em> had dramatically less steady-state levels of Ste3 compared with wild-type cells (<a href="#fig6" class="usa-link">Fig. 6<em>C</em></a>). The deletion of <em>PEP4</em>, which encodes the vacuolar proteinase A required for endocytosis-dependent degradation of Ste3 (<a href="#ref63" class="usa-link" aria-describedby="ref63">63</a>), restored Ste3 accumulation (<a href="#fig6" class="usa-link">Fig. 6, <em>C, rvs161 Yep24-CDC55 versus D</em></a><em>, pep4 rvs161 Yep24-CDC55</em>). Therefore, Ste3 is being expressed and produced to wild-type levels, and its disappearance is solely due to vacuolar-dependent proteolysis.</p> <p>If <em>CDC55</em> overexpression suppresses <em>rvs161</em> defects through reinitiation of endocytosis, it should do so under stress conditions; thus we tested this hypothesis. Under osmotic stress, Ste3 levels still did not accumulate in <em>rvs161</em> cells overexpressing <em>CDC55</em> (<a href="#fig6" class="usa-link">Fig. 6<em>E</em></a><em>, rvs161 versus rvs161 Yep24-CDC55</em>).</p> <p><em>CDC55 Overexpression or Loss of SUR4 Reinitiates Fluid-phase Endocytosis in rvs161 Cells</em>—<em>rvs161</em> cells harbor defects in receptor-mediated and fluid phase endocytosis (<a href="#ref15" class="usa-link" aria-describedby="ref15">15</a>). Thus, we asked whether <em>CDC55</em> overexpression could restore fluid-phase endocytosis to mutant cells. We did so by monitoring the time-dependent internalization and vacuolar localization of the fluid-phase endocytic maker, lucifer yellow. <em>CDC55</em> was overexpressed as described under “Experimental Procedures” using <em>YIp-GPD-CDC55-URA3</em>. Cells were designated as having either rim staining (plasma membrane), or rim and vacuolar staining.</p> <p>Lucifer yellow staining in wild-type cells was almost completely localized to the rim and vacuole (∼99%), whereas most <em>rvs161</em> cells showed only rim staining (∼85%) (<a href="#fig7" class="usa-link">Fig. 7</a>, <em>WT GPD versus rvs161 GPD</em>). Overexpression of <em>CDC55</em> in <em>rvs161</em> cells resulted in a ∼3.5-fold increase in the percentage of cells with rim and vacuolar staining (<a href="#fig7" class="usa-link">Fig. 7</a>, <em>rvs161 GPD versus rvs161 GPD-CDC55</em>). We next asked what PP2A/CAPP catalytic subunits were required. The putative CAPP catalytic subunit, Sit4, and the PP2A catalytic subunits, Pph21/22, were required for the observed Cdc55-dependent increase, as lucifer yellow staining returned to the rim of <em>CDC55</em>-overexpressing <em>rvs161</em> cells lacking these catalytic subunits (92–98%) (<a href="#fig7" class="usa-link">Fig. 7</a>, <em>rvs161 GPD-CDC55 versus rvs161 sit4 GPD-CDC55</em> and <em>rvs161 pph21 pph22 GPD-CDC55</em>). Finally, we found no difference in lucifer yellow internalization between wild-type and <em>rvs161 sur4</em> cells (not shown). Based on these results, we conclude PP2A/CAPP activation, either by <em>CDC55</em> overexpression or loss of <em>SUR4</em>, results in reinitiating endocytosis, which is essential for the viability of <em>rvs161</em> cells under stress.</p> <figure class="fig xbox font-sm" id="fig7"><h3 class="obj_head">FIGURE 7.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=2673262_zbc0220974520007.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/2673262/2e2b4fb000d7/zbc0220974520007.jpg" loading="lazy" height="372" width="475" alt="FIGURE 7."></a></p> <div class="p text-right font-secondary"><a href="figure/fig7/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>CDC55 regulates the internalization of lucifer yellow.</strong> LY internalization was assayed in cells containing the <em>GPD</em> promoter alone or <em>CDC55</em> under the regulation of the <em>GPD</em> promoter. Cells were grown to early logarithmic phase in rich medium at 30 °C, and then allowed to internalize LY at 30 °C for 60 min. The average percentage of cells that accumulated LY <em>versus</em> total number of cells was determined (<em>n</em> = 350) and standard deviations are indicated.</p></figcaption></figure><p><em>CAPP Activity Is Elevated in Cells Overexpressing CDC55 or Lacking SUR4</em>—Our hypothesis is that PP2A/CAPP activation is a necessary event for bypassing the need for Rvs161 function during stress. Thus, we asked if loss of <em>SUR4</em> or overexpression of <em>CDC55</em> causes an increase in <em>in vitro</em> CAPP activity. We measured basal/ceramide-independent (<a href="#fig8" class="usa-link">Fig. 8</a>, <em>shaded bars</em>) and ceramide-activated (<a href="#fig8" class="usa-link">Fig. 8</a>, <em>solid bars</em>) protein phosphatase activities as described (<a href="#ref50" class="usa-link" aria-describedby="ref50">50</a>).</p> <figure class="fig xbox font-sm" id="fig8"><h3 class="obj_head">FIGURE 8.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=2673262_zbc0220974520008.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/2673262/457431bb935b/zbc0220974520008.jpg" loading="lazy" height="812" width="475" alt="FIGURE 8."></a></p> <div class="p text-right font-secondary"><a href="figure/fig8/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>Loss of <em>SUR4</em> or the overexpression of <em>CDC55</em> increases CAPP activity.</strong> Cytosolic extracts were assayed for basal PP2A activity (<em>shaded bars</em>) and CAPP activity (<em>solid bars</em>) as described under “Experimental Procedures” using 5 μ<span class="font-variant-small-caps">m</span> [<sup>32</sup>P]phosphohistone as a substrate. The results are the average values of two separate experiments.</p></figcaption></figure><p>In all strains tested, the majority of the basal/ceramide-independent catalytic phosphatase activity required the presence of the PP2A subunits, Pph21/Pph22, and not the CAPP catalytic subunit, Sit4 (<a href="#fig8" class="usa-link">Fig. 8</a>, <em>shaded bars</em>). CAPP activity was absolutely dependent on Cdc55 and Tpd3 functions (<a href="#fig8" class="usa-link">Fig. 8</a>, <em>solid bars, WT versus cdc55, tpd3</em>). These results are in good agreement with published work (<a href="#ref50" class="usa-link" aria-describedby="ref50">50</a>). In contrast to what was previously published, our results indicate two CAPP species can be activated and are comprised of Tpd3/Cdc55/Sit4 and Tpd3/Cdc55/Pph21-Pph22. Strains lacking Pph21 and Pph22 together, or Sit4 alone, had severely reduced CAPP activity (<a href="#fig8" class="usa-link">Fig. 8</a>, <em>WT versus sit4 or pph21 pph22</em>). Thus Cdc55 can target either Sit4 or Pph21/Pph22 for ceramide activation.</p> <p>The loss of <em>SUR4</em> in <em>rvs161</em> cells caused an increase in a CAPP activity (∼1.7-fold) (<a href="#fig8" class="usa-link">Fig. 8</a>, <em>WT versus rvs161 sur4</em>) that was lost when either <em>PPH21</em> and <em>PPH22</em>, or <em>SIT4</em>, were deleted (<a href="#fig8" class="usa-link">Fig. 8</a>, <em>rvs161 sur4 versus rvs161 sur4 pph21 pph22</em> or <em>rvs161 sur4 sit4</em>). Identical results were obtained when we examined the relationship between <em>CDC55</em> overexpression and CAPP activity (∼1.9-fold) (<a href="#fig8" class="usa-link">Fig. 8</a>, <em>WT Yep-CDC55, rvs161 Yep-CDC55 versus rvs161 sit4 Yep-CDC55, rvs161 pph21 pph22 Yep-CDC55</em>). Overexpression of <em>CDC55</em> alone increased a CAPP activity that was dependent on Pph21 and Pph22, or Sit4. Thus, mechanisms suppressing <em>rvs161</em> endocytosis defects, namely loss of <em>SUR4</em> or <em>CDC55</em> overexpression, increase CAPP activity in cells (Figs. <a href="#fig2" class="usa-link">2</a>, <a href="#fig6" class="usa-link">6</a>, and <a href="#fig7" class="usa-link">7</a>). When CAPP activity is lost, both through deletion of <em>PPH21</em> and <em>PPH22</em>, or <em>SIT4</em>, suppressor activity is lost and this correlates with the reappearance of endocytosis defects in mutant cells (Figs. <a href="#fig2" class="usa-link">2</a>, <a href="#fig3" class="usa-link">3</a>, <a href="#fig6" class="usa-link">6</a>, and <a href="#fig7" class="usa-link">7</a>).</p> <p><em>Lethal Genetic Interactions Exist between Loss of CDC55 and Loss of Factors Regulating Endocytosis and/or Actin Cytoskeletal Structure</em>—Our hypothesis is PP2A/CAPP functions under stress to regulate endocytosis. To begin to uncover factors regulated by PP2A/CAPP when cells are stressed, we determined whether lethal genetic interactions existed between loss of <em>CDC55</em> and loss of genes synthetic lethal with loss of <em>RVS161</em> (<a href="#ref20" class="usa-link" aria-describedby="ref20">20</a>, <a href="#ref69" class="usa-link" aria-describedby="ref69">69</a>, <a href="#ref70" class="usa-link" aria-describedby="ref70">70</a>). These genes regulate endocytosis and/or actin cytoskeletal organization (<a href="#ref69" class="usa-link" aria-describedby="ref69">69</a>, <a href="#ref71" class="usa-link" aria-describedby="ref71">71</a>–<a href="#ref74" class="usa-link" aria-describedby="ref74">74</a>, <a href="#ref75" class="usa-link" aria-describedby="ref75">75</a>). Double null haploid cells were generated and tested as described under “Experimental Procedures.”</p> <p>Loss of <em>CDC55</em> was synthetic lethal with loss of <em>SLA2</em> (<a href="#tbl2" class="usa-link">Table 2</a>), which encodes an adaptor protein involved in membrane cytoskeleton assembly (<a href="#ref72" class="usa-link" aria-describedby="ref72">72</a>), and loss of <em>VPS20</em>, which encodes for a subunit of the endosomal sorting complex, ESCRTIII, required for transport of transmembrane proteins from multivesicular bodies to the lysosomal/vacuolar lumen (<a href="#ref73" class="usa-link" aria-describedby="ref73">73</a>). Loss of <em>CDC55</em> was also synthetic lethal at 37 °C with loss of <em>ABP1. ABP1</em> encodes for an actin-binding protein, which regulates actin cytoskeleton through binding to the SH3 domain of Rvs167 (<a href="#ref69" class="usa-link" aria-describedby="ref69">69</a>, <a href="#ref71" class="usa-link" aria-describedby="ref71">71</a>).</p> <section class="tw xbox font-sm" id="tbl2"><h3 class="obj_head">TABLE 2.</h3> <div class="caption p"><p><strong>cdc55 synthetic lethal genetic interactions with genes regulating endocytosis</strong> Haploid progeny from crosses were grown on rich media for 72 h at 30 °C or 37 °C.</p></div> <div class="tbl-box p" tabindex="0"><table class="content" frame="hsides" rules="groups"> <thead><tr> <th colspan="1" rowspan="1" align="center" valign="top"><strong>Strain</strong></th> <th colspan="1" rowspan="1" align="center" valign="top"><strong>30 °C</strong></th> <th colspan="1" rowspan="1" align="center" valign="top"><strong>37 °C</strong></th> </tr></thead> <tbody> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>rvs161</em></td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>cdc55</em></td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>rvs161 cdc55</em></td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> <td colspan="1" rowspan="1" align="center" valign="top"> - </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>abp1</em></td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>abp1 cdc55</em></td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> <td colspan="1" rowspan="1" align="center" valign="top"> - </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>sac6</em></td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> <td colspan="1" rowspan="1" align="center" valign="top"> - </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>sac6 cdc55</em></td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> <td colspan="1" rowspan="1" align="center" valign="top"> - </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>sla1</em></td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> <td colspan="1" rowspan="1" align="center" valign="top"> - </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>sla1 cdc55</em></td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> <td colspan="1" rowspan="1" align="center" valign="top"> - </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>sla2</em></td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> <td colspan="1" rowspan="1" align="center" valign="top"> - </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>sla2 cdc55</em></td> <td colspan="1" rowspan="1" align="center" valign="top"> - </td> <td colspan="1" rowspan="1" align="center" valign="top"> - </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>vps20</em></td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> <td colspan="1" rowspan="1" align="center" valign="top"> - </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>vps20 cdc55</em></td> <td colspan="1" rowspan="1" align="center" valign="top"> - </td> <td colspan="1" rowspan="1" align="center" valign="top"> - </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>vps21</em></td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> <td colspan="1" rowspan="1" align="center" valign="top"> - </td> </tr> <tr> <td colspan="1" rowspan="1" align="left" valign="top"><em>vps21 cdc55</em></td> <td colspan="1" rowspan="1" align="center" valign="top"> + </td> <td colspan="1" rowspan="1" align="center" valign="top"> - </td> </tr> </tbody> </table></div> <div class="p text-right font-secondary"><a href="table/tbl2/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div></section><p>In contrast, <em>cdc55 sla1, cdc55 sac6</em>, and <em>cdc55 vps21</em> mutants were all viable. Sla1 interacts with proteins that regulate actin dynamics and/or are required for endocytosis, such as Rvs167 (<a href="#ref76" class="usa-link" aria-describedby="ref76">76</a>). Sac6, also known as fimbrin, is an actin-bundling protein important in the organization and maintenance of the actin cytoskeleton (<a href="#ref74" class="usa-link" aria-describedby="ref74">74</a>), whereas Vps21, a mammalian Rab5 homolog, is a GTPase required for transport during endocytosis and for correct sorting of vacuolar hydrolases (<a href="#ref72" class="usa-link" aria-describedby="ref72">72</a>, <a href="#ref75" class="usa-link" aria-describedby="ref75">75</a>). Thus Cdc55, and presumably PP2A/CAPP, genetically interacts with a specific subset of factors involved in regulating endocytosis and the actin cytoskeleton.</p> <p><em>PP2A/CAPP Can Only Compensate for rvs161 Function under Stress</em>—Our results show that PP2A/CAPP can replace Rvs161 function under stress (<a href="#fig4" class="usa-link">Fig. 4</a>). Thus, we asked whether PP2A/CAPP activation through <em>CDC55</em> overexpression could compensate for loss of <em>SLA1, SLA2, SAC6</em>, or <em>VPS20</em> and suppress the <em>ts</em> stress phenotype of cells lacking these genes. This was not the case, because <em>sla1, sla2, sac6</em>, and <em>vps20</em> cells overexpressing <em>CDC55</em> remained incapable of growing at high temperature. Thus PP2A/CAPP can only compensate for Rvs161 function under stress.</p></section><section id="sec3"><h2 class="pmc_sec_title">DISCUSSION</h2> <p>We have presented evidence clearly showing sphingolipid-dependent suppression of <em>rvs</em> defects functions through the PP2A/CAPP-dependent reinitiation of endocytosis. Loss of <em>SUR4</em> suppresses the lethal NaCl osmotic growth defect of <em>rvs161</em> cells (<a href="#fig2" class="usa-link">Fig. 2</a>) (<a href="#ref18" class="usa-link" aria-describedby="ref18">18</a>, <a href="#ref20" class="usa-link" aria-describedby="ref20">20</a>). Loss of <em>SUR4</em> does not remediate the actin defects of mutant cells under this condition (<a href="#fig5" class="usa-link">Fig. 5</a>), however, it does reinitiate endocytosis (<a href="#fig6" class="usa-link">Fig. 6</a>). Suppression and reinitiation of endocytosis by loss of <em>SUR4</em> requires a PP2A/CAPP composed of Tpd3/Cdc55/Pph21-Pph22 (Figs. <a href="#fig2" class="usa-link">2</a> and <a href="#fig3" class="usa-link">3</a>). Moreover, direct activation of PP2A/CAPP, through <em>CDC55</em> overexpression, suppressed the growth (<a href="#fig4" class="usa-link">Fig. 4</a>) and endocytosis defects (Figs. <a href="#fig6" class="usa-link">6</a> and <a href="#fig7" class="usa-link">7</a>) of <em>rvs161</em> cells. It did not remediate their actin defects (<a href="#fig5" class="usa-link">Fig. 5</a>). Interestingly, in this case Cdc55 targeted either Pph21/Pph22 or Sit4 for CAPP activity (<a href="#fig7" class="usa-link">Fig. 7</a>).</p> <p>Thus, a second important result from our study is that two CAPP species can be formed in yeast cells. This is borne out by our <em>in vitro</em> CAPP assays, where decreased CAPP activity was observed in <em>pph21 pph22</em> and <em>sit4</em> cells (<a href="#fig8" class="usa-link">Fig. 8</a>). Heterotrimeric CAPP activities have been purified from glioma cells and rat brain (<a href="#ref39" class="usa-link" aria-describedby="ref39">39</a>, <a href="#ref42" class="usa-link" aria-describedby="ref42">42</a>). They are members of the PP2A family, and they contain catalytic subunits orthologous to Pph21/Pph22. Small interference RNA-mediated depletion of this catalytic subunit in rat insulin-secreting cells (INS 832/13) significantly reduces CAPP activity (<a href="#ref77" class="usa-link" aria-describedby="ref77">77</a>), as does combined loss of <em>PPH21</em> and <em>PPH22</em> in yeast cells (<a href="#fig8" class="usa-link">Fig. 8</a>).</p> <p>The human ortholog of the putative CAPP catalytic subunit, Sit4, is the phosphatase, Pp6 (<a href="#ref78" class="usa-link" aria-describedby="ref78">78</a>). Sit4 may be the target of viral-induced cell death of yeast, through its association with Cdc55. Yeast cells are killed by overexpression of the adenovirus early region 4 open reading frame 4 (E4orf4), and this E4orf4-induced toxicity can be suppressed by deleting <em>CDC55</em> (<a href="#ref79" class="usa-link" aria-describedby="ref79">79</a>–<a href="#ref81" class="usa-link" aria-describedby="ref81">81</a>). This suggests E4orf4 uses Cdc55 to target a phosphatase. The catalytic subunit may be Sit4, because <em>sit4</em> cells are highly sensitive to E4orf4 killing, and this phenotype cannot be suppressed by deletion of <em>CDC55</em> (<a href="#ref79" class="usa-link" aria-describedby="ref79">79</a>). Human cells lacking Pp6 are also highly sensitive to killing by E4orf4 expression (<a href="#ref79" class="usa-link" aria-describedby="ref79">79</a>). To date, there is no direct evidence that Cdc55 and Sit4, or their metazoan counterparts, directly interact. However, association may only occur under very specific circumstances, like the stress of a viral assault.</p> <p>Heat stress increases the levels of several ceramide species in <em>S. cerevisiae</em> through <em>de novo</em> biosynthesis (<a href="#ref29" class="usa-link" aria-describedby="ref29">29</a>), whereas the largest heat-induced increase of sphingoid base includes phytosphingosine and dihydrosphingosine (<a href="#ref32" class="usa-link" aria-describedby="ref32">32</a>, <a href="#ref34" class="usa-link" aria-describedby="ref34">34</a>). <em>sur4</em> mutants constitutively accumulate the long-chain sphingoid base, phytosphingosine, and they have reduced levels of ceramide and complex sphingolipids (<a href="#ref19" class="usa-link" aria-describedby="ref19">19</a>). Based on these results, phytosphingosine is the only common sphingolipid accumulating that could directly activate CAPP.</p> <p><em>In vitro</em> CAPP assays have extensively examined the lipid requirements for CAPP activation (<a href="#ref38" class="usa-link" aria-describedby="ref38">38</a>, <a href="#ref41" class="usa-link" aria-describedby="ref41">41</a>, <a href="#ref42" class="usa-link" aria-describedby="ref42">42</a>, <a href="#ref82" class="usa-link" aria-describedby="ref82">82</a>, <a href="#ref83" class="usa-link" aria-describedby="ref83">83</a>). CAPP can be activated by C<sub>2</sub>-, C<sub>6</sub>-, and C<sub>18</sub>-ceramides, as well as natural ceramides derived from bovine brain. Sphingosine, sphingolmyelin, and diacylglycerol have also been tested and do not activate CAPP. Structural requirements for CAPP activation by ceramide include the presence of the 4,5-<em>trans</em> double bond in the sphingoid base, and the primary and secondary hydroxyl groups of the sphingoid backbone. Although ceramide has long been recognized as the putative lipid activator of CAPP, there are reports that palmitate (<a href="#ref84" class="usa-link" aria-describedby="ref84">84</a>, <a href="#ref85" class="usa-link" aria-describedby="ref85">85</a>), linoleic acid (<a href="#ref86" class="usa-link" aria-describedby="ref86">86</a>), and cholesterol (<a href="#ref87" class="usa-link" aria-describedby="ref87">87</a>) can also stimulate activity. Thus, lipids other than ceramide can be activators of CAPP.</p> <p><em>lcb1–100<sup>ts</sup></em> cells are defective in endocytosis at high temperature; <em>lcb1–100<sup>ts</sup></em> cells harbor a weakened serine pamitoyltransferase activity required for the first step in sphingolipid biosynthesis (<a href="#ref88" class="usa-link" aria-describedby="ref88">88</a>). The addition of exogenous phytosphingosine to these cells restores endocytosis (<a href="#ref89" class="usa-link" aria-describedby="ref89">89</a>). Riezman and colleagues (<a href="#ref53" class="usa-link" aria-describedby="ref53">53</a>) showed loss of Cdc55, or overexpression of the yeast casein kinase 2, Yck2, or protein kinase C, Pkc1, restores endocytosis to <em>lcb1–100<sup>ts</sup></em> cells. Based on these results, they suggest Cdc55 functions to negatively regulate the activities of Yck2 and/or Pkc1 in response to a sphingolipid generated signal. Our results show Cdc55-dependent PP2A/CAPP acts as a sphingolipid-dependent positive regulator of endocytosis, because its loss causes the reappearance of endocytosis defects. The fact that PP2A/CAPP activity can be differentially modulated by various lipid signals adds an additional tier of sophistication for regulating endocytosis.</p> <p>The overexpression of <em>SIT4</em> or loss of <em>SUR4</em>, remediates the endocytic/exocytic defects of cells lacking specific v- or t-SNARES (<a href="#ref51" class="usa-link" aria-describedby="ref51">51</a>, <a href="#ref52" class="usa-link" aria-describedby="ref52">52</a>). Defects are suppressed through Sit4-dependent regulation of the phosphorylation states of the plasma membrane t-SNARES, Sso1/Sso2, or v-SNARES Tlg1/Tlg2 (<a href="#ref51" class="usa-link" aria-describedby="ref51">51</a>, <a href="#ref52" class="usa-link" aria-describedby="ref52">52</a>). The roles of Tpd3, Cdc55, Pph21, and Pph22 were not explored as they were in the present study, nor was it tested whether <em>SIT4</em> overexpression or loss of <em>SUR4</em> suppress the endocytosis defects of these mutants when they are under osmotic stress. So the exact molecular species of PP2A/CAPP were not resolved.</p> <p>Our synthetic lethal studies indicate stress-induced PP2A/CAPP regulates some Rvs161-dependent function (<a href="#tbl2" class="usa-link">Table 2</a>). Rvs161 functions to “sense” and induce membrane curvature through its N-terminal BAR domain (<a href="#ref1" class="usa-link" aria-describedby="ref1">1</a>). <em>rvs161</em> mutants accumulate vesicles at the plasma membrane (<a href="#ref16" class="usa-link" aria-describedby="ref16">16</a>, <a href="#ref90" class="usa-link" aria-describedby="ref90">90</a>), and synthetic lethal screening has establishing a putative role for Rvs161 in vesicle trafficking (<a href="#ref70" class="usa-link" aria-describedby="ref70">70</a>). Two-hybrid screens using Rvs161 as bait (<a href="#ref20" class="usa-link" aria-describedby="ref20">20</a>, <a href="#ref91" class="usa-link" aria-describedby="ref91">91</a>) have not uncovered putative interactions with proteins regulating vesicle secretion. Rvs167, which also contains a BAR domain and binds Rvs161, interacts by two-hybrid with Sec8, Sec20, and Exo70, which are involved in vesicle transport (<a href="#tbl2" class="usa-link">Table 2</a> (<a href="#ref91" class="usa-link" aria-describedby="ref91">91</a>).</p> <p>Based on our results, we have put forth a model to explain how multiple PP2A/CAPP species can be targeted and activated (<a href="#fig9" class="usa-link">Fig. 9</a>). <em>rvs161</em> cells harbor endocytosis defects under stress conditions, which causes cell death (<a href="#fig9" class="usa-link">Fig. 9<em>A</em></a>). During some types of stress, Cdc55 levels increase, modeled by our overexpression studies (<a href="#fig9" class="usa-link">Fig. 9<em>B</em></a>). The increase in Cdc55 levels shifts the cellular balance of PP2A from predominately a single Tpd3/Rts1/Pph21–22 heterotrimer to at least two species comprised of Tpd3/Cdc55/Pph21–22 and Tpd3/Cdc55/Sit4; Rts1 is the other PP2A B regulatory subunit in yeast (<a href="#tbl1" class="usa-link">Table 1</a>), and it is in 10-fold excess compared with Cdc55 (<a href="#ref92" class="usa-link" aria-describedby="ref92">92</a>). The reshuffling of PP2A activities results in targeting cell factors regulating endocytosis, restoring viability to <em>rvs161</em> cells.</p> <figure class="fig xbox font-sm" id="fig9"><h3 class="obj_head">FIGURE 9.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=2673262_zbc0220974520009.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/2673262/ddc33dfd24f7/zbc0220974520009.jpg" loading="lazy" height="1181" width="400" alt="FIGURE 9."></a></p> <div class="p text-right font-secondary"><a href="figure/fig9/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>Model detailing how multiple PP2A/CAPP species can be activated.</strong> <em>A, rvs161</em> cells harbor defects in endocytosis and do not survive under osmotic stress. <em>B</em>, the overexpression of <em>CDC55</em> or, <em>C</em>, the loss of <em>SUR4</em> increases PP2A/CAPP activity resulting in the reinitiation of endocytosis and survival under osmotic stress.</p></figcaption></figure><p>The PP2A catalytic subunits, Pph21 and Pph22, and the CAPP catalytic subunit, Sit4, are required. Here, PP2A/CAPP activation occurs in a sphingolipid-independent manner. Microarray analyses have shown <em>CDC55</em> expression increases in response to heat shock, nitrogen depletion, and during stationary phase (<a href="#ref93" class="usa-link" aria-describedby="ref93">93</a>). <em>rvs61</em> cells are inviable when starved for nitrogen, which results in their premature entry into stationary phase (<a href="#ref12" class="usa-link" aria-describedby="ref12">12</a>).</p> <p>When a specific stress generates a PP2A/CAPP-responsive sphingolipid signal, activation occurs and functions through the PP2A catalytic subunits, Pph21 and Pph22 (<a href="#fig9" class="usa-link">Fig. 9<em>C</em></a>). Cdc55 levels remain constant, and its affinity for Pph21 and Pph22, and not Sit4, is increased due to post-translational modifications and/or changes in Cdc55-protein interactions. Thus, the Cdc55 activity state is regulated by various stresses to ultimately activate and regulate the substrate specificities of multiple PP2A/CAPP species.</p></section><section id="ack1" class="ack"><h2 class="pmc_sec_title">Acknowledgments</h2> <p>We thank Drs. Mark Rose and Valeria Brizzio for the rvs point mutant strains. We are grateful for the helpful discussions with the Bergman, Haines, and Edlind laboratories. We appreciate discussions with Drs. Martin Adelson, Eli Mordechai, Jason Trama, Scott Gygax, Kathy Iacono, John Hoey, and John Blaho.</p></section><section id="notes1"><section id="fn-group1" class="fn-group"><div class="fn-group p font-secondary-light font-sm"><div class="fn p" id="fn1"> <sup>*</sup><p class="display-inline">This work was supported, in whole or in part, by National Institutes of Health Grant HL67401. This work was also supported by Medical Diagnostics Laboratories, LLC.</p> </div></div></section></section><section id="fn-group2" class="fn-group"><h2 class="pmc_sec_title">Footnotes</h2> <div class="fn-group p font-secondary-light font-sm"><div class="fn p" id="fn2"> <sup>2</sup><p class="display-inline">The abbreviations used are: BAR, BIN/amphiphysin/RVS domain; CAPP, ceramide-activated protein phosphatase; PP2A, protein phosphatase 2A; RVS, reduced viability upon starvation; SNARE, soluble NSF attachment protein receptors; LY, luciferase yellow.</p> </div></div></section><section id="ref-list1" class="ref-list"><h2 class="pmc_sec_title">References</h2> <section id="ref-list1_sec2"><ul class="ref-list font-sm" style="list-style-type:none"> <li id="ref1"> <span class="label">1.</span><cite>Ren, G., Vajjhala, P., Lee, J. S., Winsor, B., and Munn, A. L. (2006) Microbiol. Mol. Biol. Rev. 70 37–120</cite> [<a href="https://doi.org/10.1128/MMBR.70.1.37-120.2006" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1393252/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16524918/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Microbiol.%20Mol.%20Biol.%20Rev.&amp;volume=70&amp;publication_year=2006&amp;pages=37&amp;pmid=16524918&amp;doi=10.1128/MMBR.70.1.37-120.2006&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x3593030"> <span class="label">2.</span><cite>Gallop, J. L., and McMahon, H. T. (2005) Biochem. Soc. Symp. 72 223–231</cite> [<a href="https://doi.org/10.1042/bss0720223" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15649145/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biochem.%20Soc.%20Symp.&amp;volume=72&amp;publication_year=2005&amp;pages=223&amp;pmid=15649145&amp;doi=10.1042/bss0720223&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref3"> <span class="label">3.</span><cite>Peter, B. J., Kent, H. M., Mills, I. G., Vallis, Y., Butler, P. J., Evans, P. R., and McMahon, H. T. (2004) Science 303 495–499</cite> [<a href="https://doi.org/10.1126/science.1092586" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14645856/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&amp;volume=303&amp;publication_year=2004&amp;pages=495&amp;pmid=14645856&amp;doi=10.1126/science.1092586&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref4"> <span class="label">4.</span><cite>Zhang, B., and Zelhof, A. C. (2002) Traffic 3 452–460</cite> [<a href="https://doi.org/10.1034/j.1600-0854.2002.30702.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12047553/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Traffic&amp;volume=3&amp;publication_year=2002&amp;pages=452&amp;pmid=12047553&amp;doi=10.1034/j.1600-0854.2002.30702.x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref5"> <span class="label">5.</span><cite>Sivadon, P., Crouzet, M., and Aigle, M. (1997) FEBS Lett. 417 21–27</cite> [<a href="https://doi.org/10.1016/s0014-5793(97)01248-9" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9395067/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=FEBS%20Lett.&amp;volume=417&amp;publication_year=1997&amp;pages=21&amp;pmid=9395067&amp;doi=10.1016/s0014-5793(97)01248-9&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref6"> <span class="label">6.</span><cite>Itoh, T., Erdmann, K. S., Roux, A., Habermann, B., Werner, H., and De Camilli, P. (2005) Dev. Cell 9 791–804</cite> [<a href="https://doi.org/10.1016/j.devcel.2005.11.005" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16326391/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Dev.%20Cell&amp;volume=9&amp;publication_year=2005&amp;pages=791&amp;pmid=16326391&amp;doi=10.1016/j.devcel.2005.11.005&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x3593bb8"> <span class="label">7.</span><cite>Zimmerberg, J., and McLaughlin, S. (2004) Curr. Biol. 14 R250–R252</cite> [<a href="https://doi.org/10.1016/j.cub.2004.02.060" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15043839/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Curr.%20Biol.&amp;volume=14&amp;publication_year=2004&amp;pages=R250&amp;pmid=15043839&amp;doi=10.1016/j.cub.2004.02.060&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x3593e40"> <span class="label">8.</span><cite>Takei, K., Slepnev, V. I., Haucke, V., and De Camilli, P. (1999) Nat. Cell Biol. 1 33–39</cite> [<a href="https://doi.org/10.1038/9004" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10559861/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Cell%20Biol.&amp;volume=1&amp;publication_year=1999&amp;pages=33&amp;pmid=10559861&amp;doi=10.1038/9004&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x35940c8"> <span class="label">9.</span><cite>Lee, E., Marcucci, M., Daniell, L., Pypaert, M., Weisz, O. A., Ochoa, G. C., Farsad, K., Wenk, M. R., and De Camilli, P. (2002) Science 297 1193–1196</cite> [<a href="https://doi.org/10.1126/science.1071362" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12183633/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&amp;volume=297&amp;publication_year=2002&amp;pages=1193&amp;pmid=12183633&amp;doi=10.1126/science.1071362&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x3594350"> <span class="label">10.</span><cite>Farsad, K., Ringstad, N., Takei, K., Floyd, S. R., Rose, K., and De Camilli, P. (2001) J. Cell Biol. 155 193–200</cite> [<a href="https://doi.org/10.1083/jcb.200107075" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2198845/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11604418/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cell%20Biol.&amp;volume=155&amp;publication_year=2001&amp;pages=193&amp;pmid=11604418&amp;doi=10.1083/jcb.200107075&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref11"> <span class="label">11.</span><cite>Carlton, J., Bujny, M., Peter, B. J., Oorschot, V. M., Rutherford, A., Mellor, H., Klumperman, J., McMahon, H. T., and Cullen, P. J. (2004) Curr. Biol. 14 1791–1800</cite> [<a href="https://doi.org/10.1016/j.cub.2004.09.077" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15498486/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Curr.%20Biol.&amp;volume=14&amp;publication_year=2004&amp;pages=1791&amp;pmid=15498486&amp;doi=10.1016/j.cub.2004.09.077&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref12"> <span class="label">12.</span><cite>Crouzet, M., Urdaci, M., Dulau, L., and Aigle, M. (1991) Yeast 7 727–743</cite> [<a href="https://doi.org/10.1002/yea.320070708" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1776363/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Yeast&amp;volume=7&amp;publication_year=1991&amp;pages=727&amp;pmid=1776363&amp;doi=10.1002/yea.320070708&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref13"> <span class="label">13.</span><cite>Sivadon, P., Bauer, F., Aigle, M., and Crouzet, M. (1995) Mol. Gen. Genet. 246 485–495</cite> [<a href="https://doi.org/10.1007/BF00290452" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7891662/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mol.%20Gen.%20Genet.&amp;volume=246&amp;publication_year=1995&amp;pages=485&amp;pmid=7891662&amp;doi=10.1007/BF00290452&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref14"> <span class="label">14.</span><cite>Durrens, P., Revardel, E., Bonneu, M., and Aigle, M. (1995) Curr. Genet. 27 213–216</cite> [<a href="https://doi.org/10.1007/BF00326151" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7736604/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Curr.%20Genet.&amp;volume=27&amp;publication_year=1995&amp;pages=213&amp;pmid=7736604&amp;doi=10.1007/BF00326151&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref15"> <span class="label">15.</span><cite>Munn, A. L., Stevenson, B. J., Geli, M. I., and Riezman, H. (1995) Mol. Biol. Cell 6 1721–1742</cite> [<a href="https://doi.org/10.1091/mbc.6.12.1721" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC301328/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8590801/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mol.%20Biol.%20Cell&amp;volume=6&amp;publication_year=1995&amp;pages=1721&amp;pmid=8590801&amp;doi=10.1091/mbc.6.12.1721&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref16"> <span class="label">16.</span><cite>Breton, A. M., Schaeffer, J., and Aigle, M. (2001) Yeast 18 1053–1068</cite> [<a href="https://doi.org/10.1002/yea.755" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11481676/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Yeast&amp;volume=18&amp;publication_year=2001&amp;pages=1053&amp;pmid=11481676&amp;doi=10.1002/yea.755&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref17"> <span class="label">17.</span><cite>Brizzio, V., Gammie, A. E., and Rose, M. D. (1998) J. Cell Biol. 141 567–584</cite> [<a href="https://doi.org/10.1083/jcb.141.3.567" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2132759/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9566960/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cell%20Biol.&amp;volume=141&amp;publication_year=1998&amp;pages=567&amp;pmid=9566960&amp;doi=10.1083/jcb.141.3.567&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref18"> <span class="label">18.</span><cite>Desfarges, L., Durrens, P., Juguelin, H., Cassagne, C., Bonneu, M., and Aigle, M. (1993) Yeast 9 267–277</cite> [<a href="https://doi.org/10.1002/yea.320090306" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8488727/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Yeast&amp;volume=9&amp;publication_year=1993&amp;pages=267&amp;pmid=8488727&amp;doi=10.1002/yea.320090306&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref19"> <span class="label">19.</span><cite>Oh, C. S., Toke, D. A., Mandala, S., and Martin, C. E. (1997) J. Biol. Chem. 272 17376–17384</cite> [<a href="https://doi.org/10.1074/jbc.272.28.17376" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9211877/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=272&amp;publication_year=1997&amp;pages=17376&amp;pmid=9211877&amp;doi=10.1074/jbc.272.28.17376&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref20"> <span class="label">20.</span><cite>Germann, M., Swain, E., Bergman, L., and Nickels, J. T., Jr. (2005) J. Biol. Chem. 280 4270–4278</cite> [<a href="https://doi.org/10.1074/jbc.M412454200" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15561700/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=280&amp;publication_year=2005&amp;pages=4270&amp;pmid=15561700&amp;doi=10.1074/jbc.M412454200&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref21"> <span class="label">21.</span><cite>Dickson, R. C. (1998) Annu. Rev. Biochem. 67 27–48</cite> [<a href="https://doi.org/10.1146/annurev.biochem.67.1.27" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9759481/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Annu.%20Rev.%20Biochem.&amp;volume=67&amp;publication_year=1998&amp;pages=27&amp;pmid=9759481&amp;doi=10.1146/annurev.biochem.67.1.27&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref22"> <span class="label">22.</span><cite>Masserini, M., and Ravasi, D. (2001) Biochim. Biophys. Acta 1532 149–161</cite> [<a href="https://doi.org/10.1016/s1388-1981(01)00128-7" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11470236/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biochim.%20Biophys.%20Acta&amp;volume=1532&amp;publication_year=2001&amp;pages=149&amp;pmid=11470236&amp;doi=10.1016/s1388-1981(01)00128-7&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref23"> <span class="label">23.</span><cite>Hannun, Y. A. (1996) Science 274 1855–1859</cite> [<a href="https://doi.org/10.1126/science.274.5294.1855" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8943189/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&amp;volume=274&amp;publication_year=1996&amp;pages=1855&amp;pmid=8943189&amp;doi=10.1126/science.274.5294.1855&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x3c4aca8"> <span class="label">24.</span><cite>Smyth, M. J., Obeid, L. M., and Hannun, Y. A. (1997) Adv. Pharmacol. 41 133–154</cite> [<a href="https://doi.org/10.1016/s1054-3589(08)61057-1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9204144/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv.%20Pharmacol.&amp;volume=41&amp;publication_year=1997&amp;pages=133&amp;pmid=9204144&amp;doi=10.1016/s1054-3589(08)61057-1&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x3c4af30"> <span class="label">25.</span><cite>Kolesnick, R. N., and Kronke, M. (1998) Annu. Rev. Physiol. 60 643–665</cite> [<a href="https://doi.org/10.1146/annurev.physiol.60.1.643" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9558480/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Annu.%20Rev.%20Physiol.&amp;volume=60&amp;publication_year=1998&amp;pages=643&amp;pmid=9558480&amp;doi=10.1146/annurev.physiol.60.1.643&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x3b65dd8"> <span class="label">26.</span><cite>Dickson, R. C., and Lester, R. L. (2002) Biochim. Biophys. Acta 1583 13–25</cite> [<a href="https://doi.org/10.1016/s1388-1981(02)00210-x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12069845/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biochim.%20Biophys.%20Acta&amp;volume=1583&amp;publication_year=2002&amp;pages=13&amp;pmid=12069845&amp;doi=10.1016/s1388-1981(02)00210-x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x3b66060"> <span class="label">27.</span><cite>Ohanian, J., and Ohanian, V. (2001) Cell Mol. Life Sci. 58 2053–2068</cite> [<a href="https://doi.org/10.1007/PL00000836" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC11337328/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11814056/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell%20Mol.%20Life%20Sci.&amp;volume=58&amp;publication_year=2001&amp;pages=2053&amp;pmid=11814056&amp;doi=10.1007/PL00000836&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref28"> <span class="label">28.</span><cite>Dickson, R. C., Sumanasekera, C., and Lester, R. L. (2006) Prog. Lipid Res. 45 447–465</cite> [<a href="https://doi.org/10.1016/j.plipres.2006.03.004" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16730802/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Prog.%20Lipid%20Res.&amp;volume=45&amp;publication_year=2006&amp;pages=447&amp;pmid=16730802&amp;doi=10.1016/j.plipres.2006.03.004&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref29"> <span class="label">29.</span><cite>Wells, G. B., Dickson, R. C., and Lester, R. L. (1998) J. Biol. Chem. 273 7235–7243</cite> [<a href="https://doi.org/10.1074/jbc.273.13.7235" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9516416/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=273&amp;publication_year=1998&amp;pages=7235&amp;pmid=9516416&amp;doi=10.1074/jbc.273.13.7235&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x3b66768"> <span class="label">30.</span><cite>Dickson, R. C., Nagiec, E. E., Skrzypek, M., Tillman, P., Wells, G. B., and Lester, R. L. (1997) J. Biol. Chem. 272 30196–30200</cite> [<a href="https://doi.org/10.1074/jbc.272.48.30196" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9374502/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=272&amp;publication_year=1997&amp;pages=30196&amp;pmid=9374502&amp;doi=10.1074/jbc.272.48.30196&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x3b669f0"> <span class="label">31.</span><cite>Jenkins, G. M., Richards, A., Wahl, T., Mao, C., Obeid, L., and Hannun, Y. (1997) J. Biol. Chem. 272 32566–32572</cite> [<a href="https://doi.org/10.1074/jbc.272.51.32566" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9405471/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=272&amp;publication_year=1997&amp;pages=32566&amp;pmid=9405471&amp;doi=10.1074/jbc.272.51.32566&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref32"> <span class="label">32.</span><cite>Jenkins, G. M. (2003) Cell Mol. Life Sci. 60 701–710</cite> [<a href="https://doi.org/10.1007/s00018-003-2239-0" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC11138494/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12785717/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell%20Mol.%20Life%20Sci.&amp;volume=60&amp;publication_year=2003&amp;pages=701&amp;pmid=12785717&amp;doi=10.1007/s00018-003-2239-0&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref33"> <span class="label">33.</span><cite>Skrzypek, M. S., Nagiec, M. M., Lester, R. L., and Dickson, R. C. (1998) J. Biol. Chem. 273 2829–2834</cite> [<a href="https://doi.org/10.1074/jbc.273.5.2829" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9446592/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=273&amp;publication_year=1998&amp;pages=2829&amp;pmid=9446592&amp;doi=10.1074/jbc.273.5.2829&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref34"> <span class="label">34.</span><cite>Jenkins, G. M., and Hannun, Y. A. (2001) J. Biol. Chem. 276 8574–8581</cite> [<a href="https://doi.org/10.1074/jbc.M007425200" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11056159/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=276&amp;publication_year=2001&amp;pages=8574&amp;pmid=11056159&amp;doi=10.1074/jbc.M007425200&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref35"> <span class="label">35.</span><cite>Liu, J., Mathias, S., Yang, Z., and Kolesnick, R. N. (1994) J. Biol. Chem. 269 3047–3052</cite> [<a href="https://pubmed.ncbi.nlm.nih.gov/8300638/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=269&amp;publication_year=1994&amp;pages=3047&amp;pmid=8300638&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref36"> <span class="label">36.</span><cite>Muller, G., Ayoub, M., Storz, P., Rennecke, J., Fabbro, D., and Pfizenmaier, K. (1995) EMBO J. 14 1961–1969</cite> [<a href="https://doi.org/10.1002/j.1460-2075.1995.tb07188.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC398295/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7744003/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=EMBO%20J.&amp;volume=14&amp;publication_year=1995&amp;pages=1961&amp;pmid=7744003&amp;doi=10.1002/j.1460-2075.1995.tb07188.x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref37"> <span class="label">37.</span><cite>Fishbein, J. D., Dobrowsky, R. T., Bielawska, A., Garrett, S., and Hannun, Y. A. (1993) J. Biol. Chem. 268 9255–9261</cite> [<a href="https://pubmed.ncbi.nlm.nih.gov/8387486/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=268&amp;publication_year=1993&amp;pages=9255&amp;pmid=8387486&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref38"> <span class="label">38.</span><cite>Chalfant, C. E., Kishikawa, K., Mumby, M. C., Kamibayashi, C., Bielawska, A., and Hannun, Y. A. (1999) J. Biol. Chem. 274 20313–20317</cite> [<a href="https://doi.org/10.1074/jbc.274.29.20313" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10400653/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=274&amp;publication_year=1999&amp;pages=20313&amp;pmid=10400653&amp;doi=10.1074/jbc.274.29.20313&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref39"> <span class="label">39.</span><cite>Galadari, S., Kishikawa, K., Kamibayashi, C., Mumby, M. C., and Hannun, Y. A. (1998) Biochemistry 37 11232–11238</cite> [<a href="https://doi.org/10.1021/bi980911+" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9698369/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biochemistry&amp;volume=37&amp;publication_year=1998&amp;pages=11232&amp;pmid=9698369&amp;doi=10.1021/bi980911+&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x3af4898"> <span class="label">40.</span><cite>Chalfant, C. E., Kishikawa, K., Bielawska, A., and Hannun, Y. A. (2000) Methods Enzymol. 312 420–428</cite> [<a href="https://doi.org/10.1016/s0076-6879(00)12927-1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11070890/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Methods%20Enzymol.&amp;volume=312&amp;publication_year=2000&amp;pages=420&amp;pmid=11070890&amp;doi=10.1016/s0076-6879(00)12927-1&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref41"> <span class="label">41.</span><cite>Chalfant, C. E., Szulc, Z., Roddy, P., Bielawska, A., and Hannun, Y. A. (2004) J. Lipid Res. 45 496–506</cite> [<a href="https://doi.org/10.1194/jlr.M300347-JLR200" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14657198/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Lipid%20Res.&amp;volume=45&amp;publication_year=2004&amp;pages=496&amp;pmid=14657198&amp;doi=10.1194/jlr.M300347-JLR200&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref42"> <span class="label">42.</span><cite>Dobrowsky, R. T., Kamibayashi, C., Mumby, M. C., and Hannun, Y. A. (1993) J. Biol. Chem. 268 15523–15530</cite> [<a href="https://pubmed.ncbi.nlm.nih.gov/8393446/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=268&amp;publication_year=1993&amp;pages=15523&amp;pmid=8393446&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref43"> <span class="label">43.</span><cite>Wera, S., and Hemmings, B. A. (1995) Biochem. J. 311 17–29</cite> [<a href="https://doi.org/10.1042/bj3110017" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1136113/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7575450/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biochem.%20J.&amp;volume=311&amp;publication_year=1995&amp;pages=17&amp;pmid=7575450&amp;doi=10.1042/bj3110017&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref44"> <span class="label">44.</span><cite>Janssens, V., and Goris, J. (2001) Biochem. J. 353 417–439</cite> [<a href="https://doi.org/10.1042/0264-6021:3530417" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1221586/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11171037/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biochem.%20J.&amp;volume=353&amp;publication_year=2001&amp;pages=417&amp;pmid=11171037&amp;doi=10.1042/0264-6021:3530417&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref45"> <span class="label">45.</span><cite>Healy, A. M., Zolnierowicz, S., Stapleton, A. E., Goebl, M., DePaoli-Roach, A. A., and Pringle, J. R. (1991) Mol. Cell Biol. 11 5767–5780</cite> [<a href="https://doi.org/10.1128/mcb.11.11.5767" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC361948/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1656238/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mol.%20Cell%20Biol.&amp;volume=11&amp;publication_year=1991&amp;pages=5767&amp;pmid=1656238&amp;doi=10.1128/mcb.11.11.5767&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x3af5660"> <span class="label">46.</span><cite>Shu, Y., Yang, H., Hallberg, E., and Hallberg, R. (1997) Mol. Cell Biol. 17 3242–3253</cite> [<a href="https://doi.org/10.1128/mcb.17.6.3242" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC232177/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9154823/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mol.%20Cell%20Biol.&amp;volume=17&amp;publication_year=1997&amp;pages=3242&amp;pmid=9154823&amp;doi=10.1128/mcb.17.6.3242&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref47"> <span class="label">47.</span><cite>Zhao, Y., Boguslawski, G., Zitomer, R. S., and DePaoli-Roach, A. A. (1997) J. Biol. Chem. 272 8256–8262</cite> [<a href="https://doi.org/10.1074/jbc.272.13.8256" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9079645/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=272&amp;publication_year=1997&amp;pages=8256&amp;pmid=9079645&amp;doi=10.1074/jbc.272.13.8256&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref48"> <span class="label">48.</span><cite>van Zyl, W., Huang, W., Sneddon, A. A., Stark, M., Camier, S., Werner, M., Marck, C., Sentenac, A., and Broach, J. R. (1992) Mol. Cell Biol. 12 4946–4959</cite> [<a href="https://doi.org/10.1128/mcb.12.11.4946" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC360427/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1328868/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mol.%20Cell%20Biol.&amp;volume=12&amp;publication_year=1992&amp;pages=4946&amp;pmid=1328868&amp;doi=10.1128/mcb.12.11.4946&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref49"> <span class="label">49.</span><cite>Sneddon, A. A., Cohen, P. T., and Stark, M. J. (1990) EMBO J. 9 4339–4346</cite> [<a href="https://doi.org/10.1002/j.1460-2075.1990.tb07883.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC552220/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2176150/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=EMBO%20J.&amp;volume=9&amp;publication_year=1990&amp;pages=4339&amp;pmid=2176150&amp;doi=10.1002/j.1460-2075.1990.tb07883.x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref50"> <span class="label">50.</span><cite>Nickels JT, B. J. (1996) Genes Dev. 10 382–394</cite> [<a href="https://doi.org/10.1101/gad.10.4.382" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8600023/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Genes%20Dev.&amp;volume=10&amp;publication_year=1996&amp;pages=382&amp;pmid=8600023&amp;doi=10.1101/gad.10.4.382&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref51"> <span class="label">51.</span><cite>Gurunathan, S., Marash, M., Weinberger, A., and Gerst, J. E. (2002) Mol. Biol. Cell 13 1594–1607</cite> [<a href="https://doi.org/10.1091/mbc.01-11-0541" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC111129/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12006655/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mol.%20Biol.%20Cell&amp;volume=13&amp;publication_year=2002&amp;pages=1594&amp;pmid=12006655&amp;doi=10.1091/mbc.01-11-0541&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref52"> <span class="label">52.</span><cite>Marash, M., and Gerst, J. E. (2001) EMBO J. 20 411–421</cite> [<a href="https://doi.org/10.1093/emboj/20.3.411" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC133487/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11157748/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=EMBO%20J.&amp;volume=20&amp;publication_year=2001&amp;pages=411&amp;pmid=11157748&amp;doi=10.1093/emboj/20.3.411&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref53"> <span class="label">53.</span><cite>Friant, S., Zanolari, B., and Riezman, H. (2000) EMBO J. 19 2834–2844</cite> [<a href="https://doi.org/10.1093/emboj/19.12.2834" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC203374/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10856229/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=EMBO%20J.&amp;volume=19&amp;publication_year=2000&amp;pages=2834&amp;pmid=10856229&amp;doi=10.1093/emboj/19.12.2834&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref54"> <span class="label">54.</span><cite>Efendiev, R., Yudowski, G. A., Zwiller, J., Leibiger, B., Katz, A. I., Berggren, P. O., Pedemonte, C. H., Leibiger, I. B., and Bertorello, A. M. (2002) J. Biol. Chem. 277 44108–44114</cite> [<a href="https://doi.org/10.1074/jbc.M205173200" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12205083/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=277&amp;publication_year=2002&amp;pages=44108&amp;pmid=12205083&amp;doi=10.1074/jbc.M205173200&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref55"> <span class="label">55.</span><cite>Balguerie, A., Bagnat, M., Bonneu, M., Aigle, M., and Breton, A. M. (2002) Eukaryot. Cell 1 1021–1031</cite> [<a href="https://doi.org/10.1128/EC.1.6.1021-1031.2002" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC138763/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12477802/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Eukaryot.%20Cell&amp;volume=1&amp;publication_year=2002&amp;pages=1021&amp;pmid=12477802&amp;doi=10.1128/EC.1.6.1021-1031.2002&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref56"> <span class="label">56.</span><cite>Ito, H., Fukuda, Y., Murata, K., and Kimura, A. (1983) J. Bacteriol. 153 163–168</cite> [<a href="https://doi.org/10.1128/jb.153.1.163-168.1983" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC217353/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/6336730/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Bacteriol.&amp;volume=153&amp;publication_year=1983&amp;pages=163&amp;pmid=6336730&amp;doi=10.1128/jb.153.1.163-168.1983&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref57"> <span class="label">57.</span><cite>Rothstein, R. J. (1983) Methods Enzymol. 101 202–211</cite> [<a href="https://doi.org/10.1016/0076-6879(83)01015-0" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/6310324/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Methods%20Enzymol.&amp;volume=101&amp;publication_year=1983&amp;pages=202&amp;pmid=6310324&amp;doi=10.1016/0076-6879(83)01015-0&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref58"> <span class="label">58.</span><cite>Longtine, M. S., McKenzie, A., 3rd, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J. R. (1998) Yeast 14 953–961</cite> [<a href="https://doi.org/10.1002/(SICI)1097-0061(199807)14:10&lt;953::AID-YEA293&gt;3.0.CO;2-U" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9717241/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Yeast&amp;volume=14&amp;publication_year=1998&amp;pages=953&amp;pmid=9717241&amp;doi=10.1002/(SICI)1097-0061(199807)14:10&lt;953::AID-YEA293&gt;3.0.CO;2-U&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref59"> <span class="label">59.</span><cite>Adams, A. E., and Pringle, J. R. (1991) Methods Enzymol. 194 729–731</cite> [<a href="https://doi.org/10.1016/0076-6879(91)94054-g" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2005819/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Methods%20Enzymol.&amp;volume=194&amp;publication_year=1991&amp;pages=729&amp;pmid=2005819&amp;doi=10.1016/0076-6879(91)94054-g&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref60"> <span class="label">60.</span><cite>Hsiung, Y. G., Chang, H. C., Pellequer, J. L., La Valle, R., Lanker, S., and Wittenberg, C. (2001) Mol. Cell Biol. 21 2506–2520</cite> [<a href="https://doi.org/10.1128/MCB.21.7.2506-2520.2001" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC86883/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11259599/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mol.%20Cell%20Biol.&amp;volume=21&amp;publication_year=2001&amp;pages=2506&amp;pmid=11259599&amp;doi=10.1128/MCB.21.7.2506-2520.2001&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref61"> <span class="label">61.</span><cite>Sherman, F. (1991) Methods Enzymol. 194 3–21</cite> [<a href="https://doi.org/10.1016/0076-6879(91)94004-v" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2005794/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Methods%20Enzymol.&amp;volume=194&amp;publication_year=1991&amp;pages=3&amp;pmid=2005794&amp;doi=10.1016/0076-6879(91)94004-v&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref62"> <span class="label">62.</span><cite>Arndt, K. T., Styles, C. A., and Fink, G. R. (1989) Cell 56 527–537</cite> [<a href="https://doi.org/10.1016/0092-8674(89)90576-x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2537149/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell&amp;volume=56&amp;publication_year=1989&amp;pages=527&amp;pmid=2537149&amp;doi=10.1016/0092-8674(89)90576-x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref63"> <span class="label">63.</span><cite>Davis, N. G., Horecka, J. L., and Sprague, G. F., Jr. (1993) J. Cell Biol. 122 53–65</cite> [<a href="https://doi.org/10.1083/jcb.122.1.53" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2119599/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8391002/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cell%20Biol.&amp;volume=122&amp;publication_year=1993&amp;pages=53&amp;pmid=8391002&amp;doi=10.1083/jcb.122.1.53&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x466e888"> <span class="label">64.</span><cite>Roth, A. F., and Davis, N. G. (1996) J. Cell Biol. 134 661–674</cite> [<a href="https://doi.org/10.1083/jcb.134.3.661" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2120937/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8707846/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cell%20Biol.&amp;volume=134&amp;publication_year=1996&amp;pages=661&amp;pmid=8707846&amp;doi=10.1083/jcb.134.3.661&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x466eb10"> <span class="label">65.</span><cite>Roth, A. F., Sullivan, D. M., and Davis, N. G. (1998) J. Cell Biol. 142 949–961</cite> [<a href="https://doi.org/10.1083/jcb.142.4.949" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2132879/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9722608/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cell%20Biol.&amp;volume=142&amp;publication_year=1998&amp;pages=949&amp;pmid=9722608&amp;doi=10.1083/jcb.142.4.949&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref66"> <span class="label">66.</span><cite>Chen, L., and Davis, N. G. (2000) J. Cell Biol. 151 731–738</cite> [<a href="https://doi.org/10.1083/jcb.151.3.731" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2185590/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11062272/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cell%20Biol.&amp;volume=151&amp;publication_year=2000&amp;pages=731&amp;pmid=11062272&amp;doi=10.1083/jcb.151.3.731&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref67"> <span class="label">67.</span><cite>Roth, A. F., and Davis, N. G. (2000) J. Biol. Chem. 275 8143–8153</cite> [<a href="https://doi.org/10.1074/jbc.275.11.8143" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10713137/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=275&amp;publication_year=2000&amp;pages=8143&amp;pmid=10713137&amp;doi=10.1074/jbc.275.11.8143&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref68"> <span class="label">68.</span><cite>Naqvi, S. N., Zahn, R., Mitchell, D. A., Stevenson, B. J., and Munn, A. L. (1998) Curr. Biol. 8 959–962</cite> [<a href="https://doi.org/10.1016/s0960-9822(98)70396-3" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9742397/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Curr.%20Biol.&amp;volume=8&amp;publication_year=1998&amp;pages=959&amp;pmid=9742397&amp;doi=10.1016/s0960-9822(98)70396-3&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref69"> <span class="label">69.</span><cite>Lila, T., and Drubin, D. G. (1997) Mol. Biol. Cell 8 367–385</cite> [<a href="https://doi.org/10.1091/mbc.8.2.367" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC276086/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9190214/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mol.%20Biol.%20Cell&amp;volume=8&amp;publication_year=1997&amp;pages=367&amp;pmid=9190214&amp;doi=10.1091/mbc.8.2.367&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref70"> <span class="label">70.</span><cite>Friesen, H., Humphries, C., Ho, Y., Schub, O., Colwill, K., and Andrews, B. (2006) Mol. Biol. Cell 17 1306–1321</cite> [<a href="https://doi.org/10.1091/mbc.E05-06-0476" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1382319/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16394103/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mol.%20Biol.%20Cell&amp;volume=17&amp;publication_year=2006&amp;pages=1306&amp;pmid=16394103&amp;doi=10.1091/mbc.E05-06-0476&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref71"> <span class="label">71.</span><cite>Drubin, D. G., Mulholland, J., Zhu, Z. M., and Botstein, D. (1990) Nature 343 288–290</cite> [<a href="https://doi.org/10.1038/343288a0" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2405279/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&amp;volume=343&amp;publication_year=1990&amp;pages=288&amp;pmid=2405279&amp;doi=10.1038/343288a0&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref72"> <span class="label">72.</span><cite>Holtzman, D. A., Yang, S., and Drubin, D. G. (1993) J. Cell Biol. 122 635–644</cite> [<a href="https://doi.org/10.1083/jcb.122.3.635" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2119656/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8335689/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cell%20Biol.&amp;volume=122&amp;publication_year=1993&amp;pages=635&amp;pmid=8335689&amp;doi=10.1083/jcb.122.3.635&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref73"> <span class="label">73.</span><cite>Yeo, S. C., Xu, L., Ren, J., Boulton, V. J., Wagle, M. D., Liu, C., Ren, G., Wong, P., Zahn, R., Sasajala, P., Yang, H., Piper, R. C., and Munn, A. L. (2003) J. Cell Sci. 116 3957–3970</cite> [<a href="https://doi.org/10.1242/jcs.00751" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12953057/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cell%20Sci.&amp;volume=116&amp;publication_year=2003&amp;pages=3957&amp;pmid=12953057&amp;doi=10.1242/jcs.00751&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref74"> <span class="label">74.</span><cite>Adams, A. E., Botstein, D., and Drubin, D. G. (1991) Nature 354 404–408</cite> [<a href="https://doi.org/10.1038/354404a0" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1956405/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&amp;volume=354&amp;publication_year=1991&amp;pages=404&amp;pmid=1956405&amp;doi=10.1038/354404a0&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref75"> <span class="label">75.</span><cite>Horazdovsky, B. F., Busch, G. R., and Emr, S. D. (1994) EMBO J. 13 1297–1309</cite> [<a href="https://doi.org/10.1002/j.1460-2075.1994.tb06382.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC394945/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8137814/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=EMBO%20J.&amp;volume=13&amp;publication_year=1994&amp;pages=1297&amp;pmid=8137814&amp;doi=10.1002/j.1460-2075.1994.tb06382.x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref76"> <span class="label">76.</span><cite>Stamenova, S. D., Dunn, R., Adler, A. S., and Hicke, L. (2004) J. Biol. Chem. 279 16017–16025</cite> [<a href="https://doi.org/10.1074/jbc.M313479200" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14761940/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=279&amp;publication_year=2004&amp;pages=16017&amp;pmid=14761940&amp;doi=10.1074/jbc.M313479200&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref77"> <span class="label">77.</span><cite>Jangati, G. R., Veluthakal, R., and Kowluru, A. (2006) Biochem. Biophys. Res. Commun. 348 649–652</cite> [<a href="https://doi.org/10.1016/j.bbrc.2006.07.100" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16884689/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biochem.%20Biophys.%20Res.%20Commun.&amp;volume=348&amp;publication_year=2006&amp;pages=649&amp;pmid=16884689&amp;doi=10.1016/j.bbrc.2006.07.100&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref78"> <span class="label">78.</span><cite>Bastians, H., and Ponstingl, H. (1996) J. Cell Sci. 109 2865–2874</cite> [<a href="https://doi.org/10.1242/jcs.109.12.2865" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9013334/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cell%20Sci.&amp;volume=109&amp;publication_year=1996&amp;pages=2865&amp;pmid=9013334&amp;doi=10.1242/jcs.109.12.2865&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref79"> <span class="label">79.</span><cite>Li, Y., Wei, H., Hsieh, T. C., and Pallas, D. C. (2008) J. Virol. 82 3612–3623</cite> [<a href="https://doi.org/10.1128/JVI.02435-07" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2268493/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18216111/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Virol.&amp;volume=82&amp;publication_year=2008&amp;pages=3612&amp;pmid=18216111&amp;doi=10.1128/JVI.02435-07&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="N0x1c71050N0x3f7cf68"> <span class="label">80.</span><cite>Roopchand, D. E., Lee, J. M., Shahinian, S., Paquette, D., Bussey, H., and Branton, P. E. (2001) Oncogene 20 5279–5290</cite> [<a href="https://doi.org/10.1038/sj.onc.1204693" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11536041/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Oncogene&amp;volume=20&amp;publication_year=2001&amp;pages=5279&amp;pmid=11536041&amp;doi=10.1038/sj.onc.1204693&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref81"> <span class="label">81.</span><cite>Kornitzer, D., Sharf, R., and Kleinberger, T. (2001) J. Cell Biol. 154 331–344</cite> [<a href="https://doi.org/10.1083/jcb.200104104" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2150760/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11470822/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cell%20Biol.&amp;volume=154&amp;publication_year=2001&amp;pages=331&amp;pmid=11470822&amp;doi=10.1083/jcb.200104104&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref82"> <span class="label">82.</span><cite>Dobrowsky, R. T., and Hannun, Y. A. (1993) Adv. Lipid Res. 25 91–104</cite> [<a href="https://pubmed.ncbi.nlm.nih.gov/8396314/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv.%20Lipid%20Res.&amp;volume=25&amp;publication_year=1993&amp;pages=91&amp;pmid=8396314&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref83"> <span class="label">83.</span><cite>Dobrowsky, R. T., and Hannun, Y. A. (1992) J. Biol. Chem. 267 5048–5051</cite> [<a href="https://pubmed.ncbi.nlm.nih.gov/1312082/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=267&amp;publication_year=1992&amp;pages=5048&amp;pmid=1312082&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref84"> <span class="label">84.</span><cite>Mott, D. M., Stone, K., Gessel, M. C., Bunt, J. C., and Bogardus, C. (2008) Am. J. Physiol. 294 E444–E450</cite> [<a href="https://doi.org/10.1152/ajpendo.00386.2007" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2268844/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18056794/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am.%20J.%20Physiol.&amp;volume=294&amp;publication_year=2008&amp;pages=E444&amp;pmid=18056794&amp;doi=10.1152/ajpendo.00386.2007&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref85"> <span class="label">85.</span><cite>Wu, Y., Song, P., Xu, J., Zhang, M., and Zou, M. H. (2007) J. Biol. Chem. 282 9777–9788</cite> [<a href="https://doi.org/10.1074/jbc.M608310200" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17255104/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=282&amp;publication_year=2007&amp;pages=9777&amp;pmid=17255104&amp;doi=10.1074/jbc.M608310200&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref86"> <span class="label">86.</span><cite>Liu, J., and Sidell, N. (2005) Breast Cancer Res. Treat. 94 161–169</cite> [<a href="https://doi.org/10.1007/s10549-005-6942-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16261415/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Breast%20Cancer%20Res.%20Treat.&amp;volume=94&amp;publication_year=2005&amp;pages=161&amp;pmid=16261415&amp;doi=10.1007/s10549-005-6942-4&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref87"> <span class="label">87.</span><cite>Wang, P. Y., Liu, P., Weng, J., Sontag, E., and Anderson, R. G. (2003) EMBO J. 22 2658–2667</cite> [<a href="https://doi.org/10.1093/emboj/cdg255" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC156752/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12773382/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=EMBO%20J.&amp;volume=22&amp;publication_year=2003&amp;pages=2658&amp;pmid=12773382&amp;doi=10.1093/emboj/cdg255&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref88"> <span class="label">88.</span><cite>Nagiec, M. M., Baltisberger, J. A., Wells, G. B., Lester, R. L., and Dickson, R. C. (1994) Proc. Natl. Acad. Sci. U. S. A. 91 7899–7902</cite> [<a href="https://doi.org/10.1073/pnas.91.17.7899" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC44511/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8058731/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Proc.%20Natl.%20Acad.%20Sci.%20U.%20S.%20A.&amp;volume=91&amp;publication_year=1994&amp;pages=7899&amp;pmid=8058731&amp;doi=10.1073/pnas.91.17.7899&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref89"> <span class="label">89.</span><cite>Chung, N., Jenkins, G., Hannun, Y. A., Heitman, J., and Obeid, L. M. (2000) J. Biol. Chem. 275 17229–17232</cite> [<a href="https://doi.org/10.1074/jbc.C000229200" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10764732/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Biol.%20Chem.&amp;volume=275&amp;publication_year=2000&amp;pages=17229&amp;pmid=10764732&amp;doi=10.1074/jbc.C000229200&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref90"> <span class="label">90.</span><cite>Gammie, A. E., Brizzio, V., and Rose, M. D. (1998) Mol. Biol. Cell 9 1395–1410</cite> [<a href="https://doi.org/10.1091/mbc.9.6.1395" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC25358/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9614182/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mol.%20Biol.%20Cell&amp;volume=9&amp;publication_year=1998&amp;pages=1395&amp;pmid=9614182&amp;doi=10.1091/mbc.9.6.1395&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref91"> <span class="label">91.</span><cite>Bon, E., Recordon-Navarro, P., Durrens, P., Iwase, M., Toh, E. A., and Aigle, M. (2000) Yeast 16 1229–1241</cite> [<a href="https://doi.org/10.1002/1097-0061(20000930)16:13&lt;1229::AID-YEA618&gt;3.0.CO;2-Q" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10992286/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Yeast&amp;volume=16&amp;publication_year=2000&amp;pages=1229&amp;pmid=10992286&amp;doi=10.1002/1097-0061(20000930)16:13&lt;1229::AID-YEA618&gt;3.0.CO;2-Q&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref92"> <span class="label">92.</span><cite>Gentry, M. S., and Hallberg, R. L. (2002) Mol. Biol. Cell 13 3477–3492</cite> [<a href="https://doi.org/10.1091/mbc.02-05-0065" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC129960/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12388751/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mol.%20Biol.%20Cell&amp;volume=13&amp;publication_year=2002&amp;pages=3477&amp;pmid=12388751&amp;doi=10.1091/mbc.02-05-0065&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="ref93"> <span class="label">93.</span><cite>Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., and Brown, P. O. (2000) Mol. Biol. Cell 11 4241–4257</cite> [<a href="https://doi.org/10.1091/mbc.11.12.4241" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC15070/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11102521/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mol.%20Biol.%20Cell&amp;volume=11&amp;publication_year=2000&amp;pages=4241&amp;pmid=11102521&amp;doi=10.1091/mbc.11.12.4241&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> </ul></section></section></section><footer class="p courtesy-note font-secondary font-sm text-center"><hr class="headless"> <p>Articles from The Journal of Biological Chemistry are provided here courtesy of <strong>American Society for Biochemistry and Molecular Biology</strong></p></footer></section></article> </main> </div> </div> </div> <!-- Secondary navigation placeholder --> <div class="pmc-sidenav desktop:grid-col-4 display-flex"> <section class="pmc-sidenav__container" aria-label="Article resources and navigation"> <button type="button" class="usa-button pmc-sidenav__container__close usa-button--unstyled"> <img src="/static/img/usa-icons/close.svg" role="img" alt="Close" /> </button> <div class="display-none desktop:display-block"> <section class="margin-top-4 desktop:margin-top-0"> <h2 class="margin-top-0">ACTIONS</h2> <ul class="usa-list usa-list--unstyled usa-list--actions"> <li> <a href="https://doi.org/10.1074/jbc.M900857200" class="usa-button usa-button--outline width-24 font-xs usa-link--external padding-left-0 padding-right-0" target="_blank" rel="noreferrer noopener" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_desktop" > <span class="height-3 display-inline-flex flex-align-center">View on publisher site</span> </a> </li> <li> <a href="pdf/11930.pdf" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify-start padding-left-1" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">PDF (778.2 KB)</span> </a> </li> <li> <button role="button" class="usa-button width-24 citation-dialog-trigger display-inline-flex flex-align-center flex-justify-start padding-left-1" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_desktop" data-all-citations-url="/resources/citations/2673262/" data-citation-style="nlm" data-download-format-link="/resources/citations/2673262/export/" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Cite</span> </button> </li> <li> <button class="usa-button width-24 collections-dialog-trigger collections-button display-inline-flex flex-align-center flex-justify-start padding-left-1 collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_desktop" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC2673262%2F%23open-collections-dialog" data-in-collections="false"> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">Collections</span> </button> </li> <li class="pmc-permalink"> <button type="button" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify padding-left-1 shadow-none" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Permalink</span> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC2673262/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </section> </div> <section class="pmc-resources margin-top-6 desktop:margin-top-4" data-page-path="/articles/PMC2673262/"> <h2 class="margin-top-0">RESOURCES</h2> <div class="usa-accordion usa-accordion--multiselectable" data-allow-multiple> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-similar-articles" data-ga-category="resources_accordion" data-ga-action="open_similar_articles" data-ga-label="/articles/PMC2673262/" data-action-open="open_similar_articles" data-action-close="close_similar_articles" > Similar articles </button> </h3> <div id="resources-similar-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/similar-article-links/19254955/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-cited-by-other-articles" data-ga-category="resources_accordion" data-ga-action="open_cited_by" data-ga-label="/articles/PMC2673262/" data-action-open="open_cited_by" data-action-close="close_cited_by" > Cited by other articles </button> </h3> <div id="resources-cited-by-other-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/cited-by-links/19254955/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-links-to-ncbi-databases" data-ga-category="resources_accordion" data-ga-action="open_NCBI_links" data-ga-label="/articles/PMC2673262/" data-action-open="open_NCBI_links" data-action-close="close_NCBI_link" > Links to NCBI Databases </button> </h3> <div id="resources-links-to-ncbi-databases" class="usa-accordion__content usa-prose" data-source-url="/resources/db-links/2673262/" > </div> </div> </section> <section class="usa-in-page-nav usa-in-page-nav--wide margin-top-6 desktop:margin-top-4" data-title-text="On this page" data-title-heading-level="h2" data-scroll-offset="0" data-root-margin="-10% 0px -80% 0px" data-main-content-selector="main" data-threshold="1" hidden ></section> </section> </div> <div class="overlay" role="dialog" aria-label="Citation Dialog" hidden> <div class="dialog citation-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Cite</h2> <button type="button" class="usa-button usa-button--unstyled close-overlay text-black width-auto" tabindex="1"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="citation-text-block"> <div class="citation-text margin-bottom-2"></div> <ul class="usa-list usa-list--unstyled display-inline-flex flex-justify width-full flex-align-center"> <li> <button class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center copy-button dialog-focus" data-ga-category="save_share" data-ga-action="cite" data-ga-label="copy" tabindex="2"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span>Copy</span> </button> </li> <li> <a href="#" role="button" class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center export-button" data-ga-category="save_share" data-ga-action="cite" data-ga-label="download" title="Download a file for external citation management software" tabindex="3"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-none mobile-lg:display-inline">Download .nbib</span> <span class="display-inline mobile-lg:display-none">.nbib</span> </a> </li> <li> <div class="display-inline-flex flex-align-center"> <label class="usa-label margin-top-0">Format:</label> <select aria-label="Format" class="usa-select citation-style-selector padding-1 margin-top-0 border-0 padding-right-4" tabindex="4" > <option data-style-url-name="ama" value="AMA" > AMA </option> <option data-style-url-name="apa" value="APA" > APA </option> <option data-style-url-name="mla" value="MLA" > MLA </option> <option data-style-url-name="nlm" value="NLM" selected="selected"> NLM </option> </select> </div> </li> </ul> </div> </div> </div> <div class="overlay" role="dialog" hidden> <div id="collections-action-dialog" class="dialog collections-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Add to Collections</h2> </div> <div class="collections-action-panel action-panel"> <form id="collections-action-dialog-form" class="usa-form maxw-full collections-action-panel-form action-panel-content action-form action-panel-smaller-selectors" data-existing-collections-url="/list-existing-collections/" data-add-to-existing-collection-url="/add-to-existing-collection/" data-create-and-add-to-new-collection-url="/create-and-add-to-new-collection/" data-myncbi-max-collection-name-length="100" data-collections-root-url="https://www.ncbi.nlm.nih.gov/myncbi/collections/"> <input type="hidden" name="csrfmiddlewaretoken" value="L9aEiHf3CJDaZqC4iJEbwZUFr0OK67oJcEinu1MAd9hqndpiURbU9cZ88mBfvdtP"> <fieldset class="usa-fieldset margin-bottom-2"> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-new" class="usa-radio__input usa-radio__input--tile collections-new margin-top-0" name="collections" value="new" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_new" /> <label class="usa-radio__label" for="collections-action-dialog-new">Create a new collection</label> </div> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-existing" class="usa-radio__input usa-radio__input--tile collections-existing" name="collections" value="existing" checked="true" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_existing" /> <label class="usa-radio__label" for="collections-action-dialog-existing">Add to an existing collection</label> </div> </fieldset> <fieldset class="usa-fieldset margin-bottom-2"> <div class="action-panel-control-wrap new-collections-controls"> <label for="collections-action-dialog-add-to-new" class="usa-label margin-top-0"> Name your collection <abbr title="required" class="usa-hint usa-hint--required text-no-underline">*</abbr> </label> <input type="text" name="add-to-new-collection" id="collections-action-dialog-add-to-new" class="usa-input collections-action-add-to-new" pattern="[^&quot;&amp;=&lt;&gt;/]*" title="The following characters are not allowed in the Name field: &quot;&amp;=&lt;&gt;/" maxlength="" data-ga-category="collections_button" data-ga-action="create_collection" data-ga-label="non_favorties_collection" required /> </div> <div class="action-panel-control-wrap existing-collections-controls"> <label for="collections-action-dialog-add-to-existing" class="usa-label margin-top-0"> Choose a collection </label> <select id="collections-action-dialog-add-to-existing" class="usa-select collections-action-add-to-existing" data-ga-category="collections_button" data-ga-action="select_collection" data-ga-label="($('.collections-action-add-to-existing').val() === 'Favorites') ? 'Favorites' : 'non_favorites_collection'"> </select> <div class="collections-retry-load-on-error usa-input-error-message selection-validation-message"> Unable to load your collection due to an error<br> <a href="#">Please try again</a> </div> </div> </fieldset> <div class="display-inline-flex"> <button class="usa-button margin-top-0 action-panel-submit" type="submit" data-loading-label="Adding..." data-pinger-ignore data-ga-category="collections_button" data-ga-action="click" data-ga-label="add"> Add </button> <button class="usa-button usa-button--outline margin-top-0 action-panel-cancel" aria-label="Close 'Add to Collections' panel" ref="linksrc=close_collections_panel" data-ga-category="collections_button" data-ga-action="click" data-ga-label="cancel"> Cancel </button> </div> </form> </div> </div> </div> </div> </div> </div> <footer class="ncbi-footer ncbi-dark-background " > <div class="ncbi-footer__icon-section"> <div class="ncbi-footer__social-header"> Follow NCBI </div> <div class="grid-container ncbi-footer__ncbi-social-icons-container"> <a href="https://twitter.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="40" height="40" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NCBI on X (formerly known as Twitter)</span> </a> <a href="https://www.facebook.com/ncbi.nlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="16" height="29" focusable="false" aria-hidden="true" viewBox="0 0 16 29" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M3.8809 21.4002C3.8809 19.0932 3.8809 16.7876 3.8809 14.478C3.8809 14.2117 3.80103 14.1452 3.54278 14.1492C2.53372 14.1638 1.52334 14.1492 0.514288 14.1598C0.302626 14.1598 0.248047 14.0972 0.248047 13.8936C0.256034 12.4585 0.256034 11.0239 0.248047 9.58978C0.248047 9.37013 0.302626 9.30224 0.528931 9.3049C1.53798 9.31688 2.54837 9.3049 3.55742 9.31555C3.80103 9.31555 3.8809 9.26097 3.87957 9.00272C3.87158 8.00565 3.85428 7.00592 3.90753 6.00884C3.97142 4.83339 4.31487 3.73115 5.04437 2.78467C5.93095 1.63318 7.15699 1.09005 8.56141 0.967577C10.5582 0.79319 12.555 0.982221 14.5518 0.927641C14.7102 0.927641 14.7462 0.99287 14.7449 1.13664C14.7449 2.581 14.7449 4.02668 14.7449 5.47104C14.7449 5.67604 14.6517 5.68669 14.4946 5.68669C13.4523 5.68669 12.4113 5.68669 11.3703 5.68669C10.3506 5.68669 9.92057 6.10868 9.90593 7.13904C9.89661 7.7647 9.91525 8.39303 9.89794 9.01869C9.88995 9.26364 9.96583 9.31822 10.2015 9.31688C11.7204 9.30623 13.2393 9.31688 14.7595 9.3049C15.0257 9.3049 15.0723 9.3728 15.0444 9.62439C14.89 10.9849 14.7515 12.3467 14.6144 13.7085C14.5691 14.1571 14.5785 14.1585 14.1458 14.1585C12.8386 14.1585 11.5313 14.1665 10.2254 14.1518C9.95119 14.1518 9.89794 14.2317 9.89794 14.4899C9.90593 19.0799 9.89794 23.6752 9.91125 28.2612C9.91125 28.5674 9.8407 28.646 9.53186 28.6433C7.77866 28.6273 6.02414 28.6366 4.27094 28.634C3.82499 28.634 3.87158 28.6992 3.87158 28.22C3.87602 25.9472 3.87913 23.6739 3.8809 21.4002Z"> </path> </svg> <span class="usa-sr-only">NCBI on Facebook</span> </a> <a href="https://www.linkedin.com/company/ncbinlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="25" height="23" viewBox="0 0 26 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M14.6983 9.98423C15.6302 9.24808 16.5926 8.74754 17.6762 8.51991C19.673 8.09126 21.554 8.30824 23.1262 9.7526C24.2351 10.7723 24.7529 12.1115 25.0165 13.5612C25.1486 14.3363 25.2105 15.1218 25.2015 15.9081C25.2015 18.3043 25.2015 20.6898 25.2082 23.0806C25.2082 23.3468 25.1549 23.444 24.8621 23.4414C23.1297 23.4272 21.3992 23.4272 19.6704 23.4414C19.4041 23.4414 19.3429 23.3588 19.3442 23.1019C19.3535 20.5194 19.3442 17.9368 19.3442 15.3543C19.3442 14.0005 18.3258 12.9448 17.0266 12.9488C15.7273 12.9528 14.6983 14.0071 14.6983 15.361C14.6983 17.9328 14.6917 20.5047 14.6983 23.0753C14.6983 23.3708 14.6198 23.444 14.3296 23.4427C12.6185 23.4294 10.9079 23.4294 9.19779 23.4427C8.93155 23.4427 8.86099 23.3735 8.86232 23.1086C8.8783 19.7619 8.88628 16.4144 8.88628 13.066C8.88628 11.5688 8.87874 10.0708 8.86365 8.57182C8.86365 8.3575 8.90758 8.27896 9.14054 8.28029C10.9048 8.29094 12.6687 8.29094 14.4321 8.28029C14.6464 8.28029 14.6983 8.34818 14.6983 8.54653C14.6903 9.00047 14.6983 9.45441 14.6983 9.98423Z"> </path> <path d="M6.55316 15.8443C6.55316 18.2564 6.55316 20.6699 6.55316 23.082C6.55316 23.3629 6.48127 23.4388 6.19906 23.4374C4.47737 23.4241 2.75568 23.4241 1.03399 23.4374C0.767751 23.4374 0.69986 23.3629 0.701191 23.1006C0.709178 18.2648 0.709178 13.4281 0.701191 8.59053C0.701191 8.34026 0.765089 8.27237 1.01669 8.2737C2.74991 8.28435 4.48048 8.28435 6.20838 8.2737C6.47462 8.2737 6.5465 8.33627 6.54517 8.6065C6.54783 11.0186 6.55316 13.4308 6.55316 15.8443Z"> </path> <path d="M3.65878 0.243898C5.36804 0.243898 6.58743 1.45529 6.58743 3.1406C6.58743 4.75801 5.32145 5.95742 3.60819 5.96807C3.22177 5.97614 2.83768 5.90639 2.47877 5.76299C2.11985 5.61959 1.79344 5.40546 1.51897 5.13334C1.24449 4.86123 1.02755 4.53668 0.881058 4.17902C0.734563 3.82136 0.661505 3.43788 0.666231 3.05141C0.67555 1.42601 1.9362 0.242566 3.65878 0.243898Z"> </path> </svg> <span class="usa-sr-only">NCBI on LinkedIn</span> </a> <a href="https://github.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="28" height="27" viewBox="0 0 28 28" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M16.7228 20.6334C17.5057 20.5527 18.2786 20.3944 19.0301 20.1608C21.3108 19.4193 22.5822 17.8259 22.963 15.4909C23.1228 14.5112 23.1814 13.5287 22.9883 12.5437C22.8106 11.6423 22.4013 10.8028 21.8007 10.1076C21.7526 10.0605 21.7197 10 21.7064 9.934C21.6931 9.86799 21.7 9.79952 21.7262 9.73748C22.0856 8.6206 21.9711 7.51969 21.601 6.42677C21.582 6.3497 21.5345 6.2827 21.468 6.23923C21.4016 6.19577 21.3211 6.17906 21.2429 6.19248C20.7329 6.21649 20.2313 6.33051 19.7611 6.52928C19.1103 6.7908 18.4899 7.12198 17.9104 7.51703C17.84 7.56996 17.7581 7.60551 17.6713 7.62078C17.5846 7.63605 17.4954 7.6306 17.4112 7.60489C15.2596 7.05882 13.0054 7.06203 10.8554 7.61421C10.7806 7.63586 10.7018 7.63967 10.6253 7.62534C10.5487 7.611 10.4766 7.57892 10.4148 7.53167C9.64788 7.03247 8.85171 6.58918 7.96368 6.33359C7.65781 6.24338 7.34123 6.19458 7.02239 6.18849C6.94879 6.17986 6.87462 6.19893 6.81432 6.242C6.75402 6.28507 6.71191 6.34904 6.69621 6.42145C6.32342 7.51437 6.2209 8.61527 6.56307 9.73348C6.59635 9.84264 6.64694 9.93316 6.54177 10.0516C5.47666 11.2604 5.09988 12.6834 5.19574 14.2676C5.2663 15.4244 5.46201 16.5466 6.01454 17.5769C6.84399 19.1171 8.21664 19.9119 9.85158 20.3352C10.3938 20.4706 10.9444 20.5698 11.4998 20.632C11.5384 20.7492 11.4506 20.7798 11.408 20.8291C11.1734 21.1179 10.9894 21.4441 10.8634 21.7942C10.7622 22.0458 10.8315 22.4039 10.6065 22.5516C10.263 22.7766 9.83827 22.8485 9.42421 22.8871C8.17936 23.0056 7.26471 22.4877 6.6283 21.4348C6.25552 20.8184 5.76956 20.3325 5.08523 20.0663C4.76981 19.9325 4.42139 19.8967 4.08537 19.9638C3.7898 20.029 3.73788 20.1901 3.93891 20.4111C4.03639 20.5234 4.14989 20.6207 4.27575 20.6999C4.9796 21.1318 5.51717 21.7884 5.80152 22.5636C6.37002 23.9973 7.48039 24.5697 8.93825 24.6323C9.43741 24.6575 9.93768 24.615 10.4254 24.5058C10.5892 24.4672 10.6531 24.4872 10.6517 24.6762C10.6451 25.4936 10.6637 26.3123 10.6517 27.131C10.6517 27.6635 10.1684 27.9297 9.58663 27.7393C8.17396 27.2671 6.84977 26.5631 5.66838 25.656C2.59555 23.2891 0.720966 20.1861 0.217704 16.3376C-0.357453 11.9127 0.911353 8.00824 3.98551 4.73881C6.11909 2.42656 8.99932 0.939975 12.1203 0.540191C16.5351 -0.0601815 20.4347 1.14323 23.7232 4.16373C26.2449 6.47869 27.724 9.37672 28.1048 12.7726C28.5828 17.0325 27.3686 20.7945 24.4768 23.9827C22.9762 25.6323 21.0956 26.8908 18.9982 27.6488C18.8783 27.6927 18.7585 27.738 18.636 27.7726C18.0356 27.9404 17.6189 27.6395 17.6189 27.0098C17.6189 25.7452 17.6308 24.4806 17.6295 23.2159C17.6329 22.9506 17.6128 22.6856 17.5696 22.4238C17.4325 21.6664 17.3419 21.484 16.7228 20.6334Z"> </path> </svg> <span class="usa-sr-only">NCBI on GitHub</span> </a> <a href="https://ncbiinsights.ncbi.nlm.nih.gov/" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="26" height="26" viewBox="0 0 27 27" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M23.7778 26.4574C23.1354 26.3913 22.0856 26.8024 21.636 26.3087C21.212 25.8444 21.4359 24.8111 21.324 24.0347C19.9933 14.8323 14.8727 8.80132 6.09057 5.85008C4.37689 5.28406 2.58381 4.99533 0.779072 4.99481C0.202773 4.99481 -0.0229751 4.83146 0.00455514 4.21479C0.0660406 3.08627 0.0660406 1.95525 0.00455514 0.826734C-0.0413285 0.0815827 0.259669 -0.0193618 0.896534 0.00266238C6.96236 0.222904 12.3693 2.24179 16.9889 6.16209C22.9794 11.2478 26.1271 17.7688 26.4372 25.648C26.4629 26.294 26.3179 26.5271 25.6609 26.4684C25.0827 26.417 24.4991 26.4574 23.7778 26.4574Z"> </path> <path d="M14.8265 26.441C14.0924 26.441 13.2371 26.6795 12.6626 26.3786C12.0092 26.0372 12.3781 25.0644 12.246 24.378C11.1154 18.5324 6.6849 14.5497 0.74755 14.1001C0.217135 14.0615 -0.0104482 13.9422 0.0134113 13.3659C0.0519536 12.1454 0.0482829 10.9213 0.0134113 9.69524C-0.00127145 9.14464 0.196946 9.03268 0.703502 9.04736C9.21217 9.27128 16.5994 16.2511 17.2804 24.7231C17.418 26.4446 17.418 26.4446 15.6579 26.4446H14.832L14.8265 26.441Z"> </path> <path d="M3.58928 26.4555C2.64447 26.4618 1.73584 26.0925 1.06329 25.4289C0.39073 24.7653 0.00933763 23.8617 0.0030097 22.9169C-0.00331824 21.9721 0.365937 21.0635 1.02954 20.3909C1.69315 19.7184 2.59675 19.337 3.54156 19.3306C4.48637 19.3243 5.39499 19.6936 6.06755 20.3572C6.7401 21.0208 7.1215 21.9244 7.12782 22.8692C7.13415 23.814 6.7649 24.7226 6.10129 25.3952C5.43768 26.0677 4.53409 26.4491 3.58928 26.4555Z"> </path> </svg> <span class="usa-sr-only">NCBI RSS feed</span> </a> </div> </div> <div data-testid="gridContainer" class="grid-container ncbi-footer__container"> <div class="grid-row ncbi-footer__main-content-container" data-testid="grid"> <div class="ncbi-footer__column"> <p class="ncbi-footer__circled-icons-heading"> Connect with NLM </p> <div class="ncbi-footer__circled-icons-list"> <a href=https://twitter.com/nlm_nih class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="32" height="32" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NLM on X (formerly known as Twitter)</span> </a> <a href=https://www.facebook.com/nationallibraryofmedicine class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="13" height="24" viewBox="0 0 13 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M4.11371 23.1369C4.11371 23.082 4.11371 23.0294 4.11371 22.9745V12.9411H0.817305C0.6709 12.9411 0.670898 12.9411 0.670898 12.8016C0.670898 11.564 0.670898 10.3287 0.670898 9.09341C0.670898 8.97903 0.705213 8.95158 0.815017 8.95158C1.8673 8.95158 2.91959 8.95158 3.97417 8.95158H4.12057V8.83263C4.12057 7.8055 4.12057 6.7738 4.12057 5.74897C4.1264 4.92595 4.31387 4.11437 4.66959 3.37217C5.12916 2.38246 5.94651 1.60353 6.95717 1.1921C7.64827 0.905008 8.3913 0.764035 9.13953 0.778051C10.0019 0.791777 10.8644 0.830666 11.7268 0.860404C11.8869 0.860404 12.047 0.894717 12.2072 0.90158C12.2964 0.90158 12.3261 0.940469 12.3261 1.02968C12.3261 1.5421 12.3261 2.05452 12.3261 2.56465C12.3261 3.16857 12.3261 3.7725 12.3261 4.37642C12.3261 4.48165 12.2964 4.51367 12.1912 4.51138C11.5369 4.51138 10.8804 4.51138 10.2261 4.51138C9.92772 4.51814 9.63058 4.5526 9.33855 4.61433C9.08125 4.6617 8.84537 4.78881 8.66431 4.97766C8.48326 5.16652 8.3662 5.40755 8.32972 5.66661C8.28476 5.89271 8.26027 6.1224 8.25652 6.35289C8.25652 7.19014 8.25652 8.02969 8.25652 8.86923C8.25652 8.89439 8.25652 8.91955 8.25652 8.95615H12.0219C12.1797 8.95615 12.182 8.95616 12.1614 9.10714C12.0768 9.76596 11.9876 10.4248 11.9029 11.0813C11.8312 11.6319 11.7626 12.1824 11.697 12.733C11.6719 12.9434 11.6787 12.9434 11.4683 12.9434H8.26338V22.899C8.26338 22.979 8.26338 23.0591 8.26338 23.1392L4.11371 23.1369Z"> </path> </svg> <span class="usa-sr-only">NLM on Facebook</span> </a> <a href=https://www.youtube.com/user/NLMNIH class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="21" height="15" viewBox="0 0 21 15" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M19.2561 1.47914C18.9016 1.15888 18.5699 0.957569 17.2271 0.834039C15.5503 0.678484 13.2787 0.655608 11.563 0.65332H9.43556C7.71987 0.65332 5.4483 0.678484 3.77151 0.834039C2.43098 0.957569 2.097 1.15888 1.74242 1.47914C0.813665 2.32097 0.619221 4.62685 0.598633 6.89384C0.598633 7.31781 0.598633 7.74101 0.598633 8.16345C0.626084 10.4121 0.827391 12.686 1.74242 13.521C2.097 13.8412 2.4287 14.0425 3.77151 14.1661C5.4483 14.3216 7.71987 14.3445 9.43556 14.3468H11.563C13.2787 14.3468 15.5503 14.3216 17.2271 14.1661C18.5676 14.0425 18.9016 13.8412 19.2561 13.521C20.1712 12.6929 20.3725 10.451 20.3999 8.22064C20.3999 7.74025 20.3999 7.25986 20.3999 6.77946C20.3725 4.54907 20.1689 2.30724 19.2561 1.47914ZM8.55942 10.5311V4.65201L13.5601 7.50005L8.55942 10.5311Z" fill="white" /> </svg> <span class="usa-sr-only">NLM on YouTube</span> </a> </div> </div> <address class="ncbi-footer__address ncbi-footer__column"> <p> <a class="usa-link usa-link--external" href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/%4038.9959508, -77.101021,17z/data%3D!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb%3A0x19156f88b27635b8!8m2!3d38.9959508! 4d-77.0988323" rel="noopener noreferrer" target="_blank">National Library of Medicine <br/> 8600 Rockville Pike<br/> Bethesda, MD 20894</a> </p> </address> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/web_policies.html" class="usa-link usa-link--alt ncbi-footer__link" > Web Policies </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="usa-link usa-link--alt ncbi-footer__link" > FOIA </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS Vulnerability Disclosure </a> </li> </ul> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://support.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > Help </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/accessibility.html" class="usa-link usa-link--alt ncbi-footer__link" > Accessibility </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/careers/careers.html" class="usa-link usa-link--alt ncbi-footer__link" > Careers </a> </li> </ul> </div> <div class="grid-row grid-col-12" data-testid="grid"> <ul class="ncbi-footer__bottom-links-list"> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NLM </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NIH </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.hhs.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.usa.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > USA.gov </a> </li> </ul> </div> </div> </footer> <script type="text/javascript" src="https://cdn.ncbi.nlm.nih.gov/core/pinger/pinger.js"> </script> <button class="back-to-top" data-ga-category="pagination" data-ga-action="back_to_top"> <label>Back to Top</label> <svg class="usa-icon order-0" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#arrow_upward"></use> </svg> </button> <script src="https://code.jquery.com/jquery-3.5.0.min.js" integrity="sha256-xNzN2a4ltkB44Mc/Jz3pT4iU1cmeR0FkXs4pru/JxaQ=" crossorigin="anonymous"> </script> <script type="text/javascript">var exports = {};</script> <script src="/static/CACHE/js/output.13b077bc3ffd.js"></script> <script type="application/javascript"> window.ncbi = window.ncbi || {}; window.ncbi.pmc = window.ncbi.pmc || {}; window.ncbi.pmc.options = { logLevel: 'INFO', staticEndpoint: '/static/', citeCookieName: 'pmc-cf', }; </script> <script type="module" crossorigin="" src="/static/assets/base-9bea7450.js"></script> <script type="module" crossorigin="" src="/static/assets/article-722d91a2.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10