CINXE.COM
Discrete sine transform - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Discrete sine transform - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"39c64eb1-0058-4fc8-af4b-0277a3f49f94","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Discrete_sine_transform","wgTitle":"Discrete sine transform","wgCurRevisionId":1234149098,"wgRevisionId":1234149098,"wgArticleId":196095,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Discrete transforms","Fourier analysis","Indian inventions"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Discrete_sine_transform","wgRelevantArticleId":196095,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}}, "wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q971039","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready", "user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns", "ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Discrete sine transform - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Discrete_sine_transform"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Discrete_sine_transform&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Discrete_sine_transform"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Discrete_sine_transform rootpage-Discrete_sine_transform skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Discrete+sine+transform" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Discrete+sine+transform" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Discrete+sine+transform" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Discrete+sine+transform" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Informal_overview" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Informal_overview"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Informal overview</span> </div> </a> <ul id="toc-Informal_overview-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-DST-I" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#DST-I"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>DST-I</span> </div> </a> <ul id="toc-DST-I-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-DST-II" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#DST-II"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>DST-II</span> </div> </a> <ul id="toc-DST-II-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-DST-III" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#DST-III"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>DST-III</span> </div> </a> <ul id="toc-DST-III-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-DST-IV" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#DST-IV"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>DST-IV</span> </div> </a> <ul id="toc-DST-IV-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-DST_V–VIII" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#DST_V–VIII"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>DST V–VIII</span> </div> </a> <ul id="toc-DST_V–VIII-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inverse_transforms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Inverse_transforms"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Inverse transforms</span> </div> </a> <ul id="toc-Inverse_transforms-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Computation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Computation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Computation</span> </div> </a> <ul id="toc-Computation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Generalizations</span> </div> </a> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliography" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliography"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Bibliography</span> </div> </a> <ul id="toc-Bibliography-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Discrete sine transform</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 5 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-5" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">5 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Transformada_sinus_discreta" title="Transformada sinus discreta – Catalan" lang="ca" hreflang="ca" data-title="Transformada sinus discreta" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Diskrete_Sinustransformation" title="Diskrete Sinustransformation – German" lang="de" hreflang="de" data-title="Diskrete Sinustransformation" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A8%D8%AF%DB%8C%D9%84_%D8%B3%DB%8C%D9%86%D9%88%D8%B3%DB%8C_%DA%AF%D8%B3%D8%B3%D8%AA%D9%87" title="تبدیل سینوسی گسسته – Persian" lang="fa" hreflang="fa" data-title="تبدیل سینوسی گسسته" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Transformada_discreta_de_seno" title="Transformada discreta de seno – Portuguese" lang="pt" hreflang="pt" data-title="Transformada discreta de seno" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%A6%BB%E6%95%A3%E6%AD%A3%E5%BC%A6%E5%8F%98%E6%8D%A2" title="离散正弦变换 – Chinese" lang="zh" hreflang="zh" data-title="离散正弦变换" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q971039#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Discrete_sine_transform" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Discrete_sine_transform" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Discrete_sine_transform"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Discrete_sine_transform&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Discrete_sine_transform&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Discrete_sine_transform"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Discrete_sine_transform&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Discrete_sine_transform&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Discrete_sine_transform" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Discrete_sine_transform" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Discrete_sine_transform&oldid=1234149098" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Discrete_sine_transform&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Discrete_sine_transform&id=1234149098&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDiscrete_sine_transform"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDiscrete_sine_transform"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Discrete_sine_transform&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Discrete_sine_transform&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q971039" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>discrete sine transform (DST)</b> is a <a href="/wiki/List_of_Fourier-related_transforms" title="List of Fourier-related transforms">Fourier-related transform</a> similar to the <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">discrete Fourier transform</a> (DFT), but using a purely <a href="/wiki/Real_number" title="Real number">real</a> <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a>. It is equivalent to the imaginary parts of a DFT of roughly twice the length, operating on real data with <a href="/wiki/Even_and_odd_functions" title="Even and odd functions">odd</a> <a href="/wiki/Symmetry" title="Symmetry">symmetry</a> (since the Fourier transform of a real and odd function is imaginary and odd), where in some variants the input and/or output data are shifted by half a sample. </p><p>The DST is related to the <a href="/wiki/Discrete_cosine_transform" title="Discrete cosine transform">discrete cosine transform</a> (DCT), which is equivalent to a DFT of real and <i>even</i> functions. See the DCT article for a general discussion of how the boundary conditions relate the various DCT and DST types. Generally, the DST is derived from the DCT by replacing the <a href="/wiki/Neumann_boundary_condition" title="Neumann boundary condition">Neumann condition</a> at <i>x</i>=0 with a <a href="/wiki/Dirichlet_condition" class="mw-redirect" title="Dirichlet condition">Dirichlet condition</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Both the DCT and the DST were described by <a href="/wiki/Nasir_Ahmed_(engineer)" title="Nasir Ahmed (engineer)">Nasir Ahmed</a>, T. Natarajan, and <a href="/wiki/K.R._Rao" class="mw-redirect" title="K.R. Rao">K.R. Rao</a> in 1974.<sup id="cite_ref-pubDCT_2-0" class="reference"><a href="#cite_note-pubDCT-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Ahmed_3-0" class="reference"><a href="#cite_note-Ahmed-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> The type-I DST (DST-I) was later described by <a href="/wiki/Anil_K._Jain_(electrical_engineer,_born_1946)" title="Anil K. Jain (electrical engineer, born 1946)">Anil K. Jain</a> in 1976, and the type-II DST (DST-II) was then described by H.B. Kekra and J.K. Solanka in 1978.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_sine_transform&action=edit&section=1" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>DSTs are widely employed in solving <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equations</a> by <a href="/wiki/Spectral_methods" class="mw-redirect" title="Spectral methods">spectral methods</a>, where the different variants of the DST correspond to slightly different odd/even boundary conditions at the two ends of the array. </p> <div class="mw-heading mw-heading2"><h2 id="Informal_overview">Informal overview</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_sine_transform&action=edit&section=2" title="Edit section: Informal overview"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:DST-symmetries.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/DST-symmetries.svg/350px-DST-symmetries.svg.png" decoding="async" width="350" height="518" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/DST-symmetries.svg/525px-DST-symmetries.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/31/DST-symmetries.svg/700px-DST-symmetries.svg.png 2x" data-file-width="560" data-file-height="828" /></a><figcaption>Illustration of the implicit even/odd extensions of DST input data, for <i>N</i>=9 data points (red dots), for the four most common types of DST (types I–IV).</figcaption></figure> <p>Like any Fourier-related transform, discrete sine transforms (DSTs) express a function or a signal in terms of a sum of <a href="/wiki/Sinusoid" class="mw-redirect" title="Sinusoid">sinusoids</a> with different <a href="/wiki/Frequencies" class="mw-redirect" title="Frequencies">frequencies</a> and <a href="/wiki/Amplitude" title="Amplitude">amplitudes</a>. Like the <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">discrete Fourier transform</a> (DFT), a DST operates on a function at a finite number of discrete data points. The obvious distinction between a DST and a DFT is that the former uses only <a href="/wiki/Sine_function" class="mw-redirect" title="Sine function">sine functions</a>, while the latter uses both cosines and sines (in the form of <a href="/wiki/Complex_exponential" class="mw-redirect" title="Complex exponential">complex exponentials</a>). However, this visible difference is merely a consequence of a deeper distinction: a DST implies different <a href="/wiki/Boundary_condition" class="mw-redirect" title="Boundary condition">boundary conditions</a> than the DFT or other related transforms. </p><p>The Fourier-related transforms that operate on a function over a finite <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a>, such as the DFT or DST or a <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a>, can be thought of as implicitly defining an <i>extension</i> of that function outside the domain. That is, once you write a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> as a sum of sinusoids, you can evaluate that sum at any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, even for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> where the original <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> was not specified. The DFT, like the Fourier series, implies a <a href="/wiki/Periodic_function" title="Periodic function">periodic</a> extension of the original function. A DST, like a <a href="/wiki/Sine_and_cosine_transforms" title="Sine and cosine transforms">sine transform</a>, implies an <a href="/wiki/Even_and_odd_functions" title="Even and odd functions">odd</a> extension of the original function. </p><p>However, because DSTs operate on <i>finite</i>, <i>discrete</i> sequences, two issues arise that do not apply for the continuous sine transform. First, one has to specify whether the function is even or odd at <i>both</i> the left and right boundaries of the domain (i.e. the min-<i>n</i> and max-<i>n</i> boundaries in the definitions below, respectively). Second, one has to specify around <i>what point</i> the function is even or odd. In particular, consider a sequence (<i>a</i>,<i>b</i>,<i>c</i>) of three equally spaced data points, and say that we specify an odd <i>left</i> boundary. There are two sensible possibilities: either the data is odd about the point <i>prior</i> to <i>a</i>, in which case the odd extension is (−<i>c</i>,−<i>b</i>,−<i>a</i>,0,<i>a</i>,<i>b</i>,<i>c</i>), or the data is odd about the point <i>halfway</i> between <i>a</i> and the previous point, in which case the odd extension is (−<i>c</i>,−<i>b</i>,−<i>a</i>,<i>a</i>,<i>b</i>,<i>c</i>) </p><p>These choices lead to all the standard variations of DSTs and also <a href="/wiki/Discrete_cosine_transform" title="Discrete cosine transform">discrete cosine transforms</a> (DCTs). Each boundary can be either even or odd (2 choices per boundary) and can be symmetric about a data point or the point halfway between two data points (2 choices per boundary), for a total of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\times 2\times 2\times 2=16}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>×<!-- × --></mo> <mn>2</mn> <mo>×<!-- × --></mo> <mn>2</mn> <mo>×<!-- × --></mo> <mn>2</mn> <mo>=</mo> <mn>16</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\times 2\times 2\times 2=16}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddf51a34d0fc10d80d3df826cbeced2bf8065ea1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:18.594ex; height:2.176ex;" alt="{\displaystyle 2\times 2\times 2\times 2=16}"></span> possibilities. Half of these possibilities, those where the <i>left</i> boundary is odd, correspond to the 8 types of DST; the other half are the 8 types of DCT. </p><p>These different boundary conditions strongly affect the applications of the transform, and lead to uniquely useful properties for the various DCT types. Most directly, when using Fourier-related transforms to solve <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equations</a> by <a href="/wiki/Spectral_method" title="Spectral method">spectral methods</a>, the boundary conditions are directly specified as a part of the problem being solved. </p> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_sine_transform&action=edit&section=3" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Formally, the discrete sine transform is a <a href="/wiki/Linear" class="mw-redirect" title="Linear">linear</a>, invertible <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> <i>F</i> : <b>R</b><sup><i>N</i></sup> <style data-mw-deduplicate="TemplateStyles:r886049734">.mw-parser-output .monospaced{font-family:monospace,monospace}</style><span class="monospaced">-></span> <b>R</b><sup><i>N</i></sup> (where <b>R</b> denotes the set of <a href="/wiki/Real_number" title="Real number">real numbers</a>), or equivalently an <i>N</i> × <i>N</i> <a href="/wiki/Square_matrix" title="Square matrix">square matrix</a>. There are several variants of the DST with slightly modified definitions. The <i>N</i> real numbers <i>x</i><sub>0</sub>,...,<i>x</i><sub><i>N</i> − 1</sub> are transformed into the <i>N</i> real numbers <i>X</i><sub>0</sub>,...,<i>X</i><sub><i>N</i> − 1</sub> according to one of the formulas: </p> <div class="mw-heading mw-heading3"><h3 id="DST-I">DST-I</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_sine_transform&action=edit&section=4" title="Edit section: DST-I"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Discrete_sine_transform.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Discrete_sine_transform.svg/300px-Discrete_sine_transform.svg.png" decoding="async" width="300" height="300" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Discrete_sine_transform.svg/450px-Discrete_sine_transform.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Discrete_sine_transform.svg/600px-Discrete_sine_transform.svg.png 2x" data-file-width="800" data-file-height="800" /></a><figcaption>Discrete sine transform (<a rel="nofollow" class="external free" href="https://www.desmos.com/calculator/r0od93dfgp">https://www.desmos.com/calculator/r0od93dfgp</a>).</figcaption></figure> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}X_{k}&=\sum _{n=0}^{N-1}x_{n}\sin \left[{\frac {\pi }{N+1}}(n+1)(k+1)\right]&k&=0,\dots ,N-1\\X_{k-1}&=\sum _{n=1}^{N}x_{n-1}\sin \left[{\frac {\pi nk}{N+1}}\right]&k&=1,\dots ,N\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mrow> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mtd> <mtd> <mi>k</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>N</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>π<!-- π --></mi> <mi>n</mi> <mi>k</mi> </mrow> <mrow> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> </mtd> <mtd> <mi>k</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>N</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}X_{k}&=\sum _{n=0}^{N-1}x_{n}\sin \left[{\frac {\pi }{N+1}}(n+1)(k+1)\right]&k&=0,\dots ,N-1\\X_{k-1}&=\sum _{n=1}^{N}x_{n-1}\sin \left[{\frac {\pi nk}{N+1}}\right]&k&=1,\dots ,N\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/219e4eea1bb20a68f1e63c6b282b7f0fac410d30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.588ex; margin-bottom: -0.25ex; width:63.651ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}X_{k}&=\sum _{n=0}^{N-1}x_{n}\sin \left[{\frac {\pi }{N+1}}(n+1)(k+1)\right]&k&=0,\dots ,N-1\\X_{k-1}&=\sum _{n=1}^{N}x_{n-1}\sin \left[{\frac {\pi nk}{N+1}}\right]&k&=1,\dots ,N\end{aligned}}}"></span></dd></dl> <p>The DST-I matrix is <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal</a> (up to a scale factor). </p><p>A DST-I is exactly equivalent to a DFT of a real sequence that is odd around the zero-th and middle points, scaled by 1/2. For example, a DST-I of <i>N</i>=3 real numbers (<i>a</i>,<i>b</i>,<i>c</i>) is exactly equivalent to a DFT of eight real numbers (0,<i>a</i>,<i>b</i>,<i>c</i>,0,−<i>c</i>,−<i>b</i>,−<i>a</i>) (odd symmetry), scaled by 1/2. (In contrast, DST types II–IV involve a half-sample shift in the equivalent DFT.) This is the reason for the <i>N</i> + 1 in the denominator of the sine function: the equivalent DFT has 2(<i>N</i>+1) points and has 2π/2(<i>N</i>+1) in its sinusoid frequency, so the DST-I has π/(<i>N</i>+1) in its frequency. </p><p>Thus, the DST-I corresponds to the boundary conditions: <i>x</i><sub><i>n</i></sub> is odd around <i>n</i> = −1 and odd around <i>n</i>=<i>N</i>; similarly for <i>X</i><sub><i>k</i></sub>. </p> <div class="mw-heading mw-heading3"><h3 id="DST-II">DST-II</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_sine_transform&action=edit&section=5" title="Edit section: DST-II"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k}=\sum _{n=0}^{N-1}x_{n}\sin \left[{\frac {\pi }{N}}\left(n+{\frac {1}{2}}\right)(k+1)\right]\quad \quad k=0,\dots ,N-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mi>N</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mspace width="1em" /> <mspace width="1em" /> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>N</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k}=\sum _{n=0}^{N-1}x_{n}\sin \left[{\frac {\pi }{N}}\left(n+{\frac {1}{2}}\right)(k+1)\right]\quad \quad k=0,\dots ,N-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ec4a97c9d25b6266d25cd0d66623125a8732469" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:60.018ex; height:7.343ex;" alt="{\displaystyle X_{k}=\sum _{n=0}^{N-1}x_{n}\sin \left[{\frac {\pi }{N}}\left(n+{\frac {1}{2}}\right)(k+1)\right]\quad \quad k=0,\dots ,N-1}"></span> </p><p>Some authors further multiply the <i>X</i><sub><i>N</i> − 1</sub> term by 1/<span class="nowrap">√<span style="border-top:1px solid; padding:0 0.1em;">2</span></span> (see below for the corresponding change in DST-III). This makes the DST-II matrix <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal</a> (up to a scale factor), but breaks the direct correspondence with a real-odd DFT of half-shifted input. </p><p>The DST-II implies the boundary conditions: <i>x</i><sub><i>n</i></sub> is odd around <i>n</i> = −1/2 and odd around <i>n</i> = <i>N</i> − 1/2; <i>X</i><sub><i>k</i></sub> is odd around <i>k</i> = −1 and even around <i>k</i> = <i>N</i> − 1. </p> <div class="mw-heading mw-heading3"><h3 id="DST-III">DST-III</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_sine_transform&action=edit&section=6" title="Edit section: DST-III"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k}={\frac {(-1)^{k}}{2}}x_{N-1}+\sum _{n=0}^{N-2}x_{n}\sin \left[{\frac {\pi }{N}}(n+1)\left(k+{\frac {1}{2}}\right)\right]\quad \quad k=0,\dots ,N-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mi>N</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mspace width="1em" /> <mspace width="1em" /> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>N</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k}={\frac {(-1)^{k}}{2}}x_{N-1}+\sum _{n=0}^{N-2}x_{n}\sin \left[{\frac {\pi }{N}}(n+1)\left(k+{\frac {1}{2}}\right)\right]\quad \quad k=0,\dots ,N-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaf69b9150d88dbb7ad408958aefaa7b3338ca50" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:74.298ex; height:7.343ex;" alt="{\displaystyle X_{k}={\frac {(-1)^{k}}{2}}x_{N-1}+\sum _{n=0}^{N-2}x_{n}\sin \left[{\frac {\pi }{N}}(n+1)\left(k+{\frac {1}{2}}\right)\right]\quad \quad k=0,\dots ,N-1}"></span> </p><p>Some authors further multiply the <i>x</i><sub><i>N</i> − 1</sub> term by <span class="nowrap">√<span style="border-top:1px solid; padding:0 0.1em;">2</span></span> (see above for the corresponding change in DST-II). This makes the DST-III matrix <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal</a> (up to a scale factor), but breaks the direct correspondence with a real-odd DFT of half-shifted output. </p><p>The DST-III implies the boundary conditions: <i>x</i><sub><i>n</i></sub> is odd around <i>n</i> = −1 and even around <i>n</i> = <i>N</i> − 1; <i>X</i><sub><i>k</i></sub> is odd around <i>k</i> = −1/2 and odd around <i>k</i> = <i>N</i> − 1/2. </p> <div class="mw-heading mw-heading3"><h3 id="DST-IV">DST-IV</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_sine_transform&action=edit&section=7" title="Edit section: DST-IV"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k}=\sum _{n=0}^{N-1}x_{n}\sin \left[{\frac {\pi }{N}}\left(n+{\frac {1}{2}}\right)\left(k+{\frac {1}{2}}\right)\right]\quad \quad k=0,\dots ,N-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mi>N</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mspace width="1em" /> <mspace width="1em" /> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>N</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k}=\sum _{n=0}^{N-1}x_{n}\sin \left[{\frac {\pi }{N}}\left(n+{\frac {1}{2}}\right)\left(k+{\frac {1}{2}}\right)\right]\quad \quad k=0,\dots ,N-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d240979de077d6ef8b3b352dd1b2da2158fd1c88" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:62.466ex; height:7.343ex;" alt="{\displaystyle X_{k}=\sum _{n=0}^{N-1}x_{n}\sin \left[{\frac {\pi }{N}}\left(n+{\frac {1}{2}}\right)\left(k+{\frac {1}{2}}\right)\right]\quad \quad k=0,\dots ,N-1}"></span> </p><p>The DST-IV matrix is <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal</a> (up to a scale factor). </p><p>The DST-IV implies the boundary conditions: <i>x</i><sub><i>n</i></sub> is odd around <i>n</i> = −1/2 and even around <i>n</i> = <i>N</i> − 1/2; similarly for <i>X</i><sub><i>k</i></sub>. </p> <div class="mw-heading mw-heading3"><h3 id="DST_V–VIII"><span id="DST_V.E2.80.93VIII"></span>DST V–VIII</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_sine_transform&action=edit&section=8" title="Edit section: DST V–VIII"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>DST types I–IV are equivalent to real-odd DFTs of even order. In principle, there are actually four additional types of discrete sine transform (Martucci, 1994), corresponding to real-odd DFTs of logically odd order, which have factors of <i>N</i>+1/2 in the denominators of the sine arguments. However, these variants seem to be rarely used in practice. </p> <div class="mw-heading mw-heading3"><h3 id="Inverse_transforms">Inverse transforms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_sine_transform&action=edit&section=9" title="Edit section: Inverse transforms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The inverse of DST-I is DST-I multiplied by 2/(<i>N</i> + 1). The inverse of DST-IV is DST-IV multiplied by 2/<i>N</i>. The inverse of DST-II is DST-III multiplied by 2/<i>N</i> (and vice versa). </p><p>As for the <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">DFT</a>, the normalization factor in front of these transform definitions is merely a convention and differs between treatments. For example, some authors multiply the transforms by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\sqrt {2/N}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>N</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\sqrt {2/N}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc67f411ae2805d323fa48a91e852adce10c0fd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.712ex; height:3.343ex;" alt="{\textstyle {\sqrt {2/N}}}"></span> so that the inverse does not require any additional multiplicative factor. </p> <div class="mw-heading mw-heading2"><h2 id="Computation">Computation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_sine_transform&action=edit&section=10" title="Edit section: Computation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although the direct application of these formulas would require O(<i>N</i><sup>2</sup>) operations, it is possible to compute the same thing with only O(<i>N</i> log <i>N</i>) complexity by factorizing the computation similar to the <a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">fast Fourier transform</a> (FFT). (One can also compute DSTs via FFTs combined with O(<i>N</i>) pre- and post-processing steps.) </p><p>A DST-III or DST-IV can be computed from a DCT-III or DCT-IV (see <a href="/wiki/Discrete_cosine_transform" title="Discrete cosine transform">discrete cosine transform</a>), respectively, by reversing the order of the inputs and flipping the sign of every other output, and vice versa for DST-II from DCT-II. In this way it follows that types II–IV of the DST require exactly the same number of arithmetic operations (additions and multiplications) as the corresponding DCT types. </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_sine_transform&action=edit&section=11" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A family of transforms composed of sine and <a href="/w/index.php?title=Sine_hyperbolic&action=edit&redlink=1" class="new" title="Sine hyperbolic (page does not exist)">sine hyperbolic</a> functions exists; these transforms are made based on the <a href="/wiki/Natural_frequency" title="Natural frequency">natural</a> <a href="/wiki/Vibration" title="Vibration">vibration</a> of thin square plates with different <a href="/wiki/Boundary_conditions" class="mw-redirect" title="Boundary conditions">boundary conditions</a>.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_sine_transform&action=edit&section=12" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBritanakYipRao2010" class="citation book cs1">Britanak, Vladimir; Yip, Patrick C.; <a href="/wiki/K._R._Rao" title="K. R. Rao">Rao, K. R.</a> (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=iRlQHcK-r_kC&pg=PA35"><i>Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations</i></a>. <a href="/wiki/Elsevier" title="Elsevier">Elsevier</a>. pp. 35–6. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780080464640" title="Special:BookSources/9780080464640"><bdi>9780080464640</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Discrete+Cosine+and+Sine+Transforms%3A+General+Properties%2C+Fast+Algorithms+and+Integer+Approximations&rft.pages=35-6&rft.pub=Elsevier&rft.date=2010&rft.isbn=9780080464640&rft.aulast=Britanak&rft.aufirst=Vladimir&rft.au=Yip%2C+Patrick+C.&rft.au=Rao%2C+K.+R.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DiRlQHcK-r_kC%26pg%3DPA35&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+sine+transform" class="Z3988"></span></span> </li> <li id="cite_note-pubDCT-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-pubDCT_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAhmedNatarajanRao1974" class="citation cs2"><a href="/wiki/N._Ahmed" class="mw-redirect" title="N. Ahmed">Ahmed, Nasir</a>; Natarajan, T.; Rao, K. R. (January 1974), <a rel="nofollow" class="external text" href="https://www.ic.tu-berlin.de/fileadmin/fg121/Source-Coding_WS12/selected-readings/Ahmed_et_al.__1974.pdf">"Discrete Cosine Transform"</a> <span class="cs1-format">(PDF)</span>, <i>IEEE Transactions on Computers</i>, <b>C-23</b> (1): 90–93, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FT-C.1974.223784">10.1109/T-C.1974.223784</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:149806273">149806273</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Computers&rft.atitle=Discrete+Cosine+Transform&rft.volume=C-23&rft.issue=1&rft.pages=90-93&rft.date=1974-01&rft_id=info%3Adoi%2F10.1109%2FT-C.1974.223784&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A149806273%23id-name%3DS2CID&rft.aulast=Ahmed&rft.aufirst=Nasir&rft.au=Natarajan%2C+T.&rft.au=Rao%2C+K.+R.&rft_id=https%3A%2F%2Fwww.ic.tu-berlin.de%2Ffileadmin%2Ffg121%2FSource-Coding_WS12%2Fselected-readings%2FAhmed_et_al.__1974.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+sine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Ahmed-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ahmed_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAhmed1991" class="citation journal cs1"><a href="/wiki/N._Ahmed" class="mw-redirect" title="N. Ahmed">Ahmed, Nasir</a> (January 1991). <a rel="nofollow" class="external text" href="https://www.scribd.com/doc/52879771/DCT-History-How-I-Came-Up-with-the-Discrete-Cosine-Transform">"How I Came Up With the Discrete Cosine Transform"</a>. <i><a href="/wiki/Digital_Signal_Processing_(journal)" title="Digital Signal Processing (journal)">Digital Signal Processing</a></i>. <b>1</b> (1): 4–5. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F1051-2004%2891%2990086-Z">10.1016/1051-2004(91)90086-Z</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Digital+Signal+Processing&rft.atitle=How+I+Came+Up+With+the+Discrete+Cosine+Transform&rft.volume=1&rft.issue=1&rft.pages=4-5&rft.date=1991-01&rft_id=info%3Adoi%2F10.1016%2F1051-2004%2891%2990086-Z&rft.aulast=Ahmed&rft.aufirst=Nasir&rft_id=https%3A%2F%2Fwww.scribd.com%2Fdoc%2F52879771%2FDCT-History-How-I-Came-Up-with-the-Discrete-Cosine-Transform&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+sine+transform" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDhamijaJain2011" class="citation journal cs1">Dhamija, Swati; Jain, Priyanka (September 2011). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/267228857">"Comparative Analysis for Discrete Sine Transform as a suitable method for noise estimation"</a>. <i>International Journal of Computer Science</i>. <b>8</b> (5): 162–164<span class="reference-accessdate">. Retrieved <span class="nowrap">4 November</span> 2019</span> – via ResearchGate.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Computer+Science&rft.atitle=Comparative+Analysis+for+Discrete+Sine+Transform+as+a+suitable+method+for+noise+estimation&rft.volume=8&rft.issue=5&rft.pages=162-164&rft.date=2011-09&rft.aulast=Dhamija&rft.aufirst=Swati&rft.au=Jain%2C+Priyanka&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F267228857&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+sine+transform" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbediSunZheng2019" class="citation journal cs1">Abedi, M.; Sun, B.; Zheng, Z. (July 2019). "A Sinusoidal-Hyperbolic Family of Transforms With Potential Applications in Compressive Sensing". <i>IEEE Transactions on Image Processing</i>. <b>28</b> (7): 3571–3583. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019ITIP...28.3571A">2019ITIP...28.3571A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTIP.2019.2912355">10.1109/TIP.2019.2912355</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31071031">31071031</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:174820107">174820107</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Image+Processing&rft.atitle=A+Sinusoidal-Hyperbolic+Family+of+Transforms+With+Potential+Applications+in+Compressive+Sensing&rft.volume=28&rft.issue=7&rft.pages=3571-3583&rft.date=2019-07&rft_id=info%3Adoi%2F10.1109%2FTIP.2019.2912355&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A174820107%23id-name%3DS2CID&rft_id=info%3Apmid%2F31071031&rft_id=info%3Abibcode%2F2019ITIP...28.3571A&rft.aulast=Abedi&rft.aufirst=M.&rft.au=Sun%2C+B.&rft.au=Zheng%2C+Z.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+sine+transform" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Bibliography">Bibliography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_sine_transform&action=edit&section=13" title="Edit section: Bibliography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>S. A. Martucci, "Symmetric convolution and the discrete sine and cosine transforms," <i>IEEE Trans. Signal Process.</i> <b>SP-42</b>, 1038–1051 (1994).</li> <li>Matteo Frigo and <a href="/wiki/Steven_G._Johnson" title="Steven G. Johnson">Steven G. Johnson</a>: <i>FFTW</i>, <a rel="nofollow" class="external text" href="http://www.fftw.org/">FFTW Home Page</a>. A free (<a href="/wiki/GNU_General_Public_License" title="GNU General Public License">GPL</a>) C library that can compute fast DSTs (types I–IV) in one or more dimensions, of arbitrary size. Also M. Frigo and S. G. Johnson, "<a rel="nofollow" class="external text" href="http://fftw.org/fftw-paper-ieee.pdf">The Design and Implementation of FFTW3</a>," <i>Proceedings of the IEEE</i> <b>93</b> (2), 216–231 (2005).</li> <li>Takuya Ooura: General Purpose FFT Package, <a rel="nofollow" class="external text" href="http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html">FFT Package 1-dim / 2-dim</a>. Free C & FORTRAN libraries for computing fast DSTs in one, two or three dimensions, power of 2 sizes.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPressTeukolskyVetterlingFlannery2007" class="citation cs2">Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110811154417/http://apps.nrbook.com/empanel/index.html#pg=621">"Section 12.4.1. Sine Transform"</a>, <i>Numerical Recipes: The Art of Scientific Computing</i> (3rd ed.), New York: Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-88068-8" title="Special:BookSources/978-0-521-88068-8"><bdi>978-0-521-88068-8</bdi></a>, archived from <a rel="nofollow" class="external text" href="http://apps.nrbook.com/empanel/index.html#pg=621">the original</a> on 2011-08-11<span class="reference-accessdate">, retrieved <span class="nowrap">2011-08-13</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Section+12.4.1.+Sine+Transform&rft.btitle=Numerical+Recipes%3A+The+Art+of+Scientific+Computing&rft.place=New+York&rft.edition=3rd&rft.pub=Cambridge+University+Press&rft.date=2007&rft.isbn=978-0-521-88068-8&rft.aulast=Press&rft.aufirst=WH&rft.au=Teukolsky%2C+SA&rft.au=Vetterling%2C+WT&rft.au=Flannery%2C+BP&rft_id=http%3A%2F%2Fapps.nrbook.com%2Fempanel%2Findex.html%23pg%3D621&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+sine+transform" class="Z3988"></span>.</li> <li>R. Chivukula and Y. Reznik, "<a rel="nofollow" class="external text" href="http://www.reznik.org/papers/ADIP2011_DST67.pdf">Fast Computing of Discrete Cosine and Sine Transforms of Types VI and VII</a>," <i>Proc. SPIE</i> Vol. 8135, 2011.</li></ul> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐59856bd7d8‐gngct Cached time: 20241119184003 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.184 seconds Real time usage: 0.274 seconds Preprocessor visited node count: 568/1000000 Post‐expand include size: 14804/2097152 bytes Template argument size: 133/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 22765/5000000 bytes Lua time usage: 0.092/10.000 seconds Lua memory usage: 3856655/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 161.392 1 -total 87.48% 141.186 1 Template:Reflist 54.37% 87.749 1 Template:Cite_book 11.75% 18.961 3 Template:Cite_journal 10.78% 17.400 2 Template:Citation 4.81% 7.764 1 Template:Mono 3.65% 5.896 1 Template:Ifsubst 2.31% 3.730 2 Template:Radic 1.02% 1.651 1 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:196095:|#|:idhash:canonical and timestamp 20241119184003 and revision id 1234149098. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Discrete_sine_transform&oldid=1234149098">https://en.wikipedia.org/w/index.php?title=Discrete_sine_transform&oldid=1234149098</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Discrete_transforms" title="Category:Discrete transforms">Discrete transforms</a></li><li><a href="/wiki/Category:Fourier_analysis" title="Category:Fourier analysis">Fourier analysis</a></li><li><a href="/wiki/Category:Indian_inventions" title="Category:Indian inventions">Indian inventions</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 12 July 2024, at 20:51<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Discrete_sine_transform&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-669b4ddb54-t6xfp","wgBackendResponseTime":171,"wgPageParseReport":{"limitreport":{"cputime":"0.184","walltime":"0.274","ppvisitednodes":{"value":568,"limit":1000000},"postexpandincludesize":{"value":14804,"limit":2097152},"templateargumentsize":{"value":133,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":22765,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 161.392 1 -total"," 87.48% 141.186 1 Template:Reflist"," 54.37% 87.749 1 Template:Cite_book"," 11.75% 18.961 3 Template:Cite_journal"," 10.78% 17.400 2 Template:Citation"," 4.81% 7.764 1 Template:Mono"," 3.65% 5.896 1 Template:Ifsubst"," 2.31% 3.730 2 Template:Radic"," 1.02% 1.651 1 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.092","limit":"10.000"},"limitreport-memusage":{"value":3856655,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-59856bd7d8-gngct","timestamp":"20241119184003","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Discrete sine transform","url":"https:\/\/en.wikipedia.org\/wiki\/Discrete_sine_transform","sameAs":"http:\/\/www.wikidata.org\/entity\/Q971039","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q971039","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-03-14T06:27:57Z","dateModified":"2024-07-12T20:51:38Z","headline":"variant of the discrete Fourier transform"}</script> </body> </html>