CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 140 results for author: <span class="mathjax">Brown, A M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Brown%2C+A+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Brown, A M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Brown%2C+A+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Brown, A M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Brown%2C+A+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Brown%2C+A+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brown%2C+A+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brown%2C+A+M&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10872">arXiv:2404.10872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10872">pdf</a>, <a href="https://arxiv.org/format/2404.10872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae1058">10.1093/mnras/stae1058 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Effect of Pulsar Geometry on the Observed Gamma-ray Spectrum of Millisecond Pulsars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lloyd%2C+S+J">Sheridan J. Lloyd</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadwick%2C+P+M">Paula M. Chadwick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10872v1-abstract-short" style="display: inline;"> We analyse 13 yrs of $\textit{Fermi}$-LAT PASS 8 events from 127 gamma-ray emitting millisecond pulsars (MSPs) in the energy range 0.1$-$100 GeV and significantly detect 118 MSPs. We fit the stacked emission with a log parabola (LP) spectral model which we show is preferred to two previously published models. We consider the influence of pulsar properties and observer geometric effects on spectral&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10872v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10872v1-abstract-full" style="display: none;"> We analyse 13 yrs of $\textit{Fermi}$-LAT PASS 8 events from 127 gamma-ray emitting millisecond pulsars (MSPs) in the energy range 0.1$-$100 GeV and significantly detect 118 MSPs. We fit the stacked emission with a log parabola (LP) spectral model which we show is preferred to two previously published models. We consider the influence of pulsar properties and observer geometric effects on spectral features by defining energy flux colours for both the individual MSPs, and our stacked model as a baseline. There is no correlation of colours with pulsar luminosity, $\dot{E}$, surface magnetic field or magnetic impact angle. We also find that pulsar geometry has little effect on the observed gamma-ray spectrum which is in tension with previous modelling of gamma-ray emission with respect to pulsar geometry. Our LP MSP model is applicable to problems where an ensemble of gamma-ray MSPs is considered, such as that of the Galactic centre excess or in the case of emission from globular clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10872v1-abstract-full').style.display = 'none'; document.getElementById('2404.10872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. Published by Oxford University Press on behalf of the Royal Astronomical Society</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04857">arXiv:2403.04857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.04857">pdf</a>, <a href="https://arxiv.org/format/2403.04857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2024/07/047">10.1088/1475-7516/2024/07/047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark Matter Line Searches with the Cherenkov Telescope Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+S">S. Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abhir%2C+J">J. Abhir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abhishek%2C+A">A. Abhishek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acero%2C+F">F. Acero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acharyya%2C+A">A. Acharyya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adam%2C+R">R. Adam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguasca-Cabot%2C+A">A. Aguasca-Cabot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre-Santaella%2C+A">A. Aguirre-Santaella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+J">J. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+R">R. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez-Crespo%2C+N">N. Alvarez-Crespo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amans%2C+J+-">J. -P. Amans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Angel%2C+L">L. Angel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arcaro%2C+C">C. Arcaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnesen%2C+T+T+H">T. T. H. Arnesen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arrabito%2C+L">L. Arrabito</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asano%2C+K">K. Asano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ascasibar%2C+Y">Y. Ascasibar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aschersleben%2C+J">J. Aschersleben</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashkar%2C+H">H. Ashkar</a> , et al. (540 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04857v2-abstract-short" style="display: inline;"> Monochromatic gamma-ray signals constitute a potential smoking gun signature for annihilating or decaying dark matter particles that could relatively easily be distinguished from astrophysical or instrumental backgrounds. We provide an updated assessment of the sensitivity of the Cherenkov Telescope Array (CTA) to such signals, based on observations of the Galactic centre region as well as of sele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04857v2-abstract-full').style.display = 'inline'; document.getElementById('2403.04857v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04857v2-abstract-full" style="display: none;"> Monochromatic gamma-ray signals constitute a potential smoking gun signature for annihilating or decaying dark matter particles that could relatively easily be distinguished from astrophysical or instrumental backgrounds. We provide an updated assessment of the sensitivity of the Cherenkov Telescope Array (CTA) to such signals, based on observations of the Galactic centre region as well as of selected dwarf spheroidal galaxies. We find that current limits and detection prospects for dark matter masses above 300 GeV will be significantly improved, by up to an order of magnitude in the multi-TeV range. This demonstrates that CTA will set a new standard for gamma-ray astronomy also in this respect, as the world&#39;s largest and most sensitive high-energy gamma-ray observatory, in particular due to its exquisite energy resolution at TeV energies and the adopted observational strategy focussing on regions with large dark matter densities. Throughout our analysis, we use up-to-date instrument response functions, and we thoroughly model the effect of instrumental systematic uncertainties in our statistical treatment. We further present results for other potential signatures with sharp spectral features, e.g.~box-shaped spectra, that would likewise very clearly point to a particle dark matter origin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04857v2-abstract-full').style.display = 'none'; document.getElementById('2403.04857v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages JCAP style (excluding author list and references), 19 figures; minor changes to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 07 (2024) 047 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16019">arXiv:2401.16019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.16019">pdf</a>, <a href="https://arxiv.org/format/2401.16019">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.adi2048">10.1126/science.adi2048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Acceleration and transport of relativistic electrons in the jets of the microquasar SS 433 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Aharonian%2C+F">F. Aharonian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benkhali%2C+F+A">F. Ait Benkhali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aschersleben%2C+J">J. Aschersleben</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashkar%2C+H">H. Ashkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Backes%2C+M">M. Backes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martins%2C+V+B">V. Barbosa Martins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batzofin%2C+R">R. Batzofin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becherini%2C+Y">Y. Becherini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berge%2C+D">D. Berge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernl%C3%B6hr%2C+K">K. Bernl枚hr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bi%2C+B">B. Bi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=B%C3%B6ttcher%2C+M">M. B枚ttcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boisson%2C+C">C. Boisson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolmont%2C+J">J. Bolmont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Lavergne%2C+M+d+B">M. de Bony de Lavergne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borowska%2C+J">J. Borowska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouyahiaou%2C+M">M. Bouyahiaou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breuhau%2C+M">M. Breuhau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brose%2C+R">R. Brose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brun%2C+F">F. Brun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+B">B. Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bulik%2C+T">T. Bulik</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burger-Scheidlin%2C+C">C. Burger-Scheidlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caroff%2C+S">S. Caroff</a> , et al. (140 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16019v1-abstract-short" style="display: inline;"> SS 433 is a microquasar, a stellar binary system with collimated relativistic jets. We observed SS 433 in gamma rays using the High Energy Stereoscopic System (H.E.S.S.), finding an energy-dependent shift in the apparent position of the gamma-ray emission of the parsec-scale jets. These observations trace the energetic electron population and indicate the gamma rays are produced by inverse-Compton&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16019v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16019v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16019v1-abstract-full" style="display: none;"> SS 433 is a microquasar, a stellar binary system with collimated relativistic jets. We observed SS 433 in gamma rays using the High Energy Stereoscopic System (H.E.S.S.), finding an energy-dependent shift in the apparent position of the gamma-ray emission of the parsec-scale jets. These observations trace the energetic electron population and indicate the gamma rays are produced by inverse-Compton scattering. Modelling of the energy-dependent gamma-ray morphology constrains the location of particle acceleration and requires an abrupt deceleration of the jet flow. We infer the presence of shocks on either side of the binary system at distances of 25 to 30 parsecs and conclude that self-collimation of the precessing jets forms the shocks, which then efficiently accelerate electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16019v1-abstract-full').style.display = 'none'; document.getElementById('2401.16019v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted 20th Apr. 2023, published 25th January 2024 (accepted version)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science383,402-406(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08602">arXiv:2311.08602</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08602">pdf</a>, <a href="https://arxiv.org/format/2311.08602">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/aerospace10110960">10.3390/aerospace10110960 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Data downloaded via parachute from a NASA super-pressure balloon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sirks%2C+E+L">Ellen L. Sirks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Massey%2C+R">Richard Massey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gill%2C+A+S">Ajay S. Gill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+J">Jason Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benton%2C+S+J">Steven J. Benton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+P">Paul Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=English%2C+J">Joshua English</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Everett%2C+S+W">Spencer W. Everett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraisse%2C+A+A">Aurelien A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Franco%2C+H">Hugo Franco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartley%2C+J+W">John W. Hartley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harvey%2C+D">David Harvey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holder%2C+B">Bradley Holder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hunter%2C+A">Andrew Hunter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huff%2C+E+M">Eric M. Huff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hynous%2C+A">Andrew Hynous</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jauzac%2C+M">Mathilde Jauzac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joyce%2C+N">Nikky Joyce</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kennedy%2C+D">Duncan Kennedy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagattuta%2C+D">David Lagattuta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leung%2C+J+S+-">Jason S. -Y. Leung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+L">Lun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lishman%2C+S">Stephen Lishman</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08602v1-abstract-short" style="display: inline;"> In April to May 2023, the superBIT telescope was lifted to the Earth&#39;s stratosphere by a helium-filled super-pressure balloon, to acquire astronomical imaging from above (99.5% of) the Earth&#39;s atmosphere. It was launched from New Zealand then, for 40 days, circumnavigated the globe five times at a latitude 40 to 50 degrees South. Attached to the telescope were four &#39;DRS&#39; (Data Recovery System) cap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08602v1-abstract-full').style.display = 'inline'; document.getElementById('2311.08602v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08602v1-abstract-full" style="display: none;"> In April to May 2023, the superBIT telescope was lifted to the Earth&#39;s stratosphere by a helium-filled super-pressure balloon, to acquire astronomical imaging from above (99.5% of) the Earth&#39;s atmosphere. It was launched from New Zealand then, for 40 days, circumnavigated the globe five times at a latitude 40 to 50 degrees South. Attached to the telescope were four &#39;DRS&#39; (Data Recovery System) capsules containing 5 TB solid state data storage, plus a GNSS receiver, Iridium transmitter, and parachute. Data from the telescope were copied to these, and two were dropped over Argentina. They drifted 61 km horizontally while they descended 32 km, but we predicted their descent vectors within 2.4 km: in this location, the discrepancy appears irreducible below 2 km because of high speed, gusty winds and local topography. The capsules then reported their own locations to within a few metres. We recovered the capsules and successfully retrieved all of superBIT&#39;s data - despite the telescope itself being later destroyed on landing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08602v1-abstract-full').style.display = 'none'; document.getElementById('2311.08602v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Aerospace 2023, 10, 960 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07413">arXiv:2310.07413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.07413">pdf</a>, <a href="https://arxiv.org/format/2310.07413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Chasing Gravitational Waves with the Cherenkov Telescope Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+J+G">Jarred Gershon Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carosi%2C+A">Alessandro Carosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nava%2C+L">Lara Nava</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patricelli%2C+B">Barbara Patricelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sch%C3%BCssler%2C+F">Fabian Sch眉ssler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Seglar-Arroyo%2C+M">Monica Seglar-Arroyo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Consortium%2C+C">Cta Consortium</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+K">Kazuki Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+S">Shotaro Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acharyya%2C+A">Atreya Acharyya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adam%2C+R">Remi Adam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguasca-Cabot%2C+A">Arnau Aguasca-Cabot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">Ivan Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+J">Jorge Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez-Crespo%2C+N">Nuria Alvarez-Crespo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">Rafael Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amans%2C+J">Jean-Philippe Amans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">Elena Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosino%2C+F">Filippo Ambrosino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ang%C3%BCner%2C+E+O">Ekrem Oguzhan Ang眉ner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">Lucio Angelo Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">Carla Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arcaro%2C+C">Cornelia Arcaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arrabito%2C+L">Luisa Arrabito</a> , et al. (545 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07413v3-abstract-short" style="display: inline;"> The detection of gravitational waves from a binary neutron star merger by Advanced LIGO and Advanced Virgo (GW170817), along with the discovery of the electromagnetic counterparts of this gravitational wave event, ushered in a new era of multimessenger astronomy, providing the first direct evidence that BNS mergers are progenitors of short gamma-ray bursts (GRBs). Such events may also produce very&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07413v3-abstract-full').style.display = 'inline'; document.getElementById('2310.07413v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07413v3-abstract-full" style="display: none;"> The detection of gravitational waves from a binary neutron star merger by Advanced LIGO and Advanced Virgo (GW170817), along with the discovery of the electromagnetic counterparts of this gravitational wave event, ushered in a new era of multimessenger astronomy, providing the first direct evidence that BNS mergers are progenitors of short gamma-ray bursts (GRBs). Such events may also produce very-high-energy (VHE, &gt; 100GeV) photons which have yet to be detected in coincidence with a gravitational wave signal. The Cherenkov Telescope Array (CTA) is a next-generation VHE observatory which aims to be indispensable in this search, with an unparalleled sensitivity and ability to slew anywhere on the sky within a few tens of seconds. New observing modes and follow-up strategies are being developed for CTA to rapidly cover localization areas of gravitational wave events that are typically larger than the CTA field of view. This work will evaluate and provide estimations on the expected number of of gravitational wave events that will be observable with CTA, considering both on- and off-axis emission. In addition, we will present and discuss the prospects of potential follow-up strategies with CTA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07413v3-abstract-full').style.display = 'none'; document.getElementById('2310.07413v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at the 38th International Cosmic Ray Conference (ICRC 2023), 2023 (arXiv:2309.08219)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CTA-ICRC/2023/30 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.03712">arXiv:2309.03712</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.03712">pdf</a>, <a href="https://arxiv.org/format/2309.03712">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2024/10/004">10.1088/1475-7516/2024/10/004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prospects for $纬$-ray observations of the Perseus galaxy cluster with the Cherenkov Telescope Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Consortium%2C+T+C+T+A">The Cherenkov Telescope Array Consortium</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+S">S. Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acero%2C+F">F. Acero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acharyya%2C+A">A. Acharyya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adam%2C+R">R. Adam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguasca-Cabot%2C+A">A. Aguasca-Cabot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre-Santaella%2C+A">A. Aguirre-Santaella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+J">J. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+R">R. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez-Crespo%2C+N">N. Alvarez-Crespo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amans%2C+J+-">J. -P. Amans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ang%C3%BCner%2C+E+O">E. O. Ang眉ner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Araya%2C+M">M. Araya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arcaro%2C+C">C. Arcaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arrabito%2C+L">L. Arrabito</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asano%2C+K">K. Asano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ascas%C3%ADbar%2C+Y">Y. Ascas铆bar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aschersleben%2C+J">J. Aschersleben</a> , et al. (542 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.03712v1-abstract-short" style="display: inline;"> Galaxy clusters are expected to be dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster&#39;s formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay at gamma-ray energies and are predicted to be sources of large-scale gamma-ray emission due to hadronic interactions in the intracluster med&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03712v1-abstract-full').style.display = 'inline'; document.getElementById('2309.03712v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.03712v1-abstract-full" style="display: none;"> Galaxy clusters are expected to be dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster&#39;s formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay at gamma-ray energies and are predicted to be sources of large-scale gamma-ray emission due to hadronic interactions in the intracluster medium. We estimate the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse gamma-ray emission from the Perseus galaxy cluster. We perform a detailed spatial and spectral modelling of the expected signal for the DM and the CRp components. For each, we compute the expected CTA sensitivity. The observing strategy of Perseus is also discussed. In the absence of a diffuse signal (non-detection), CTA should constrain the CRp to thermal energy ratio within the radius $R_{500}$ down to about $X_{500}&lt;3\times 10^{-3}$, for a spatial CRp distribution that follows the thermal gas and a CRp spectral index $伪_{\rm CRp}=2.3$. Under the optimistic assumption of a pure hadronic origin of the Perseus radio mini-halo and depending on the assumed magnetic field profile, CTA should measure $伪_{\rm CRp}$ down to about $螖伪_{\rm CRp}\simeq 0.1$ and the CRp spatial distribution with 10% precision. Regarding DM, CTA should improve the current ground-based gamma-ray DM limits from clusters observations on the velocity-averaged annihilation cross-section by a factor of up to $\sim 5$, depending on the modelling of DM halo substructure. In the case of decay of DM particles, CTA will explore a new region of the parameter space, reaching models with $蟿_蠂&gt;10^{27}$s for DM masses above 1 TeV. These constraints will provide unprecedented sensitivity to the physics of both CRp acceleration and transport at cluster scale and to TeV DM particle models, especially in the decay scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03712v1-abstract-full').style.display = 'none'; document.getElementById('2309.03712v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">93 pages (including author list, appendix and references), 143 figures. Submitted to JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP10(2024)004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03295">arXiv:2307.03295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.03295">pdf</a>, <a href="https://arxiv.org/format/2307.03295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Lensing in the Blue II: Estimating the Sensitivity of Stratospheric Balloons to Weak Gravitational Lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=McCleary%2C+J+E">Jacqueline E. McCleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Everett%2C+S+W">Spencer W. Everett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shaaban%2C+M+M">Mohamed M. Shaaban</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gill%2C+A+S">Ajay S. Gill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vassilakis%2C+G+N">Georgios N. Vassilakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huff%2C+E+M">Eric M. Huff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Massey%2C+R+J">Richard J. Massey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benton%2C+S+J">Steven J. Benton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+P">Paul Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holder%2C+B">Bradley Holder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraisse%2C+A+A">Aurelien A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jauzac%2C+M">Mathilde Jauzac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagattuta%2C+D">David Lagattuta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leung%2C+J+S+-">Jason S. -Y. Leung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+L">Lun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luu%2C+T+V+T">Thuy Vy T. Luu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+J+M">Johanna M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Netterfield%2C+C+B">C. Barth Netterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paracha%2C+E">Emaad Paracha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Redmond%2C+S+F">Susan F. Redmond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhodes%2C+J+D">Jason D. Rhodes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schmoll%2C+J">J\&#39;&#39;urgen Schmoll</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sirks%2C+E">Ellen Sirks</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03295v1-abstract-short" style="display: inline;"> The Superpressure Balloon-borne Imaging Telescope (SuperBIT) is a diffraction-limited, wide-field, 0.5 m, near-infrared to near-ultraviolet observatory designed to exploit the stratosphere&#39;s space-like conditions. SuperBIT&#39;s 2023 science flight will deliver deep, blue imaging of galaxy clusters for gravitational lensing analysis. In preparation, we have developed a weak lensing measurement pipelin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03295v1-abstract-full').style.display = 'inline'; document.getElementById('2307.03295v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03295v1-abstract-full" style="display: none;"> The Superpressure Balloon-borne Imaging Telescope (SuperBIT) is a diffraction-limited, wide-field, 0.5 m, near-infrared to near-ultraviolet observatory designed to exploit the stratosphere&#39;s space-like conditions. SuperBIT&#39;s 2023 science flight will deliver deep, blue imaging of galaxy clusters for gravitational lensing analysis. In preparation, we have developed a weak lensing measurement pipeline with modern algorithms for PSF characterization, shape measurement, and shear calibration. We validate our pipeline and forecast SuperBIT survey properties with simulated galaxy cluster observations in SuperBIT&#39;s near-UV and blue bandpasses. We predict imaging depth, galaxy number (source) density, and redshift distribution for observations in SuperBIT&#39;s three bluest filters; the effect of lensing sample selections is also considered. We find that in three hours of on-sky integration, SuperBIT can attain a depth of b = 26 mag and a total source density exceeding 40 galaxies per square arcminute. Even with the application of lensing-analysis catalog selections, we find b-band source densities between 25 and 30 galaxies per square arcminute with a median redshift of z = 1.1. Our analysis confirms SuperBIT&#39;s capability for weak gravitational lensing measurements in the blue. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03295v1-abstract-full').style.display = 'none'; document.getElementById('2307.03295v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Astronomical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01692">arXiv:2307.01692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01692">pdf</a>, <a href="https://arxiv.org/format/2307.01692">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ace3c0">10.3847/2041-8213/ace3c0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The vanishing of the primary emission region in PKS 1510-089 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Aharonian%2C+F">F. Aharonian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benkhali%2C+F+A">F. Ait Benkhali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aschersleben%2C+J">J. Aschersleben</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashkar%2C+H">H. Ashkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Backes%2C+M">M. Backes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martins%2C+V+B">V. Barbosa Martins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barnard%2C+J">J. Barnard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batzofin%2C+R">R. Batzofin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becherini%2C+Y">Y. Becherini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berge%2C+D">D. Berge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernloehr%2C+K">K. Bernloehr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bi%2C+B">B. Bi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Lavergne%2C+M+d+B">M. de Bony de Lavergne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boettcher%2C+M">M. Boettcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boisson%2C+C">C. Boisson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolmont%2C+J">J. Bolmont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borowska%2C+J">J. Borowska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouyahiaoui%2C+M">M. Bouyahiaoui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bradascio%2C+F">F. Bradascio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breuhaus%2C+M">M. Breuhaus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brose%2C+R">R. Brose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brun%2C+F">F. Brun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+B">B. Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bulik%2C+T">T. Bulik</a> , et al. (130 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01692v1-abstract-short" style="display: inline;"> In July 2021, PKS 1510-089 exhibited a significant flux drop in the high-energy gamma-ray (by a factor 10) and optical (by a factor 5) bands and remained in this low state throughout 2022. Similarly, the optical polarization in the source vanished, resulting in the optical spectrum being fully explained through the steady flux of the accretion disk and the broad-line region. Unlike the aforementio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01692v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01692v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01692v1-abstract-full" style="display: none;"> In July 2021, PKS 1510-089 exhibited a significant flux drop in the high-energy gamma-ray (by a factor 10) and optical (by a factor 5) bands and remained in this low state throughout 2022. Similarly, the optical polarization in the source vanished, resulting in the optical spectrum being fully explained through the steady flux of the accretion disk and the broad-line region. Unlike the aforementioned bands, the very-high-energy gamma-ray and X-ray fluxes did not exhibit a significant flux drop from year to year. This suggests that the steady-state very-high-energy gamma-ray and X-ray fluxes originate from a different emission region than the vanished parts of the high-energy gamma-ray and optical jet fluxes. The latter component has disappeared through either a swing of the jet away from the line-of-sight or a significant drop in the photon production efficiency of the jet close to the black hole. Either change could become visible in high-resolution radio images. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01692v1-abstract-full').style.display = 'none'; document.getElementById('2307.01692v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures, 6 tables; accepted for publication in ApJ Letters; corresponding authors: Joleen Barnard, Markus Boettcher, Hester Schutte, Michael Zacharias</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.09182">arXiv:2210.09182</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.09182">pdf</a>, <a href="https://arxiv.org/format/2210.09182">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ac9b1c">10.3847/1538-3881/ac9b1c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weak lensing in the blue: a counter-intuitive strategy for stratospheric observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Shaaban%2C+M+M">Mohamed M. Shaaban</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gill%2C+A+S">Ajay S. Gill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McCleary%2C+J">Jacqueline McCleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Massey%2C+R+J">Richard J. Massey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benton%2C+S+J">Steven J. Benton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Damaren%2C+C+J">Christopher J. Damaren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eifler%2C+T">Tim Eifler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraisse%2C+A+A">Aurelien A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Everett%2C+S">Spencer Everett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galloway%2C+M+N">Mathew N. Galloway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henderson%2C+M">Michael Henderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holder%2C+B">Bradley Holder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huff%2C+E+M">Eric M. Huff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jauzac%2C+M">Mathilde Jauzac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagattuta%2C+D">David Lagattuta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leung%2C+J">Jason Leung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+L">Lun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+T+V+T+L+J+M">Thuy Vy T. Luu Johanna M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Netterfield%2C+C+B">C. Barth Netterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Redmond%2C+S+F">Susan F. Redmond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhodes%2C+J+D">Jason D. Rhodes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robertson%2C+A">Andrew Robertson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schmoll%2C+J">Jurgen Schmoll</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.09182v1-abstract-short" style="display: inline;"> The statistical power of weak lensing measurements is principally driven by the number of high redshift galaxies whose shapes are resolved. Conventional wisdom and physical intuition suggest this is optimised by deep imaging at long (red or near IR) wavelengths, to avoid losing redshifted Balmer break and Lyman break galaxies. We use the synthetic Emission Line EL-COSMOS catalogue to simulate lens&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09182v1-abstract-full').style.display = 'inline'; document.getElementById('2210.09182v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.09182v1-abstract-full" style="display: none;"> The statistical power of weak lensing measurements is principally driven by the number of high redshift galaxies whose shapes are resolved. Conventional wisdom and physical intuition suggest this is optimised by deep imaging at long (red or near IR) wavelengths, to avoid losing redshifted Balmer break and Lyman break galaxies. We use the synthetic Emission Line EL-COSMOS catalogue to simulate lensing observations using different filters, from various altitudes. Here were predict the number of exposures to achieve a target z &gt; 0.3 source density, using off-the-shelf and custom filters. Ground-based observations are easily better at red wavelengths, as (more narrowly) are space-based observations. However, we find that SuperBIT, a diffraction-limited observatory operating in the stratosphere, should instead perform its lensing-quality observations at blue wavelengths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09182v1-abstract-full').style.display = 'none'; document.getElementById('2210.09182v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08169">arXiv:2203.08169</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.08169">pdf</a>, <a href="https://arxiv.org/format/2203.08169">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/1.JATIS.8.1.014007">10.1117/1.JATIS.8.1.014007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and Performance of the Prototype Schwarzschild-Couder Telescope Camera </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Adams%2C+C+B">Colin B. Adams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+G">Giovanni Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosio%2C+M">Michelangelo Ambrosio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">Carla Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arlen%2C+T">Timothy Arlen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benbow%2C+W">Wystan Benbow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertucci%2C+B">Bruna Bertucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bissaldi%2C+E">Elisabetta Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biteau%2C+J">Jonathan Biteau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bitossi%2C+M">Massimiliano Bitossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boiano%2C+A">Alfonso Boiano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonavolont%C3%A0%2C+C">Carmela Bonavolont脿</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bose%2C+R">Richard Bose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouvier%2C+A">Aurelien Bouvier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buscemi%2C+M">Mario Buscemi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brill%2C+A">Aryeh Brill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley%2C+J+H">James H. Buckley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Canestrari%2C+R">Rodolfo Canestrari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Capasso%2C+M">Massimo Capasso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caprai%2C+M">Mirco Caprai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+P">Paolo Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covault%2C+C+E">Corbin E. Covault</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Depaoli%2C+D">Davide Depaoli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Venere%2C+L">Leonardo Di Venere</a> , et al. (64 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08169v1-abstract-short" style="display: inline;"> The prototype Schwarzschild-Couder Telescope (pSCT) is a candidate for a medium-sized telescope in the Cherenkov Telescope Array. The pSCT is based on a novel dual mirror optics design which reduces the plate scale and allows for the use of silicon photomultipliers as photodetectors. The prototype pSCT camera currently has only the central sector instrumented with 25 camera modules (1600 pixels)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08169v1-abstract-full').style.display = 'inline'; document.getElementById('2203.08169v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08169v1-abstract-full" style="display: none;"> The prototype Schwarzschild-Couder Telescope (pSCT) is a candidate for a medium-sized telescope in the Cherenkov Telescope Array. The pSCT is based on a novel dual mirror optics design which reduces the plate scale and allows for the use of silicon photomultipliers as photodetectors. The prototype pSCT camera currently has only the central sector instrumented with 25 camera modules (1600 pixels), providing a 2.68$^{\circ}$ field of view (FoV). The camera electronics are based on custom TARGET (TeV array readout with GSa/s sampling and event trigger) application specific integrated circuits. Field programmable gate arrays sample incoming signals at a gigasample per second. A single backplane provides camera-wide triggers. An upgrade of the pSCT camera is in progress, which will fully populate the focal plane. This will increase the number of pixels to 11,328, the number of backplanes to 9, and the FoV to 8.04$^{\circ}$. Here we give a detailed description of the pSCT camera, including the basic concept, mechanical design, detectors, electronics, current status and first light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08169v1-abstract-full').style.display = 'none'; document.getElementById('2203.08169v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Astron. Telesc. Instrum. Syst. 8(1), 014007 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.05839">arXiv:2203.05839</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.05839">pdf</a>, <a href="https://arxiv.org/format/2203.05839">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2022.102695">10.1016/j.astropartphys.2022.102695 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inter-Calibration of Atmospheric Cherenkov Telescopes with UAV-based Airborne Calibration System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Muller%2C+J">J. Muller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Naurois%2C+M">M. de Naurois</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+P">P. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.05839v1-abstract-short" style="display: inline;"> The recent advances in the flight capability of remotely piloted aerial vehicles (here after referred to as UAVs) have afforded the astronomical community the possibility of a new telescope calibration technique: UAV-based calibration. Building upon a feasibility study which characterised the potential that a UAV-based calibration system has for the future Cherenkov Telescope Array, we created a f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05839v1-abstract-full').style.display = 'inline'; document.getElementById('2203.05839v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.05839v1-abstract-full" style="display: none;"> The recent advances in the flight capability of remotely piloted aerial vehicles (here after referred to as UAVs) have afforded the astronomical community the possibility of a new telescope calibration technique: UAV-based calibration. Building upon a feasibility study which characterised the potential that a UAV-based calibration system has for the future Cherenkov Telescope Array, we created a first-generation UAV-calibration prototype and undertook a field-campaign of inter-calibrating the sensitivity of the H.E.S.S. telescope array with two successful calibration flights. In this paper we report the key results of our first test campaign: firstly, by comparing the intensity of the UAV-calibration events, as recorded by the individual HESS-I cameras, we find that a UAV-based inter-calibration is consistent with the standard muon inter-calibration technique at the level of \SI{5.4}{\%} and \SI{5.8}{\%} for the two individual UAV-calibration runs. Secondly, by comparing the position of the UAV-calibration signal on the camera focal plane, for a variety of telescope pointing models, we were able to constrain the pointing accuracy of the HESS-I telescopes at the tens of arc-second accuracy level. This is consistent with the pointing accuracy derived from other pointing calibration methods. Importantly both the inter-calibration and pointing accuracy results were achieved with a first-generation UAV-calibration prototype, which eludes to the potential of the technique and highlights that a UAV-based system is a viable calibration technique for current and future ground-based $纬$-ray telescope arrays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05839v1-abstract-full').style.display = 'none'; document.getElementById('2203.05839v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, accepted for publication in Astroparticle Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astroparticle Physics, Volume 140, July 2022, 102695 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.12739">arXiv:2112.12739</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.12739">pdf</a>, <a href="https://arxiv.org/format/2112.12739">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/02/T02005">10.1088/1748-0221/17/02/T02005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gadolinium Loaded Cherenkov Detectors for Neutron Monitoring in High Energy Air Showers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Stowell%2C+P">P. Stowell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fargher%2C+S">S. Fargher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thompson%2C+L+F">L. F. Thompson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadwick%2C+P+M">P. M. Chadwick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.12739v1-abstract-short" style="display: inline;"> Monitoring of high energy cosmic ray neutrons is of particular interest for cosmic ray water Cherenkov detectors as intense bundles of delayed neutrons have been found to arrive after the initial passage of a high energy air shower. In this paper we explore the possibility of building large-area high-energy neutron monitors using gadolinium-loaded Water Cherenkov Detectors (WCDs). GEANT4 simulatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12739v1-abstract-full').style.display = 'inline'; document.getElementById('2112.12739v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.12739v1-abstract-full" style="display: none;"> Monitoring of high energy cosmic ray neutrons is of particular interest for cosmic ray water Cherenkov detectors as intense bundles of delayed neutrons have been found to arrive after the initial passage of a high energy air shower. In this paper we explore the possibility of building large-area high-energy neutron monitors using gadolinium-loaded Water Cherenkov Detectors (WCDs). GEANT4 simulations of photon production in WCDs are used to estimate the maximum detection efficiency for a hypothetical system. Requiring a series of neutron induced gamma ray flashes distributed over an extended period of time (up to 20渭s) was shown to be an effective way to discriminate high energy neutron interactions from other backgrounds. Results suggest that neutron detection efficiencies of 4-15% may be possible using a gadolinium-loaded detection system above 200 MeV. The magnitude of gadolinium loading was also shown to significantly modify the timing response of the simulated detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12739v1-abstract-full').style.display = 'none'; document.getElementById('2112.12739v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 Pages, 8 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12771">arXiv:2111.12771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.12771">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Panoramic SETI: overall mechanical system design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Aaron M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aronson%2C+M+L">Michael L Aronson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wright%2C+S+A">Shelley A. Wright</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maire%2C+J">J茅r么me Maire</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cosens%2C+M">Maren Cosens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiley%2C+J+H">James H. Wiley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonio%2C+F">Franklin Antonio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Horowitz%2C+P">Paul Horowitz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raffanti%2C+R">Rick Raffanti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Werthimer%2C+D">Dan Werthimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12771v1-abstract-short" style="display: inline;"> PANOSETI (Pulsed All-Sky Near-infrared Optical Search for Extra Terrestrial Intelligence) is a dedicated SETI (Search for Extraterrestrial Intelligence) observatory that is being designed to observe 4,441 sq. deg. to search for nano- to milli-second transient events. The experiment will have a dual observatory system that has a total of 90 identical optical 0.48 m telescopes that each have a 99 sq&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12771v1-abstract-full').style.display = 'inline'; document.getElementById('2111.12771v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12771v1-abstract-full" style="display: none;"> PANOSETI (Pulsed All-Sky Near-infrared Optical Search for Extra Terrestrial Intelligence) is a dedicated SETI (Search for Extraterrestrial Intelligence) observatory that is being designed to observe 4,441 sq. deg. to search for nano- to milli-second transient events. The experiment will have a dual observatory system that has a total of 90 identical optical 0.48 m telescopes that each have a 99 square degree field of view. The two observatory sites will be separated by 1 km distance to help eliminate false positives and register a definitive signal. We discuss the overall mechanical design of the telescope modules which includes a Fresnel lens housing, a shutter, three baffles, an 32x32 array of Hamamatsu Multi-Photon Pixel Counting (MPPC) detectors that reside on a linear stage for focusing. Each telescope module will be housed in a triangle of a 3rd tessellation frequency geodesic dome that has the ability to have directional adjustment to correct for manufacturing tolerances and astrometric alignment to the second observatory site. Each observatory will have an enclosure to protect the experiment, and an observatory room for operations and electronics. We will review the overall design of the geodesic domes and mechanical telescope attachments, as well as the overall cabling and observatory infrastructure layout. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12771v1-abstract-full').style.display = 'none'; document.getElementById('2111.12771v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures, SPIE 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06225">arXiv:2109.06225</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.06225">pdf</a>, <a href="https://arxiv.org/format/2109.06225">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.395.0830">10.22323/1.395.0830 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of the Crab Nebula by the prototype Schwarzschild-Couder Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Adams%2C+C+B">C. B. Adams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosio%2C+M">M. Ambrosio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+P+I">P. I. Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benbow%2C+W">W. Benbow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertucci%2C+B">B. Bertucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bitossi%2C+M">M. Bitossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boiano%2C+A">A. Boiano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonavolont%C3%A0%2C+C">C. Bonavolont脿</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bose%2C+R">R. Bose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brill%2C+A">A. Brill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley%2C+J+H">J. H. Buckley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cameron%2C+R+A">R. A. Cameron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Canestrari%2C+R">R. Canestrari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Capasso%2C+M">M. Capasso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caprai%2C+M">M. Caprai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covault%2C+C+E">C. E. Covault</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Depaoli%2C+D">D. Depaoli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Venere%2C+L">L. Di Venere</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Errando%2C+M">M. Errando</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fegan%2C+S">S. Fegan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feng%2C+Q">Q. Feng</a> , et al. (49 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06225v1-abstract-short" style="display: inline;"> The Schwarzschild-Couder Telescope (SCT) is a medium-sized telescope technology proposed for the Cherenkov Telescope Array. It uses a novel dual-mirror optical design that removes comatic aberrations across its entire field of view. The SCT camera employs high-resolution silicon photomultiplier (SiPM) sensors with a pixel size of 4 arcminutes. A prototype SCT (pSCT) has been constructed at the Fre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06225v1-abstract-full').style.display = 'inline'; document.getElementById('2109.06225v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06225v1-abstract-full" style="display: none;"> The Schwarzschild-Couder Telescope (SCT) is a medium-sized telescope technology proposed for the Cherenkov Telescope Array. It uses a novel dual-mirror optical design that removes comatic aberrations across its entire field of view. The SCT camera employs high-resolution silicon photomultiplier (SiPM) sensors with a pixel size of 4 arcminutes. A prototype SCT (pSCT) has been constructed at the Fred Lawrence Whipple Observatory in Arizona, USA. An observing campaign in 2020, with a partial camera of 1600 pixels (2.7 degrees by 2.7 degrees field of view) resulted in detection of the Crab Nebula at 8.6 sigma statistical significance. Work on the pSCT camera and optical system is ongoing to improve performance and prepare for an upcoming camera upgrade. The pSCT camera upgrade will replace the current camera modules with improved SiPMs and readout electronics and will expand the camera to its full design field of view of 8 degrees in diameter (11,328 pixels). The fully upgraded pSCT will enable next-generation very-high-energy gamma-ray astrophysics through excellent background rejection and angular resolution. In this presentation we describe first results from the successful operation of the pSCT and future plans. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06225v1-abstract-full').style.display = 'none'; document.getElementById('2109.06225v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures, 2 tables, contribution to ICRC 2021, similar to 10.1016/j.astropartphys.2021.102562 (arXiv:2012.08448)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of Science, PoS(ICRC2021)830 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.05127">arXiv:2109.05127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.05127">pdf</a>, <a href="https://arxiv.org/format/2109.05127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.395.0748">10.22323/1.395.0748 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and performance of the prototype Schwarzschild-Couder Telescope camera </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Adams%2C+C+B">C. B. Adams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosio%2C+M">M. Ambrosio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+P+I">P. I. Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benbow%2C+W">W. Benbow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertucci%2C+B">B. Bertucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bitossi%2C+M">M. Bitossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boiano%2C+A">A. Boiano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonavolonta%2C+C">C. Bonavolonta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bose%2C+R">R. Bose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brill%2C+A">A. Brill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley%2C+J+H">J. H. Buckley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cameron%2C+R+A">R. A. Cameron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Capasso%2C+M">M. Capasso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caprai%2C+M">M. Caprai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covault%2C+C+E">C. E. Covault</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Depaoli%2C+D">D. Depaoli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Venere%2C+L">L. Di Venere</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Errando%2C+M">M. Errando</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fegan%2C+S">S. Fegan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feng%2C+Q">Q. Feng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fiandrini%2C+E">E. Fiandrini</a> , et al. (49 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.05127v1-abstract-short" style="display: inline;"> The Cherenkov Telescope Array (CTA) is the next-generation ground-based observatory for very-high-energy gamma-ray astronomy. An innovative 9.7 m aperture, dual-mirror Schwarzschild-Couder Telescope (SCT) design is a candidate design for CTA Medium-Sized Telescopes. A prototype SCT (pSCT) has been constructed at the Fred Lawrence Whipple Observatory in Arizona, USA. Its camera is currently partial&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05127v1-abstract-full').style.display = 'inline'; document.getElementById('2109.05127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.05127v1-abstract-full" style="display: none;"> The Cherenkov Telescope Array (CTA) is the next-generation ground-based observatory for very-high-energy gamma-ray astronomy. An innovative 9.7 m aperture, dual-mirror Schwarzschild-Couder Telescope (SCT) design is a candidate design for CTA Medium-Sized Telescopes. A prototype SCT (pSCT) has been constructed at the Fred Lawrence Whipple Observatory in Arizona, USA. Its camera is currently partially instrumented with 1600 pixels covering a field of view of 2.7 degrees square. The small plate scale of the optical system allows densely packed silicon photomultipliers to be used, which combined with high-density trigger and waveform readout electronics enable the high-resolution camera. The camera&#39;s electronics are capable of imaging air shower development at a rate of one billion samples per second. We describe the commissioning and performance of the pSCT camera, including trigger and waveform readout performance, calibration, and absolute GPS time stamping. We also present the upgrade to the camera, which is currently underway. The upgrade will fully populate the focal plane, increasing the field of view to 8 degree diameter, and lower the front-end electronics noise, enabling a lower trigger threshold and improved reconstruction and background rejection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05127v1-abstract-full').style.display = 'none'; document.getElementById('2109.05127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, Proceedings of the 37th International Cosmic Ray Conference (ICRC 2021), Berlin, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.03125">arXiv:2109.03125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.03125">pdf</a>, <a href="https://arxiv.org/format/2109.03125">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Trinity: An Imaging Air Cherenkov Telescope to Search for Ultra-High-Energy Neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bagheri%2C+M">Mahdi Bagheri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doro%2C+M">Michele Doro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gazda%2C+E">Eliza Gazda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kieda%2C+D">Dave Kieda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+C">Chaoxian Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Onel%2C+Y">Yasar Onel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Otte%2C+N">Nepomuk Otte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Taboada%2C+I">Ignacio Taboada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+A">Andrew Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.03125v1-abstract-short" style="display: inline;"> Earth-skimming neutrinos are those which travel through the Earth&#39;s crust at a shallow angle. For Ultra-High-Energy (E &gt; 1 PeV; UHE) earth-skimming tau neutrinos, there is a high-probability that the tau lepton created by a neutrino-Earth interaction will emerge from the ground before it decays. When this happens, the decaying tau particle initiates an air shower of relativistic sub-atomic particl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03125v1-abstract-full').style.display = 'inline'; document.getElementById('2109.03125v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.03125v1-abstract-full" style="display: none;"> Earth-skimming neutrinos are those which travel through the Earth&#39;s crust at a shallow angle. For Ultra-High-Energy (E &gt; 1 PeV; UHE) earth-skimming tau neutrinos, there is a high-probability that the tau lepton created by a neutrino-Earth interaction will emerge from the ground before it decays. When this happens, the decaying tau particle initiates an air shower of relativistic sub-atomic particles which emit Cherenkov radiation. To observe this Cherenkov radiation, we propose the Trinity Observatory. Using a novel optical structure design, pointing at the horizon, Trinity will observe the Cherenkov radiation from upward-going neutrino-induced air showers. Being sensitive to neutrinos in the 1-10,000 PeV energy range, Trinity&#39;s expected sensitivity will have a unique role to play filling the gap between the observed astrophysical neutrinos observed by IceCube and the expected sensitivity of radio UHE neutrino detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03125v1-abstract-full').style.display = 'none'; document.getElementById('2109.03125v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 37th International Cosmic Ray Conference, PoS(ICRC2021) 1179</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05971">arXiv:2106.05971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.05971">pdf</a>, <a href="https://arxiv.org/format/2106.05971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Probing extreme environments with the Cherenkov Telescope Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Boisson%2C+C">C. Boisson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burtovoi%2C+A">A. Burtovoi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cerruti%2C+M">M. Cerruti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chernyakova%2C+M">M. Chernyakova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hassan%2C+T">T. Hassan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lenain%2C+J+-">J. -P. Lenain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manganaro%2C+M">M. Manganaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romano%2C+P">P. Romano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sol%2C+H">H. Sol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tavecchio%2C+F">F. Tavecchio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vercellone%2C+S">S. Vercellone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zampieri%2C+L">L. Zampieri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zanin%2C+R">R. Zanin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zech%2C+A">A. Zech</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anguner%2C+E+O">E. O. Anguner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Backes%2C+M">M. Backes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balazs%2C+C">C. Balazs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonz%C3%A1lez%2C+J+B">J. Becerra Gonz谩lez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigongiari%2C+C">C. Bigongiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolmont%2C+J">J. Bolmont</a> , et al. (105 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05971v1-abstract-short" style="display: inline;"> The physics of the non-thermal Universe provides information on the acceleration mechanisms in extreme environments, such as black holes and relativistic jets, neutron stars, supernovae or clusters of galaxies. In the presence of magnetic fields, particles can be accelerated towards relativistic energies. As a consequence, radiation along the entire electromagnetic spectrum can be observed, and ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05971v1-abstract-full').style.display = 'inline'; document.getElementById('2106.05971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05971v1-abstract-full" style="display: none;"> The physics of the non-thermal Universe provides information on the acceleration mechanisms in extreme environments, such as black holes and relativistic jets, neutron stars, supernovae or clusters of galaxies. In the presence of magnetic fields, particles can be accelerated towards relativistic energies. As a consequence, radiation along the entire electromagnetic spectrum can be observed, and extreme environments are also the most likely sources of multi-messenger emission. The most energetic part of the electromagnetic spectrum corresponds to the very-high-energy (VHE, E&gt;100 GeV) gamma-ray regime, which can be extensively studied with ground based Imaging Atmospheric Cherenkov Telescopes (IACTs). The results obtained by the current generation of IACTs, such as H.E.S.S., MAGIC, and VERITAS, demonstrate the crucial importance of the VHE band in understanding the non-thermal emission of extreme environments in our Universe. In some objects, the energy output in gamma rays can even outshine the rest of the broadband spectrum. The Cherenkov Telescope Array (CTA) is the next generation of IACTs, which, with cutting edge technology and a strategic configuration of ~100 telescopes distributed in two observing sites, in the northern and southern hemispheres, will reach better sensitivity, angular and energy resolution, and broader energy coverage than currently operational IACTs. With CTA we can probe the most extreme environments and considerably boost our knowledge of the non-thermal Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05971v1-abstract-full').style.display = 'none'; document.getElementById('2106.05971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted as input to ASTRONET Science Vision and Infrastructure roadmap on behalf of the CTA consortium</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.03621">arXiv:2106.03621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.03621">pdf</a>, <a href="https://arxiv.org/format/2106.03621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Multi-messenger and transient astrophysics with the Cherenkov Telescope Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bo%C5%A1njak%2C+%C5%BD">沤. Bo拧njak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carosi%2C+A">A. Carosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chernyakova%2C+M">M. Chernyakova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cristofari%2C+P">P. Cristofari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Longo%2C+F">F. Longo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=L%C3%B3pez-Oramas%2C+A">A. L贸pez-Oramas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Santander%2C+M">M. Santander</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Satalecka%2C+K">K. Satalecka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sch%C3%BCssler%2C+F">F. Sch眉ssler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sergijenko%2C+O">O. Sergijenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stamerra%2C+A">A. Stamerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anguner%2C+E+O">E. O. Anguner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Backes%2C+M">M. Backes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balazs%2C+C">Csaba Balazs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baroncelli%2C+L">L. Baroncelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tjus%2C+J+B">J. Becker Tjus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigongiari%2C+C">C. Bigongiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boisson%2C+C">C. Boisson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolmont%2C+J">J. Bolmont</a> , et al. (120 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.03621v1-abstract-short" style="display: inline;"> The discovery of gravitational waves, high-energy neutrinos or the very-high-energy counterpart of gamma-ray bursts has revolutionized the high-energy and transient astrophysics community. The development of new instruments and analysis techniques will allow the discovery and/or follow-up of new transient sources. We describe the prospects for the Cherenkov Telescope Array (CTA), the next-generati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03621v1-abstract-full').style.display = 'inline'; document.getElementById('2106.03621v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.03621v1-abstract-full" style="display: none;"> The discovery of gravitational waves, high-energy neutrinos or the very-high-energy counterpart of gamma-ray bursts has revolutionized the high-energy and transient astrophysics community. The development of new instruments and analysis techniques will allow the discovery and/or follow-up of new transient sources. We describe the prospects for the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory, for multi-messenger and transient astrophysics in the decade ahead. CTA will explore the most extreme environments via very-high-energy observations of compact objects, stellar collapse events, mergers and cosmic-ray accelerators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03621v1-abstract-full').style.display = 'none'; document.getElementById('2106.03621v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ASTRONET roadmap on behalf of the CTA consortium</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.03599">arXiv:2106.03599</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.03599">pdf</a>, <a href="https://arxiv.org/format/2106.03599">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Origin and role of relativistic cosmic particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Araudo%2C+A">A. Araudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">G. Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Olmi%2C+B">B. Olmi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acero%2C+F">F. Acero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adam%2C+R">R. Adam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anguner%2C+E+O">E. O. Anguner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ascasibar%2C+Y">Y. Ascasibar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balazs%2C+C">C. Balazs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tjus%2C+J+B">J. Becker Tjus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigongiari%2C+C">C. Bigongiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolmont%2C+J">J. Bolmont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boisson%2C+C">C. Boisson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bordas%2C+P">P. Bordas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bo%C5%A1njak%2C+%C5%BD">沤. Bo拧njak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burton%2C+M">M. Burton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bucciantini%2C+N">N. Bucciantini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cangemi%2C+F">F. Cangemi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caraveo%2C+P">P. Caraveo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cardillo%2C+M">M. Cardillo</a> , et al. (99 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.03599v2-abstract-short" style="display: inline;"> This white paper briefly summarizes the importance of the study of relativistic cosmic rays, both as a constituent of our Universe, and through their impact on stellar and galactic evolution. The focus is on what can be learned over the coming decade through ground-based gamma-ray observations over the 20 GeV to 300 TeV range. The majority of the material is drawn directly from &#34;Science with the C&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03599v2-abstract-full').style.display = 'inline'; document.getElementById('2106.03599v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.03599v2-abstract-full" style="display: none;"> This white paper briefly summarizes the importance of the study of relativistic cosmic rays, both as a constituent of our Universe, and through their impact on stellar and galactic evolution. The focus is on what can be learned over the coming decade through ground-based gamma-ray observations over the 20 GeV to 300 TeV range. The majority of the material is drawn directly from &#34;Science with the Cherenkov Telescope Array&#34;, which describes the overall science case for CTA. We request that authors wishing to cite results contained in this white paper cite the original work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03599v2-abstract-full').style.display = 'none'; document.getElementById('2106.03599v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted as input to ASTRONET Science Vision and Infrastructure roadmap on behalf of the CTA consortium. arXiv admin note: text overlap with arXiv:1709.07997</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.03582">arXiv:2106.03582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.03582">pdf</a>, <a href="https://arxiv.org/format/2106.03582">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing Dark Matter and Fundamental Physics with the Cherenkov Telescope Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Iocco%2C+F">F. Iocco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meyer%2C+M">M. Meyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doro%2C+M">M. Doro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hofmann%2C+W">W. Hofmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=P%C3%A9rez-Romero%2C+J">J. P茅rez-Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zaharijas%2C+G">G. Zaharijas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre-Santaella%2C+A">A. Aguirre-Santaella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anguner%2C+E+O">E. O. Anguner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ascasibar%2C+Y">Y. Ascasibar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bal%C3%A1zs%2C+C">C. Bal谩zs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beck%2C+G">G. Beck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigongiari%2C+C">C. Bigongiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolmont%2C+J">J. Bolmont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bringmann%2C+T">T. Bringmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burton%2C+M+G">M. G. Burton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chaty%2C+M+C+S">M. Cardillo S. Chaty</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cotter%2C+G">G. Cotter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=della+Volpe%2C+D">D. della Volpe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Djannati-Ata%C3%AF%2C+A">A. Djannati-Ata茂</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eckner%2C+C">C. Eckner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emery%2C+G">G. Emery</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fedorova%2C+E">E. Fedorova</a> , et al. (49 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.03582v2-abstract-short" style="display: inline;"> Astrophysical observations provide strong evidence that more than 80% of all matter in the Universe is in the form of dark matter (DM). Two leading candidates of particles beyond the Standard Model that could constitute all or a fraction of the DM content are the so-called Weakly Interacting Massive Particles (WIMPs) and Axion-Like Particles (ALPs). The upcoming Cherenkov Telescope Array, which wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03582v2-abstract-full').style.display = 'inline'; document.getElementById('2106.03582v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.03582v2-abstract-full" style="display: none;"> Astrophysical observations provide strong evidence that more than 80% of all matter in the Universe is in the form of dark matter (DM). Two leading candidates of particles beyond the Standard Model that could constitute all or a fraction of the DM content are the so-called Weakly Interacting Massive Particles (WIMPs) and Axion-Like Particles (ALPs). The upcoming Cherenkov Telescope Array, which will observe gamma rays between 20 GeV and 300 TeV with unprecedented sensitivity, will have unique capabilities to search for these DM candidates. A particularly promising target for WIMP searches is the Galactic Center. WIMPs with annihilation cross sections correctly producing the DM relic density will be detectable with CTA, assuming an Einasto-like density profile and WIMP masses between 200 GeV and 10 TeV. Regarding new physics beyond DM, CTA observations will also enable tests of fundamental symmetries of nature such as Lorentz invariance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03582v2-abstract-full').style.display = 'none'; document.getElementById('2106.03582v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted as input to the ASTRONET Science Vision and Infrastructure roadmap on behalf of the CTA consortium</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.01743">arXiv:2101.01743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.01743">pdf</a>, <a href="https://arxiv.org/format/2101.01743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3839">10.1093/mnras/staa3839 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photohadronic Modelling of the 2010 Gamma-ray Flare from Mrk 421 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=de+Le%C3%B3n%2C+A+R">A. Rosales de Le贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadwick%2C+P+M">P. M. Chadwick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.01743v1-abstract-short" style="display: inline;"> Blazars are a subclass of active galactic nuclei (AGN) that have a relativistic jet with a small viewing angle towards the observer. Recent results based on hadronic scenarios have motivated an ongoing discussion of how a blazar can produce high energy neutrinos during a flaring state and which scenario can successfully describe the observed gamma-ray behaviour. Markarian 421 is one of the closest&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01743v1-abstract-full').style.display = 'inline'; document.getElementById('2101.01743v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.01743v1-abstract-full" style="display: none;"> Blazars are a subclass of active galactic nuclei (AGN) that have a relativistic jet with a small viewing angle towards the observer. Recent results based on hadronic scenarios have motivated an ongoing discussion of how a blazar can produce high energy neutrinos during a flaring state and which scenario can successfully describe the observed gamma-ray behaviour. Markarian 421 is one of the closest and brightest objects in the extragalactic gamma-ray sky and showed flaring activity over a 14-day period in March 2010. In this work, we describe the performed analysis of \textit{Fermi}-LAT data from the source focused on the MeV range (100 MeV - 1 GeV), and study the possibility of a contribution coming from the $p纬$ interactions between protons and MeV SSC target photons to fit the very high energy (VHE) gamma-ray emission. The fit results were compared with two leptonic models (one-zone and two-zone) using the Akaike Information Criteria (AIC) test, which evaluates goodness-of-fit alongside the simplicity of the model. In all cases the photohadronic model was favoured as a better fit description in comparison to the one-zone leptonic model, and with respect to the two-zone model in the majority of cases. Our results show the potential of a photohadronic contribution to a lepto-hadronic origin of gamma-ray flux of blazars. Future gamma-ray observations above tens of TeV and below 100 MeV in energy will be crucial to test and discriminate between models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01743v1-abstract-full').style.display = 'none'; document.getElementById('2101.01743v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in MNRAS. 11 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS, 501 (2), pp. 2198-2208 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08448">arXiv:2012.08448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.08448">pdf</a>, <a href="https://arxiv.org/format/2012.08448">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2021.102562">10.1016/j.astropartphys.2021.102562 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of the Crab Nebula with the 9.7 m Prototype Schwarzschild-Couder Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Adams%2C+C+B">C. B. Adams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+R">R. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosio%2C+M">M. Ambrosio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arlen%2C+T">T. Arlen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+P+I">P. I. Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benbow%2C+W">W. Benbow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertucci%2C+B">B. Bertucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biteau%2C+J">J. Biteau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bitossi%2C+M">M. Bitossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boiano%2C+A">A. Boiano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonavolont%C3%A0%2C+C">C. Bonavolont脿</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bose%2C+R">R. Bose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouvier%2C+A">A. Bouvier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brill%2C+A">A. Brill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley%2C+J+H">J. H. Buckley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Byrum%2C+K">K. Byrum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cameron%2C+R+A">R. A. Cameron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Canestrari%2C+R">R. Canestrari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Capasso%2C+M">M. Capasso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caprai%2C+M">M. Caprai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covault%2C+C+E">C. E. Covault</a> , et al. (83 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08448v1-abstract-short" style="display: inline;"> The Schwarzschild-Couder Telescope (SCT) is a telescope concept proposed for the Cherenkov Telescope Array. It employs a dual-mirror optical design to remove comatic aberrations over an $8^{\circ}$ field of view, and a high-density silicon photomultiplier camera (with a pixel resolution of 4 arcmin) to record Cherenkov emission from cosmic ray and gamma-ray initiated particle cascades in the atmos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08448v1-abstract-full').style.display = 'inline'; document.getElementById('2012.08448v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08448v1-abstract-full" style="display: none;"> The Schwarzschild-Couder Telescope (SCT) is a telescope concept proposed for the Cherenkov Telescope Array. It employs a dual-mirror optical design to remove comatic aberrations over an $8^{\circ}$ field of view, and a high-density silicon photomultiplier camera (with a pixel resolution of 4 arcmin) to record Cherenkov emission from cosmic ray and gamma-ray initiated particle cascades in the atmosphere. The prototype SCT (pSCT), comprising a 9.7 m diameter primary mirror and a partially instrumented camera with 1536 pixels, has been constructed at the Fred Lawrence Whipple Observatory. The telescope was inaugurated in January 2019, with commissioning continuing throughout 2019. We describe the first campaign of observations with the pSCT, conducted in January and February of 2020, and demonstrate the detection of gamma-ray emission from the Crab Nebula with a statistical significance of $8.6蟽$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08448v1-abstract-full').style.display = 'none'; document.getElementById('2012.08448v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures, 3 tables, submitted to Astroparticle Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.01073">arXiv:2011.01073</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.01073">pdf</a>, <a href="https://arxiv.org/format/2011.01073">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3483">10.1093/mnras/staa3483 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Locating the gamma-ray emission region in the brightest Fermi-LAT Flat Spectrum Radio Quasars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Acharyya%2C+A">Atreya Acharyya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadwick%2C+P+M">Paula M. Chadwick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.01073v1-abstract-short" style="display: inline;"> We present a temporal and spectral analysis of the gamma-ray flux from nine of the brightest flat spectrum radio quasars (FSRQs) detected with the Fermi Large Area Telescope (LAT) during its first eight years of operation, with the aim of constraining the location of the emission region. Using the increased photon statistics provided from the two brightest flares of each source, we find evidence o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01073v1-abstract-full').style.display = 'inline'; document.getElementById('2011.01073v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.01073v1-abstract-full" style="display: none;"> We present a temporal and spectral analysis of the gamma-ray flux from nine of the brightest flat spectrum radio quasars (FSRQs) detected with the Fermi Large Area Telescope (LAT) during its first eight years of operation, with the aim of constraining the location of the emission region. Using the increased photon statistics provided from the two brightest flares of each source, we find evidence of sub-hour variability from B2 1520+31, PKS 1502+106 and PKS 1424-41, with the remaining sources showing variability on timescales of a few hours. These indicate gamma-ray emission from extremely compact regions in the jet, potentially compatible with emission from within the broad line region (BLR). The flare spectra show evidence of a spectral cut-off in 7 of the 18 flares studied, further supporting the argument for BLR emission in these sources. An investigation into the energy dependence of cooling timescales finds evidence for both BLR origin and emission from within the molecular torus (MT). However, Monte Carlo simulations show that the very high energy (VHE) emission from all sources except 3C 279, 3C 454.3 and 4C 21.35 is incompatible with a BLR origin. The combined findings of all the approaches used suggest that the gamma-ray emission in the brightest FSRQs originates in multiple compact emission regions throughout the jet, within both the BLR and the MT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01073v1-abstract-full').style.display = 'none'; document.getElementById('2011.01073v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.05145">arXiv:2010.05145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.05145">pdf</a>, <a href="https://arxiv.org/format/2010.05145">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/abbffb">10.3847/1538-3881/abbffb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical night sky brightness measurements from the stratosphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gill%2C+A">Ajay Gill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benton%2C+S+J">Steven J. Benton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+P">Paul Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Damaren%2C+C+J">Christopher J. Damaren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eifler%2C+T">Tim Eifler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraisse%2C+A+A">Aurelien A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galloway%2C+M+N">Mathew N. Galloway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartley%2C+J+W">John W. Hartley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holder%2C+B">Bradley Holder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huff%2C+E+M">Eric M. Huff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jauzac%2C+M">Mathilde Jauzac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagattuta%2C+D">David Lagattuta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leung%2C+J+S+-">Jason S. -Y Leung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+L">Lun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luu%2C+T+V+T">Thuy Vy T. Luu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Massey%2C+R+J">Richard J. Massey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McCleary%2C+J">Jacqueline McCleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mullaney%2C+J">James Mullaney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+J+M">Johanna M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Netterfield%2C+C+B">C. Barth Netterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Redmond%2C+S">Susan Redmond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhodes%2C+J+D">Jason D. Rhodes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romualdez%2C+L+J">L. Javier Romualdez</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.05145v1-abstract-short" style="display: inline;"> This paper presents optical night sky brightness measurements from the stratosphere using CCD images taken with the Super-pressure Balloon-borne Imaging Telescope (SuperBIT). The data used for estimating the backgrounds were obtained during three commissioning flights in 2016, 2018, and 2019 at altitudes ranging from 28 km to 34 km above sea level. For a valid comparison of the brightness measurem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.05145v1-abstract-full').style.display = 'inline'; document.getElementById('2010.05145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.05145v1-abstract-full" style="display: none;"> This paper presents optical night sky brightness measurements from the stratosphere using CCD images taken with the Super-pressure Balloon-borne Imaging Telescope (SuperBIT). The data used for estimating the backgrounds were obtained during three commissioning flights in 2016, 2018, and 2019 at altitudes ranging from 28 km to 34 km above sea level. For a valid comparison of the brightness measurements from the stratosphere with measurements from mountain-top ground-based observatories (taken at zenith on the darkest moonless night at high Galactic and high ecliptic latitudes), the stratospheric brightness levels were zodiacal light and diffuse Galactic light subtracted, and the airglow brightness was projected to zenith. The stratospheric brightness was measured around 5.5 hours, 3 hours, and 2 hours before the local sunrise time in 2016, 2018, and 2019 respectively. The $B$, $V$, $R$, and $I$ brightness levels in 2016 were 2.7, 1.0, 1.1, and 0.6 mag arcsec$^{-2}$ darker than the darkest ground-based measurements. The $B$, $V$, and $R$ brightness levels in 2018 were 1.3, 1.0, and 1.3 mag arcsec$^{-2}$ darker than the darkest ground-based measurements. The $U$ and $I$ brightness levels in 2019 were 0.1 mag arcsec$^{-2}$ brighter than the darkest ground-based measurements, whereas the $B$ and $V$ brightness levels were 0.8 and 0.6 mag arcsec$^{-2}$ darker than the darkest ground-based measurements. The lower sky brightness levels, stable photometry, and lower atmospheric absorption make stratospheric observations from a balloon-borne platform a unique tool for astronomy. We plan to continue this work in a future mid-latitude long duration balloon flight with SuperBIT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.05145v1-abstract-full').style.display = 'none'; document.getElementById('2010.05145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures. Accepted for publication in the Astronomical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astronomical Journal, Volume 160, Number 6, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.01349">arXiv:2010.01349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.01349">pdf</a>, <a href="https://arxiv.org/format/2010.01349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2021/02/048">10.1088/1475-7516/2021/02/048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Consortium%2C+T+C+T+A">The Cherenkov Telescope Array Consortium</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abdalla%2C+H">H. Abdalla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acero%2C+F">F. Acero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acharyya%2C+A">A. Acharyya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adam%2C+R">R. Adam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre-Santaella%2C+A">A. Aguirre-Santaella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+R">R. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+J">J. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alispach%2C+C">C. Alispach</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aloisio%2C+R">R. Aloisio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=B%2C+R+A">R. Alves B</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amati%2C+L">L. Amati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ang%C3%BCner%2C+E+O">E. O. Ang眉ner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Araudo%2C+A">A. Araudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Armstrong%2C+T">T. Armstrong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arqueros%2C+F">F. Arqueros</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arrabito%2C+L">L. Arrabito</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asano%2C+K">K. Asano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ascas%C3%ADbar%2C+Y">Y. Ascas铆bar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashley%2C+M">M. Ashley</a> , et al. (474 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.01349v2-abstract-short" style="display: inline;"> The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for $纬$-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of $纬$-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nucle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01349v2-abstract-full').style.display = 'inline'; document.getElementById('2010.01349v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.01349v2-abstract-full" style="display: none;"> The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for $纬$-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of $纬$-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of $纬$-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift $z=2$ and to constrain or detect $纬$-ray halos up to intergalactic-magnetic-field strengths of at least 0.3pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from $纬$-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of $纬$-ray cosmology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01349v2-abstract-full').style.display = 'none'; document.getElementById('2010.01349v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">71 pages (including affiliations and references), 13 figures, 6 tables. Accepted in JCAP; matches published version. Corresponding authors: Jonathan Biteau, Julien Lefaucheur, Humberto Martinez-Huerta, Manuel Meyer, Santiago Pita, Ievgen Vovk</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 02 (2021) 048 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.16129">arXiv:2007.16129</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.16129">pdf</a>, <a href="https://arxiv.org/format/2007.16129">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2021/01/057">10.1088/1475-7516/2021/01/057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Consortium%2C+T+C+T+A">The Cherenkov Telescope Array Consortium</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acharyya%2C+A">A. Acharyya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adam%2C+R">R. Adam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre-Santaella%2C+A">A. Aguirre-Santaella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+R">R. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+J">J. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alispach%2C+C">C. Alispach</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aloisio%2C+R">R. Aloisio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amati%2C+L">L. Amati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ang%C3%BCner%2C+E+O">E. O. Ang眉ner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Araudo%2C+A">A. Araudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Armstrong%2C+T">T. Armstrong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arqueros%2C+F">F. Arqueros</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asano%2C+K">K. Asano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ascas%C3%ADbar%2C+Y">Y. Ascas铆bar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashley%2C+M">M. Ashley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balazs%2C+C">C. Balazs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ballester%2C+O">O. Ballester</a> , et al. (427 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.16129v2-abstract-short" style="display: inline;"> We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models giv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.16129v2-abstract-full').style.display = 'inline'; document.getElementById('2007.16129v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.16129v2-abstract-full" style="display: none;"> We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA&#39;s unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies. &#34;Full likelihood tables complementing our analysis are provided here [ https://doi.org/10.5281/zenodo.4057987 ]&#34; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.16129v2-abstract-full').style.display = 'none'; document.getElementById('2007.16129v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">68 pages (including references) and 26 figures; text identical to the version published in JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP01(2021)057 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.10764">arXiv:2004.10764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.10764">pdf</a>, <a href="https://arxiv.org/format/2004.10764">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/05/P05014">10.1088/1748-0221/15/05/P05014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Download by Parachute: Retrieval of Assets from High Altitude Balloons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sirks%2C+E+L">E. L. Sirks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+P">P. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Massey%2C+R+J">R. J. Massey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Damaren%2C+C+J">C. J. Damaren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eifler%2C+T">T. Eifler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frenk%2C+C">C. Frenk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Funk%2C+M">M. Funk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galloway%2C+M+N">M. N. Galloway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gill%2C+A">A. Gill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartley%2C+J+W">J. W. Hartley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holder%2C+B">B. Holder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huff%2C+E+M">E. M. Huff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jauzac%2C+M">M. Jauzac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+W+C">W. C. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagattuta%2C+D">D. Lagattuta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leung%2C+J+S+-">J. S. -Y. Leung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+L">L. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luu%2C+T+V+T">T. V. T. Luu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McCleary%2C+J">J. McCleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+J+M">J. M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Netterfield%2C+C+B">C. B. Netterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Redmond%2C+S">S. Redmond</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.10764v1-abstract-short" style="display: inline;"> We present a publicly-available toolkit of flight-proven hardware and software to retrieve 5 TB of data or small physical samples from a stratospheric balloon platform. Before launch, a capsule is attached to the balloon, and rises with it. Upon remote command, the capsule is released and descends via parachute, continuously transmitting its location. Software to predict the trajectory can be used&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10764v1-abstract-full').style.display = 'inline'; document.getElementById('2004.10764v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.10764v1-abstract-full" style="display: none;"> We present a publicly-available toolkit of flight-proven hardware and software to retrieve 5 TB of data or small physical samples from a stratospheric balloon platform. Before launch, a capsule is attached to the balloon, and rises with it. Upon remote command, the capsule is released and descends via parachute, continuously transmitting its location. Software to predict the trajectory can be used to select a safe but accessible landing site. We dropped two such capsules from the SuperBIT telescope, in September 2019. The capsules took ~37 minutes to descend from ~30 km altitude. They drifted 32 km and 19 km horizontally, but landed within 300 m and 600 m of their predicted landing sites. We found them easily, and successfully recovered the data. We welcome interest from other balloon teams for whom the technology would be useful. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10764v1-abstract-full').style.display = 'none'; document.getElementById('2004.10764v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.10849">arXiv:2001.10849</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.10849">pdf</a>, <a href="https://arxiv.org/format/2001.10849">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.023010">10.1103/PhysRevD.103.023010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Axion Constraints from Quiescent Soft Gamma-ray Emission from Magnetars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lloyd%2C+S+J">Sheridan J. Lloyd</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadwick%2C+P+M">Paula M. Chadwick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guo%2C+H">Huai-ke Guo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sinha%2C+K">Kuver Sinha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.10849v2-abstract-short" style="display: inline;"> Axion-like-particles (ALPs) emitted from the core of a magnetar can convert to photons in its magnetosphere. The resulting photon flux is sensitive to the product of $(i)$ the ALP-nucleon coupling $G_{an}$ which controls the production cross section in the core and $(ii)$ the ALP-photon coupling $g_{a纬纬}$ which controls the conversion in the magnetosphere. We study such emissions in the soft-gamma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.10849v2-abstract-full').style.display = 'inline'; document.getElementById('2001.10849v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.10849v2-abstract-full" style="display: none;"> Axion-like-particles (ALPs) emitted from the core of a magnetar can convert to photons in its magnetosphere. The resulting photon flux is sensitive to the product of $(i)$ the ALP-nucleon coupling $G_{an}$ which controls the production cross section in the core and $(ii)$ the ALP-photon coupling $g_{a纬纬}$ which controls the conversion in the magnetosphere. We study such emissions in the soft-gamma-ray range (300 keV to 1 MeV), where the ALP spectrum peaks and astrophysical backgrounds from resonant Compton upscattering are expected to be suppressed. Using published quiescent soft-gamma-ray flux upper limits in 5 magnetars obtained with $CGRO$ COMPTEL and $INTEGRAL$ SPI/IBIS/ISGRI, we put limits on the product of the ALP-nucleon and ALP-photon couplings. We also provide a detailed study of the dependence of our results on the magnetar core temperature. We further show projections of our result for future $Fermi$-GBM observations. Our results motivate a program of studying quiescent soft-gamma-ray emission from magnetars with the $Fermi$-GBM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.10849v2-abstract-full').style.display = 'none'; document.getElementById('2001.10849v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures. Version accepted in Physical Review D. More conservative benchmark core temperature assumed, details of production in the core provided, new constraints on ALP couplings based on spectral analysis presented. Extensive supplementary material added, future projections discussed, overall conclusions unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 023010 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.04176">arXiv:2001.04176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.04176">pdf</a>, <a href="https://arxiv.org/format/2001.04176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa054">10.1093/mnras/staa054 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A search for Centaurus A-like features in the spectra of Fermi-LAT detected radio galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rulten%2C+C+B">Cameron B. Rulten</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadwick%2C+P+M">Paula M. Chadwick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.04176v1-abstract-short" style="display: inline;"> Motivated by the detection of a hardening in the gamma-ray spectrum of the radio galaxy Centaurus A, we have analysed ~10 years of Fermi-LAT observations of 26 radio galaxies to search for similar spectral features. We find that the majority of the radio galaxies&#39; gamma-ray spectral energy distributions are best fitted with a simple power-law model, and no spectral hardening similar to that found&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04176v1-abstract-full').style.display = 'inline'; document.getElementById('2001.04176v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.04176v1-abstract-full" style="display: none;"> Motivated by the detection of a hardening in the gamma-ray spectrum of the radio galaxy Centaurus A, we have analysed ~10 years of Fermi-LAT observations of 26 radio galaxies to search for similar spectral features. We find that the majority of the radio galaxies&#39; gamma-ray spectral energy distributions are best fitted with a simple power-law model, and no spectral hardening similar to that found in Centaurus A was detected. We show that, had there been any such spectral features present in our sample of radio galaxies, they would have been seen, but note that 7 of the radio galaxies (3C 111, 3C 120, 3C 264, IC 4516, NGC 1218, NGC 2892 and PKS 0625-35) show evidence for flux variability on 6-month timescales, which makes the detection of any steady spectral features difficult. We find a strong positive correlation (r = 0.9) between the core radio power at 5 GHz and the gamma-ray luminosity and, using a simple extrapolation to TeV energies, we expect around half of the radio galaxies studied will be detectable with the forthcoming Cherenkov Telescope Array. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04176v1-abstract-full').style.display = 'none'; document.getElementById('2001.04176v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.11210">arXiv:1911.11210</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.11210">pdf</a>, <a href="https://arxiv.org/format/1911.11210">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5139711">10.1063/1.5139711 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust diffraction-limited NIR-to-NUV wide-field imaging from stratospheric balloon-borne platforms -- SuperBIT science telescope commissioning flight &amp; performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Romualdez%2C+L+J">L. Javier Romualdez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benton%2C+S+J">Steven J. Benton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+P">Paul Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Damaren%2C+C+J">Christopher J. Damaren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eifler%2C+T">Tim Eifler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraisse%2C+A+A">Aurelien A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galloway%2C+M+N">Mathew N. Galloway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gill%2C+A">Ajay Gill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartley%2C+J+W">John W. Hartley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holder%2C+B">Bradley Holder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huff%2C+E+M">Eric M. Huff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jauzac%2C+M">Mathilde Jauzac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagattuta%2C+D">David Lagattuta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leung%2C+J+S+-">Jason S. -Y. Leung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+L">Lun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luu%2C+T+V+T">Thuy Vy T. Luu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Massey%2C+R+J">Richard J. Massey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McCleary%2C+J">Jacqueline McCleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mullaney%2C+J">James Mullaney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+J+M">Johanna M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Netterfield%2C+C+B">C. Barth Netterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Redmond%2C+S">Susan Redmond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhodes%2C+J+D">Jason D. Rhodes</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.11210v1-abstract-short" style="display: inline;"> At a fraction the total cost of an equivalent orbital mission, scientific balloon-borne platforms, operating above 99.7% of the Earth&#39;s atmosphere, offer attractive, competitive, and effective observational capabilities -- namely space-like resolution, transmission, and backgrounds -- that are well suited for modern astronomy and cosmology. SuperBIT is a diffraction-limited, wide-field, 0.5 m tele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11210v1-abstract-full').style.display = 'inline'; document.getElementById('1911.11210v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.11210v1-abstract-full" style="display: none;"> At a fraction the total cost of an equivalent orbital mission, scientific balloon-borne platforms, operating above 99.7% of the Earth&#39;s atmosphere, offer attractive, competitive, and effective observational capabilities -- namely space-like resolution, transmission, and backgrounds -- that are well suited for modern astronomy and cosmology. SuperBIT is a diffraction-limited, wide-field, 0.5 m telescope capable of exploiting these observing conditions in order to provide exquisite imaging throughout the near-IR to near-UV. It utilizes a robust active stabilization system that has consistently demonstrated a 1 sigma sky-fixed pointing stability at 48 milliarcseconds over multiple 1 hour observations at float. This is achieved by actively tracking compound pendulations via a three-axis gimballed platform, which provides sky-fixed telescope stability at &lt; 500 milliarcseconds and corrects for field rotation, while employing high-bandwidth tip/tilt optics to remove residual disturbances across the science imaging focal plane. SuperBIT&#39;s performance during the 2019 commissioning flight benefited from a customized high-fidelity science-capable telescope designed with exceptional thermo- and opto-mechanical stability as well as tightly constrained static and dynamic coupling between high-rate sensors and telescope optics. At the currently demonstrated level of flight performance, SuperBIT capabilities now surpass the science requirements for a wide variety of experiments in cosmology, astrophysics and stellar dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11210v1-abstract-full').style.display = 'none'; document.getElementById('1911.11210v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The following article has been submitted to Review of Scientific Instruments (RSI)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.01773">arXiv:1909.01773</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.01773">pdf</a>, <a href="https://arxiv.org/ps/1909.01773">ps</a>, <a href="https://arxiv.org/format/1909.01773">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.068302">10.1103/PhysRevD.100.068302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reply to a comment on `Understanding the gamma-ray emission from the globular cluster 47 Tuc: evidence for dark matter?&#39; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lacroix%2C+T">Thomas Lacroix</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lloyd%2C+S">Sheridan Lloyd</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boehm%2C+C">Celine Boehm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadwick%2C+P">Paula Chadwick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.01773v1-abstract-short" style="display: inline;"> Analysing 9 years of Fermi-LAT observations, we recently studied the spectral properties of the prominent globular cluster 47 Tuc (Brown et al. 2018). In particular, we investigated several models to explain the observed gamma-ray emission, ranging from millisecond pulsars (MSP) to Dark Matter (DM), with the motivation for the latter model driven by recent evidence that 47 Tuc harbours an intermed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01773v1-abstract-full').style.display = 'inline'; document.getElementById('1909.01773v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.01773v1-abstract-full" style="display: none;"> Analysing 9 years of Fermi-LAT observations, we recently studied the spectral properties of the prominent globular cluster 47 Tuc (Brown et al. 2018). In particular, we investigated several models to explain the observed gamma-ray emission, ranging from millisecond pulsars (MSP) to Dark Matter (DM), with the motivation for the latter model driven by recent evidence that 47 Tuc harbours an intermediate-mass black hole (IMBH). This investigation found evidence that the observed gamma-ray emission from 47 Tuc is due to two source populations of MSPs and DM. In Bartels \&amp; Edwards (2018), the authors comment that this evidence is an artifact of the MSP spectra used in (Brown et al. 2019). Here we reply to this comment and argue that the authors of Bartels \&amp; Edwards (2018) (i) do not give due consideration to a very important implication of their result and (ii) there is tension between our MSP fit and their MSP fit when taking uncertainties into consideration. As such, we still conclude there is evidence for a DM component which motivates a deeper radio study of the prominent globular cluster 47 Tuc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01773v1-abstract-full').style.display = 'none'; document.getElementById('1909.01773v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, accepted for publication in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.03413">arXiv:1908.03413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.03413">pdf</a>, <a href="https://arxiv.org/format/1908.03413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.063005">10.1103/PhysRevD.100.063005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining Axion Mass through Gamma-ray Observations of Pulsars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lloyd%2C+S+J">Sheridan J. Lloyd</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadwick%2C+P+M">Paula M. Chadwick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.03413v1-abstract-short" style="display: inline;"> We analyze 9 years of PASS 8 $\textit{Fermi}$-LAT data in the 60$-$500 MeV range and determine flux upper limits (UL) for 17 gamma-ray dark pulsars as a probe of axions produced by nucleon-nucleon Bremsstrahlung in the pulsar core. Using a previously published axion decay gamma-ray photon flux model for pulsars which relies on a high core temperature of 20 MeV, we improve the determination of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03413v1-abstract-full').style.display = 'inline'; document.getElementById('1908.03413v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.03413v1-abstract-full" style="display: none;"> We analyze 9 years of PASS 8 $\textit{Fermi}$-LAT data in the 60$-$500 MeV range and determine flux upper limits (UL) for 17 gamma-ray dark pulsars as a probe of axions produced by nucleon-nucleon Bremsstrahlung in the pulsar core. Using a previously published axion decay gamma-ray photon flux model for pulsars which relies on a high core temperature of 20 MeV, we improve the determination of the UL axion mass ($m_a$), at 95 percent confidence level, to 9.6 $\times$ 10$^{-3}$ eV, which is a factor of 8 improvement on previous results. We show that the axion emissivity (energy loss rate per volume) at realistic lower pulsar core temperatures of 4 MeV or less is reduced to such an extent that axion emissivity and the gamma-ray signal becomes negligible. We consider an alternative emission model based on energy loss rate per mass to allow $m_a$ to be constrained with $Fermi$-LAT observations. This model yields a plausible UL $m_a$ of 10$^{-6}$ eV for pulsar core temperature $&lt;$ 0.1 MeV but knowledge of the extent of axion to photon conversion in the pulsar $B$ field would be required to make a precise UL axion mass determination. The peak of axion flux is likely to produce gamma-rays in the $\leq$ 1 MeV energy range and so future observations with medium energy gamma-ray missions, such as AMEGO and e-ASTROGAM, will be vital to further constrain UL $m_a$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03413v1-abstract-full').style.display = 'none'; document.getElementById('1908.03413v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures, Accepted for publication in Physical Review D</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08732">arXiv:1907.08732</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08732">pdf</a>, <a href="https://arxiv.org/format/1907.08732">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Trinity: An Air-Shower Imaging System for the Detection of Ultrahigh Energy Neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Otte%2C+A+N">A. Nepomuk Otte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Falcone%2C+A+D">Abraham D. Falcone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mariotti%2C+M">Mos猫 Mariotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Taboada%2C+I">Ignacio Taboada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08732v1-abstract-short" style="display: inline;"> Efforts to detect ultrahigh energy neutrinos are driven by several objectives: What is the origin of astrophysical neutrinos detected with IceCube? What are the sources of ultrahigh energy cosmic rays? Do the ANITA detected events point to new physics? Shedding light on these questions requires instruments that can detect neutrinos above $10^7$ GeV with sufficient sensitivity - a daunting task. Wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08732v1-abstract-full').style.display = 'inline'; document.getElementById('1907.08732v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08732v1-abstract-full" style="display: none;"> Efforts to detect ultrahigh energy neutrinos are driven by several objectives: What is the origin of astrophysical neutrinos detected with IceCube? What are the sources of ultrahigh energy cosmic rays? Do the ANITA detected events point to new physics? Shedding light on these questions requires instruments that can detect neutrinos above $10^7$ GeV with sufficient sensitivity - a daunting task. While most ultrahigh energy neutrino experiments are based on the detection of a radio signature from shower particles following a neutrino interaction, we believe that the detection of Cherenkov and fluorescence light from shower particles is an attractive alternative. Imaging air showers with Cherenkov and fluorescence light is a technique that is successfully used in several ultrahigh energy cosmic ray and very-high energy gamma-ray experiments. We performed a case study of an air-shower imaging system for the detection of earth-skimming tau neutrinos. The detector configuration we consider consists of an imaging system that is located on top of a mountain and is pointed at the horizon. From the results of this study we conclude that a sensitivity of $3\cdot10^{-9}$ GeV cm$^{-2}$s$^{-1}$sr$^{-1}$ can be achieved at $2\cdot10^8$ GeV with a relatively small and modular system after three years of observation. In this presentation we discuss key findings of our study and how they translate into design requirements for an imaging system we dub Trinity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08732v1-abstract-full').style.display = 'none'; document.getElementById('1907.08732v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 36th International Cosmic Ray Conference, PoS(ICRC2019)976</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08727">arXiv:1907.08727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08727">pdf</a>, <a href="https://arxiv.org/format/1907.08727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Trinity: An Air-Shower Imaging Instrument to detect Ultrahigh Energy Neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Otte%2C+A+N">A. Nepomuk Otte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doro%2C+M">Michele Doro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Falcone%2C+A">Abe Falcone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holder%2C+J">Jamie Holder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Judd%2C+E">Eleanor Judd</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaaret%2C+P">Philip Kaaret</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mariotti%2C+M">Mos猫 Mariotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murase%2C+K">Kohta Murase</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Taboada%2C+I">Ignacio Taboada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08727v1-abstract-short" style="display: inline;"> Trinity is a proposed air-shower imaging system optimized for the detection of earth-skimming ultrahigh energy tau neutrinos with energies between $10^7$ GeV and $10^{10}$ GeV. Trinity will pursue three major scientific objectives. 1) It will narrow in on possible source classes responsible for the astrophysical neutrino flux measured by IceCube. 2) It will help find the sources of ultrahigh-energ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08727v1-abstract-full').style.display = 'inline'; document.getElementById('1907.08727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08727v1-abstract-full" style="display: none;"> Trinity is a proposed air-shower imaging system optimized for the detection of earth-skimming ultrahigh energy tau neutrinos with energies between $10^7$ GeV and $10^{10}$ GeV. Trinity will pursue three major scientific objectives. 1) It will narrow in on possible source classes responsible for the astrophysical neutrino flux measured by IceCube. 2) It will help find the sources of ultrahigh-energy cosmic rays (UHECR) and understand the composition of UHECR. 3) It will test fundamental neutrino physics at the highest energies. Trinity uses the imaging technique, which is well established and successfully used by the very high-energy gamma-ray community (CTA, H.E.S.S., MAGIC, and VERITAS) and the UHECR community (Telescope Array, Pierre Auger) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08727v1-abstract-full').style.display = 'none'; document.getElementById('1907.08727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Astro2020 APC White Paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08564">arXiv:1907.08564</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08564">pdf</a>, <a href="https://arxiv.org/format/1907.08564">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The glow of annihilating dark matter in Omega Centauri </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Massey%2C+R">Richard Massey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lacroix%2C+T">Thomas Lacroix</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strigari%2C+L+E">Louis E. Strigari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fattahi%2C+A">Azadeh Fattahi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=B%C5%93hm%2C+C">C茅line B艙hm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08564v1-abstract-short" style="display: inline;"> Dark matter (DM) is the most abundant material in the Universe, but has so far been detected only via its gravitational effects. Several theories suggest that pairs of DM particles can annihilate into a flash of light at gamma-ray wavelengths. While gamma-ray emission has been observed from environments where DM is expected to accumulate, such as the centre of our Galaxy, other high energy sources&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08564v1-abstract-full').style.display = 'inline'; document.getElementById('1907.08564v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08564v1-abstract-full" style="display: none;"> Dark matter (DM) is the most abundant material in the Universe, but has so far been detected only via its gravitational effects. Several theories suggest that pairs of DM particles can annihilate into a flash of light at gamma-ray wavelengths. While gamma-ray emission has been observed from environments where DM is expected to accumulate, such as the centre of our Galaxy, other high energy sources can create a contaminating astrophysical gamma-ray background, thus making DM detection difficult. In principle, dwarf galaxies around the Milky Way are a better place to look -- they contain a greater fraction of DM with no astrophysical gamma-ray background -- but they are too distant for gamma-rays to have been seen. A range of observational evidence suggests that Omega Centauri (omega Cen or NGC 5139), usually classified as the Milky Way&#39;s largest globular cluster, is really the core of a captured and stripped dwarf galaxy. Importantly, Omega Cen is ten times closer to us than known dwarfs. Here we show that not only does Omega Cen contain DM with density as high as compact dwarf galaxies, but also that it emits gamma-rays with an energy spectrum matching that expected from the annihilation of DM particles with mass 31$\pm$4 GeV (68\% confidence limit). No astrophysical sources have been found that would otherwise explain Omega Cen&#39;s gamma-ray emission, despite deep multi-wavelength searches. We anticipate our results to be the starting point for even deeper radio observations of Omega Cen. If multi-wavelength searches continue to find no astrophysical explanations, this pristine, nearby clump of DM will become the best place to study DM interactions through forces other than gravity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08564v1-abstract-full').style.display = 'none'; document.getElementById('1907.08564v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to journal, 13 pages, 7 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.07737">arXiv:1907.07737</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.07737">pdf</a>, <a href="https://arxiv.org/format/1907.07737">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The Southern Wide-Field Gamma-Ray Observatory (SWGO): A Next-Generation Ground-Based Survey Instrument for VHE Gamma-Ray Astronomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Abreu%2C+P">P. Abreu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+R">R. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez%2C+C">C. Alvarez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arceo%2C+R">R. Arceo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Assis%2C+P">P. Assis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barao%2C+F">F. Barao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazo%2C+J">J. Bazo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beacom%2C+J+F">J. F. Beacom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellido%2C+J">J. Bellido</a>, <a href="/search/astro-ph?searchtype=author&amp;query=BenZvi%2C+S">S. BenZvi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bretz%2C+T">T. Bretz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brisbois%2C+C">C. Brisbois</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brun%2C+F">F. Brun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buscemi%2C+M">M. Buscemi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mora%2C+K+S+C">K. S. Caballero Mora</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Camarri%2C+P">P. Camarri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carrami%C3%B1ana%2C+A">A. Carrami帽ana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casanova%2C+S">S. Casanova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiavassa%2C+A">A. Chiavassa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Concei%C3%A7%C3%A3o%2C+R">R. Concei莽茫o</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cotter%2C+G">G. Cotter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cristofari%2C+P">P. Cristofari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dasso%2C+S">S. Dasso</a> , et al. (73 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.07737v1-abstract-short" style="display: inline;"> We describe plans for the development of the Southern Wide-field Gamma-ray Observatory (SWGO), a next-generation instrument with sensitivity to the very-high-energy (VHE) band to be constructed in the Southern Hemisphere. SWGO will provide wide-field coverage of a large portion of the southern sky, effectively complementing current and future instruments in the global multi-messenger effort to und&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07737v1-abstract-full').style.display = 'inline'; document.getElementById('1907.07737v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.07737v1-abstract-full" style="display: none;"> We describe plans for the development of the Southern Wide-field Gamma-ray Observatory (SWGO), a next-generation instrument with sensitivity to the very-high-energy (VHE) band to be constructed in the Southern Hemisphere. SWGO will provide wide-field coverage of a large portion of the southern sky, effectively complementing current and future instruments in the global multi-messenger effort to understand extreme astrophysical phenomena throughout the universe. A detailed description of science topics addressed by SWGO is available in the science case white paper [1]. The development of SWGO will draw on extensive experience within the community in designing, constructing, and successfully operating wide-field instruments using observations of extensive air showers. The detector will consist of a compact inner array of particle detection units surrounded by a sparser outer array. A key advantage of the design of SWGO is that it can be constructed using current, already proven technology. We estimate a construction cost of 54M USD and a cost of 7.5M USD for 5 years of operation, with an anticipated US contribution of 20M USD ensuring that the US will be a driving force for the SWGO effort. The recently formed SWGO collaboration will conduct site selection and detector optimization studies prior to construction, with full operations foreseen to begin in 2026. Throughout this document, references to science white papers submitted to the Astro2020 Decadal Survey with particular relevance to the key science goals of SWGO, which include unveiling Galactic particle accelerators [2-10], exploring the dynamic universe [11-21], and probing physics beyond the Standard Model [22-25], are highlighted in red boldface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07737v1-abstract-full').style.display = 'none'; document.getElementById('1907.07737v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Astro2020 APC White Paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.04321">arXiv:1904.04321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.04321">pdf</a>, <a href="https://arxiv.org/format/1904.04321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/04/P04003">10.1088/1748-0221/14/04/P04003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An open source toolkit for the tracking, termination and recovery of high altitude balloon flights and payloads </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+P">Paul Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Funk%2C+M">Marc Funk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Funk%2C+B">Benjamin Funk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Funk%2C+T">Tobias Funk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meadows%2C+R+E">Richard E. Meadows</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+L">Lun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Massey%2C+R+J">Richard J. Massey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Netterfield%2C+C+B">C. Barth Netterfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.04321v1-abstract-short" style="display: inline;"> We present an open source toolkit of flight-proven electronic devices which can be used to track, terminate and recover high altitude balloon flights and payloads. Comprising a beacon, pyrotechnic and non-pyrotechnic cut-down devices plus associated software, the toolkit can be used to: (i) track the location of a flight via Iridium satellite communication; (ii) release lift and/or float balloons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.04321v1-abstract-full').style.display = 'inline'; document.getElementById('1904.04321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.04321v1-abstract-full" style="display: none;"> We present an open source toolkit of flight-proven electronic devices which can be used to track, terminate and recover high altitude balloon flights and payloads. Comprising a beacon, pyrotechnic and non-pyrotechnic cut-down devices plus associated software, the toolkit can be used to: (i) track the location of a flight via Iridium satellite communication; (ii) release lift and/or float balloons manually or at pre-defined altitudes; (iii) locate the payload after descent. The size and mass of the toolkit make it suitable for use on weather or sounding balloon flights. We describe the technology readiness level of the toolkit, based on over 20 successful flights to altitudes of typically 32,000 m. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.04321v1-abstract-full').style.display = 'none'; document.getElementById('1904.04321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the Accepted Manuscript version of an article accepted for publication in Journal of Instrumentation. Neither SISSA Medialab Srl nor IOP Publishing Ltd is responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1748-0221/14/04/P04003</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 14 P04003 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.01426">arXiv:1904.01426</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.01426">pdf</a>, <a href="https://arxiv.org/format/1904.01426">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2019.04.001">10.1016/j.astropartphys.2019.04.001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Acharyya%2C+A">A. Acharyya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ang%C3%BCner%2C+E+O">E. O. Ang眉ner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+R">R. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+J">J. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alispach%2C+C">C. Alispach</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aloisio%2C+R">R. Aloisio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amans%2C+J+-">J. -P. Amans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amati%2C+L">L. Amati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Armstrong%2C+T">T. Armstrong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arqueros%2C+F">F. Arqueros</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arrabito%2C+L">L. Arrabito</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asano%2C+K">K. Asano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashkar%2C+H">H. Ashkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balazs%2C+C">C. Balazs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balbo%2C+M">M. Balbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balmaverde%2C+B">B. Balmaverde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barai%2C+P">P. Barai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbano%2C+A">A. Barbano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barkov%2C+M">M. Barkov</a> , et al. (445 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.01426v1-abstract-short" style="display: inline;"> The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based very-high-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01426v1-abstract-full').style.display = 'inline'; document.getElementById('1904.01426v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.01426v1-abstract-full" style="display: none;"> The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based very-high-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01426v1-abstract-full').style.display = 'none'; document.getElementById('1904.01426v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 pages, 16 figures, accepted for publication in Astroparticle Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.00299">arXiv:1903.00299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.00299">pdf</a>, <a href="https://arxiv.org/format/1903.00299">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz559">10.1093/mnras/stz559 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gamma-rays from SS433: evidence for periodicity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rasul%2C+K">Kajwan Rasul</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadwick%2C+P+M">Paula M. Chadwick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+J+A">Jamie A. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.00299v1-abstract-short" style="display: inline;"> In this paper we present our study of the gamma-ray emission from the microquasar SS433. Integrating over 9 years of Fermi-LAT \textsc{pass8} data, we detect SS433 with a significance of ~13$蟽$ in the 200 to 500 MeV photon energy range, with evidence for an extension in the direction of the w1 X-ray `hotspot`. A temporal analysis reveals evidence for modulation of SS433&#39;s gamma-ray emission with t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00299v1-abstract-full').style.display = 'inline'; document.getElementById('1903.00299v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.00299v1-abstract-full" style="display: none;"> In this paper we present our study of the gamma-ray emission from the microquasar SS433. Integrating over 9 years of Fermi-LAT \textsc{pass8} data, we detect SS433 with a significance of ~13$蟽$ in the 200 to 500 MeV photon energy range, with evidence for an extension in the direction of the w1 X-ray `hotspot`. A temporal analysis reveals evidence for modulation of SS433&#39;s gamma-ray emission with the precession period of its relativistic jet. This suggests that at least some of SS433&#39;s gamma-ray emission originates close to the object rather than from the jet termination regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00299v1-abstract-full').style.display = 'none'; document.getElementById('1903.00299v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS, 6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.08429">arXiv:1902.08429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.08429">pdf</a>, <a href="https://arxiv.org/format/1902.08429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Science Case for a Wide Field-of-View Very-High-Energy Gamma-Ray Observatory in the Southern Hemisphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+R">R. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashkar%2C+H">H. Ashkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez%2C+C">C. Alvarez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%81lvarez%2C+J">J. 脕lvarez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arteaga-Vel%C3%A1zquez%2C+J+C">J. C. Arteaga-Vel谩zquez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Solares%2C+H+A+A">H. A. Ayala Solares</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arceo%2C+R">R. Arceo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellido%2C+J+A">J. A. Bellido</a>, <a href="/search/astro-ph?searchtype=author&amp;query=BenZvi%2C+S">S. BenZvi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bretz%2C+T">T. Bretz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brisbois%2C+C+A">C. A. Brisbois</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brun%2C+F">F. Brun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caballero-Mora%2C+K+S">K. S. Caballero-Mora</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carosi%2C+A">A. Carosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carrami%C3%B1ana%2C+A">A. Carrami帽ana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casanova%2C+S">S. Casanova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadwick%2C+P+M">P. M. Chadwick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cotter%2C+G">G. Cotter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Le%C3%B3n%2C+S+C">S. Couti帽o De Le贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cristofari%2C+P">P. Cristofari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dasso%2C+S">S. Dasso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+la+Fuente%2C+E">E. de la Fuente</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dingus%2C+B+L">B. L. Dingus</a> , et al. (78 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.08429v1-abstract-short" style="display: inline;"> We outline the science motivation for SGSO, the Southern Gamma-Ray Survey Observatory. SGSO will be a next-generation wide field-of-view gamma-ray survey instrument, sensitive to gamma-rays in the energy range from 100 GeV to hundreds of TeV. Its science topics include unveiling galactic and extragalactic particle accelerators, monitoring the transient sky at very high energies, probing particle p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08429v1-abstract-full').style.display = 'inline'; document.getElementById('1902.08429v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.08429v1-abstract-full" style="display: none;"> We outline the science motivation for SGSO, the Southern Gamma-Ray Survey Observatory. SGSO will be a next-generation wide field-of-view gamma-ray survey instrument, sensitive to gamma-rays in the energy range from 100 GeV to hundreds of TeV. Its science topics include unveiling galactic and extragalactic particle accelerators, monitoring the transient sky at very high energies, probing particle physics beyond the Standard Model, and the characterization of the cosmic ray flux. SGSO will consist of an air shower detector array, located in South America. Due to its location and large field of view, SGSO will be complementary to other current and planned gamma-ray observatories such as HAWC, LHAASO, and CTA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08429v1-abstract-full').style.display = 'none'; document.getElementById('1902.08429v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.03792">arXiv:1808.03792</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.03792">pdf</a>, <a href="https://arxiv.org/format/1808.03792">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty2150">10.1093/mnras/sty2150 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gamma-ray emission from high Galactic latitude globular clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lloyd%2C+S+J">Sheridan J. Lloyd</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadwick%2C+P+M">Paula M. Chadwick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.03792v2-abstract-short" style="display: inline;"> We analyse 8 years of PASS 8 Fermi-LAT data, in the 60 MeV - 300 GeV energy range, from 30 high Galactic latitude globular clusters. Six of these globular clusters are detected with a TS &gt; 25, with NGC 6254 being detected as gamma-ray bright for the first time. The most significant detection is of the well-known globular cluster 47 Tuc, and we produce a refined spectral fit for this object with a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03792v2-abstract-full').style.display = 'inline'; document.getElementById('1808.03792v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.03792v2-abstract-full" style="display: none;"> We analyse 8 years of PASS 8 Fermi-LAT data, in the 60 MeV - 300 GeV energy range, from 30 high Galactic latitude globular clusters. Six of these globular clusters are detected with a TS &gt; 25, with NGC 6254 being detected as gamma-ray bright for the first time. The most significant detection is of the well-known globular cluster 47 Tuc, and we produce a refined spectral fit for this object with a log parabola model. NGC 6093, NGC 6752 and NGC 6254 are fitted with hard, flat power law models, NGC 7078 is best fitted with a soft power law and NGC 6218 is best fitted with a hard, broken power law. This variety of spectral models suggests that there is a variety of gamma-ray source types within globular clusters, in addition to the traditional millisecond pulsar interpretation. We identify a correspondence between diffuse X-ray emission in globular cluster cores and gamma-ray emission. This connection suggests that gamma-ray emission in globular clusters could also arise from unresolved X-ray sources or a relativistic electron population, perhaps generated by the millisecond pulsars. X-ray observations of further gamma-ray bright globular clusters would allow a functional relationship to be determined between diffuse X-ray and gamma-ray emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03792v2-abstract-full').style.display = 'none'; document.getElementById('1808.03792v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 18 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.09869">arXiv:1807.09869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.09869">pdf</a>, <a href="https://arxiv.org/format/1807.09869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2312339">10.1117/12.2312339 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Auto-tuned thermal control on stratospheric balloon experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Redmond%2C+S">S. Redmond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+P">P. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Damaren%2C+C+J">C. J. Damaren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eifler%2C+T">T. Eifler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galloway%2C+M+N">M. N. Galloway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartley%2C+J+W">J. W. Hartley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jauzac%2C+M">M. Jauzac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+W+C">W. C. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+L">L. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luu%2C+T+V+T">T. V. T. Luu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Massey%2C+R+J">R. J. Massey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mccleary%2C+J">J. Mccleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Netterfield%2C+C+B">C. B. Netterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padilla%2C+I+L">I. L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhodes%2C+J+D">J. D. Rhodes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romualdez%2C+L+J">L. J. Romualdez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schmoll%2C+J">J. Schmoll</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tam%2C+S">S. Tam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.09869v1-abstract-short" style="display: inline;"> Balloon-borne telescopes present unique thermal design challenges which are a combination of those present for both space and ground telescopes. At altitudes of 35-40 km, convection effects are minimal and difficult to characterize. Radiation and conduction are the predominant heat transfer mechanisms reducing the thermal design options. For long duration flights payload mass is a function of powe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09869v1-abstract-full').style.display = 'inline'; document.getElementById('1807.09869v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.09869v1-abstract-full" style="display: none;"> Balloon-borne telescopes present unique thermal design challenges which are a combination of those present for both space and ground telescopes. At altitudes of 35-40 km, convection effects are minimal and difficult to characterize. Radiation and conduction are the predominant heat transfer mechanisms reducing the thermal design options. For long duration flights payload mass is a function of power consumption making it an important optimization parameter. SuperBIT, or the Super-pressure Balloon-borne Imaging Telescope, aims to study weak lensing using a 0.5m modified Dall-Kirkham telescope capable of achieving 0.02&#34; stability and capturing deep exposures from visible to near UV wavelengths. To achieve the theoretical stratospheric diffraction-limited resolution of 0.25&#34;, mirror deformation gradients must be kept to within 20nm. The thermal environment must thus be stable on time scales of an hour and the thermal gradients must be minimized on the telescope. SuperBIT plans to implement two types of parameter solvers; one to validate the thermal design and the other to tightly control the thermal environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09869v1-abstract-full').style.display = 'none'; document.getElementById('1807.09869v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures, submitted to and presented at the SPIE Astronomical Telescopes and Instrumentation 2018 conference (Austin, TX). Figure 6 and Figure 8 updated since SPIE submission due to access to better data and author list updated</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 10700, Ground-based and Airborne Telescopes VII, 107005R (6 July 2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.02887">arXiv:1807.02887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.02887">pdf</a>, <a href="https://arxiv.org/format/1807.02887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Overview, design, and flight results from SuperBIT: a high-resolution, wide-field, visible-to-near-UV balloon-borne astronomical telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Romualdez%2C+L+J">L. Javier Romualdez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benton%2C+S+J">Steven J. Benton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+P">Paul Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Damaren%2C+C+J">Christopher J. Damaren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eifler%2C+T">Tim Eifler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraisse%2C+A+A">Aurelien A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galloway%2C+M+N">Mathew N. Galloway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartley%2C+J+W">John W. Hartley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jauzac%2C+M">Mathilde Jauzac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+L">Lun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luu%2C+T+V+T">Thuy Vy T. Luu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Massey%2C+R+J">Richard J. Massey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mccleary%2C+J">Jacqueline Mccleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Netterfield%2C+C+B">C. Barth Netterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Redmond%2C+S">Susan Redmond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhodes%2C+J+D">Jason D. Rhodes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schmoll%2C+J">J眉rgen Schmoll</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tam%2C+S">Sut-Ieng Tam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.02887v1-abstract-short" style="display: inline;"> Balloon-borne astronomy is a unique tool that allows for a level of image stability and significantly reduced atmospheric interference without the often prohibitive cost and long development time-scale that are characteristic of space-borne facility-class instruments. The Super-pressure Balloon-borne Imaging Telescope (SuperBIT) is a wide-field imager designed to provide 0.02&#34; image stability over&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.02887v1-abstract-full').style.display = 'inline'; document.getElementById('1807.02887v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.02887v1-abstract-full" style="display: none;"> Balloon-borne astronomy is a unique tool that allows for a level of image stability and significantly reduced atmospheric interference without the often prohibitive cost and long development time-scale that are characteristic of space-borne facility-class instruments. The Super-pressure Balloon-borne Imaging Telescope (SuperBIT) is a wide-field imager designed to provide 0.02&#34; image stability over a 0.5 degree field-of-view for deep exposures within the visible-to-near-UV (300-900 um). As such, SuperBIT is a suitable platform for a wide range of balloon-borne observations, including solar and extrasolar planetary spectroscopy as well as resolved stellar populations and distant galaxies. We report on the overall payload design and instrumentation methodologies for SuperBIT as well as telescope and image stability results from two test flights. Prospects for the SuperBIT project are outlined with an emphasis on the development of a fully operational, three-month science flight from New Zealand in 2020. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.02887v1-abstract-full').style.display = 'none'; document.getElementById('1807.02887v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures, submitted to and presented at the SPIE Astronomical Telescopes and Instrumentation 2018 conference (Austin, TX). arXiv admin note: text overlap with arXiv:1608.02502</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.11308">arXiv:1806.11308</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.11308">pdf</a>, <a href="https://arxiv.org/format/1806.11308">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.06.078">10.1016/j.nima.2018.06.078 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterisation and Testing of CHEC-M - a camera prototype for the Small-Sized Telescopes of the Cherenkov Telescope Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zorn%2C+J">J. Zorn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=White%2C+R">R. White</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+J+J">J. J. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Armstrong%2C+T+P">T. P. Armstrong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balzer%2C+A">A. Balzer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barcelo%2C+M">M. Barcelo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berge%2C+D">D. Berge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bose%2C+R">R. Bose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bryan%2C+M">M. Bryan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadwick%2C+P+M">P. M. Chadwick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+P">P. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Costantini%2C+H">H. Costantini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cotter%2C+G">G. Cotter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dangeon%2C+L">L. Dangeon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Daniel%2C+M">M. Daniel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Franco%2C+A">A. De Franco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deiml%2C+P">P. Deiml</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fasola%2C+G">G. Fasola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Funk%2C+S">S. Funk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gebyehu%2C+M">M. Gebyehu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gironnet%2C+J">J. Gironnet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+J+A">J. A. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greenshaw%2C+T">T. Greenshaw</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hinton%2C+J+A">J. A. Hinton</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.11308v2-abstract-short" style="display: inline;"> The Compact High Energy Camera (CHEC) is a camera design for the Small-Sized Telescopes (SSTs; 4 m diameter mirror) of the Cherenkov Telescope Array (CTA). The SSTs are focused on very-high-energy $纬$-ray detection via atmospheric Cherenkov light detection over a very large area. This implies many individual units and hence cost-effective implementation. CHEC relies on dual-mirror optics to reduce&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.11308v2-abstract-full').style.display = 'inline'; document.getElementById('1806.11308v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.11308v2-abstract-full" style="display: none;"> The Compact High Energy Camera (CHEC) is a camera design for the Small-Sized Telescopes (SSTs; 4 m diameter mirror) of the Cherenkov Telescope Array (CTA). The SSTs are focused on very-high-energy $纬$-ray detection via atmospheric Cherenkov light detection over a very large area. This implies many individual units and hence cost-effective implementation. CHEC relies on dual-mirror optics to reduce the plate-scale and make use of 6 $\times$ 6 mm$^2$ pixels, leading to a low-cost ($\sim$150 kEuro), compact (0.5 m $\times$ 0.5 m), and light ($\sim$45 kg) camera with 2048 pixels providing a camera FoV of $\sim$9 degrees. The electronics are based on custom TARGET (TeV array readout with GSa/s sampling and event trigger) ASICs and FPGAs sampling incoming signals at a gigasample per second, with flexible camera-level triggering within a single backplane FPGA. CHEC is designed to observe in the $纬$-ray energy range of 1$-$300 TeV, and at impact distances up to $\sim$500 m. To accommodate this and provide full flexibility for later data analysis, full waveforms with 96 samples for all 2048 pixels can be read out at rates up to $\sim$900 Hz. The first prototype, CHEC-M, based on multi-anode photomultipliers (MAPMs) as photosensors, was commissioned and characterised in the laboratory and during two measurement campaigns on a telescope structure at the Paris Observatory in Meudon. In this paper, the results and conclusions from the laboratory and on-site testing of CHEC-M are presented. They have provided essential input on the system design and on operational and data analysis procedures for a camera of this type. A second full-camera prototype based on Silicon photomultipliers (SiPMs), addressing the drawbacks of CHEC-M identified during the first prototype phase, has already been built and is currently being commissioned and tested in the laboratory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.11308v2-abstract-full').style.display = 'none'; document.getElementById('1806.11308v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.01866">arXiv:1806.01866</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.01866">pdf</a>, <a href="https://arxiv.org/format/1806.01866">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.041301">10.1103/PhysRevD.98.041301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Understanding the $纬$-ray emission from the globular cluster 47 Tuc: evidence for dark matter? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lacroix%2C+T">Thomas Lacroix</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lloyd%2C+S">Sheridan Lloyd</a>, <a href="/search/astro-ph?searchtype=author&amp;query=B%C5%93hm%2C+C">C茅line B艙hm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadwick%2C+P">Paula Chadwick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.01866v1-abstract-short" style="display: inline;"> 47 Tuc was the first globular cluster observed to be $纬$-ray bright, with the $纬$-rays being attributed to a population of unresolved millisecond pulsars (MSPs). Recent kinematic data, combined with detailed simulations, appears to be consistent with the presence of an intermediate mass black hole (IMBH) at the centre of 47 Tuc. Building upon this, we analyse 9 years of \textit{Fermi}-LAT observat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.01866v1-abstract-full').style.display = 'inline'; document.getElementById('1806.01866v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.01866v1-abstract-full" style="display: none;"> 47 Tuc was the first globular cluster observed to be $纬$-ray bright, with the $纬$-rays being attributed to a population of unresolved millisecond pulsars (MSPs). Recent kinematic data, combined with detailed simulations, appears to be consistent with the presence of an intermediate mass black hole (IMBH) at the centre of 47 Tuc. Building upon this, we analyse 9 years of \textit{Fermi}-LAT observations to study the spectral properties of 47 Tuc with unprecedented accuracy and sensitivity. This 9-year $纬$-ray spectrum shows that 47 Tuc&#39;s $纬$-ray flux cannot be explained by MSPs alone, due to a systematic discrepancy between the predicted and observed flux. Rather, we find a significant preference (TS $=40$) for describing 47 Tuc&#39;s spectrum with a two source population model, consisting of an ensemble of MSPs and annihilating dark matter (DM) with an enhanced density around the IMBH, when compared to an MSP-only explanation. The best-fit DM mass of 34 GeV is essentially the same as the best-fit DM explanation for the Galactic centre &#34;excess&#34; when assuming DM annihilation into $b\bar{b}$ quarks. Our work constitutes the first possible evidence of dark matter within a globular cluster. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.01866v1-abstract-full').style.display = 'none'; document.getElementById('1806.01866v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to be published as a Rapid Communication in Physical Review D. 6 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.08945">arXiv:1803.08945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.08945">pdf</a>, <a href="https://arxiv.org/ps/1803.08945">ps</a>, <a href="https://arxiv.org/format/1803.08945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty790">10.1093/mnras/sty790 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Artificial guide stars for adaptive optics using unmanned aerial vehicles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Basden%2C+A">Alastair Basden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadwick%2C+P">Paula Chadwick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+P">Paul Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Massey%2C+R">Richard Massey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.08945v1-abstract-short" style="display: inline;"> Astronomical adaptive optics systems are used to increase effective telescope resolution. However, they cannot be used to observe the whole sky since one or more natural guide stars of sufficient brightness must be found within the telescope field of view for the AO system to work. Even when laser guide stars are used, natural guide stars are still required to provide a constant position reference&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08945v1-abstract-full').style.display = 'inline'; document.getElementById('1803.08945v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.08945v1-abstract-full" style="display: none;"> Astronomical adaptive optics systems are used to increase effective telescope resolution. However, they cannot be used to observe the whole sky since one or more natural guide stars of sufficient brightness must be found within the telescope field of view for the AO system to work. Even when laser guide stars are used, natural guide stars are still required to provide a constant position reference. Here, we introduce a technique to overcome this problem by using rotary unmanned aerial vehicles (UAVs) as a platform from which to produce artificial guide stars. We describe the concept, which relies on the UAV being able to measure its precise relative position. We investigate the adaptive optics performance improvements that can be achieved, which in the cases presented here can improve the Strehl ratio by a factor of at least 2 for a 8~m class telescope. We also discuss improvements to this technique, which is relevant to both astronomical and solar adaptive optics systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08945v1-abstract-full').style.display = 'none'; document.getElementById('1803.08945v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.01413">arXiv:1711.01413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.01413">pdf</a>, <a href="https://arxiv.org/ps/1711.01413">ps</a>, <a href="https://arxiv.org/format/1711.01413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2017.10.013">10.1016/j.astropartphys.2017.10.013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the prospects of cross-calibrating the Cherenkov Telescope Array with an airborne calibration platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.01413v1-abstract-short" style="display: inline;"> Recent advances in unmanned aerial vehicle (UAV) technology have made UAVs an attractive possibility as an airborne calibration platform for astronomical facilities. This is especially true for arrays of telescopes spread over a large area such as the Cherenkov Telescope Array (CTA). In this paper, the feasibility of using UAVs to calibrate CTA is investigated. Assuming a UAV at 1 km altitude abov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.01413v1-abstract-full').style.display = 'inline'; document.getElementById('1711.01413v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.01413v1-abstract-full" style="display: none;"> Recent advances in unmanned aerial vehicle (UAV) technology have made UAVs an attractive possibility as an airborne calibration platform for astronomical facilities. This is especially true for arrays of telescopes spread over a large area such as the Cherenkov Telescope Array (CTA). In this paper, the feasibility of using UAVs to calibrate CTA is investigated. Assuming a UAV at 1 km altitude above CTA, operating on astronomically clear nights with stratified, low atmospheric dust content, appropriate thermal protection for the calibration light source and an onboard photodiode to monitor its absolute light intensity, inter-calibration of CTA&#39;s telescopes of the same size class is found to be achievable with a 6-8 % uncertainty. For cross-calibration of different telescope size classes, a systematic uncertainty of 8-10 % is found to be achievable. Importantly, equipping the UAV with a multi-wavelength calibration light source affords us the ability to monitor the wavelength-dependent degradation of CTA telescopes&#39; optical system, allowing us to not only maintain this 6-10 % uncertainty after the first few years of telescope deployment, but also to accurately account for the effect of multi-wavelength degradation on the cross-calibration of CTA by other techniques, namely with images of air showers and local muons. A UAV-based system thus provides CTA with several independent and complementary methods of cross-calibrating the optical throughput of individual telescopes. Furthermore, housing environmental sensors on the UAV system allows us to not only minimise the systematic uncertainty associated with the atmospheric transmission of the calibration signal, it also allows us to map the dust content above CTA as well as monitor the temperature, humidity and pressure profiles of the first kilometre of atmosphere above CTA with each UAV flight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.01413v1-abstract-full').style.display = 'none'; document.getElementById('1711.01413v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astroparticle Physics. 18 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.07997">arXiv:1709.07997</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.07997">pdf</a>, <a href="https://arxiv.org/format/1709.07997">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/10986">10.1142/10986 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Science with the Cherenkov Telescope Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Consortium%2C+T+C+T+A">The Cherenkov Telescope Array Consortium</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acharya%2C+B+S">B. S. Acharya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Samarai%2C+I+A">I. Al Samarai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+R">R. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+J">J. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alispach%2C+C">C. Alispach</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amans%2C+J+-">J. -P. Amans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antolini%2C+E">E. Antolini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Araya%2C+M">M. Araya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Armstrong%2C+T">T. Armstrong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arqueros%2C+F">F. Arqueros</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arrabito%2C+L">L. Arrabito</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asano%2C+K">K. Asano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashley%2C+M">M. Ashley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Backes%2C+M">M. Backes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balazs%2C+C">C. Balazs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balbo%2C+M">M. Balbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ballester%2C+O">O. Ballester</a> , et al. (558 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.07997v2-abstract-short" style="display: inline;"> The Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA is an explorer of the extreme universe, probing environments from the immediate neighbourhood of black ho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.07997v2-abstract-full').style.display = 'inline'; document.getElementById('1709.07997v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.07997v2-abstract-full" style="display: none;"> The Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA is an explorer of the extreme universe, probing environments from the immediate neighbourhood of black holes to cosmic voids on the largest scales. Covering a huge range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to provide full sky coverage and will hence maximize the potential for the rarest phenomena such as very nearby supernovae, gamma-ray bursts or gravitational wave transients. With 99 telescopes on the southern site and 19 telescopes on the northern site, flexible operation will be possible, with sub-arrays available for specific tasks. CTA will have important synergies with many of the new generation of major astronomical and astroparticle observatories. Multi-wavelength and multi-messenger approaches combining CTA data with those from other instruments will lead to a deeper understanding of the broad-band non-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory, with all data available on a public archive after a pre-defined proprietary period. Scientists from institutions worldwide have combined together to form the CTA Consortium. This Consortium has prepared a proposal for a Core Programme of highly motivated observations. The programme, encompassing approximately 40% of the available observing time over the first ten years of CTA operation, is made up of individual Key Science Projects (KSPs), which are presented in this document. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.07997v2-abstract-full').style.display = 'none'; document.getElementById('1709.07997v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">213 pages, including references and glossary. Version 2: credits and references updated, some figures updated, and author list updated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.03483">arXiv:1709.03483</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Cherenkov Telescope Array Contributions to the 35th International Cosmic Ray Conference (ICRC2017) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Acero%2C+F">F. Acero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acharya%2C+B+S">B. S. Acharya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Portella%2C+V+A">V. Ac铆n Portella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aharonian%2C+F">F. Aharonian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Samarai%2C+I+A">I. Al Samarai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alberdi%2C+A">A. Alberdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alcubierre%2C+M">M. Alcubierre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+R">R. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+J">J. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alispach%2C+C">C. Alispach</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aloisio%2C+R">R. Aloisio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amans%2C+J+-">J. -P. Amans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrogi%2C+L">L. Ambrogi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosio%2C+M">M. Ambrosio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anduze%2C+M">M. Anduze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ang%C3%BCner%2C+E+O">E. O. Ang眉ner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antolini%2C+E">E. Antolini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonuccio%2C+V">V. Antonuccio</a> , et al. (1117 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.03483v5-abstract-short" style="display: inline;"> List of contributions from the Cherenkov Telescope Array Consortium presented at the 35th International Cosmic Ray Conference, July 12-20 2017, Busan, Korea. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.03483v5-abstract-full" style="display: none;"> List of contributions from the Cherenkov Telescope Array Consortium presented at the 35th International Cosmic Ray Conference, July 12-20 2017, Busan, Korea. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.03483v5-abstract-full').style.display = 'none'; document.getElementById('1709.03483v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Index of Cherenkov Telescope Array conference proceedings at the ICRC2017, Busan, Korea</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.11185">arXiv:1705.11185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.11185">pdf</a>, <a href="https://arxiv.org/format/1705.11185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stx1309">10.1093/mnras/stx1309 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermi-LAT high $z$ AGN and the Extragalactic Background Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Armstrong%2C+T">Thomas Armstrong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadwick%2C+P+M">Paula M. Chadwick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.11185v1-abstract-short" style="display: inline;"> Observations of distant gamma-ray sources are hindered by the presence of the extragalactic background light (EBL). In order to understand the physical processes that result in the observed spectrum of sources, it is imperative that a good understanding of the EBL is included. In this work, an investigation into the imprint of the EBL on the observed spectra of high redshift Fermi-LAT AGN is prese&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.11185v1-abstract-full').style.display = 'inline'; document.getElementById('1705.11185v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.11185v1-abstract-full" style="display: none;"> Observations of distant gamma-ray sources are hindered by the presence of the extragalactic background light (EBL). In order to understand the physical processes that result in the observed spectrum of sources, it is imperative that a good understanding of the EBL is included. In this work, an investigation into the imprint of the EBL on the observed spectra of high redshift Fermi-LAT AGN is presented. By fitting the spectrum below $\sim$10 GeV, an estimation of the un-absorbed intrinsic source spectrum is obtained; by applying this spectrum to data up to 300 GeV, it is then possible to derive a scaling factor for different EBL models. A second approach uses 5 sources (PKS 0426-380, 4C +55.17, Ton 116, PG 1246+586 and RBS 1432) which were found to exhibit very high energy emission ($E_纬&gt;100$ GeV). Through Monte Carlo simulations it is shown that the observation of VHE photons, despite the large distances of these objects, is consistent with current EBL models. Many of these sources would be observable with the upcoming ground based observatory the Cherenkov Telescope Array (CTA), leading to a better understanding of the EBL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.11185v1-abstract-full').style.display = 'none'; document.getElementById('1705.11185v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Brown%2C+A+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Brown%2C+A+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brown%2C+A+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brown%2C+A+M&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10