CINXE.COM

Search results for: u- and z-shaped plan walls

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: u- and z-shaped plan walls</title> <meta name="description" content="Search results for: u- and z-shaped plan walls"> <meta name="keywords" content="u- and z-shaped plan walls"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="u- and z-shaped plan walls" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="u- and z-shaped plan walls"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2515</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: u- and z-shaped plan walls</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2515</span> The Effects of Placement and Cross-Section Shape of Shear Walls in Multi-Story RC Buildings with Plan Irregularity on Their Seismic Behavior by Using Nonlinear Time History Analyses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Aminnia">Mohammad Aminnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Hosseini"> Mahmood Hosseini </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental and functional conditions sometimes necessitate the architectural plan of the building to be asymmetric, and this result in an asymmetric structure. In such cases, finding an optimal pattern for locating the components of the lateral load bearing system, including shear walls, in the building’s plan is desired. In case of shear walls, in addition to the location, the shape of the wall cross-section is also an effective factor. Various types of shear wall and their proper layout might come effective in better stiffness distribution and more appropriate seismic response of the building. Several studies have been conducted in the context of analysis and design of shear walls; however, few studies have been performed on making decisions for the location and form of shear walls in multi-story buildings, especially those with irregular plan. In this study, an attempt has been made to obtain the most reliable seismic behavior of multi-story reinforced concrete vertically chamfered buildings by using more appropriate shear walls form and arrangement in 7-, 10-, 12-, and 15-story buildings. The considered forms and arrangements include common rectangular walls and L-, T-, U- and Z-shaped plan, located as the core or in the outer frames of the building structure. Comparison of seismic behaviors of the buildings, including maximum roof displacement, and particularly the formation of plastic hinges and their distribution in the buildings’ structures, have been done based on the results of a series of nonlinear time history analyses by using a set of selected earthquake records. Results show that shear walls with U-shaped cross-section, placed as the building central core, and also walls with Z-shaped cross-section, placed at the corners give the building more reliable seismic behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertically%20chamfered%20buildings" title="vertically chamfered buildings">vertically chamfered buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20time%20history%20analyses" title=" non-linear time history analyses"> non-linear time history analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=l-" title=" l-"> l-</a>, <a href="https://publications.waset.org/abstracts/search?q=t-" title=" t-"> t-</a>, <a href="https://publications.waset.org/abstracts/search?q=u-%20and%20z-shaped%20plan%20walls" title=" u- and z-shaped plan walls"> u- and z-shaped plan walls</a> </p> <a href="https://publications.waset.org/abstracts/37110/the-effects-of-placement-and-cross-section-shape-of-shear-walls-in-multi-story-rc-buildings-with-plan-irregularity-on-their-seismic-behavior-by-using-nonlinear-time-history-analyses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2514</span> Evaluation of the Impact of Infill Wall Layout in Plan and/or Elevation on the Seismic Behavior of 3D Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20Guettala">Salah Guettala</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesreddine%20Djafarhenni"> Nesreddine Djafarhenni</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20Khelaifia"> Akram Khelaifia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Chebili"> Rachid Chebili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study assesses the impact of infill walls' layout in both plan and elevation on the seismic behavior of a 3D reinforced concrete structure situated in a high seismic zone. A pushover analysis is conducted to evaluate the structure's seismic performance with various infill wall layouts, considering capacity curves, absorbed energy, inter-story drift, and performance levels. Additionally, torsional effects on the structure are examined through linear dynamic analysis. Fiber-section-based macro-modeling is utilized to simulate the behavior of infill walls. The findings indicate that the presence of infill walls enhances lateral stiffness and alters structural behavior. Moreover, the study highlights the importance of considering the effects of infill wall layout, as non-uniform layouts can degrade building performance post-earthquake, increasing inter-story drift and risk of damage or collapse. To mitigate such risks, buildings should adopt a uniform infill wall layout. Furthermore, asymmetrical placement of masonry infill walls introduces additional torsional forces, particularly when there's a lack of such walls on the first story, potentially leading to irregular stiffness and soft-story phenomena. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RC%20structures" title="RC structures">RC structures</a>, <a href="https://publications.waset.org/abstracts/search?q=infll%20walls%E2%80%99%20layout" title=" infll walls’ layout"> infll walls’ layout</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=macro-model" title=" macro-model"> macro-model</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20plastic%20hinge" title=" fiber plastic hinge"> fiber plastic hinge</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion" title=" torsion"> torsion</a> </p> <a href="https://publications.waset.org/abstracts/182744/evaluation-of-the-impact-of-infill-wall-layout-in-plan-andor-elevation-on-the-seismic-behavior-of-3d-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2513</span> Semi Empirical Equations for Peak Shear Strength of Rectangular Reinforced Concrete Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kezmane">Ali Kezmane</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Boukais"> Said Boukais</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohand%20Hamizi"> Mohand Hamizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analytical study on the behavior of reinforced concrete walls with rectangular cross section. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal shear wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood and Barda equations. Subsequently, nominal shear wall strengths from the formulas were compared with the ultimate shear wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate shear strength. Two new semi empirical equations are developed using data from tests of 57 walls for transitions walls and 27 for slender walls with the objective of improving the prediction of peak strength of walls with the most possible accurate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title="shear strength">shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20walls" title=" reinforced concrete walls"> reinforced concrete walls</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20walls" title=" rectangular walls"> rectangular walls</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20walls" title=" shear walls"> shear walls</a>, <a href="https://publications.waset.org/abstracts/search?q=models" title=" models "> models </a> </p> <a href="https://publications.waset.org/abstracts/12121/semi-empirical-equations-for-peak-shear-strength-of-rectangular-reinforced-concrete-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2512</span> Simplified Equations for Rigidity and Lateral Deflection for Reinforced Concrete Cantilever Shear Walls </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anas%20M.%20Fares">Anas M. Fares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete shear walls are the most frequently used forms of lateral resisting structural elements. These walls may take many forms due to their functions and locations in the building. In Palestine, the most lateral resisting forces construction forms is the cantilever shear walls system. It is thus of prime importance to study the rigidity of these walls. The virtual work theorem is used to derive the total lateral deflection of cantilever shear walls due to flexural and shear deformation. The case of neglecting the shear deformation in the walls is also studied, and it is found that the wall height to length aspect ratio (H/B) plays a major role in calculating the lateral deflection and the rigidity of such walls. When the H/B is more than or equal to 3.7, the shear deformation may be neglected from the calculation of the lateral deflection. Moreover, the walls with the same material properties, same lateral load value, and same aspect ratio, shall have the same of both the lateral deflection and the rigidity. Finally, an equation to calculate the total rigidity and total deflection of such walls is derived by using the virtual work theorem for a cantilever beam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cantilever%20shear%20walls" title="cantilever shear walls">cantilever shear walls</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20deformation" title=" flexural deformation"> flexural deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20deflection" title=" lateral deflection"> lateral deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20loads" title=" lateral loads"> lateral loads</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20shear%20walls" title=" reinforced concrete shear walls"> reinforced concrete shear walls</a>, <a href="https://publications.waset.org/abstracts/search?q=rigidity" title=" rigidity"> rigidity</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20deformation" title=" shear deformation"> shear deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20work%20theorem" title=" virtual work theorem"> virtual work theorem</a> </p> <a href="https://publications.waset.org/abstracts/99514/simplified-equations-for-rigidity-and-lateral-deflection-for-reinforced-concrete-cantilever-shear-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2511</span> Evaluation of Flange Effects on the Lateral In-Plane Response of Brick Masonry Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hizb%20Ullah%20Sajid">Hizb Ullah Sajid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ashraf"> Muhammad Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ahmad%20Qaisar%20Ali"> Naveed Ahmad Qaisar Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Sikandar%20Hayat%20Sajid"> Sikandar Hayat Sajid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research study investigates experimentally the effects of flanges (transverse walls) on the lateral in-plane response of brick masonry walls. The experimental work included lateral in-plane quasi-static cyclic tests on full-scale walls (both with & without flanges). The flanges were introduced at both ends of the in-plane wall. In particular the damage mechanism, lateral in-plane stiffness & strength, deformability and energy dissipation of the two classes of walls are compared and the differences are quantified to help understand the effects of flanges on the in-plane response of masonry walls. The available analytical models for the in-plane shear strength & deformation evaluation of masonry walls are critically analyzed. Recommendations are made for the lateral in-plane capacity assessment of brick masonry walls including the contribution of transverse walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brick%20masonry" title="brick masonry">brick masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20mechanism" title=" damage mechanism"> damage mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=flanges%20effects" title=" flanges effects"> flanges effects</a>, <a href="https://publications.waset.org/abstracts/search?q=in-plane%20response" title=" in-plane response"> in-plane response</a> </p> <a href="https://publications.waset.org/abstracts/33495/evaluation-of-flange-effects-on-the-lateral-in-plane-response-of-brick-masonry-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2510</span> Ultimate Strength Prediction of Shear Walls with an Aspect Ratio between One and Two</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20Boukais">Said Boukais</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kezmane"> Ali Kezmane</a>, <a href="https://publications.waset.org/abstracts/search?q=Kahil%20Amar"> Kahil Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohand%20Hamizi"> Mohand Hamizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannachi%20Neceur%20Eddine"> Hannachi Neceur Eddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analytical study on the behavior of rectangular reinforced concrete walls with an aspect ratio between one and tow. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood equation for shear and strain compatibility analysis for flexure. Subsequently, nominal ultimate wall strengths from the formulas were compared with the ultimate wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate strength. New semi empirical equation are developed using data from tests of 46 walls with the objective of improving the prediction of ultimate strength of walls with the most possible accuracy and for all failure modes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prediction" title="prediction">prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20strength" title=" ultimate strength"> ultimate strength</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20walls" title=" reinforced concrete walls"> reinforced concrete walls</a>, <a href="https://publications.waset.org/abstracts/search?q=walls" title=" walls"> walls</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20walls" title=" rectangular walls"> rectangular walls</a> </p> <a href="https://publications.waset.org/abstracts/29930/ultimate-strength-prediction-of-shear-walls-with-an-aspect-ratio-between-one-and-two" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2509</span> Simulations in Structural Masonry Walls with Chases Horizontal Through Models in State Deformation Plan (2D)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raquel%20Zydeck">Raquel Zydeck</a>, <a href="https://publications.waset.org/abstracts/search?q=Karina%20Azzolin"> Karina Azzolin</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Kosteski"> Luis Kosteski</a>, <a href="https://publications.waset.org/abstracts/search?q=Alisson%20Milani"> Alisson Milani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents numerical models in plane deformations (2D), using the Discrete Element Method formedbybars (LDEM) andtheFiniteElementMethod (FEM), in structuralmasonrywallswith horizontal chasesof 20%, 30%, and 50% deep, located in the central part and 1/3 oftheupperpartofthewall, withcenteredandeccentricloading. Differentcombinationsofboundaryconditionsandinteractionsbetweenthemethodswerestudied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chases%20in%20structural%20masonry%20walls" title="chases in structural masonry walls">chases in structural masonry walls</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method%20formed%20by%20bars" title=" discrete element method formed by bars"> discrete element method formed by bars</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20models" title=" numerical models"> numerical models</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20condition" title=" boundary condition"> boundary condition</a> </p> <a href="https://publications.waset.org/abstracts/144117/simulations-in-structural-masonry-walls-with-chases-horizontal-through-models-in-state-deformation-plan-2d" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2508</span> A Comparison between Modelled and Actual Thermal Performance of Load Bearing Rammed Earth Walls in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hafez">H. Hafez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mekkawy"> A. Mekkawy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rostom"> R. Rostom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Around 10% of the world’s CO₂ emissions could be attributed to the operational energy of buildings; that is why more research is directed towards the use of rammed earth walls which is claimed to have enhanced thermal properties compared to conventional building materials. The objective of this paper is to outline how the thermal performance of rammed earth walls compares to conventional reinforced concrete skeleton and red brick in-fill walls. For this sake, the indoor temperature and relative humidity of a classroom built with rammed earth walls and a vaulted red brick roof in the area of Behbeit, Giza, Egypt were measured hourly over 6 months using smart sensors. These parameters for the rammed earth walls were later also compared against the values obtained using a 'DesignBuilder v5' model to verify the model assumptions. The thermal insulation of rammed earth walls was found to be 30% better than this of the redbrick infill, and the recorded data were found to be almost 90% similar to the modelled values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rammed%20earth" title="rammed earth">rammed earth</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20builder" title=" design builder"> design builder</a> </p> <a href="https://publications.waset.org/abstracts/99687/a-comparison-between-modelled-and-actual-thermal-performance-of-load-bearing-rammed-earth-walls-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2507</span> Effect of Boundary Retaining Walls Properties on the Raft Foundations Behaviour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hussein">Mohamed Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the effect of boundary retaining walls properties on the behavior of the raft foundation. Commercial software program Sap2000 was used in this study. The soil was presented as continuous media (follows the Winkler assumption). Shell elements were employed to model the raft plate. A parametric study has been carried out to examine the effect of boundary retaining walls properties on the behavior of raft plate. These parameters namely, height of the boundary retaining walls, thickness of the boundary retaining walls, flexural rigidity of raft plate, bearing capacity of supporting soil and the earth pressure of boundary soil. The main results which were obtained from this study are positive, negative bending moment, shear stress and deflection in raft plate, where these parameters are considered the main parameters used in design of raft foundation. It was concluded that the boundary retaining walls have a significant effect on the straining actions in raft plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sap2000" title="Sap2000">Sap2000</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20retaining%20walls" title=" boundary retaining walls"> boundary retaining walls</a>, <a href="https://publications.waset.org/abstracts/search?q=raft%20foundations" title=" raft foundations"> raft foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=Winkler%20model" title=" Winkler model"> Winkler model</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20rigidity" title=" flexural rigidity"> flexural rigidity</a> </p> <a href="https://publications.waset.org/abstracts/87502/effect-of-boundary-retaining-walls-properties-on-the-raft-foundations-behaviour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2506</span> Seismic Evaluation with Shear Walls and Braces for Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Malik">R. S. Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Madan"> S. K. Madan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Sehgal"> V. K. Sehgal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete (RCC) buildings with dual system consisting of shear walls and moment resisting frames or braces and moment resisting frames have been widely used to resist lateral forces during earthquakes. The two dual systems are designed to resist the total design lateral force in proportion to their lateral stiffness. The response of the combination of braces and shear walls has not yet been studied therefore has practically no work to refer to. The combination may prove to be more effective in lateral load resistance by employing the peculiar advantages of shear walls and braces simultaneously and may also improve the architectural appearance of structures. This concept has been applied to regular RCC buildings provided with shear walls, braces, and their combinations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title="dynamic analysis">dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement" title=" displacement"> displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20structures" title=" dual structures"> dual structures</a>, <a href="https://publications.waset.org/abstracts/search?q=storey%20drift" title=" storey drift"> storey drift</a> </p> <a href="https://publications.waset.org/abstracts/17790/seismic-evaluation-with-shear-walls-and-braces-for-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2505</span> Investigation of Fire Damaged Reinforced Concrete Walls with Axial Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Ah%20Yoon">Hyun Ah Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Yeon%20Kang"> Ji Yeon Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee%20Sun%20Kim"> Hee Sun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeong%20Soo%20Shin"> Yeong Soo Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete (RC) shear wall system of residential buildings is popular in South Korea. RC walls are subjected to axial forces in common and the effect of axial forces on the strength loss of the fire damaged walls has not been investigated. This paper aims at investigating temperature distribution on fire damaged concrete walls having different axial loads. In the experiments, a variable of specimens is axial force ratio. RC walls are fabricated with 150mm of wall thicknesses, 750mm of lengths and 1,300mm of heights having concrete strength of 24MPa. After curing, specimens are heated on one surface with ISO-834 standard time-temperature curve for 2 hours and temperature distributions during the test are measured using thermocouples inside the walls. The experimental results show that the temperature of the RC walls exposed to fire increases as axial force ratio increases. To verify the experiments, finite element (FE) models are generated for coupled temperature-structure analyses. The analytical results of thermal behaviors are in good agreement with the experimental results. The predicted displacement of the walls decreases when the axial force increases.  <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20force%20ratio" title="axial force ratio">axial force ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20wall" title=" reinforced concrete wall"> reinforced concrete wall</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20strength" title=" residual strength"> residual strength</a> </p> <a href="https://publications.waset.org/abstracts/36359/investigation-of-fire-damaged-reinforced-concrete-walls-with-axial-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2504</span> Design of Bayesian MDS Sampling Plan Based on the Process Capability Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davood%20Shishebori">Davood Shishebori</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saber%20Fallah%20Nezhad"> Mohammad Saber Fallah Nezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Seifi"> Sina Seifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a variable multiple dependent state (MDS) sampling plan is developed based on the process capability index using Bayesian approach. The optimal parameters of the developed sampling plan with respect to constraints related to the risk of consumer and producer are presented. Two comparison studies have been done. First, the methods of double sampling model, sampling plan for resubmitted lots and repetitive group sampling (RGS) plan are elaborated and average sample numbers of the developed MDS plan and other classical methods are compared. A comparison study between the developed MDS plan based on Bayesian approach and the exact probability distribution is carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MDS%20sampling%20plan" title="MDS sampling plan">MDS sampling plan</a>, <a href="https://publications.waset.org/abstracts/search?q=RGS%20plan" title=" RGS plan"> RGS plan</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20plan%20for%20resubmitted%20lots" title=" sampling plan for resubmitted lots"> sampling plan for resubmitted lots</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20capability%20index%20%28PCI%29" title=" process capability index (PCI)"> process capability index (PCI)</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20sample%20number%20%28ASN%29" title=" average sample number (ASN)"> average sample number (ASN)</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20approach" title=" Bayesian approach"> Bayesian approach</a> </p> <a href="https://publications.waset.org/abstracts/74571/design-of-bayesian-mds-sampling-plan-based-on-the-process-capability-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2503</span> Moment-Curvature Relation for Nonlinear Analysis of Slender Structural Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Dehghan">E. Dehghan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Dehghan"> R. Dehghan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, the slender structural walls have flexural behavior. Since behavior of bending members can be explained by moment–curvature relation, therefore, an analytical model is proposed based on moment–curvature relation for slender structural walls. The moment–curvature relationships of RC sections are constructed through section analysis. Governing equations describing the bond-slip behavior in walls are derived and applied to moment–curvature relations. For the purpose of removing the imprecision in analytical results, the plastic hinge length is included in the finite element modeling. Finally, correlation studies between analytical and experimental results are conducted with the objective to establish the validity of the proposed algorithms. The results show that bond-slip effect is more significant in walls subjected to larger axial compression load. Moreover, preferable results are obtained when ultimate strain of concrete is assumed conservatively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title="nonlinear analysis">nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=slender%20structural%20walls" title=" slender structural walls"> slender structural walls</a>, <a href="https://publications.waset.org/abstracts/search?q=moment-curvature%20relation" title=" moment-curvature relation"> moment-curvature relation</a>, <a href="https://publications.waset.org/abstracts/search?q=bond-slip" title=" bond-slip"> bond-slip</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20hinge%20length" title=" plastic hinge length"> plastic hinge length</a> </p> <a href="https://publications.waset.org/abstracts/43118/moment-curvature-relation-for-nonlinear-analysis-of-slender-structural-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2502</span> Agriroofs and Agriwalls: Applications of Food Production in Green Roofs and Green Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20M.%20Elmazek">Eman M. Elmazek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green roofs and walls are a rising technology in the global sustainable architectural industry. The idea takes great steps towards the future of sustainable design due to its many benefits. However, there are many barriers and constraints. Economical, structural, and knowledge barriers prevent the spread of the usage of green roofs and living walls. Understanding the benefits and expanding them will spread the idea. Benefits provided by these green spots interrupt and maintain the current urban cover. Food production is one of the benefits of green roofs. It can save money and energy spent in food transportation. The goal of this paper is to put a better understanding of implementing green systems. The paper aims to identify gains versus challenges facing the technology. It surveys with case studies buildings with green roofs and walls used for food production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title="green roof">green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20walls" title=" green walls"> green walls</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20farming" title=" urban farming"> urban farming</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden" title=" roof herb garden"> roof herb garden</a> </p> <a href="https://publications.waset.org/abstracts/46610/agriroofs-and-agriwalls-applications-of-food-production-in-green-roofs-and-green-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2501</span> Seismic Response of Large-Scale Rectangular Steel-Plate Concrete Composite Shear Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Epackachi">Siamak Epackachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20S.%20Whittaker"> Andrew S. Whittaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20H.%20Varma"> Amit H. Varma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental program on steel-plate concrete (SC) composite shear walls was executed in the NEES laboratory at the University at Buffalo. Four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and faceplate slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure-critical. This paper presents the damage to SC walls at different drift ratios, the cyclic force-displacement relationships, energy dissipation and equivalent viscous damping ratios, the strain and stress fields in the steel faceplates and the contribution of the steel faceplates to the total shear load, the variation of vertical strain in the steel faceplates along the length of the wall, near the base, at different drift ratios, the contributions of shear, flexure, and base rotation to the total lateral displacement, the displacement ductility of the SC walls, and the cyclic secant stiffness of the four SC walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel-plate%20composite%20shear%20wall" title="steel-plate composite shear wall">steel-plate composite shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=safety-related%20nuclear%20structure" title=" safety-related nuclear structure"> safety-related nuclear structure</a>, <a href="https://publications.waset.org/abstracts/search?q=flexure-critical%20wall" title=" flexure-critical wall"> flexure-critical wall</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a> </p> <a href="https://publications.waset.org/abstracts/25770/seismic-response-of-large-scale-rectangular-steel-plate-concrete-composite-shear-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2500</span> Impact of Out-of-Plane Stiffness of the Diaphragm on Deflection of Wood Light-Frame Shear Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Bagheri">M. M. Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Doudak"> G. Doudak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gong"> M. Gong </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The in-plane rigidity of light frame diaphragms has been investigated by researchers due to the importance of this subsystem regarding lateral force distribution between the lateral force resisting system (LFRS). Where research has lacked is in evaluating the impact of out-of-plane raigidity of the diaphragm on the deflection of shear walls. This study aims at investigating the effect of the diaphragm on the behavior of wood light-frame shear walls, in particular its out-of-plane rigidity was simulated by modeling the floors as beam. The out of plane stiffness of the diaphragm was investigated for idealized (infinitely stiff or flexible) as well as &ldquo;realistic&rdquo;. The results showed reductions in the shear wall deflection in the magnitude of approximately 80% considering the out of plane rigidity of the diaphragm. It was also concluded that considering conservative estimates of out-of-plane stiffness might lead to a very significant reduction in deflection and that assuming the floor diaphragm to be infinitely rigid out of plan seems to be reasonable. For diaphragms supported on multiple panels, further reduction in the deflection was observed. More work, particularly at the experimental level, is needed to verify the finding obtained in the numerical investigation related to the effect of out of plane diaphragm stiffness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20deflection" title=" lateral deflection"> lateral deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-plane%20stiffness%20of%20the%20diaphragm" title=" out-of-plane stiffness of the diaphragm"> out-of-plane stiffness of the diaphragm</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20light-frame%20shear%20wall" title=" wood light-frame shear wall"> wood light-frame shear wall</a> </p> <a href="https://publications.waset.org/abstracts/106928/impact-of-out-of-plane-stiffness-of-the-diaphragm-on-deflection-of-wood-light-frame-shear-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2499</span> Examination of the Reinforcement Forces Generated in Pseudo-Static and Dynamic Status in Retaining Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Passbakhsh">K. Passbakhsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determination of reinforcement forces is one of the most important and main discussions in designing retaining walls. By determining these forces we refrain from conservative planning. By numerically modeling the reinforced soil retaining walls under dynamic loading reinforcement forces can be calculated. In this study we try to approach the gained forces by pseudo-static method according to FHWA code and gained forces from numerical modeling by finite element method, by selecting seismic horizontal coefficient for different wall height. PLAXIS software was used for numerical analysis. Then the effect of reinforcement stiffness and soil type on reinforcement forces is examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20soil" title="reinforced soil">reinforced soil</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS" title=" PLAXIS"> PLAXIS</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20forces" title=" reinforcement forces"> reinforcement forces</a>, <a href="https://publications.waset.org/abstracts/search?q=retaining%20walls" title=" retaining walls "> retaining walls </a> </p> <a href="https://publications.waset.org/abstracts/28518/examination-of-the-reinforcement-forces-generated-in-pseudo-static-and-dynamic-status-in-retaining-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2498</span> Application Research on Large Profiled Statues of Steel-Concrete Composite Shear Wall </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Cai-qi">Zhao Cai-qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma%20Jun"> Ma Jun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Twin steel plates-concrete composite shear walls are composed of a pair of steel plate layers and a concrete layer sandwiched between them, which have the characteristics of both reinforced concrete shear walls and steel plate shear walls. Twin steel plates-composite shear walls contain very high ultimate bearing capacity and ductility, which have great potential to be applied in the super high-rise buildings and special structures. In this paper, we analyzed the basic characteristics and stress mechanism of the twin steel plates-composite shear walls. Specifically, we analyzed the effects of the steel plate thickness, wall thickness and concrete strength on the bearing capacity of the twin steel plates-composite shear walls. The analysis results indicate that:(1)the initial shear stiffness and ultimate shear-carrying capacity is not significantly affected by the thickness of concrete wall but by the class of concrete,(2)both factors significantly impact the shear distribution of the shear walls in ultimate shear-carrying capacity. The technique of twin steel plates-composite shear walls has been successfully applied in the construction of a 88-meter Huge Statue of Buddha located in Hunan Province, China. The analysis results and engineering experiences showed that the twin steel plates-composite shear walls have great potential for future research and applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=twin%20steel%20plates-concrete%20composite%20shear%20wall" title="twin steel plates-concrete composite shear wall">twin steel plates-concrete composite shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=huge%20statue%20of%20Buddha" title=" huge statue of Buddha"> huge statue of Buddha</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20capacity" title=" shear capacity"> shear capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20lateral%20stiffness" title=" initial lateral stiffness"> initial lateral stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=overturning%20moment%20bearing" title=" overturning moment bearing"> overturning moment bearing</a> </p> <a href="https://publications.waset.org/abstracts/31153/application-research-on-large-profiled-statues-of-steel-concrete-composite-shear-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2497</span> Effective Width of Reinforced Concrete U-Shaped Walls Due to Shear Lag Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ryan%20D.%20Hoult">Ryan D. Hoult</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inherent assumption in the elementary theory of bending that plane sections remain plane is commonly used in the design of reinforced concrete members. However, in reality, a shear flow would develop in non-rectangular sections, where the longitudinal strains in between the web and flanges of the element would lag behind those at the boundary ends. This phenomenon, known as shear lag, can significantly reduce the expected moment capacity of non-rectangular reinforced concrete walls. This study focuses on shear lag effects in reinforced concrete U-shaped walls, which are commonly used as lateral load resisting elements in reinforced concrete buildings. An extensive number of finite element modelling analyses are conducted to estimate the vertical strain distributions across the web and flanges of a U-shaped wall with different axial load ratios and longitudinal reinforcement detailing. The results show that shear lag effects are prominent and sometimes significant in U-shaped walls, particularly for the wall sections perpendicular to the direction of loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20lag" title="shear lag">shear lag</a>, <a href="https://publications.waset.org/abstracts/search?q=walls" title=" walls"> walls</a>, <a href="https://publications.waset.org/abstracts/search?q=U-shaped" title=" U-shaped"> U-shaped</a>, <a href="https://publications.waset.org/abstracts/search?q=moment-curvature" title=" moment-curvature"> moment-curvature</a> </p> <a href="https://publications.waset.org/abstracts/92183/effective-width-of-reinforced-concrete-u-shaped-walls-due-to-shear-lag-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2496</span> Automating 2D CAD to 3D Model Generation Process: Wall pop-ups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohit%20Gupta">Mohit Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Chialing%20Wei"> Chialing Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Czerniawski"> Thomas Czerniawski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title="neural networks">neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=Yolo" title=" Yolo"> Yolo</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20to%203D%20transformation" title="2D to 3D transformation">2D to 3D transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD%20object%20detection" title=" CAD object detection"> CAD object detection</a> </p> <a href="https://publications.waset.org/abstracts/144132/automating-2d-cad-to-3d-model-generation-process-wall-pop-ups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2495</span> Utilizing Fiber-Based Modeling to Explore the Presence of a Soft Storey in Masonry-Infilled Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akram%20Khelaifia">Akram Khelaifia</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Guettala"> Salah Guettala</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesreddine%20Djafar%20Henni"> Nesreddine Djafar Henni</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Chebili"> Rachid Chebili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent seismic events have underscored the significant influence of masonry infill walls on the resilience of structures. The irregular positioning of these walls exacerbates their adverse effects, resulting in substantial material and human losses. Research and post-earthquake evaluations emphasize the necessity of considering infill walls in both the design and assessment phases. This study delves into the presence of soft stories in reinforced concrete structures with infill walls. Employing an approximate method relying on pushover analysis results, fiber-section-based macro-modeling is utilized to simulate the behavior of infill walls. The findings shed light on the presence of soft first stories, revealing a notable 240% enhancement in resistance for weak column—strong beam-designed frames due to infill walls. Conversely, the effect is more moderate at 38% for strong column—weak beam-designed frames. Interestingly, the uniform distribution of infill walls throughout the structure's height does not influence soft-story emergence in the same seismic zone, irrespective of column-beam strength. In regions with low seismic intensity, infill walls dissipate energy, resulting in consistent seismic behavior regardless of column configuration. Despite column strength, structures with open-ground stories remain vulnerable to soft first-story emergence, underscoring the crucial role of infill walls in reinforced concrete structural design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry%20infill%20walls" title="masonry infill walls">masonry infill walls</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20Storey" title=" soft Storey"> soft Storey</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20section" title=" fiber section"> fiber section</a>, <a href="https://publications.waset.org/abstracts/search?q=macro-modeling" title=" macro-modeling"> macro-modeling</a> </p> <a href="https://publications.waset.org/abstracts/182588/utilizing-fiber-based-modeling-to-explore-the-presence-of-a-soft-storey-in-masonry-infilled-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2494</span> Design and Optimization of Soil Nailing Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fereshteh%20Akbari">Fereshteh Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Farrokh%20Jalali%20Mosalam"> Farrokh Jalali Mosalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hedayatifar"> Ali Hedayatifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirreza%20Aminjavaheri"> Amirreza Aminjavaheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The soil nailing is an effective method to stabilize slopes and retaining structures. Consequently, the lateral and vertical displacement of retaining walls are important criteria to evaluate the safety risks of adjacent structures. This paper is devoted to the optimization problems of retaining walls based on ABAQOUS Software. The various parameters such as nail length, orientation, arrangement, horizontal spacing, and bond skin friction, on lateral and vertical displacement of retaining walls are investigated. In order to ensure accuracy, the mobilized shear stress acting around the perimeter of the nail-soil interface is also modeled in ABAQOUS software. The observed trend of results is compared to the previous researches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retaining%20walls" title="retaining walls">retaining walls</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20nailing" title=" soil nailing"> soil nailing</a>, <a href="https://publications.waset.org/abstracts/search?q=ABAQOUS%20software" title=" ABAQOUS software"> ABAQOUS software</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20displacement" title=" lateral displacement"> lateral displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20displacement" title=" vertical displacement"> vertical displacement</a> </p> <a href="https://publications.waset.org/abstracts/154028/design-and-optimization-of-soil-nailing-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2493</span> Investigation on the Behavior of Conventional Reinforced Coupling Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akash%20K.%20Walunj">Akash K. Walunj</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipendu%20Bhunia"> Dipendu Bhunia</a>, <a href="https://publications.waset.org/abstracts/search?q=Samarth%20Gupta"> Samarth Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhat%20Gupta"> Prabhat Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20studies" title="design studies">design studies</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20model%28s%29" title=" computational model(s)"> computational model(s)</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study%2Fstudies" title=" case study/studies"> case study/studies</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20beam" title=" coupling beam"> coupling beam</a> </p> <a href="https://publications.waset.org/abstracts/3310/investigation-on-the-behavior-of-conventional-reinforced-coupling-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2492</span> Thermodynamic Performance Tests for 3D Printed Steel Slag Powder Concrete Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Guoyou">Li Guoyou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Tao"> Zhang Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Wenzhan"> Ji Wenzhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Huo%20Liang"> Huo Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Xiqiang"> Lin Xiqiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Nan"> Zhang Nan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is possible to print engineering structures. 3D printing buildings use wastes from constructions, industries and mine tailings as “ink”, and mix it with property improved materials, such as cement, fiber etc. This paper presents a study of the Thermodynamic performance of 3D printed walls using cement and steel slag powder. Analyses the thermal simulation regarding 3D printed walls and solid brick wall by the way of the hot-box methods and the infrared technology, and the results were contrasted with theoretical calculation. The results show that the excellent thermodynamic performance of 3D printed concrete wall made it suitable as the partial materials for self-thermal insulation walls in residential buildings. The thermodynamic performance of 3D printed concrete walls depended on the density of materials, distribution of holes, and the filling materials. Decreasing the density of materials, increasing the number of holes or replacing the filling materials with foamed concrete could improve its thermodynamic performance significantly. The average of heat transfer coefficient and thermal inertia index of 3D printed steel slag powder concrete wall all better than the traditional solid brick wall with a thickness of 240mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printed%20walls" title=" 3D printed walls"> 3D printed walls</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20performance" title=" thermodynamic performance"> thermodynamic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20slag%20powder" title=" steel slag powder"> steel slag powder</a> </p> <a href="https://publications.waset.org/abstracts/92165/thermodynamic-performance-tests-for-3d-printed-steel-slag-powder-concrete-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2491</span> Finite Element Analysis of Reinforced Structural Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mintesinot%20Teshome%20Mengsha">Mintesinot Teshome Mengsha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete structural walls are provided in structures to decrease horizontal displacements under seismic loads. The cyclic lateral load resistance capacity of a structural wall is controlled by two parameters, the strength and the ductility; it is better to have the shear strength somewhat greater than the compression to prevent shear failure, which is brittle, sudden and of serious consequence. Due to architectural and functional reasons, small openings are provided in this important structural part. The main objective of this study is to investigate the finite element of RC structural walls with small openings subjected to cyclic load using the finite element approach. The experimental results in terms of load capacity, failure mode, crack pattern, flexural strength, shear strength, and deformation capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title="ABAQUS">ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20openings" title=" small openings"> small openings</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structural%20walls" title=" reinforced concrete structural walls"> reinforced concrete structural walls</a> </p> <a href="https://publications.waset.org/abstracts/186309/finite-element-analysis-of-reinforced-structural-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2490</span> Settlement Analysis of Back-To-Back Mechanically Stabilized Earth Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akhila%20Palat">Akhila Palat</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Umashankar"> B. Umashankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Back-to-back Mechanically Stabilized Earth (MSE) walls are cost-effective soil-retaining structures that can tolerate large settlements compared to conventional gravity retaining walls. They are also an economical way to meet everyday earth retention needs for highway and bridge grade separations, railroads, commercial and residential developments. But, existing design guidelines (FHWA/BS/ IS codes) do not provide a mechanistic approach for the design of back-to-back reinforced retaining walls. The settlement analysis of such structures is limited in the literature. A better understanding of the deformations of this wall system requires an analytical tool that incorporates the properties of backfill material, foundation soil, and geosynthetic reinforcement, and account for the soil–structure interactions in a realistic manner. This study was conducted to investigate the effect of reinforced back-to-back MSE walls on wall settlements and facing deformations. Back-to-back reinforced retaining walls were modeled and compared using commercially available finite difference package FLAC 2D. Parametric studies were carried out for various angles of shearing resistance of backfill material and foundation soil, and the axial stiffness of the reinforcement. A 6m-high wall was modeled, and the facing panels were taken as full-length panels with nominal thickness. Reinforcement was modeled as cable elements (two-dimensional structural elements). Interfaces were considered between soil and wall, and soil and reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back-to-back%20walls" title="back-to-back walls">back-to-back walls</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20wall" title=" reinforced wall"> reinforced wall</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/66038/settlement-analysis-of-back-to-back-mechanically-stabilized-earth-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2489</span> Effects of Directivity and Fling Step on Buildings Equipped with J-Hook Sandwich Composite Walls and Reinforced Concrete Shear Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Saaly">Majid Saaly</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahriar%20Tavousi%20Tafreshi"> Shahriar Tavousi Tafreshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Nazari%20Afshar"> Mehdi Nazari Afshar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structural systems with the sandwich composite wall (SCSSC) are of very popular due to their ductileness and competency to swallow more energy and power than standard reinforced concrete shear walls. The purpose of this enhanced system is in high-rise building, Nuclear power plant facilities, and bridge slabs are much more. SCSSCs showed acceptable seismic performance under experimental tests and cyclic loading from the points of view of in-plane and out-of-plane shear and flexural interaction, in-plane punching shear, and compressive behavior. The use of sandwich composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. By changing the systems of the building from SW to SCWJ, the maximum inter-story drift values of ten- and fifteen-story models are reduced by up to 25% and 35%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=J-Hook%20sandwich%20composite%20walls" title="J-Hook sandwich composite walls">J-Hook sandwich composite walls</a>, <a href="https://publications.waset.org/abstracts/search?q=fling%20step" title=" fling step"> fling step</a>, <a href="https://publications.waset.org/abstracts/search?q=directivity" title=" directivity"> directivity</a>, <a href="https://publications.waset.org/abstracts/search?q=IDA%20analyses" title=" IDA analyses"> IDA analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=fractile%20curves" title=" fractile curves"> fractile curves</a> </p> <a href="https://publications.waset.org/abstracts/158618/effects-of-directivity-and-fling-step-on-buildings-equipped-with-j-hook-sandwich-composite-walls-and-reinforced-concrete-shear-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2488</span> Ranking of Optimal Materials for Building Walls from the Perspective of Cost and Waste of Electricity and Gas Energy Using AHP-TOPSIS 1 Technique: Study Example: Sari City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedomid%20Fatemi">Seyedomid Fatemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The walls of the building, as the main intermediary between the outside and the inside of the building, play an important role in controlling the environmental conditions and ensuring the comfort of the residents, thus reducing the heating and cooling loads. Therefore, the use of suitable materials is considered one of the simplest and most effective ways to reduce the heating and cooling loads of the building, which will also save energy. Therefore, in order to achieve the goal of the research "Ranking of optimal materials for building walls," optimal materials for building walls in a temperate and humid climate (case example: Sari city) from the perspective of embodied energy, waste of electricity and gas energy, cost and reuse been investigated to achieve sustainable architecture. In this regard, using information obtained from Sari Municipality, design components have been presented by experts using the Delphi method. Considering the criteria of experts' opinions (cost and reuse), the amount of embodied energy of the materials, as well as the amount of waste of electricity and gas of different materials of the walls, with the help of the AHP weighting technique and finally with the TOPSIS technique, the best type of materials in the order of 1- 3-D Panel 2-ICF-, 3-Cement block with pumice, 4-Wallcrete block, 5-Clay block, 6-Autoclaved Aerated Concrete (AAC), 7-Foam cement block, 8-Aquapanel and 9-Reinforced concrete wall for use in The walls of the buildings were proposed in Sari city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimum%20materials" title="optimum materials">optimum materials</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20walls" title=" building walls"> building walls</a>, <a href="https://publications.waset.org/abstracts/search?q=moderate%20and%20humid%20climate" title=" moderate and humid climate"> moderate and humid climate</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20architecture" title=" sustainable architecture"> sustainable architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=AHP-TOPSIS%20technique" title=" AHP-TOPSIS technique"> AHP-TOPSIS technique</a> </p> <a href="https://publications.waset.org/abstracts/165462/ranking-of-optimal-materials-for-building-walls-from-the-perspective-of-cost-and-waste-of-electricity-and-gas-energy-using-ahp-topsis-1-technique-study-example-sari-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2487</span> Protection Plan of Medium Voltage Distribution Network in Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chebbi">S. Chebbi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Meddeb"> A. Meddeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distribution networks are often exposed to harmful incidents which can halt the electricity supply of the customer. In this context, we studied a real case of a critical zone of the Tunisian network which is currently characterized by the dysfunction of its plan of protection. In this paper, we were interested in the harmonization of the protection plan settings in order to ensure a perfect selectivity and a better continuity of service on the whole of the network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20network%20Gabes-Tunisia" title="distribution network Gabes-Tunisia">distribution network Gabes-Tunisia</a>, <a href="https://publications.waset.org/abstracts/search?q=continuity%20of%20service" title=" continuity of service"> continuity of service</a>, <a href="https://publications.waset.org/abstracts/search?q=protection%20plan%20settings" title=" protection plan settings"> protection plan settings</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity" title=" selectivity"> selectivity</a> </p> <a href="https://publications.waset.org/abstracts/15428/protection-plan-of-medium-voltage-distribution-network-in-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2486</span> The Effects of Spatial Dimensions and Relocation and Dimensions of Sound Absorbers in a Space on the Objective Parameters of Sound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Kavraz">Mustafa Kavraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes. This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sound%20absorber" title="sound absorber">sound absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=room%20model" title=" room model"> room model</a>, <a href="https://publications.waset.org/abstracts/search?q=objective%20parameters%20of%20sound" title=" objective parameters of sound"> objective parameters of sound</a>, <a href="https://publications.waset.org/abstracts/search?q=jnd" title=" jnd"> jnd</a> </p> <a href="https://publications.waset.org/abstracts/35097/the-effects-of-spatial-dimensions-and-relocation-and-dimensions-of-sound-absorbers-in-a-space-on-the-objective-parameters-of-sound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=u-%20and%20z-shaped%20plan%20walls&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=u-%20and%20z-shaped%20plan%20walls&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=u-%20and%20z-shaped%20plan%20walls&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=u-%20and%20z-shaped%20plan%20walls&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=u-%20and%20z-shaped%20plan%20walls&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=u-%20and%20z-shaped%20plan%20walls&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=u-%20and%20z-shaped%20plan%20walls&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=u-%20and%20z-shaped%20plan%20walls&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=u-%20and%20z-shaped%20plan%20walls&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=u-%20and%20z-shaped%20plan%20walls&amp;page=83">83</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=u-%20and%20z-shaped%20plan%20walls&amp;page=84">84</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=u-%20and%20z-shaped%20plan%20walls&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10