CINXE.COM
행렬 - 위키백과, 우리 모두의 백과사전
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="ko" dir="ltr"> <head> <meta charset="UTF-8"> <title>행렬 - 위키백과, 우리 모두의 백과사전</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )kowikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"ko", "wgMonthNames":["","1월","2월","3월","4월","5월","6월","7월","8월","9월","10월","11월","12월"],"wgRequestId":"09e7150e-a07d-4348-bdce-c3a63bca46c3","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"행렬","wgTitle":"행렬","wgCurRevisionId":38711857,"wgRevisionId":38711857,"wgArticleId":594,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["해결되지 않은 속성이 있는 문서","CS1 - 영어 인용 (en)","위키데이터 속성 P18을 사용하는 문서","위키데이터 속성 P373을 사용하는 문서","위키데이터 속성 P227을 사용하는 문서","위키데이터 속성 P244를 사용하는 문서","위키데이터 속성 P268을 사용하는 문서","위키데이터 속성 P691을 사용하는 문서","위키데이터 속성 P950을 사용하는 문서","위키데이터 속성 P1368을 사용하는 문서", "위키데이터 속성 P4613을 사용하는 문서","위키데이터 속성 P7859를 사용하는 문서","위키데이터 속성 P8189를 사용하는 문서","영어 표기를 포함한 문서","존재하지 않는 문서를 대상으로 하는 hatnote 틀을 사용하는 문서","BNE 식별자를 포함한 위키백과 문서","BNF 식별자를 포함한 위키백과 문서","BNFdata 식별자를 포함한 위키백과 문서","GND 식별자를 포함한 위키백과 문서","J9U 식별자를 포함한 위키백과 문서","LCCN 식별자를 포함한 위키백과 문서","LNB 식별자를 포함한 위키백과 문서","NKC 식별자를 포함한 위키백과 문서","EMU 식별자를 포함한 위키백과 문서","행렬"],"wgPageViewLanguage":"ko","wgPageContentLanguage":"ko","wgPageContentModel":"wikitext","wgRelevantPageName":"행렬","wgRelevantArticleId":594,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[], "wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ko","pageLanguageDir":"ltr","pageVariantFallbacks":"ko"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q44337","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.SectionFont":"ready","ext.globalCssJs.user.styles": "ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.directcommons","ext.gadget.edittools","ext.gadget.refToolbar","ext.gadget.siteNotice","ext.gadget.scrollUpButton","ext.gadget.strikethroughTOC","ext.gadget.switcher","ext.gadget.WikiMiniAtlas","ext.gadget.Calculator","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ko&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=ko&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ko&modules=ext.gadget.SectionFont&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=ko&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Matrix_ko.svg/1200px-Matrix_ko.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1086"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Matrix_ko.svg/800px-Matrix_ko.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="724"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Matrix_ko.svg/640px-Matrix_ko.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="579"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="행렬 - 위키백과, 우리 모두의 백과사전"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ko.m.wikipedia.org/wiki/%ED%96%89%EB%A0%AC"> <link rel="alternate" type="application/x-wiki" title="편집" href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="위키백과 (ko)"> <link rel="EditURI" type="application/rsd+xml" href="//ko.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ko.wikipedia.org/wiki/%ED%96%89%EB%A0%AC"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ko"> <link rel="alternate" type="application/atom+xml" title="위키백과 아톰 피드" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-행렬 rootpage-행렬 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">본문으로 이동</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="사이트"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="주 메뉴" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="주 메뉴" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">주 메뉴</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">주 메뉴</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">숨기기</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 둘러보기 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8C%80%EB%AC%B8" title="대문으로 가기 [z]" accesskey="z"><span>대문</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C" title="위키의 최근 바뀐 목록 [r]" accesskey="r"><span>최근 바뀜</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/%ED%8F%AC%ED%84%B8:%EC%9A%94%EC%A6%98_%ED%99%94%EC%A0%9C" title="최근의 소식 알아 보기"><span>요즘 화제</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EC%9E%84%EC%9D%98%EB%AC%B8%EC%84%9C" title="무작위로 선택된 문서 불러오기 [x]" accesskey="x"><span>임의의 문서로</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%ED%8A%B9%EC%88%98%EB%AC%B8%EC%84%9C"><span>특수 문서 목록</span></a></li> </ul> </div> </div> <div id="p-사용자_모임" class="vector-menu mw-portlet mw-portlet-사용자_모임" > <div class="vector-menu-heading"> 사용자 모임 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-projectchat" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%82%AC%EB%9E%91%EB%B0%A9"><span>사랑방</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%82%AC%EC%9A%A9%EC%9E%90_%EB%AA%A8%EC%9E%84" title="위키백과 참여자를 위한 토론/대화 공간입니다."><span>사용자 모임</span></a></li><li id="n-request" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%9A%94%EC%B2%AD"><span>관리 요청</span></a></li> </ul> </div> </div> <div id="p-편집_안내" class="vector-menu mw-portlet mw-portlet-편집_안내" > <div class="vector-menu-heading"> 편집 안내 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-helpintro" class="mw-list-item"><a href="/wiki/%EB%8F%84%EC%9B%80%EB%A7%90:%EC%86%8C%EA%B0%9C"><span>소개</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8F%84%EC%9B%80%EB%A7%90" title="도움말"><span>도움말</span></a></li><li id="n-policy" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A0%95%EC%B1%85%EA%B3%BC_%EC%A7%80%EC%B9%A8"><span>정책과 지침</span></a></li><li id="n-qna" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A7%88%EB%AC%B8%EB%B0%A9"><span>질문방</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8C%80%EB%AC%B8" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="위키백과" src="/static/images/mobile/copyright/wikipedia-wordmark-ko.svg" style="width: 7.5em; height: 1.75em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-ko.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/%ED%8A%B9%EC%88%98:%EA%B2%80%EC%83%89" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="위키백과 검색 [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>검색</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="위키백과 검색" aria-label="위키백과 검색" autocapitalize="sentences" title="위키백과 검색 [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="특수:검색"> </div> <button class="cdx-button cdx-search-input__end-button">검색</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="개인 도구"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="보이기"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="문서의 글꼴 크기, 폭, 색의 모습을 변경합니다" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="보이기" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">보이기</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=ko.wikipedia.org&uselang=ko" class=""><span>기부</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EA%B3%84%EC%A0%95%EB%A7%8C%EB%93%A4%EA%B8%B0&returnto=%ED%96%89%EB%A0%AC" title="계정을 만들고 로그인하는 것이 좋습니다. 하지만 필수는 아닙니다" class=""><span>계정 만들기</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EB%A1%9C%EA%B7%B8%EC%9D%B8&returnto=%ED%96%89%EB%A0%AC" title="위키백과에 로그인하면 여러가지 편리한 기능을 사용할 수 있습니다. [o]" accesskey="o" class=""><span>로그인</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="더 많은 옵션" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="개인 도구" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">개인 도구</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="사용자 메뉴" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=ko.wikipedia.org&uselang=ko"><span>기부</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EA%B3%84%EC%A0%95%EB%A7%8C%EB%93%A4%EA%B8%B0&returnto=%ED%96%89%EB%A0%AC" title="계정을 만들고 로그인하는 것이 좋습니다. 하지만 필수는 아닙니다"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>계정 만들기</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EB%A1%9C%EA%B7%B8%EC%9D%B8&returnto=%ED%96%89%EB%A0%AC" title="위키백과에 로그인하면 여러가지 편리한 기능을 사용할 수 있습니다. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>로그인</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> 로그아웃한 편집자를 위한 문서 <a href="/wiki/%EB%8F%84%EC%9B%80%EB%A7%90:%EC%86%8C%EA%B0%9C" aria-label="편집에 관해 더 알아보기"><span>더 알아보기</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%82%B4%EA%B8%B0%EC%97%AC" title="이 IP 주소의 편집 목록 [y]" accesskey="y"><span>기여</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%82%B4%EC%82%AC%EC%9A%A9%EC%9E%90%ED%86%A0%EB%A1%A0" title="현재 사용하는 IP 주소에 대한 토론 문서 [n]" accesskey="n"><span>토론</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="사이트"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="목차" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">목차</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">숨기기</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">처음 위치</div> </a> </li> <li id="toc-정의" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#정의"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>정의</span> </div> </a> <button aria-controls="toc-정의-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>정의 하위섹션 토글하기</span> </button> <ul id="toc-정의-sublist" class="vector-toc-list"> <li id="toc-크기" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#크기"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>크기</span> </div> </a> <ul id="toc-크기-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-연산" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#연산"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>연산</span> </div> </a> <button aria-controls="toc-연산-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>연산 하위섹션 토글하기</span> </button> <ul id="toc-연산-sublist" class="vector-toc-list"> <li id="toc-덧셈과_스칼라배" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#덧셈과_스칼라배"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>덧셈과 스칼라배</span> </div> </a> <ul id="toc-덧셈과_스칼라배-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-곱셈" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#곱셈"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>곱셈</span> </div> </a> <ul id="toc-곱셈-sublist" class="vector-toc-list"> <li id="toc-교환_법칙과_소거_법칙의_실패" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#교환_법칙과_소거_법칙의_실패"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1</span> <span>교환 법칙과 소거 법칙의 실패</span> </div> </a> <ul id="toc-교환_법칙과_소거_법칙의_실패-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-역행렬" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#역행렬"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.2</span> <span>역행렬</span> </div> </a> <ul id="toc-역행렬-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-전치_행렬" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#전치_행렬"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>전치 행렬</span> </div> </a> <ul id="toc-전치_행렬-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-대각합" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#대각합"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>대각합</span> </div> </a> <ul id="toc-대각합-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-행렬식" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#행렬식"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>행렬식</span> </div> </a> <ul id="toc-행렬식-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-부분_행렬과_소행렬식" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#부분_행렬과_소행렬식"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>부분 행렬과 소행렬식</span> </div> </a> <ul id="toc-부분_행렬과_소행렬식-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-예" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#예"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>예</span> </div> </a> <ul id="toc-예-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-역사와_어원" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#역사와_어원"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>역사와 어원</span> </div> </a> <ul id="toc-역사와_어원-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-같이_보기" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#같이_보기"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>같이 보기</span> </div> </a> <ul id="toc-같이_보기-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-참고_문헌" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#참고_문헌"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>참고 문헌</span> </div> </a> <ul id="toc-참고_문헌-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-외부_링크" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#외부_링크"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>외부 링크</span> </div> </a> <ul id="toc-외부_링크-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="목차" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="목차" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="목차 토글" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">목차 토글</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">행렬</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="다른 언어로 문서를 방문합니다. 93개 언어로 읽을 수 있습니다" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-93" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">93개 언어</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Matriks" title="Matriks – 아프리칸스어" lang="af" hreflang="af" data-title="Matriks" data-language-autonym="Afrikaans" data-language-local-name="아프리칸스어" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%88%9B%E1%89%B5%E1%88%AA%E1%8A%AD%E1%88%B5" title="ማትሪክስ – 암하라어" lang="am" hreflang="am" data-title="ማትሪክስ" data-language-autonym="አማርኛ" data-language-local-name="암하라어" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B5%D9%81%D9%88%D9%81%D8%A9_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)" title="مصفوفة (رياضيات) – 아랍어" lang="ar" hreflang="ar" data-title="مصفوفة (رياضيات)" data-language-autonym="العربية" data-language-local-name="아랍어" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ary mw-list-item"><a href="https://ary.wikipedia.org/wiki/%D9%85%D8%A7%D8%AA%D8%B1%D9%8A%D8%B3" title="ماتريس – 모로코 아랍어" lang="ary" hreflang="ary" data-title="ماتريس" data-language-autonym="الدارجة" data-language-local-name="모로코 아랍어" class="interlanguage-link-target"><span>الدارجة</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Matris" title="Matris – 아제르바이잔어" lang="az" hreflang="az" data-title="Matris" data-language-autonym="Azərbaycanca" data-language-local-name="아제르바이잔어" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D1%8B%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D1%8D%D0%BC%D0%B0%D1%82%D1%8B%D0%BA%D0%B0)" title="Матрыца (матэматыка) – 벨라루스어" lang="be" hreflang="be" data-title="Матрыца (матэматыка)" data-language-autonym="Беларуская" data-language-local-name="벨라루스어" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D1%8B%D1%86%D0%B0" title="Матрыца – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Матрыца" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матрица (математика) – 불가리아어" lang="bg" hreflang="bg" data-title="Матрица (математика)" data-language-autonym="Български" data-language-local-name="불가리아어" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AE%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%9F%E0%A7%8D%E0%A6%B0%E0%A6%BF%E0%A6%95%E0%A7%8D%E0%A6%B8" title="ম্যাট্রিক্স – 벵골어" lang="bn" hreflang="bn" data-title="ম্যাট্রিক্স" data-language-autonym="বাংলা" data-language-local-name="벵골어" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Matrica_(matematika)" title="Matrica (matematika) – 보스니아어" lang="bs" hreflang="bs" data-title="Matrica (matematika)" data-language-autonym="Bosanski" data-language-local-name="보스니아어" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Matriu_(matem%C3%A0tiques)" title="Matriu (matemàtiques) – 카탈로니아어" lang="ca" hreflang="ca" data-title="Matriu (matemàtiques)" data-language-autonym="Català" data-language-local-name="카탈로니아어" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%85%D8%A7%D8%AA%D8%B1%DB%8C%DA%A9%D8%B3" title="ماتریکس – 소라니 쿠르드어" lang="ckb" hreflang="ckb" data-title="ماتریکس" data-language-autonym="کوردی" data-language-local-name="소라니 쿠르드어" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Matice" title="Matice – 체코어" lang="cs" hreflang="cs" data-title="Matice" data-language-autonym="Čeština" data-language-local-name="체코어" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матрица (математика) – 추바시어" lang="cv" hreflang="cv" data-title="Матрица (математика)" data-language-autonym="Чӑвашла" data-language-local-name="추바시어" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Matrics" title="Matrics – 웨일스어" lang="cy" hreflang="cy" data-title="Matrics" data-language-autonym="Cymraeg" data-language-local-name="웨일스어" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Matrix" title="Matrix – 덴마크어" lang="da" hreflang="da" data-title="Matrix" data-language-autonym="Dansk" data-language-local-name="덴마크어" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Matrix_(Mathematik)" title="Matrix (Mathematik) – 독일어" lang="de" hreflang="de" data-title="Matrix (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="독일어" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CE%AF%CE%BD%CE%B1%CE%BA%CE%B1%CF%82_(%CE%BC%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%AC)" title="Πίνακας (μαθηματικά) – 그리스어" lang="el" hreflang="el" data-title="Πίνακας (μαθηματικά)" data-language-autonym="Ελληνικά" data-language-local-name="그리스어" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en badge-Q17437798 badge-goodarticle mw-list-item" title="좋은 글"><a href="https://en.wikipedia.org/wiki/Matrix_(mathematics)" title="Matrix (mathematics) – 영어" lang="en" hreflang="en" data-title="Matrix (mathematics)" data-language-autonym="English" data-language-local-name="영어" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Matrico" title="Matrico – 에스페란토어" lang="eo" hreflang="eo" data-title="Matrico" data-language-autonym="Esperanto" data-language-local-name="에스페란토어" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Matriz_(matem%C3%A1tica)" title="Matriz (matemática) – 스페인어" lang="es" hreflang="es" data-title="Matriz (matemática)" data-language-autonym="Español" data-language-local-name="스페인어" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Maatriks" title="Maatriks – 에스토니아어" lang="et" hreflang="et" data-title="Maatriks" data-language-autonym="Eesti" data-language-local-name="에스토니아어" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Matrize" title="Matrize – 바스크어" lang="eu" hreflang="eu" data-title="Matrize" data-language-autonym="Euskara" data-language-local-name="바스크어" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%A7%D8%AA%D8%B1%DB%8C%D8%B3" title="ماتریس – 페르시아어" lang="fa" hreflang="fa" data-title="ماتریس" data-language-autonym="فارسی" data-language-local-name="페르시아어" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Matriisi" title="Matriisi – 핀란드어" lang="fi" hreflang="fi" data-title="Matriisi" data-language-autonym="Suomi" data-language-local-name="핀란드어" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Matrice_(math%C3%A9matiques)" title="Matrice (mathématiques) – 프랑스어" lang="fr" hreflang="fr" data-title="Matrice (mathématiques)" data-language-autonym="Français" data-language-local-name="프랑스어" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Maatriks" title="Maatriks – 북부 프리지아어" lang="frr" hreflang="frr" data-title="Maatriks" data-language-autonym="Nordfriisk" data-language-local-name="북부 프리지아어" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Maitr%C3%ADs" title="Maitrís – 아일랜드어" lang="ga" hreflang="ga" data-title="Maitrís" data-language-autonym="Gaeilge" data-language-local-name="아일랜드어" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E8%A1%8C%E5%88%97" title="行列 – 간어" lang="gan" hreflang="gan" data-title="行列" data-language-autonym="贛語" data-language-local-name="간어" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Matris_(mat%C3%A9matik)" title="Matris (matématik) – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Matris (matématik)" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Matriz_(matem%C3%A1ticas)" title="Matriz (matemáticas) – 갈리시아어" lang="gl" hreflang="gl" data-title="Matriz (matemáticas)" data-language-autonym="Galego" data-language-local-name="갈리시아어" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%98%D7%A8%D7%99%D7%A6%D7%94" title="מטריצה – 히브리어" lang="he" hreflang="he" data-title="מטריצה" data-language-autonym="עברית" data-language-local-name="히브리어" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%86%E0%A4%B5%E0%A5%8D%E0%A4%AF%E0%A5%82%E0%A4%B9" title="आव्यूह – 힌디어" lang="hi" hreflang="hi" data-title="आव्यूह" data-language-autonym="हिन्दी" data-language-local-name="힌디어" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Matrica_(matematika)" title="Matrica (matematika) – 크로아티아어" lang="hr" hreflang="hr" data-title="Matrica (matematika)" data-language-autonym="Hrvatski" data-language-local-name="크로아티아어" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/M%C3%A1trix_(matematika)" title="Mátrix (matematika) – 헝가리어" lang="hu" hreflang="hu" data-title="Mátrix (matematika)" data-language-autonym="Magyar" data-language-local-name="헝가리어" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%84%D5%A1%D5%BF%D6%80%D5%AB%D6%81" title="Մատրից – 아르메니아어" lang="hy" hreflang="hy" data-title="Մատրից" data-language-autonym="Հայերեն" data-language-local-name="아르메니아어" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Matrice_(mathematica)" title="Matrice (mathematica) – 인터링구아" lang="ia" hreflang="ia" data-title="Matrice (mathematica)" data-language-autonym="Interlingua" data-language-local-name="인터링구아" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Matriks_(matematika)" title="Matriks (matematika) – 인도네시아어" lang="id" hreflang="id" data-title="Matriks (matematika)" data-language-autonym="Bahasa Indonesia" data-language-local-name="인도네시아어" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Matrico_(matematiko)" title="Matrico (matematiko) – 이도어" lang="io" hreflang="io" data-title="Matrico (matematiko)" data-language-autonym="Ido" data-language-local-name="이도어" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Fylki_(st%C3%A6r%C3%B0fr%C3%A6%C3%B0i)" title="Fylki (stærðfræði) – 아이슬란드어" lang="is" hreflang="is" data-title="Fylki (stærðfræði)" data-language-autonym="Íslenska" data-language-local-name="아이슬란드어" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Matrice" title="Matrice – 이탈리아어" lang="it" hreflang="it" data-title="Matrice" data-language-autonym="Italiano" data-language-local-name="이탈리아어" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%A1%8C%E5%88%97" title="行列 – 일본어" lang="ja" hreflang="ja" data-title="行列" data-language-autonym="日本語" data-language-local-name="일본어" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9B%E1%83%90%E1%83%A2%E1%83%A0%E1%83%98%E1%83%AA%E1%83%90_(%E1%83%9B%E1%83%90%E1%83%97%E1%83%94%E1%83%9B%E1%83%90%E1%83%A2%E1%83%98%E1%83%99%E1%83%90)" title="მატრიცა (მათემატიკა) – 조지아어" lang="ka" hreflang="ka" data-title="მატრიცა (მათემატიკა)" data-language-autonym="ქართული" data-language-local-name="조지아어" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матрица (математика) – 카자흐어" lang="kk" hreflang="kk" data-title="Матрица (математика)" data-language-autonym="Қазақша" data-language-local-name="카자흐어" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%AE%E0%B2%BE%E0%B2%A4%E0%B3%83%E0%B2%95%E0%B3%86%E0%B2%97%E0%B2%B3%E0%B3%81" title="ಮಾತೃಕೆಗಳು – 칸나다어" lang="kn" hreflang="kn" data-title="ಮಾತೃಕೆಗಳು" data-language-autonym="ಕನ್ನಡ" data-language-local-name="칸나다어" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Matrix_(mathematica)" title="Matrix (mathematica) – 라틴어" lang="la" hreflang="la" data-title="Matrix (mathematica)" data-language-autonym="Latina" data-language-local-name="라틴어" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Matris" title="Matris – 롬바르드어" lang="lmo" hreflang="lmo" data-title="Matris" data-language-autonym="Lombard" data-language-local-name="롬바르드어" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BA%A1%E0%BA%B2%E0%BA%95%E0%BA%A3%E0%BA%B4%E0%BA%81" title="ມາຕຣິກ – 라오어" lang="lo" hreflang="lo" data-title="ມາຕຣິກ" data-language-autonym="ລາວ" data-language-local-name="라오어" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Matrica_(matematika)" title="Matrica (matematika) – 리투아니아어" lang="lt" hreflang="lt" data-title="Matrica (matematika)" data-language-autonym="Lietuvių" data-language-local-name="리투아니아어" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Matrica" title="Matrica – 라트비아어" lang="lv" hreflang="lv" data-title="Matrica" data-language-autonym="Latviešu" data-language-local-name="라트비아어" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mhr mw-list-item"><a href="https://mhr.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B5" title="Матрице – Eastern Mari" lang="mhr" hreflang="mhr" data-title="Матрице" data-language-autonym="Олык марий" data-language-local-name="Eastern Mari" class="interlanguage-link-target"><span>Олык марий</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матрица (математика) – 마케도니아어" lang="mk" hreflang="mk" data-title="Матрица (математика)" data-language-autonym="Македонски" data-language-local-name="마케도니아어" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AE%E0%B4%BE%E0%B4%9F%E0%B5%8D%E0%B4%B0%E0%B4%BF%E0%B4%95%E0%B5%8D%E0%B4%B8%E0%B5%8D" title="മാട്രിക്സ് – 말라얄람어" lang="ml" hreflang="ml" data-title="മാട്രിക്സ്" data-language-autonym="മലയാളം" data-language-local-name="말라얄람어" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Matriks_(matematik)" title="Matriks (matematik) – 말레이어" lang="ms" hreflang="ms" data-title="Matriks (matematik)" data-language-autonym="Bahasa Melayu" data-language-local-name="말레이어" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%80%E1%80%AD%E1%80%94%E1%80%BA%E1%80%B8%E1%80%A1%E1%80%AF%E1%80%B6" title="ကိန်းအုံ – 버마어" lang="my" hreflang="my" data-title="ကိန်းအုံ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="버마어" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%AE%E0%A5%87%E0%A4%9F%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A5%8D%E0%A4%B8" title="मेट्रिक्स – 네팔어" lang="ne" hreflang="ne" data-title="मेट्रिक्स" data-language-autonym="नेपाली" data-language-local-name="네팔어" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Matrix_(wiskunde)" title="Matrix (wiskunde) – 네덜란드어" lang="nl" hreflang="nl" data-title="Matrix (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="네덜란드어" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Matrise" title="Matrise – 노르웨이어(니노르스크)" lang="nn" hreflang="nn" data-title="Matrise" data-language-autonym="Norsk nynorsk" data-language-local-name="노르웨이어(니노르스크)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Matrise" title="Matrise – 노르웨이어(보크말)" lang="nb" hreflang="nb" data-title="Matrise" data-language-autonym="Norsk bokmål" data-language-local-name="노르웨이어(보크말)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Tareentaa_(Maatiriksii)" title="Tareentaa (Maatiriksii) – 오로모어" lang="om" hreflang="om" data-title="Tareentaa (Maatiriksii)" data-language-autonym="Oromoo" data-language-local-name="오로모어" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%AE%E0%AC%BE%E0%AC%9F%E0%AD%8D%E0%AC%B0%E0%AC%BF%E0%AC%95%E0%AD%8D%E0%AC%B8" title="ମାଟ୍ରିକ୍ସ – 오리야어" lang="or" hreflang="or" data-title="ମାଟ୍ରିକ୍ସ" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="오리야어" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%AE%E0%A9%88%E0%A8%9F%E0%A9%8D%E0%A8%B0%E0%A8%BF%E0%A8%95%E0%A8%B8_(%E0%A8%97%E0%A8%A3%E0%A8%BF%E0%A8%A4)" title="ਮੈਟ੍ਰਿਕਸ (ਗਣਿਤ) – 펀잡어" lang="pa" hreflang="pa" data-title="ਮੈਟ੍ਰਿਕਸ (ਗਣਿਤ)" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="펀잡어" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Macierz" title="Macierz – 폴란드어" lang="pl" hreflang="pl" data-title="Macierz" data-language-autonym="Polski" data-language-local-name="폴란드어" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Matris" title="Matris – Piedmontese" lang="pms" hreflang="pms" data-title="Matris" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%85%D8%A7%D9%B9%D8%B1%DA%A9%D8%B3_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA)" title="ماٹرکس (ریاضیات) – Western Punjabi" lang="pnb" hreflang="pnb" data-title="ماٹرکس (ریاضیات)" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Matriz_(matem%C3%A1tica)" title="Matriz (matemática) – 포르투갈어" lang="pt" hreflang="pt" data-title="Matriz (matemática)" data-language-autonym="Português" data-language-local-name="포르투갈어" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Matrice" title="Matrice – 루마니아어" lang="ro" hreflang="ro" data-title="Matrice" data-language-autonym="Română" data-language-local-name="루마니아어" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матрица (математика) – 러시아어" lang="ru" hreflang="ru" data-title="Матрица (математика)" data-language-autonym="Русский" data-language-local-name="러시아어" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матрица (математика) – 야쿠트어" lang="sah" hreflang="sah" data-title="Матрица (математика)" data-language-autonym="Саха тыла" data-language-local-name="야쿠트어" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Matrici_(matim%C3%A0tica)" title="Matrici (matimàtica) – 시칠리아어" lang="scn" hreflang="scn" data-title="Matrici (matimàtica)" data-language-autonym="Sicilianu" data-language-local-name="시칠리아어" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Matrix_(mathematics)" title="Matrix (mathematics) – 스코틀랜드어" lang="sco" hreflang="sco" data-title="Matrix (mathematics)" data-language-autonym="Scots" data-language-local-name="스코틀랜드어" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Matrica_(matematika)" title="Matrica (matematika) – 세르비아-크로아티아어" lang="sh" hreflang="sh" data-title="Matrica (matematika)" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="세르비아-크로아티아어" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si badge-Q17437798 badge-goodarticle mw-list-item" title="좋은 글"><a href="https://si.wikipedia.org/wiki/%E0%B6%B1%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B7%8F%E0%B7%83_(%E0%B6%9C%E0%B6%AB%E0%B7%92%E0%B6%AD%E0%B6%BA)" title="න්යාස (ගණිතය) – 싱할라어" lang="si" hreflang="si" data-title="න්යාස (ගණිතය)" data-language-autonym="සිංහල" data-language-local-name="싱할라어" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Matrix_(mathematics)" title="Matrix (mathematics) – Simple English" lang="en-simple" hreflang="en-simple" data-title="Matrix (mathematics)" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Matica_(matematika)" title="Matica (matematika) – 슬로바키아어" lang="sk" hreflang="sk" data-title="Matica (matematika)" data-language-autonym="Slovenčina" data-language-local-name="슬로바키아어" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Matrika" title="Matrika – 슬로베니아어" lang="sl" hreflang="sl" data-title="Matrika" data-language-autonym="Slovenščina" data-language-local-name="슬로베니아어" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Taxane" title="Taxane – 소말리아어" lang="so" hreflang="so" data-title="Taxane" data-language-autonym="Soomaaliga" data-language-local-name="소말리아어" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Matrica" title="Matrica – 알바니아어" lang="sq" hreflang="sq" data-title="Matrica" data-language-autonym="Shqip" data-language-local-name="알바니아어" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матрица (математика) – 세르비아어" lang="sr" hreflang="sr" data-title="Матрица (математика)" data-language-autonym="Српски / srpski" data-language-local-name="세르비아어" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Matris" title="Matris – 스웨덴어" lang="sv" hreflang="sv" data-title="Matris" data-language-autonym="Svenska" data-language-local-name="스웨덴어" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%85%E0%AE%A3%E0%AE%BF_(%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D)" title="அணி (கணிதம்) – 타밀어" lang="ta" hreflang="ta" data-title="அணி (கணிதம்)" data-language-autonym="தமிழ்" data-language-local-name="타밀어" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%A1%E0%B8%97%E0%B8%A3%E0%B8%B4%E0%B8%81%E0%B8%8B%E0%B9%8C_(%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C)" title="เมทริกซ์ (คณิตศาสตร์) – 태국어" lang="th" hreflang="th" data-title="เมทริกซ์ (คณิตศาสตร์)" data-language-autonym="ไทย" data-language-local-name="태국어" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Matris_(matematika)" title="Matris (matematika) – 타갈로그어" lang="tl" hreflang="tl" data-title="Matris (matematika)" data-language-autonym="Tagalog" data-language-local-name="타갈로그어" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Matris_(matematik)" title="Matris (matematik) – 튀르키예어" lang="tr" hreflang="tr" data-title="Matris (matematik)" data-language-autonym="Türkçe" data-language-local-name="튀르키예어" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матриця (математика) – 우크라이나어" lang="uk" hreflang="uk" data-title="Матриця (математика)" data-language-autonym="Українська" data-language-local-name="우크라이나어" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%DB%8C%D9%B9%D8%B1%DA%A9%D8%B3_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C)" title="میٹرکس (ریاضی) – 우르두어" lang="ur" hreflang="ur" data-title="میٹرکس (ریاضی)" data-language-autonym="اردو" data-language-local-name="우르두어" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Matritsa_matematikada" title="Matritsa matematikada – 우즈베크어" lang="uz" hreflang="uz" data-title="Matritsa matematikada" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="우즈베크어" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ma_tr%E1%BA%ADn_(to%C3%A1n_h%E1%BB%8Dc)" title="Ma trận (toán học) – 베트남어" lang="vi" hreflang="vi" data-title="Ma trận (toán học)" data-language-autonym="Tiếng Việt" data-language-local-name="베트남어" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E7%9F%A9%E9%98%B5" title="矩阵 – 우어" lang="wuu" hreflang="wuu" data-title="矩阵" data-language-autonym="吴语" data-language-local-name="우어" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh badge-Q17437798 badge-goodarticle mw-list-item" title="좋은 글"><a href="https://zh.wikipedia.org/wiki/%E7%9F%A9%E9%98%B5" title="矩阵 – 중국어" lang="zh" hreflang="zh" data-title="矩阵" data-language-autonym="中文" data-language-local-name="중국어" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E7%9F%A9%E9%99%A3" title="矩陣 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="矩陣" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/H%C3%A2ng-lia%CC%8Dt" title="Hâng-lia̍t – 민난어" lang="nan" hreflang="nan" data-title="Hâng-lia̍t" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="민난어" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%9F%A9%E9%99%A3" title="矩陣 – 광둥어" lang="yue" hreflang="yue" data-title="矩陣" data-language-autonym="粵語" data-language-local-name="광둥어" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q44337#sitelinks-wikipedia" title="언어 간 링크 편집" class="wbc-editpage">링크 편집</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="이름공간"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%ED%96%89%EB%A0%AC" title="본문 보기 [c]" accesskey="c"><span>문서</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/%ED%86%A0%EB%A1%A0:%ED%96%89%EB%A0%AC" rel="discussion" title="문서의 내용에 대한 토론 문서 [t]" accesskey="t"><span>토론</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="언어 변종 바꾸기" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">한국어</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="보기"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%ED%96%89%EB%A0%AC"><span>읽기</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit" title="이 문서의 원본 코드를 편집 [e]" accesskey="e"><span>편집</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=history" title="이 문서의 과거 편집 내역입니다. [h]" accesskey="h"><span>역사 보기</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="페이지 도구"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="도구" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">도구</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">도구</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">숨기기</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="더 많은 옵션" > <div class="vector-menu-heading"> 동작 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%ED%96%89%EB%A0%AC"><span>읽기</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit" title="이 문서의 원본 코드를 편집 [e]" accesskey="e"><span>편집</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=history"><span>역사 보기</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 일반 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EA%B0%80%EB%A6%AC%ED%82%A4%EB%8A%94%EB%AC%B8%EC%84%9C/%ED%96%89%EB%A0%AC" title="여기를 가리키는 모든 위키 문서의 목록 [j]" accesskey="j"><span>여기를 가리키는 문서</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%A7%81%ED%81%AC%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C/%ED%96%89%EB%A0%AC" rel="nofollow" title="이 문서에서 링크한 문서의 최근 바뀜 [k]" accesskey="k"><span>가리키는 글의 최근 바뀜</span></a></li><li id="t-upload" class="mw-list-item"><a href="//ko.wikipedia.org/wiki/위키백과:파일_올리기" title="파일 올리기 [u]" accesskey="u"><span>파일 올리기</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&oldid=38711857" title="이 문서의 이 판에 대한 고유 링크"><span>고유 링크</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=info" title="이 문서에 대한 자세한 정보"><span>문서 정보</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%9D%B4%EB%AC%B8%EC%84%9C%EC%9D%B8%EC%9A%A9&page=%ED%96%89%EB%A0%AC&id=38711857&wpFormIdentifier=titleform" title="이 문서를 인용하는 방법에 대한 정보"><span>이 문서 인용하기</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:UrlShortener&url=https%3A%2F%2Fko.wikipedia.org%2Fwiki%2F%25ED%2596%2589%25EB%25A0%25AC"><span>축약된 URL 얻기</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:QrCode&url=https%3A%2F%2Fko.wikipedia.org%2Fwiki%2F%25ED%2596%2589%25EB%25A0%25AC"><span>QR 코드 다운로드</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> 인쇄/내보내기 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%B1%85&bookcmd=book_creator&referer=%ED%96%89%EB%A0%AC"><span>책 만들기</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:DownloadAsPdf&page=%ED%96%89%EB%A0%AC&action=show-download-screen"><span>PDF로 다운로드</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&printable=yes" title="이 문서의 인쇄용 판 [p]" accesskey="p"><span>인쇄용 판</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 다른 프로젝트 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Matrices" hreflang="en"><span>위키미디어 공용</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q44337" title="데이터 저장소에 연결된 항목을 가리키는 링크 [g]" accesskey="g"><span>위키데이터 항목</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="페이지 도구"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="보이기"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">보이기</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">숨기기</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">위키백과, 우리 모두의 백과사전.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ko" dir="ltr"><p><span class="nowrap"></span> </p> <div class="dablink hatnote"><span typeof="mw:File"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8F%99%EC%9D%8C%EC%9D%B4%EC%9D%98%EC%96%B4_%EB%AC%B8%EC%84%9C" title="위키백과:동음이의어 문서"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Disambig_grey.svg/23px-Disambig_grey.svg.png" decoding="async" width="23" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Disambig_grey.svg/35px-Disambig_grey.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Disambig_grey.svg/46px-Disambig_grey.svg.png 2x" data-file-width="260" data-file-height="200" /></a></span> 다른 뜻에 대해서는 <a href="/wiki/%ED%96%89%EC%A7%84" title="행진">행진</a> 문서를 참고하십시오.</div> <div class="dablink hatnote"><span typeof="mw:File"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8F%99%EC%9D%8C%EC%9D%B4%EC%9D%98%EC%96%B4_%EB%AC%B8%EC%84%9C" title="위키백과:동음이의어 문서"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Disambig_grey.svg/23px-Disambig_grey.svg.png" decoding="async" width="23" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Disambig_grey.svg/35px-Disambig_grey.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Disambig_grey.svg/46px-Disambig_grey.svg.png 2x" data-file-width="260" data-file-height="200" /></a></span> <b>행렬론</b>은 여기로 연결됩니다. 이론물리학 용어에 대해서는 <a href="/wiki/%ED%96%89%EB%A0%AC_%EC%9D%B4%EB%A1%A0" title="행렬 이론">행렬 이론</a> 문서를 참고하십시오.</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Matrix_ko.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Matrix_ko.svg/220px-Matrix_ko.svg.png" decoding="async" width="220" height="199" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Matrix_ko.svg/330px-Matrix_ko.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Matrix_ko.svg/440px-Matrix_ko.svg.png 2x" data-file-width="243" data-file-height="220" /></a><figcaption>행렬의 각 성분은 보통 그 행과 열의 번째수를 나타내는 첨자로 표기한다. 예를 들어, 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>의 3번째 행의 2번째 열에 있는 성분은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{32}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{32}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7963f39d82cffee051a6599222e1ab49aff45c0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.106ex; height:2.009ex;" alt="{\displaystyle a_{32}}"></span>이다.</figcaption></figure> <p><a href="/wiki/%EC%88%98%ED%95%99" title="수학">수학</a>에서 <b>행렬</b>(行列, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">matrix</span>)은 <a href="/wiki/%EC%88%98_(%EC%88%98%ED%95%99)" title="수 (수학)">수</a> 또는 <a href="/wiki/%EB%8B%A4%ED%95%AD%EC%8B%9D" title="다항식">다항식</a> 등을 <a href="/wiki/%EC%A7%81%EC%82%AC%EA%B0%81%ED%98%95" title="직사각형">직사각형</a> 모양으로 <a href="/wiki/%EB%B0%B0%EC%97%B4" title="배열">배열</a>한 것이다.<sup id="cite_ref-Lang_1-0" class="reference"><a href="#cite_note-Lang-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Kharab_2-0" class="reference"><a href="#cite_note-Kharab-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> 예를 들어, 실수 1, 9, −13, 20, 5, −16을 2×3 직사각형 위에 배열한 행렬은 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}1&9&-13\\20&5&-16\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>9</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>13</mn> </mtd> </mtr> <mtr> <mtd> <mn>20</mn> </mtd> <mtd> <mn>5</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>16</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}1&9&-13\\20&5&-16\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71076d72176f8e48cbb51ad5b14b637c6ee7832b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.438ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}1&9&-13\\20&5&-16\end{pmatrix}}}"></span></dd></dl> <p>행렬에는 덧셈과 <a href="/wiki/%EC%8A%A4%EC%B9%BC%EB%9D%BC_%EA%B3%B1%EC%85%88" title="스칼라 곱셈">스칼라배</a>, 곱셈 연산이 존재한다. 크기가 같은 두 행렬은 같은 위치의 성분별로 더할 수 있으며, 첫째 행렬의 열과 둘째 행렬의 행의 수가 같은 두 행렬은 첫째 행렬의 각 행벡터와 둘째 행렬의 각 열벡터의 <a href="/wiki/%EC%8A%A4%EC%B9%BC%EB%9D%BC%EA%B3%B1" title="스칼라곱">스칼라곱</a>을 통해 곱할 수 있다. 곱셈의 <a href="/wiki/%EA%B5%90%ED%99%98_%EB%B2%95%EC%B9%99" class="mw-redirect" title="교환 법칙">교환 법칙</a>이나 <a href="/wiki/%EC%86%8C%EA%B1%B0_%EB%B2%95%EC%B9%99" title="소거 법칙">소거 법칙</a> 등 <a href="/wiki/%EB%B3%B5%EC%86%8C%EC%88%98" title="복소수">복소수</a>의 일부 성질들은 행렬 연산에서 더 이상 성립하지 않는다. <a href="/wiki/%EA%B0%80%ED%99%98%ED%99%98" title="가환환">가환환</a> 위의 유한 차원 <a href="/wiki/%EC%9E%90%EC%9C%A0_%EA%B0%80%EA%B5%B0" title="자유 가군">자유 가군</a>(특히, <a href="/wiki/%EC%B2%B4_(%EC%88%98%ED%95%99)" title="체 (수학)">체</a> 위의 유한 차원 <a href="/wiki/%EB%B2%A1%ED%84%B0_%EA%B3%B5%EA%B0%84" title="벡터 공간">벡터 공간</a>)의 <a href="/wiki/%EC%84%A0%ED%98%95_%EB%B3%80%ED%99%98" title="선형 변환">선형 변환</a>을 행렬로 유일하게 표현할 수 있으며, 이는 행렬의 중요한 응용이다. 예를 들어, 3차원 <a href="/wiki/%EC%9C%A0%ED%81%B4%EB%A6%AC%EB%93%9C_%EA%B3%B5%EA%B0%84" title="유클리드 공간">유클리드 공간</a>의 <a href="/wiki/%ED%9A%8C%EC%A0%84" title="회전">회전</a>은 <a href="/wiki/%ED%9A%8C%EC%A0%84_%ED%96%89%EB%A0%AC" class="mw-redirect" title="회전 행렬">회전 행렬</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>을 각 열벡터 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span>에 곱하여 새 열벡터 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Rv}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Rv}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0805cf0a391155521e3b2c41b59e2405ccda49a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.892ex; height:2.176ex;" alt="{\displaystyle Rv}"></span>를 얻는 함수이다. 행렬의 덧셈과 스칼라배는 선형 변환의 점별 덧셈과 점별 스칼라배, 행렬의 곱셈은 선형 변환의 <a href="/wiki/%ED%95%A8%EC%88%98%EC%9D%98_%ED%95%A9%EC%84%B1" title="함수의 합성">합성</a>에 대응한다. 행렬은 <a href="/wiki/%EA%B0%80%EC%9A%B0%EC%8A%A4_%EC%86%8C%EA%B1%B0%EB%B2%95" title="가우스 소거법">가우스 소거법</a> 등 <a href="/wiki/%EC%97%B0%EB%A6%BD_%EC%9D%BC%EC%B0%A8_%EB%B0%A9%EC%A0%95%EC%8B%9D" title="연립 일차 방정식">연립 일차 방정식</a>의 풀이에도 응용된다.<sup id="cite_ref-Kharab_2-1" class="reference"><a href="#cite_note-Kharab-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:97</sup></span> <a href="/wiki/%EC%A0%95%EC%82%AC%EA%B0%81_%ED%96%89%EB%A0%AC" class="mw-redirect" title="정사각 행렬">정사각 행렬</a>과 그 선형 변환의 일부 성질들은 그 <a href="/wiki/%ED%96%89%EB%A0%AC%EC%8B%9D" title="행렬식">행렬식</a> 또는 <a href="/wiki/%EA%B3%A0%EC%9C%B3%EA%B0%92" class="mw-redirect" title="고윳값">고윳값</a>과 <a href="/wiki/%EA%B3%A0%EC%9C%A0_%EB%B2%A1%ED%84%B0" class="mw-redirect" title="고유 벡터">고유 벡터</a>에서 반영된다. 예를 들어, <a href="/wiki/%EA%B0%80%ED%99%98%ED%99%98" title="가환환">가환환</a>의 원소를 성분으로 하는 행렬이 <a href="/wiki/%EC%97%AD%ED%96%89%EB%A0%AC" class="mw-redirect" title="역행렬">역행렬</a>을 가질 <a href="/wiki/%ED%95%84%EC%9A%94_%EC%B6%A9%EB%B6%84_%EC%A1%B0%EA%B1%B4" class="mw-redirect" title="필요 충분 조건">필요 충분 조건</a>은 행렬식이 <a href="/wiki/%EA%B0%80%EC%97%AD%EC%9B%90" title="가역원">가역원</a>인 것이며, 특히 <a href="/wiki/%EC%B2%B4_(%EC%88%98%ED%95%99)" title="체 (수학)">체</a>의 경우 필요 충분 조건은 행렬식이 0이 아닌 것이다. </p><p>행렬은 과학과 수학의 수많은 분야에서 다양한 응용이 있다. <a href="/wiki/%EB%AC%BC%EB%A6%AC%ED%95%99" title="물리학">물리학</a>의 <a href="/wiki/%EC%A0%84%EA%B8%B0_%ED%9A%8C%EB%A1%9C" title="전기 회로">전기 회로</a> 이론, <a href="/wiki/%EA%B3%A0%EC%A0%84%EC%97%AD%ED%95%99" title="고전역학">고전역학</a>, <a href="/wiki/%EA%B4%91%ED%95%99" title="광학">광학</a>, <a href="/wiki/%EC%A0%84%EC%9E%90%EA%B8%B0%ED%95%99" title="전자기학">전자기학</a>, <a href="/wiki/%EC%96%91%EC%9E%90%EC%97%AD%ED%95%99" title="양자역학">양자역학</a>, <a href="/wiki/%EC%96%91%EC%9E%90_%EC%A0%84%EA%B8%B0%EC%97%AD%ED%95%99" title="양자 전기역학">양자 전기역학</a> 등 분야에서 응용되며, <a href="/wiki/%EC%BB%B4%ED%93%A8%ED%84%B0_%EA%B7%B8%EB%9E%98%ED%94%BD%EC%8A%A4" title="컴퓨터 그래픽스">컴퓨터 그래픽스</a>에서 3차원 이미지를 2차원 평면에 투영하거나 사실적인 움직임을 그려내기 위해 사용한다. <a href="/wiki/%ED%99%95%EB%A5%A0%EB%A1%A0" title="확률론">확률론</a>과 <a href="/wiki/%ED%86%B5%EA%B3%84%ED%95%99" title="통계학">통계학</a>의 <a href="/wiki/%EB%A7%88%EB%A5%B4%EC%BD%94%ED%94%84_%ED%96%89%EB%A0%AC" title="마르코프 행렬">마르코프 행렬</a>과 <a href="/wiki/%EB%8B%A4%EB%B3%80%EC%88%98_%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99" class="mw-redirect" title="다변수 미적분학">다변수 미적분학</a>의 <a href="/wiki/%ED%97%A4%EC%84%B8_%ED%96%89%EB%A0%AC" title="헤세 행렬">헤세 행렬</a> 등 역시 행렬의 응용이다. 행렬 계산은 <a href="/wiki/%EC%88%98%EC%B9%98%ED%95%B4%EC%84%9D%ED%95%99" title="수치해석학">수치해석학</a>의 중요한 문제 중 하나이다. <a href="/wiki/%ED%96%89%EB%A0%AC_%EB%B6%84%ED%95%B4" title="행렬 분해">행렬 분해</a>는 행렬 계산을 이론과 실제 응용에서 모두 단순화할 수 있다. <a href="/wiki/%ED%9D%AC%EC%86%8C%ED%96%89%EB%A0%AC" class="mw-redirect" title="희소행렬">희소행렬</a>, <a href="/wiki/%EB%9D%A0%ED%96%89%EB%A0%AC" title="띠행렬">띠행렬</a> 등 널리 사용되는 특수한 구조의 행렬들의 경우 특화된 고속 알고리즘들이 존재한다. <a href="/wiki/%EC%B2%9C%EC%B2%B4%EB%AC%BC%EB%A6%AC%ED%95%99" title="천체물리학">천체물리학</a>과 <a href="/wiki/%EC%96%91%EC%9E%90%EB%AC%BC%EB%A6%AC%ED%95%99" class="mw-redirect" title="양자물리학">양자물리학</a> 등 분야에서는 무한 행렬도 등장한다. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="정의"><span id=".EC.A0.95.EC.9D.98"></span>정의</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=1" title="부분 편집: 정의"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학)">환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 위의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span> <b>행렬</b>은 각 행 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\in \{1,\dotsc ,m\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>m</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\in \{1,\dotsc ,m\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d7a25137e9baaf70273ac4d1c5fa1a23b13b4f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.349ex; height:2.843ex;" alt="{\displaystyle i\in \{1,\dotsc ,m\}}"></span> 및 열 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j\in \{1,\dotsc ,n\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j\in \{1,\dotsc ,n\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efa124a2f23e6c9ce001436dc1fc4bfb05ebd09e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.027ex; width:13.886ex; height:2.843ex;" alt="{\displaystyle j\in \{1,\dotsc ,n\}}"></span>의 <a href="/wiki/%EC%88%9C%EC%84%9C%EC%8C%8D" title="순서쌍">순서쌍</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (i,j)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (i,j)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ef21910f980c6fca2b15bee102a7a0d861ed712" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.604ex; height:2.843ex;" alt="{\displaystyle (i,j)}"></span>에 환의 원소 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{ij}\in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{ij}\in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9136c3c68965eb06d8aa4ecef2172afaa494be9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.825ex; height:2.843ex;" alt="{\displaystyle A_{ij}\in R}"></span>를 대응시키는 <a href="/wiki/%ED%95%A8%EC%88%98" title="함수">함수</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=(A_{ij})_{i,j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=(A_{ij})_{i,j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e1a57db6e9297f99cc484327c8e3481707d9e60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.806ex; height:3.009ex;" alt="{\displaystyle A=(A_{ij})_{i,j}}"></span>이다.<sup id="cite_ref-Kharab_2-2" class="reference"><a href="#cite_note-Kharab-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:98</sup></span> </p><p>행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>는 모든 성분을 직사각형으로 배열한 다음 <a href="/wiki/%EC%86%8C%EA%B4%84%ED%98%B8" class="mw-redirect" title="소괄호">소괄호</a> 또는 <a href="/wiki/%EB%8C%80%EA%B4%84%ED%98%B8" class="mw-redirect" title="대괄호">대괄호</a>를 추가하여 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}A_{11}&A_{12}&A_{13}&\cdots &A_{1n}\\A_{21}&A_{22}&A_{23}&\cdots &A_{2n}\\A_{31}&A_{32}&A_{33}&\cdots &A_{3n}\\\vdots &\vdots &\vdots &\ddots &\vdots \\A_{m1}&A_{m2}&A_{m3}&\cdots &A_{mn}\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}A_{11}&A_{12}&A_{13}&\cdots &A_{1n}\\A_{21}&A_{22}&A_{23}&\cdots &A_{2n}\\A_{31}&A_{32}&A_{33}&\cdots &A_{3n}\\\vdots &\vdots &\vdots &\ddots &\vdots \\A_{m1}&A_{m2}&A_{m3}&\cdots &A_{mn}\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5612d8946cc5adad19b5383379dfea7506d5581d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.171ex; width:34.212ex; height:17.509ex;" alt="{\displaystyle {\begin{pmatrix}A_{11}&A_{12}&A_{13}&\cdots &A_{1n}\\A_{21}&A_{22}&A_{23}&\cdots &A_{2n}\\A_{31}&A_{32}&A_{33}&\cdots &A_{3n}\\\vdots &\vdots &\vdots &\ddots &\vdots \\A_{m1}&A_{m2}&A_{m3}&\cdots &A_{mn}\end{pmatrix}}}"></span></dd></dl> <p>또는 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}A_{11}&A_{12}&A_{13}&\cdots &A_{1n}\\A_{21}&A_{22}&A_{23}&\cdots &A_{2n}\\A_{31}&A_{32}&A_{33}&\cdots &A_{3n}\\\vdots &\vdots &\vdots &\ddots &\vdots \\A_{m1}&A_{m2}&A_{m3}&\cdots &A_{mn}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}A_{11}&A_{12}&A_{13}&\cdots &A_{1n}\\A_{21}&A_{22}&A_{23}&\cdots &A_{2n}\\A_{31}&A_{32}&A_{33}&\cdots &A_{3n}\\\vdots &\vdots &\vdots &\ddots &\vdots \\A_{m1}&A_{m2}&A_{m3}&\cdots &A_{mn}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cacfe518d80e091252cda178bc62a8fedb1df7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.171ex; width:33.246ex; height:17.509ex;" alt="{\displaystyle {\begin{bmatrix}A_{11}&A_{12}&A_{13}&\cdots &A_{1n}\\A_{21}&A_{22}&A_{23}&\cdots &A_{2n}\\A_{31}&A_{32}&A_{33}&\cdots &A_{3n}\\\vdots &\vdots &\vdots &\ddots &\vdots \\A_{m1}&A_{m2}&A_{m3}&\cdots &A_{mn}\end{bmatrix}}}"></span></dd></dl> <p>와 같이 표기한다. </p><p>각 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8272b28f5aae6dbb8d6f829d58bab353b21bde20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.22ex; height:2.843ex;" alt="{\displaystyle A_{ij}}"></span>를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>번째 행 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>번째 열의 <b>성분</b>(成分, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">entry</span>) 또는 <b>원소</b>(元素, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">element</span>) 또는 <b>계수</b>(係數, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">coefficient</span>)라고 한다. 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>의 각 성분은 행과 열의 번째수를 첨수로 사용하여 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8272b28f5aae6dbb8d6f829d58bab353b21bde20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.22ex; height:2.843ex;" alt="{\displaystyle A_{ij}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{i,j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{i,j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f379f42961dd620c7a05dc1c538117ec105877d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.678ex; height:2.843ex;" alt="{\displaystyle A_{i,j}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebea6cd2813c330c798921a2894b358f7b643917" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.707ex; height:2.343ex;" alt="{\displaystyle a_{ij}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i,j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{i,j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bb5a346f58c6568306a02596dd318d1b7e6b2c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.164ex; height:2.343ex;" alt="{\displaystyle a_{i,j}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(i,j)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(i,j)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93ba217815c0cdc100fe745358075af5bea1c025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.347ex; height:2.843ex;" alt="{\displaystyle A(i,j)}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A[i,j]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">[</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A[i,j]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1a9bfca6057f52b4e5c3844ecd704962b7e426c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.831ex; height:2.843ex;" alt="{\displaystyle A[i,j]}"></span> 등과 같이 나타낸다. 행과 열의 번째수가 같은 성분 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{ii}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{ii}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7af863a03eae1616a6d1ef9bfc42c31820098622" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.11ex; height:2.509ex;" alt="{\displaystyle A_{ii}}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\in \{1,\dotsc ,\min\{m,n\}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mo movablelimits="true" form="prefix">min</mo> <mo fence="false" stretchy="false">{</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\in \{1,\dotsc ,\min\{m,n\}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b3be2ee807eda5db6551610fca8da1905f83628" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.978ex; height:2.843ex;" alt="{\displaystyle i\in \{1,\dotsc ,\min\{m,n\}\}}"></span>)을 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>의 <b>대각 성분</b>(對角成分, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">diagonal entry</span>) 또는 <b>대각 원소</b>(對角元素, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">diagonal element</span>) 또는 <b>대각 요소</b>(對角要素) 또는 <b><a href="/wiki/%EC%A3%BC%EB%8C%80%EA%B0%81%EC%84%A0" title="주대각선">주대각선</a></b> 성분이라고 한다.<sup id="cite_ref-Kharab_2-3" class="reference"><a href="#cite_note-Kharab-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:99</sup></span> </p><p><a href="/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학)">환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 위의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span> 행렬의 집합은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac711c4052d893e23d11c15600663ed800018f82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.274ex; height:2.843ex;" alt="{\displaystyle \operatorname {Mat} (m,n;R)}"></span> 또는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {M} _{m,n}(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {M} _{m,n}(R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c8acc3badf484f598be6292e2e422c02bb173de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.823ex; height:3.009ex;" alt="{\displaystyle \operatorname {M} _{m,n}(R)}"></span>로 표기한다. </p> <div class="mw-heading mw-heading3"><h3 id="크기"><span id=".ED.81.AC.EA.B8.B0"></span>크기</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=2" title="부분 편집: 크기"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>의 <b>크기</b>(<span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">size</span>)는 행과 열의 수의 <a href="/wiki/%EC%88%9C%EC%84%9C%EC%8C%8D" title="순서쌍">순서쌍</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (m,n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (m,n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/274d4857135a7d28a94ba9ee8135779615084d43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.278ex; height:2.843ex;" alt="{\displaystyle (m,n)}"></span> 또는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span>을 뜻한다. 일부 특수한 크기의 행렬들은 특별한 이름으로 불린다. </p> <ul><li>만약 행과 열의 수가 같다면 (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69c9d8e54796e7de7d4738510cc10bc3fc55d48e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.534ex; height:1.676ex;" alt="{\displaystyle m=n}"></span>), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>를 <b>정사각 행렬</b>(正四角行列, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">square matrix</span>) 또는 <b>정방 행렬</b>(正方行列)이라고 한다. <a href="/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학)">환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 위의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span> 정사각 행렬의 집합은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Mat} (n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Mat} (n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91e9f24a35d629b7bc279a9565e553b1893523d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.2ex; height:2.843ex;" alt="{\displaystyle \operatorname {Mat} (n;R)}"></span> 또는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {M} _{n}(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {M} _{n}(R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed7afdc57984c7fa44c42fcfae7be672af77ef87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.923ex; height:2.843ex;" alt="{\displaystyle \operatorname {M} _{n}(R)}"></span>로 표기한다.</li> <li>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6100c5ebd48c6fd848709f2be624465203eb173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.301ex; height:2.176ex;" alt="{\displaystyle m=1}"></span>이라면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bce5f6a6d0d32834484048c16f3b39f9c23d076" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.398ex; height:2.176ex;" alt="{\displaystyle 1\times n}"></span> <b>행벡터</b>(行-, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">row vector</span>)라고 한다.</li> <li>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9ec7e1edc2e6d98f5aec2a39ae5f1c99d1e1425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=1}"></span>이라면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f7ea91d81567531f5ef6d3b669be211ff953e6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.043ex; height:2.176ex;" alt="{\displaystyle m\times 1}"></span> <b>열벡터</b>(列-, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">column vector</span>)라고 한다.</li></ul> <p>특히, 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>번째 행벡터와 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>번째 열벡터는 각각 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{i,-}={\begin{pmatrix}A_{i1}&A_{i2}&\cdots A_{in}\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{i,-}={\begin{pmatrix}A_{i1}&A_{i2}&\cdots A_{in}\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22c396a4d19125f3a8cc1109dc68e28723fe1dd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.952ex; height:3.009ex;" alt="{\displaystyle A_{i,-}={\begin{pmatrix}A_{i1}&A_{i2}&\cdots A_{in}\end{pmatrix}}}"></span></dd></dl> <p>와 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{-,j}{\begin{pmatrix}A_{1j}\\A_{2j}\\\vdots \\A_{mj}\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>j</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mi>j</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{-,j}{\begin{pmatrix}A_{1j}\\A_{2j}\\\vdots \\A_{mj}\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/773af90684262608d3f229375d0339eb370ea6da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:13.303ex; height:14.509ex;" alt="{\displaystyle A_{-,j}{\begin{pmatrix}A_{1j}\\A_{2j}\\\vdots \\A_{mj}\end{pmatrix}}}"></span></dd></dl> <p>이며, 이를 통해 행렬을 다음과 같이 나타낼 수 있다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\begin{pmatrix}A_{1,-}\\A_{2,-}\\\vdots \\A_{m,-}\end{pmatrix}}={\begin{pmatrix}A_{-,1}&A_{-,2}&\cdots &A_{-,n}\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\begin{pmatrix}A_{1,-}\\A_{2,-}\\\vdots \\A_{m,-}\end{pmatrix}}={\begin{pmatrix}A_{-,1}&A_{-,2}&\cdots &A_{-,n}\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f510e915ff4fd8484f88a8a1b9be7eb3fcd54d62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:43.928ex; height:14.509ex;" alt="{\displaystyle A={\begin{pmatrix}A_{1,-}\\A_{2,-}\\\vdots \\A_{m,-}\end{pmatrix}}={\begin{pmatrix}A_{-,1}&A_{-,2}&\cdots &A_{-,n}\end{pmatrix}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="연산"><span id=".EC.97.B0.EC.82.B0"></span>연산</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=3" title="부분 편집: 연산"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>행렬들에 대하여 덧셈, 스칼라배, 곱셈, <a href="/wiki/%EC%A0%84%EC%B9%98_%ED%96%89%EB%A0%AC" title="전치 행렬">전치 행렬</a> 등의 연산을 정의할 수 있으며, 정사각 행렬은 <a href="/wiki/%EC%97%AD%ED%96%89%EB%A0%AC" class="mw-redirect" title="역행렬">역행렬</a>, <a href="/wiki/%EB%8C%80%EA%B0%81%ED%95%A9" title="대각합">대각합</a>, <a href="/wiki/%ED%96%89%EB%A0%AC%EC%8B%9D" title="행렬식">행렬식</a> 등 연산이 추가로 정의된다. 덧셈은 같은 크기의 두 행렬에 대해서만 정의되며, 곱셈은 오직 첫 번째 행렬의 열의 수와 두 번째 행렬의 행의 수가 같은 경우에만 정의된다.<sup id="cite_ref-Kharab_2-4" class="reference"><a href="#cite_note-Kharab-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:99</sup></span> <a href="/wiki/%EC%97%AD%ED%96%89%EB%A0%AC" class="mw-redirect" title="역행렬">역행렬</a>은 <a href="/wiki/%EA%B0%80%EC%97%AD_%ED%96%89%EB%A0%AC" class="mw-redirect" title="가역 행렬">가역</a> 정사각 행렬에 대하여 정의되며, <a href="/wiki/%ED%96%89%EB%A0%AC%EC%8B%9D" title="행렬식">행렬식</a>은 <a href="/wiki/%EA%B0%80%ED%99%98%ED%99%98" title="가환환">가환환</a> 위의 정사각 행렬에 대하여 정의된다. </p> <div class="mw-heading mw-heading3"><h3 id="덧셈과_스칼라배"><span id=".EB.8D.A7.EC.85.88.EA.B3.BC_.EC.8A.A4.EC.B9.BC.EB.9D.BC.EB.B0.B0"></span>덧셈과 스칼라배</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=4" title="부분 편집: 덧셈과 스칼라배"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r34311305">.mw-parser-output .hatnote{}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> 이 부분의 본문은 <a href="/w/index.php?title=%ED%96%89%EB%A0%AC_%EB%8D%A7%EC%85%88&action=edit&redlink=1" class="new" title="행렬 덧셈 (없는 문서)">행렬 덧셈</a>입니다.</div> <p><a href="/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학)">환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 위의 두 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span>의 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c3783625affda4332d80837c42888684c5e0ef7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.656ex; height:2.843ex;" alt="{\displaystyle A,B\in \operatorname {Mat} (m,n;R)}"></span>의 합 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A+B\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A+B\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c2b59f37026952ae3468cb3b2d9d479217ffee8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.463ex; height:2.843ex;" alt="{\displaystyle A+B\in \operatorname {Mat} (m,n;R)}"></span>은 두 행렬을 성분별로 합한 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span> 행렬이다. 즉, 각 행과 열 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>에 대하여, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A+B)_{ij}=A_{ij}+B_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A+B)_{ij}=A_{ij}+B_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72e0b9e2fa0cab10d008321d379900b05fefd076" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.034ex; height:3.009ex;" alt="{\displaystyle (A+B)_{ij}=A_{ij}+B_{ij}}"></span></dd></dl> <p>이다. </p><p>실수 행렬의 예는 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}1&3&7\\1&0&0\end{pmatrix}}+{\begin{pmatrix}0&0&5\\7&5&0\end{pmatrix}}={\begin{pmatrix}1+0&3+0&7+5\\1+7&0+5&0+0\end{pmatrix}}={\begin{pmatrix}1&3&12\\8&5&0\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>7</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>7</mn> </mtd> <mtd> <mn>5</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> <mo>+</mo> <mn>0</mn> </mtd> <mtd> <mn>3</mn> <mo>+</mo> <mn>0</mn> </mtd> <mtd> <mn>7</mn> <mo>+</mo> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>+</mo> <mn>7</mn> </mtd> <mtd> <mn>0</mn> <mo>+</mo> <mn>5</mn> </mtd> <mtd> <mn>0</mn> <mo>+</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>12</mn> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> <mtd> <mn>5</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}1&3&7\\1&0&0\end{pmatrix}}+{\begin{pmatrix}0&0&5\\7&5&0\end{pmatrix}}={\begin{pmatrix}1+0&3+0&7+5\\1+7&0+5&0+0\end{pmatrix}}={\begin{pmatrix}1&3&12\\8&5&0\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d67d50e0392780513f3f6f2e13751cd06c4efa63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:71.429ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}1&3&7\\1&0&0\end{pmatrix}}+{\begin{pmatrix}0&0&5\\7&5&0\end{pmatrix}}={\begin{pmatrix}1+0&3+0&7+5\\1+7&0+5&0+0\end{pmatrix}}={\begin{pmatrix}1&3&12\\8&5&0\end{pmatrix}}}"></span></dd></dl> <p><a href="/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학)">환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 위의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span>의 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0a7b74fc96ebe6b858c776506c1065f6932bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.858ex; height:2.843ex;" alt="{\displaystyle A\in \operatorname {Mat} (m,n;R)}"></span> 및 환의 원소 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>∈<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca49c66b5e9b5f32249a737e4429c3df136c33f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.653ex; height:2.176ex;" alt="{\displaystyle r\in R}"></span>에 대하여, 왼쪽·오른쪽 스칼라배 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle rA,Ar\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mi>A</mi> <mo>,</mo> <mi>A</mi> <mi>r</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle rA,Ar\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b10e97b16b71d762d18f0687b44bb90123857292" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.732ex; height:2.843ex;" alt="{\displaystyle rA,Ar\in \operatorname {Mat} (m,n;R)}"></span>는 각각 행렬의 각 성분의 왼쪽·오른쪽에 스칼라를 곱한 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span> 행렬이다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (rA)_{ij}=rA_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>r</mi> <mi>A</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>r</mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (rA)_{ij}=rA_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a0b4663763e36f8806a03630ced13b8ac900286" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.446ex; height:3.009ex;" alt="{\displaystyle (rA)_{ij}=rA_{ij}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (Ar)_{ij}=A_{ij}r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mi>r</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (Ar)_{ij}=A_{ij}r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7726222aedbf3810295d185af381b8943c1c59dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.446ex; height:3.009ex;" alt="{\displaystyle (Ar)_{ij}=A_{ij}r}"></span></dd></dl> <p>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>가 <a href="/wiki/%EA%B0%80%ED%99%98%ED%99%98" title="가환환">가환환</a>일 경우, 이 두 연산은 일치하며, 이를 스칼라배라고 부른다. </p><p>실수 행렬의 예는 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2{\begin{pmatrix}1&8&-3\\4&-2&5\end{pmatrix}}={\begin{pmatrix}2\cdot 1&2\cdot 8&2\cdot -3\\2\cdot 4&2\cdot -2&2\cdot 5\end{pmatrix}}={\begin{pmatrix}2&16&-6\\8&-4&10\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>8</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> </mtd> <mtd> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>8</mn> </mtd> <mtd> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mo>−<!-- − --></mo> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> </mtd> <mtd> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mo>−<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>16</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>4</mn> </mtd> <mtd> <mn>10</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2{\begin{pmatrix}1&8&-3\\4&-2&5\end{pmatrix}}={\begin{pmatrix}2\cdot 1&2\cdot 8&2\cdot -3\\2\cdot 4&2\cdot -2&2\cdot 5\end{pmatrix}}={\begin{pmatrix}2&16&-6\\8&-4&10\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45eb6d2f96911df9557857d4f500548eb9e36404" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:63.648ex; height:6.176ex;" alt="{\displaystyle 2{\begin{pmatrix}1&8&-3\\4&-2&5\end{pmatrix}}={\begin{pmatrix}2\cdot 1&2\cdot 8&2\cdot -3\\2\cdot 4&2\cdot -2&2\cdot 5\end{pmatrix}}={\begin{pmatrix}2&16&-6\\8&-4&10\end{pmatrix}}}"></span></dd></dl> <p><a href="/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학)">환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 위의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span> 행렬의 집합 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac711c4052d893e23d11c15600663ed800018f82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.274ex; height:2.843ex;" alt="{\displaystyle \operatorname {Mat} (m,n;R)}"></span>은 위 덧셈과 왼쪽·오른쪽 스칼라배에 따라 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (R,R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>R</mi> <mo>,</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (R,R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c541d71440092290621d4785f95797a1859fce7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.371ex; height:2.843ex;" alt="{\displaystyle (R,R)}"></span>-<a href="/wiki/%EC%8C%8D%EA%B0%80%EA%B5%B0" title="쌍가군">쌍가군</a>을 이룬다. 만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>가 <a href="/wiki/%EA%B0%80%ED%99%98%ED%99%98" title="가환환">가환환</a>일 경우, 이는 (덧셈과 스칼라배에 따른) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>-<a href="/wiki/%EA%B0%80%EA%B5%B0" title="가군">가군</a>이 되며, 특히 만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>가 <a href="/wiki/%EC%B2%B4_(%EC%88%98%ED%95%99)" title="체 (수학)">체</a>일 경우 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>-<a href="/wiki/%EB%B2%A1%ED%84%B0_%EA%B3%B5%EA%B0%84" title="벡터 공간">벡터 공간</a>이다. 이 <a href="/wiki/%EC%8C%8D%EA%B0%80%EA%B5%B0" title="쌍가군">쌍가군</a>의 덧셈 <a href="/wiki/%ED%95%AD%EB%93%B1%EC%9B%90" title="항등원">항등원</a>은 <b><a href="/wiki/%EC%98%81%ED%96%89%EB%A0%AC" title="영행렬">영행렬</a></b>(즉, 모든 성분이 0인 행렬) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0_{m\times n}={\begin{pmatrix}0&0&\cdots &0\\0&0&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &0\end{pmatrix}}\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0_{m\times n}={\begin{pmatrix}0&0&\cdots &0\\0&0&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &0\end{pmatrix}}\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22495ca1f20ffa025d80c8f6b968270786aee971" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:42.568ex; height:14.176ex;" alt="{\displaystyle 0_{m\times n}={\begin{pmatrix}0&0&\cdots &0\\0&0&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &0\end{pmatrix}}\in \operatorname {Mat} (m,n;R)}"></span></dd></dl> <p>이며, 각 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0a7b74fc96ebe6b858c776506c1065f6932bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.858ex; height:2.843ex;" alt="{\displaystyle A\in \operatorname {Mat} (m,n;R)}"></span>의 덧셈 <a href="/wiki/%EC%97%AD%EC%9B%90" title="역원">역원</a>은 성분별 덧셈 역원 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -A\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -A\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27138c03572b0bde919c42c1229982e8fbd3faa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.666ex; height:2.843ex;" alt="{\displaystyle -A\in \operatorname {Mat} (m,n;R)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-A)_{ij}=-A_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>A</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-A)_{ij}=-A_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc0f0818dd75cf2f336113432461f792db6ba149" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.965ex; height:3.009ex;" alt="{\displaystyle (-A)_{ij}=-A_{ij}}"></span></dd></dl> <p>이다. </p><p>특히, 두 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c3783625affda4332d80837c42888684c5e0ef7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.656ex; height:2.843ex;" alt="{\displaystyle A,B\in \operatorname {Mat} (m,n;R)}"></span>의 차를 다음과 같이 정의할 수 있다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A-B=A+(-B)\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>−<!-- − --></mo> <mi>B</mi> <mo>=</mo> <mi>A</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A-B=A+(-B)\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d6637580954eb3ff9e37032c0ed21d18bcb7b59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.526ex; height:2.843ex;" alt="{\displaystyle A-B=A+(-B)\in \operatorname {Mat} (m,n;R)}"></span></dd></dl> <p><a href="/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학)">환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 위의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span> 행렬의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (R,R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>R</mi> <mo>,</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (R,R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c541d71440092290621d4785f95797a1859fce7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.371ex; height:2.843ex;" alt="{\displaystyle (R,R)}"></span>-<a href="/wiki/%EC%8C%8D%EA%B0%80%EA%B5%B0" title="쌍가군">쌍가군</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c3783625affda4332d80837c42888684c5e0ef7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.656ex; height:2.843ex;" alt="{\displaystyle A,B\in \operatorname {Mat} (m,n;R)}"></span>는 왼쪽 가군으로서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mn}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mn}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/348cd26a0b7a0034f57a951e2cf5f637dd47c1ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.435ex; height:1.676ex;" alt="{\displaystyle mn}"></span>차원 왼쪽 <a href="/wiki/%EC%9E%90%EC%9C%A0_%EA%B0%80%EA%B5%B0" title="자유 가군">자유 가군</a>을 이루며, 오른쪽 가군으로서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mn}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mn}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/348cd26a0b7a0034f57a951e2cf5f637dd47c1ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.435ex; height:1.676ex;" alt="{\displaystyle mn}"></span>차원 오른쪽 <a href="/wiki/%EC%9E%90%EC%9C%A0_%EA%B0%80%EA%B5%B0" title="자유 가군">자유 가군</a>을 이룬다. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>가 <a href="/wiki/%EA%B0%80%ED%99%98%ED%99%98" title="가환환">가환환</a>일 경우 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mn}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mn}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/348cd26a0b7a0034f57a951e2cf5f637dd47c1ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.435ex; height:1.676ex;" alt="{\displaystyle mn}"></span>차원 자유 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>-가군이다. 그 한 <a href="/wiki/%EA%B8%B0%EC%A0%80_(%EC%84%A0%ED%98%95%EB%8C%80%EC%88%98%ED%95%99)" title="기저 (선형대수학)">기저</a>는 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{ij}\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{ij}\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ca098ddc17d7d1a2b24a39b3d8c9d50eb5ca49a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.307ex; height:3.009ex;" alt="{\displaystyle E_{ij}\in \operatorname {Mat} (m,n;R)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (E_{ij})_{kl}=\delta _{ik}\delta _{jl}={\begin{cases}1&i=k\land j=l\\0&i\neq k\lor j\neq l\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>k</mi> </mrow> </msub> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>∧<!-- ∧ --></mo> <mi>j</mi> <mo>=</mo> <mi>l</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>i</mi> <mo>≠<!-- ≠ --></mo> <mi>k</mi> <mo>∨<!-- ∨ --></mo> <mi>j</mi> <mo>≠<!-- ≠ --></mo> <mi>l</mi> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (E_{ij})_{kl}=\delta _{ik}\delta _{jl}={\begin{cases}1&i=k\land j=l\\0&i\neq k\lor j\neq l\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9412e31f2f1093e50911d7236765a11c2677b8b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:36.323ex; height:6.176ex;" alt="{\displaystyle (E_{ij})_{kl}=\delta _{ik}\delta _{jl}={\begin{cases}1&i=k\land j=l\\0&i\neq k\lor j\neq l\end{cases}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\in \{1,\dotsc ,m\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>m</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\in \{1,\dotsc ,m\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d7a25137e9baaf70273ac4d1c5fa1a23b13b4f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.349ex; height:2.843ex;" alt="{\displaystyle i\in \{1,\dotsc ,m\}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j\in \{1,\dotsc ,n\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j\in \{1,\dotsc ,n\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efa124a2f23e6c9ce001436dc1fc4bfb05ebd09e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.027ex; width:13.886ex; height:2.843ex;" alt="{\displaystyle j\in \{1,\dotsc ,n\}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="곱셈"><span id=".EA.B3.B1.EC.85.88"></span>곱셈</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=5" title="부분 편집: 곱셈"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r34311305"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> 이 부분의 본문은 <a href="/wiki/%ED%96%89%EB%A0%AC_%EA%B3%B1%EC%85%88" title="행렬 곱셈">행렬 곱셈</a>입니다.</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Matrix_multiplication_diagram.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Matrix_multiplication_diagram.svg/220px-Matrix_multiplication_diagram.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Matrix_multiplication_diagram.svg/330px-Matrix_multiplication_diagram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/11/Matrix_multiplication_diagram.svg/440px-Matrix_multiplication_diagram.svg.png 2x" data-file-width="188" data-file-height="188" /></a><figcaption>행렬 곱셈</figcaption></figure> <p><a href="/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학)">환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 위의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span> 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0a7b74fc96ebe6b858c776506c1065f6932bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.858ex; height:2.843ex;" alt="{\displaystyle A\in \operatorname {Mat} (m,n;R)}"></span>와 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43ad58cdd60e9b0ab2bec828151c740accf92028" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.405ex; height:2.009ex;" alt="{\displaystyle n\times p}"></span> 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\in \operatorname {Mat} (n,p;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\in \operatorname {Mat} (n,p;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4160920bf95c7dbdedc36b83f6c78bc84ed0b779" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.008ex; height:2.843ex;" alt="{\displaystyle B\in \operatorname {Mat} (n,p;R)}"></span>의 곱 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB\in \operatorname {Mat} (m,p;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>p</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB\in \operatorname {Mat} (m,p;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff3cb9e2d44a90ad0ab01d731673b05a5edd7a82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.397ex; height:2.843ex;" alt="{\displaystyle AB\in \operatorname {Mat} (m,p;R)}"></span>는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e459f087ef822dc6fba54b953c60de61be69c42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.05ex; height:2.009ex;" alt="{\displaystyle m\times p}"></span> 행렬이며, 그 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>번째 행 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>번째 열 성분은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>번째 행벡터와 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>번째 열벡터의 ‘<a href="/wiki/%EC%8A%A4%EC%B9%BC%EB%9D%BC%EA%B3%B1" title="스칼라곱">스칼라곱</a>’이다 (둘 모두 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>차원 벡터이므로 ‘스칼라곱’이 정의된다). </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (AB)_{ij}=\sum _{k=1}^{n}A_{ik}B_{kj}=A_{i1}B_{1j}+A_{i2}B_{2j}+\cdots A_{in}B_{nj}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mi>B</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>k</mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (AB)_{ij}=\sum _{k=1}^{n}A_{ik}B_{kj}=A_{i1}B_{1j}+A_{i2}B_{2j}+\cdots A_{in}B_{nj}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d38a0988d8f7b46aef1ef64578db181eaf022a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:53.363ex; height:6.843ex;" alt="{\displaystyle (AB)_{ij}=\sum _{k=1}^{n}A_{ik}B_{kj}=A_{i1}B_{1j}+A_{i2}B_{2j}+\cdots A_{in}B_{nj}}"></span></dd></dl> <p>다음은 실수 행렬의 예다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}1&0&2\\-1&3&1\\\end{pmatrix}}{\begin{pmatrix}3&1\\2&1\\1&0\end{pmatrix}}={\begin{pmatrix}1\cdot 3+0\cdot 2+2\cdot 1&1\cdot 1+0\cdot 1+2\cdot 0\\-1\cdot 3+3\cdot 2+1\cdot 1&-1\cdot 1+3\cdot 1+1\cdot 0\end{pmatrix}}={\begin{pmatrix}5&1\\4&2\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>+</mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>+</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> </mtd> <mtd> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>+</mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>+</mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>+</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>+</mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>5</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}1&0&2\\-1&3&1\\\end{pmatrix}}{\begin{pmatrix}3&1\\2&1\\1&0\end{pmatrix}}={\begin{pmatrix}1\cdot 3+0\cdot 2+2\cdot 1&1\cdot 1+0\cdot 1+2\cdot 0\\-1\cdot 3+3\cdot 2+1\cdot 1&-1\cdot 1+3\cdot 1+1\cdot 0\end{pmatrix}}={\begin{pmatrix}5&1\\4&2\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3d1043b1cad84fa36a5a5e41e360777cabf86c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:84.093ex; height:9.176ex;" alt="{\displaystyle {\begin{pmatrix}1&0&2\\-1&3&1\\\end{pmatrix}}{\begin{pmatrix}3&1\\2&1\\1&0\end{pmatrix}}={\begin{pmatrix}1\cdot 3+0\cdot 2+2\cdot 1&1\cdot 1+0\cdot 1+2\cdot 0\\-1\cdot 3+3\cdot 2+1\cdot 1&-1\cdot 1+3\cdot 1+1\cdot 0\end{pmatrix}}={\begin{pmatrix}5&1\\4&2\end{pmatrix}}}"></span></dd></dl> <p>행벡터와 열벡터 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\begin{pmatrix}A_{1,-}\\A_{2,-}\\\vdots \\A_{m,-}\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\begin{pmatrix}A_{1,-}\\A_{2,-}\\\vdots \\A_{m,-}\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af1faffe26ed112076583b44b842b6f2747c3f9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:14.814ex; height:14.509ex;" alt="{\displaystyle A={\begin{pmatrix}A_{1,-}\\A_{2,-}\\\vdots \\A_{m,-}\end{pmatrix}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B={\begin{pmatrix}B_{-,1}&B_{-,2}&\cdots &B_{-,n}\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B={\begin{pmatrix}B_{-,1}&B_{-,2}&\cdots &B_{-,n}\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1d3d702f48df6e39594622c4399405671d9b9b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:30.941ex; height:3.176ex;" alt="{\displaystyle B={\begin{pmatrix}B_{-,1}&B_{-,2}&\cdots &B_{-,n}\end{pmatrix}}}"></span></dd></dl> <p>를 통해 행렬 곱셈을 다음과 같이 나타낼 수 있다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB={\begin{pmatrix}A_{1,-}B\\A_{2,-}B\\\vdots \\A_{m,-}B\end{pmatrix}}={\begin{pmatrix}AB_{-,1}&AB_{-,2}&\cdots &AB_{-,n}\end{pmatrix}}={\begin{pmatrix}A_{1,-}B_{-,1}&A_{1,-}B_{-,2}&\cdots &A_{1,-}B_{-,p}\\A_{2,-}B_{-,1}&A_{2,-}B_{-,2}&\cdots &A_{2,-}B_{-,p}\\\vdots &\vdots &\ddots &\vdots \\A_{m,-}B_{-,1}&A_{m,-}B_{-,2}&\cdots &A_{m,-}B_{-,p}\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> <mi>B</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> <mi>B</mi> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> <mi>B</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>A</mi> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi>A</mi> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mi>A</mi> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mi>p</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mi>p</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mo>−<!-- − --></mo> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo>,</mo> <mi>p</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB={\begin{pmatrix}A_{1,-}B\\A_{2,-}B\\\vdots \\A_{m,-}B\end{pmatrix}}={\begin{pmatrix}AB_{-,1}&AB_{-,2}&\cdots &AB_{-,n}\end{pmatrix}}={\begin{pmatrix}A_{1,-}B_{-,1}&A_{1,-}B_{-,2}&\cdots &A_{1,-}B_{-,p}\\A_{2,-}B_{-,1}&A_{2,-}B_{-,2}&\cdots &A_{2,-}B_{-,p}\\\vdots &\vdots &\ddots &\vdots \\A_{m,-}B_{-,1}&A_{m,-}B_{-,2}&\cdots &A_{m,-}B_{-,p}\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8082e1364780e4908dba24bf96eca6287bbb2e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:99.741ex; height:14.843ex;" alt="{\displaystyle AB={\begin{pmatrix}A_{1,-}B\\A_{2,-}B\\\vdots \\A_{m,-}B\end{pmatrix}}={\begin{pmatrix}AB_{-,1}&AB_{-,2}&\cdots &AB_{-,n}\end{pmatrix}}={\begin{pmatrix}A_{1,-}B_{-,1}&A_{1,-}B_{-,2}&\cdots &A_{1,-}B_{-,p}\\A_{2,-}B_{-,1}&A_{2,-}B_{-,2}&\cdots &A_{2,-}B_{-,p}\\\vdots &\vdots &\ddots &\vdots \\A_{m,-}B_{-,1}&A_{m,-}B_{-,2}&\cdots &A_{m,-}B_{-,p}\end{pmatrix}}}"></span></dd></dl> <p>행렬 곱셈은 <a href="/wiki/%EA%B2%B0%ED%95%A9_%EB%B2%95%EC%B9%99" class="mw-redirect" title="결합 법칙">결합 법칙</a>을 만족시킨다. 즉, <a href="/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학)">환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 위의 임의의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span> 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0a7b74fc96ebe6b858c776506c1065f6932bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.858ex; height:2.843ex;" alt="{\displaystyle A\in \operatorname {Mat} (m,n;R)}"></span> 및 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43ad58cdd60e9b0ab2bec828151c740accf92028" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.405ex; height:2.009ex;" alt="{\displaystyle n\times p}"></span> 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\in \operatorname {Mat} (n,p;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\in \operatorname {Mat} (n,p;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4160920bf95c7dbdedc36b83f6c78bc84ed0b779" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.008ex; height:2.843ex;" alt="{\displaystyle B\in \operatorname {Mat} (n,p;R)}"></span> 및 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\times q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>×<!-- × --></mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\times q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2da588b05b98e9d72312b8fae68ebb25b34db18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.169ex; height:2.009ex;" alt="{\displaystyle p\times q}"></span> 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C\in \operatorname {Mat} (p,q;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C\in \operatorname {Mat} (p,q;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cb9475fa420b22139b713f9f82bf4cff470bc7d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.685ex; height:2.843ex;" alt="{\displaystyle C\in \operatorname {Mat} (p,q;R)}"></span>에 대하여, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (AB)C=A(BC)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mi>B</mi> <mo stretchy="false">)</mo> <mi>C</mi> <mo>=</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (AB)C=A(BC)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e041d54540f5581ab13f2ef4ca2b757033bdc37e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.264ex; height:2.843ex;" alt="{\displaystyle (AB)C=A(BC)}"></span></dd></dl> <p>가 성립한다. </p><p>행렬 곱셈은 함수 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Mat} (m,n;R)\oplus \operatorname {Mat} (n,p;R)\to \operatorname {Mat} (m,p;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>⊕<!-- ⊕ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>p</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Mat} (m,n;R)\oplus \operatorname {Mat} (n,p;R)\to \operatorname {Mat} (m,p;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3357479970ecaa0cc16a604ab6fdb0fac0b31407" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.181ex; height:2.843ex;" alt="{\displaystyle \operatorname {Mat} (m,n;R)\oplus \operatorname {Mat} (n,p;R)\to \operatorname {Mat} (m,p;R)}"></span></dd></dl> <p>로서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (R,R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>R</mi> <mo>,</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (R,R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c541d71440092290621d4785f95797a1859fce7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.371ex; height:2.843ex;" alt="{\displaystyle (R,R)}"></span>-쌍선형 함수를 이룬다. </p><p>특히, <a href="/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학)">환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 위의 정사각 행렬들의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (R,R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>R</mi> <mo>,</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (R,R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c541d71440092290621d4785f95797a1859fce7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.371ex; height:2.843ex;" alt="{\displaystyle (R,R)}"></span>-<a href="/wiki/%EC%8C%8D%EA%B0%80%EA%B5%B0" title="쌍가군">쌍가군</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Mat} (n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Mat} (n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91e9f24a35d629b7bc279a9565e553b1893523d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.2ex; height:2.843ex;" alt="{\displaystyle \operatorname {Mat} (n;R)}"></span>는 그 위의 행렬 곱셈에 따라 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>-<a href="/wiki/%EA%B2%B0%ED%95%A9_%EB%8C%80%EC%88%98" title="결합 대수">결합 대수</a>를 이룬다. 특히 <a href="/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학)">환</a>을 이루며, <b><a href="/w/index.php?title=%ED%96%89%EB%A0%AC%ED%99%98&action=edit&redlink=1" class="new" title="행렬환 (없는 문서)">행렬환</a></b>(行列環, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">matrix ring</span>)이라고 한다. 행렬환의 곱셈 <a href="/wiki/%ED%95%AD%EB%93%B1%EC%9B%90" title="항등원">항등원</a>은 <b><a href="/wiki/%EB%8B%A8%EC%9C%84_%ED%96%89%EB%A0%AC" class="mw-redirect" title="단위 행렬">단위 행렬</a></b>(즉, 모든 대각 성분이 1, 그 밖의 성분이 0인 행렬) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{n\times n}={\begin{pmatrix}1&0&\cdots &0\\0&1&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &1\end{pmatrix}}\in \operatorname {Mat} (n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{n\times n}={\begin{pmatrix}1&0&\cdots &0\\0&1&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &1\end{pmatrix}}\in \operatorname {Mat} (n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cf0d1e3792c4dc3dbf022dac01c168c54906d9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:39.037ex; height:14.176ex;" alt="{\displaystyle 1_{n\times n}={\begin{pmatrix}1&0&\cdots &0\\0&1&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &1\end{pmatrix}}\in \operatorname {Mat} (n;R)}"></span></dd></dl> <p>이다. </p> <div class="mw-heading mw-heading4"><h4 id="교환_법칙과_소거_법칙의_실패"><span id=".EA.B5.90.ED.99.98_.EB.B2.95.EC.B9.99.EA.B3.BC_.EC.86.8C.EA.B1.B0_.EB.B2.95.EC.B9.99.EC.9D.98_.EC.8B.A4.ED.8C.A8"></span>교환 법칙과 소거 법칙의 실패</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=6" title="부분 편집: 교환 법칙과 소거 법칙의 실패"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>행렬환은 일반적으로 <a href="/wiki/%EA%B0%80%ED%99%98%ED%99%98" title="가환환">가환환</a>이 아니다. 즉, 행렬 곱셈의 <a href="/wiki/%EA%B5%90%ED%99%98_%EB%B2%95%EC%B9%99" class="mw-redirect" title="교환 법칙">교환 법칙</a>은 (<a href="/wiki/%EC%B2%B4_(%EC%88%98%ED%95%99)" title="체 (수학)">체</a>의 경우에도) 일반적으로 성립하지 않는다. 예를 들어, 실수 2×2 행렬의 경우 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}1&0\\0&0\end{pmatrix}}{\begin{pmatrix}1&2\\0&3\end{pmatrix}}={\begin{pmatrix}1&2\\0&0\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}1&0\\0&0\end{pmatrix}}{\begin{pmatrix}1&2\\0&3\end{pmatrix}}={\begin{pmatrix}1&2\\0&0\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47bc8a6ae16cc8cdd7965532a44bd49a9285d9db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.559ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}1&0\\0&0\end{pmatrix}}{\begin{pmatrix}1&2\\0&3\end{pmatrix}}={\begin{pmatrix}1&2\\0&0\end{pmatrix}}}"></span></dd></dl> <p>이지만 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}1&2\\0&3\end{pmatrix}}{\begin{pmatrix}1&0\\0&0\end{pmatrix}}={\begin{pmatrix}1&0\\0&0\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}1&2\\0&3\end{pmatrix}}{\begin{pmatrix}1&0\\0&0\end{pmatrix}}={\begin{pmatrix}1&0\\0&0\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27703afb1ef0a51df06379d646c5913476e52569" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.559ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}1&2\\0&3\end{pmatrix}}{\begin{pmatrix}1&0\\0&0\end{pmatrix}}={\begin{pmatrix}1&0\\0&0\end{pmatrix}}}"></span></dd></dl> <p>이다. </p><p>물론 <a href="/wiki/%EA%B5%90%ED%99%98%EB%B2%95%EC%B9%99" title="교환법칙">가환</a>하는 두 행렬도 존재한다. 예를 들어, <a href="/wiki/%EA%B0%80%ED%99%98%ED%99%98" title="가환환">가환환</a> 위의 <a href="/wiki/%EC%8A%A4%EC%B9%BC%EB%9D%BC_%ED%96%89%EB%A0%AC" title="스칼라 행렬">스칼라 행렬</a>은 (같은 크기의) 모든 행렬과 가환한다. 또한, <a href="/wiki/%EA%B0%80%ED%99%98%ED%99%98" title="가환환">가환환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 및 정사각 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \operatorname {Mat} (n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \operatorname {Mat} (n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bae03fe1013ece5fefa7e970c4bd28c3493109e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.784ex; height:2.843ex;" alt="{\displaystyle A\in \operatorname {Mat} (n;R)}"></span>에 대하여, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R[A]=\{p(A)\colon p\in R[x]\}\subseteq \operatorname {Mat} (n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">[</mo> <mi>A</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>:<!-- : --></mo> <mi>p</mi> <mo>∈<!-- ∈ --></mo> <mi>R</mi> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">]</mo> <mo fence="false" stretchy="false">}</mo> <mo>⊆<!-- ⊆ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R[A]=\{p(A)\colon p\in R[x]\}\subseteq \operatorname {Mat} (n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b38178f10a53f84623b7238d16e4646161d27563" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.676ex; height:2.843ex;" alt="{\displaystyle R[A]=\{p(A)\colon p\in R[x]\}\subseteq \operatorname {Mat} (n;R)}"></span></dd></dl> <p>는 <a href="/wiki/%EA%B0%80%ED%99%98%ED%99%98" title="가환환">가환환</a>이다. </p><p>행렬환은 일반적으로 0이 아닌 왼쪽·오른쪽 <a href="/wiki/%EC%98%81%EC%9D%B8%EC%9E%90" title="영인자">영인자</a>를 갖는다. 즉, 0이 아닌 두 행렬의 곱은 0일 수 있으며, <a href="/wiki/%EC%86%8C%EA%B1%B0_%EB%B2%95%EC%B9%99" title="소거 법칙">소거 법칙</a>이 일반적으로 성립하지 않는다. 예를 들어, 실수 행렬에서 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}2&-1\\-2&1\end{pmatrix}}{\begin{pmatrix}1&3\\2&6\end{pmatrix}}={\begin{pmatrix}0&0\\0&0\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>6</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}2&-1\\-2&1\end{pmatrix}}{\begin{pmatrix}1&3\\2&6\end{pmatrix}}={\begin{pmatrix}0&0\\0&0\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e87a15773b719c4c00f56db84477a7469863353" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:33.175ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}2&-1\\-2&1\end{pmatrix}}{\begin{pmatrix}1&3\\2&6\end{pmatrix}}={\begin{pmatrix}0&0\\0&0\end{pmatrix}}}"></span></dd></dl> <p>이다. </p> <div class="mw-heading mw-heading4"><h4 id="역행렬"><span id=".EC.97.AD.ED.96.89.EB.A0.AC"></span>역행렬</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=7" title="부분 편집: 역행렬"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>행렬환 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Mat} (n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Mat} (n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91e9f24a35d629b7bc279a9565e553b1893523d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.2ex; height:2.843ex;" alt="{\displaystyle \operatorname {Mat} (n;R)}"></span>의 <a href="/wiki/%EA%B0%80%EC%97%AD%EC%9B%90" title="가역원">가역원</a>은 <b><a href="/wiki/%EA%B0%80%EC%97%AD_%ED%96%89%EB%A0%AC" class="mw-redirect" title="가역 행렬">가역 행렬</a></b>이라고 하며, 그 곱셈 <a href="/wiki/%EC%97%AD%EC%9B%90" title="역원">역원</a>은 <b><a href="/wiki/%EC%97%AD%ED%96%89%EB%A0%AC" class="mw-redirect" title="역행렬">역행렬</a></b>이라고 한다. 일반적으로 행렬환은 (<a href="/wiki/%EC%B2%B4_(%EC%88%98%ED%95%99)" title="체 (수학)">체</a> 위에서도) 0이 아닌 비<a href="/wiki/%EA%B0%80%EC%97%AD_%ED%96%89%EB%A0%AC" class="mw-redirect" title="가역 행렬">가역 행렬</a>을 갖는다. 예를 들어, 실수 2×2 정사각 행렬 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}0&5\\0&3\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}0&5\\0&3\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34e7cfb05ef56f1a3579b77430c85b3089d91eec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:8.82ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}0&5\\0&3\end{pmatrix}}}"></span></dd></dl> <p>은 <a href="/wiki/%EA%B0%80%EC%97%AD_%ED%96%89%EB%A0%AC" class="mw-redirect" title="가역 행렬">가역 행렬</a>이 아니다. </p><p>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>가 <a href="/wiki/%EA%B0%80%ED%99%98%ED%99%98" title="가환환">가환환</a>일 경우, 가역 행렬은 <a href="/wiki/%ED%96%89%EB%A0%AC%EC%8B%9D" title="행렬식">행렬식</a>이 환의 가역원인 것과 <a href="/wiki/%EB%8F%99%EC%B9%98" title="동치">동치</a>이며, 특히 <a href="/wiki/%EC%B2%B4_(%EC%88%98%ED%95%99)" title="체 (수학)">체</a>의 경우 <a href="/wiki/%ED%96%89%EB%A0%AC%EC%8B%9D" title="행렬식">행렬식</a>이 0이 아닌 것과 <a href="/wiki/%EB%8F%99%EC%B9%98" title="동치">동치</a>이다. 또한, <a href="/wiki/%EA%B0%80%EC%97%AD_%ED%96%89%EB%A0%AC" class="mw-redirect" title="가역 행렬">가역 행렬</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \operatorname {Unit} (\operatorname {Mat} (n;R))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <mi>Unit</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \operatorname {Unit} (\operatorname {Mat} (n;R))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a89ab6373565b763d7251c214e014f6180f0b445" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.18ex; height:2.843ex;" alt="{\displaystyle A\in \operatorname {Unit} (\operatorname {Mat} (n;R))}"></span>의 <a href="/wiki/%EC%97%AD%ED%96%89%EB%A0%AC" class="mw-redirect" title="역행렬">역행렬</a>은 <a href="/wiki/%ED%96%89%EB%A0%AC%EC%8B%9D" title="행렬식">행렬식</a>과 <a href="/wiki/%EC%88%98%EB%B0%98_%ED%96%89%EB%A0%AC" class="mw-redirect" title="수반 행렬">수반 행렬</a>을 통하여 다음과 같이 나타낼 수 있다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{-1}={\frac {1}{\det A}}\operatorname {adj} A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mi>adj</mi> <mo>⁡<!-- --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{-1}={\frac {1}{\det A}}\operatorname {adj} A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fae7545a9026be9d0e9fb4f59ed8946a5cd2c1c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.054ex; height:5.343ex;" alt="{\displaystyle A^{-1}={\frac {1}{\det A}}\operatorname {adj} A}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="전치_행렬"><span id=".EC.A0.84.EC.B9.98_.ED.96.89.EB.A0.AC"></span>전치 행렬</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=8" title="부분 편집: 전치 행렬"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r34311305"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> 이 부분의 본문은 <a href="/wiki/%EC%A0%84%EC%B9%98_%ED%96%89%EB%A0%AC" title="전치 행렬">전치 행렬</a>입니다.</div> <p><a href="/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학)">환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 위의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span> 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0a7b74fc96ebe6b858c776506c1065f6932bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.858ex; height:2.843ex;" alt="{\displaystyle A\in \operatorname {Mat} (m,n;R)}"></span>의 <b><a href="/wiki/%EC%A0%84%EC%B9%98_%ED%96%89%EB%A0%AC" title="전치 행렬">전치 행렬</a></b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\top }\in \operatorname {Mat} (n,m;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mrow> </msup> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\top }\in \operatorname {Mat} (n,m;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7dc62dd101edca58b928122c7906d20d59fd74f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.369ex; height:3.176ex;" alt="{\displaystyle A^{\top }\in \operatorname {Mat} (n,m;R)}"></span>는 행과 열을 교환한 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d82325a2a02ad79bc7c347ba9702ad46eb0de824" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle n\times m}"></span> 행렬이다. 즉, 각 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\in \{1,\dotsc ,n\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\in \{1,\dotsc ,n\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c3b2faa5249b1490e9d5387bdc70d127181e8d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.703ex; height:2.843ex;" alt="{\displaystyle i\in \{1,\dotsc ,n\}}"></span> 및 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j\in \{1,\dotsc ,m\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>m</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j\in \{1,\dotsc ,m\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ffacb98d56d973c09e0e83dd939fddcf955a79f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.027ex; width:14.531ex; height:2.843ex;" alt="{\displaystyle j\in \{1,\dotsc ,m\}}"></span>에 대하여, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A^{\top })_{ij}=A_{ji}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mrow> </msup> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A^{\top })_{ij}=A_{ji}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a5734f52b2961568124a7fb57c0ee16c1fd53a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.859ex; height:3.343ex;" alt="{\displaystyle (A^{\top })_{ij}=A_{ji}}"></span></dd></dl> <p>이다.<sup id="cite_ref-Kharab_2-5" class="reference"><a href="#cite_note-Kharab-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:99</sup></span> </p><p>다음은 실수 행렬의 예다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}9&8&7\\-1&3&4\end{pmatrix}}^{\top }={\begin{pmatrix}9&-1\\8&3\\7&4\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>9</mn> </mtd> <mtd> <mn>8</mn> </mtd> <mtd> <mn>7</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>4</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>9</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>7</mn> </mtd> <mtd> <mn>4</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}9&8&7\\-1&3&4\end{pmatrix}}^{\top }={\begin{pmatrix}9&-1\\8&3\\7&4\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/486f4ccdacab364b8191e66e1bb4a3c7d9a5e6cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:29.997ex; height:9.176ex;" alt="{\displaystyle {\begin{pmatrix}9&8&7\\-1&3&4\end{pmatrix}}^{\top }={\begin{pmatrix}9&-1\\8&3\\7&4\end{pmatrix}}}"></span></dd></dl> <p>이다. </p><p>전치 행렬은 함수 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{\top }\colon \operatorname {Mat} (m,n;R)\to \operatorname {Mat} (n,m;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mrow> </msup> <mo>:<!-- : --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{\top }\colon \operatorname {Mat} (m,n;R)\to \operatorname {Mat} (n,m;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e9910a26b26114f9278dac9468f90c0817e88d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.708ex; height:3.176ex;" alt="{\displaystyle ^{\top }\colon \operatorname {Mat} (m,n;R)\to \operatorname {Mat} (n,m;R)}"></span></dd></dl> <p>로서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (R,R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>R</mi> <mo>,</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (R,R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c541d71440092290621d4785f95797a1859fce7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.371ex; height:2.843ex;" alt="{\displaystyle (R,R)}"></span>-<a href="/wiki/%EC%8C%8D%EA%B0%80%EA%B5%B0" title="쌍가군">쌍가군</a> <a href="/wiki/%EB%8F%99%ED%98%95" class="mw-redirect" title="동형">동형</a>을 이루며, 그 <a href="/wiki/%EC%97%AD%ED%95%A8%EC%88%98" title="역함수">역함수</a> 또한 (<a href="/wiki/%EC%A0%95%EC%9D%98%EC%97%AD" title="정의역">정의역</a>과 <a href="/wiki/%EA%B3%B5%EC%97%AD" title="공역">공역</a>이 뒤바뀐) 전치 행렬이다. </p><p>또한, 임의의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span> 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0a7b74fc96ebe6b858c776506c1065f6932bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.858ex; height:2.843ex;" alt="{\displaystyle A\in \operatorname {Mat} (m,n;R)}"></span> 및 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43ad58cdd60e9b0ab2bec828151c740accf92028" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.405ex; height:2.009ex;" alt="{\displaystyle n\times p}"></span> 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\in \operatorname {Mat} (n,p;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\in \operatorname {Mat} (n,p;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4160920bf95c7dbdedc36b83f6c78bc84ed0b779" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.008ex; height:2.843ex;" alt="{\displaystyle B\in \operatorname {Mat} (n,p;R)}"></span>에 대하여, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (AB)^{\top }=B^{\top }A^{\top }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mrow> </msup> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (AB)^{\top }=B^{\top }A^{\top }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33917942a0ad427cca82ae479f8c0b9aeb58ed89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.454ex; height:3.176ex;" alt="{\displaystyle (AB)^{\top }=B^{\top }A^{\top }}"></span></dd></dl> <p>이다. </p><p>특히, <a href="/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학)">환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 위의 정사각 행렬의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>-<a href="/wiki/%EA%B2%B0%ED%95%A9_%EB%8C%80%EC%88%98" title="결합 대수">결합 대수</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Mat} (n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Mat} (n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91e9f24a35d629b7bc279a9565e553b1893523d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.2ex; height:2.843ex;" alt="{\displaystyle \operatorname {Mat} (n;R)}"></span> 위에서, <a href="/wiki/%EC%A0%84%EC%B9%98_%ED%96%89%EB%A0%AC" title="전치 행렬">전치 행렬</a>은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Mat} (n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Mat} (n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91e9f24a35d629b7bc279a9565e553b1893523d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.2ex; height:2.843ex;" alt="{\displaystyle \operatorname {Mat} (n;R)}"></span>와 그 <a href="/wiki/%EB%B0%98%EB%8C%80%ED%99%98" class="mw-redirect" title="반대환">반대환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Mat} (n;R)^{\operatorname {op} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>op</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Mat} (n;R)^{\operatorname {op} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82f9cf95f0d348dd38dffc1832a2ae34c11f1928" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.168ex; height:2.843ex;" alt="{\displaystyle \operatorname {Mat} (n;R)^{\operatorname {op} }}"></span> 사이의 <a href="/wiki/%EB%8C%80%ED%95%A9_(%EC%88%98%ED%95%99)" title="대합 (수학)">대합</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>-<a href="/wiki/%EA%B2%B0%ED%95%A9_%EB%8C%80%EC%88%98" title="결합 대수">결합 대수</a> <a href="/wiki/%EB%8F%99%ED%98%95" class="mw-redirect" title="동형">동형</a>이며, 만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>가 <a href="/wiki/%EA%B0%80%ED%99%98%ED%99%98" title="가환환">가환환</a>일 경우 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Mat} (n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Mat} (n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91e9f24a35d629b7bc279a9565e553b1893523d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.2ex; height:2.843ex;" alt="{\displaystyle \operatorname {Mat} (n;R)}"></span>는 전치 행렬에 따라 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>-<a href="/wiki/%EB%8C%80%ED%95%A9_%EB%8C%80%EC%88%98" title="대합 대수">대합 대수</a>를 이룬다. </p> <div class="mw-heading mw-heading3"><h3 id="대각합"><span id=".EB.8C.80.EA.B0.81.ED.95.A9"></span>대각합</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=9" title="부분 편집: 대각합"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r34311305"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> 이 부분의 본문은 <a href="/wiki/%EB%8C%80%EA%B0%81%ED%95%A9" title="대각합">대각합</a>입니다.</div> <p><a href="/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학)">환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 위의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span> 정사각 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \operatorname {Mat} (n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \operatorname {Mat} (n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bae03fe1013ece5fefa7e970c4bd28c3493109e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.784ex; height:2.843ex;" alt="{\displaystyle A\in \operatorname {Mat} (n;R)}"></span>의 <b><a href="/wiki/%EB%8C%80%EA%B0%81%ED%95%A9" title="대각합">대각합</a></b>은 모든 대각 성분들의 합이다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} A=\sum _{i=1}^{n}A_{ii}=A_{11}+A_{22}+\cdots +A_{nn}\in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>⁡<!-- --></mo> <mi>A</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>n</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} A=\sum _{i=1}^{n}A_{ii}=A_{11}+A_{22}+\cdots +A_{nn}\in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c8c7d07df3bf0bb21b60126f004f0e83199c72e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:44.031ex; height:6.843ex;" alt="{\displaystyle \operatorname {tr} A=\sum _{i=1}^{n}A_{ii}=A_{11}+A_{22}+\cdots +A_{nn}\in R}"></span></dd></dl> <p>대각합 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} \colon \operatorname {Mat} (n;R)\to R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>:<!-- : --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} \colon \operatorname {Mat} (n;R)\to R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fedcd08b706adbaf800dc756f03b212b34ae6d92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.428ex; height:2.843ex;" alt="{\displaystyle \operatorname {tr} \colon \operatorname {Mat} (n;R)\to R}"></span></dd></dl> <p>는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (R,R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>R</mi> <mo>,</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (R,R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c541d71440092290621d4785f95797a1859fce7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.371ex; height:2.843ex;" alt="{\displaystyle (R,R)}"></span>-<a href="/wiki/%EC%84%A0%ED%98%95_%EB%B3%80%ED%99%98" title="선형 변환">선형 변환</a>을 이룬다. 또한, 임의의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \operatorname {Mat} (n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \operatorname {Mat} (n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bae03fe1013ece5fefa7e970c4bd28c3493109e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.784ex; height:2.843ex;" alt="{\displaystyle A\in \operatorname {Mat} (n;R)}"></span>에 대하여, 그 대각합은 그 <a href="/wiki/%EC%A0%84%EC%B9%98_%ED%96%89%EB%A0%AC" title="전치 행렬">전치 행렬</a>의 대각합과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (A^{\top })=\operatorname {tr} A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo>⁡<!-- --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (A^{\top })=\operatorname {tr} A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f55ee01817cb3bf7398d169a7f9fb1f76d8cb1c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.924ex; height:3.176ex;" alt="{\displaystyle \operatorname {tr} (A^{\top })=\operatorname {tr} A}"></span></dd></dl> <p>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>가 <a href="/wiki/%EA%B0%80%ED%99%98%ED%99%98" title="가환환">가환환</a>일 경우, 임의의 두 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B\in \operatorname {Mat} (n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B\in \operatorname {Mat} (n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5eb6096c69733a6be70b9b2d8574d2341db504a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.582ex; height:2.843ex;" alt="{\displaystyle A,B\in \operatorname {Mat} (n;R)}"></span>에 대하여, 두 행렬의 곱의 대각합은 곱하는 순서와 무관하게 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (AB)=\operatorname {tr} (BA)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>B</mi> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (AB)=\operatorname {tr} (BA)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95e3cc6cb1fb477706acf1c248d6f66882df7176" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.364ex; height:2.843ex;" alt="{\displaystyle \operatorname {tr} (AB)=\operatorname {tr} (BA)}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="행렬식"><span id=".ED.96.89.EB.A0.AC.EC.8B.9D"></span>행렬식</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=10" title="부분 편집: 행렬식"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r34311305"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> 이 부분의 본문은 <a href="/wiki/%ED%96%89%EB%A0%AC%EC%8B%9D" title="행렬식">행렬식</a>입니다.</div> <p><a href="/wiki/%EA%B0%80%ED%99%98%ED%99%98" title="가환환">가환환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 위의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span> 정사각 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \operatorname {Mat} (n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \operatorname {Mat} (n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bae03fe1013ece5fefa7e970c4bd28c3493109e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.784ex; height:2.843ex;" alt="{\displaystyle A\in \operatorname {Mat} (n;R)}"></span>의 <b><a href="/wiki/%ED%96%89%EB%A0%AC%EC%8B%9D" title="행렬식">행렬식</a></b>은 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det A=\sum _{\sigma \in \operatorname {Sym} (n)}\operatorname {sgn} \sigma \prod _{i=1}^{n}A_{i,\sigma (i)}\in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mi>A</mi> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>σ<!-- σ --></mi> <mo>∈<!-- ∈ --></mo> <mi>Sym</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </munder> <mi>sgn</mi> <mo>⁡<!-- --></mo> <mi>σ<!-- σ --></mi> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>σ<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det A=\sum _{\sigma \in \operatorname {Sym} (n)}\operatorname {sgn} \sigma \prod _{i=1}^{n}A_{i,\sigma (i)}\in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/883f400d7aa54fe49136c66fa04f3e90774c5a52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:35.522ex; height:7.343ex;" alt="{\displaystyle \det A=\sum _{\sigma \in \operatorname {Sym} (n)}\operatorname {sgn} \sigma \prod _{i=1}^{n}A_{i,\sigma (i)}\in R}"></span></dd></dl> <p>여기서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Sym} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Sym</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Sym} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25b53f7a393ab1e376574e61af57e6cd8591b0d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.66ex; height:2.843ex;" alt="{\displaystyle \operatorname {Sym} (n)}"></span>은 <a href="/wiki/%EB%8C%80%EC%B9%AD%EA%B5%B0" class="mw-disambig" title="대칭군">대칭군</a>이며, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sgn} \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sgn</mi> <mo>⁡<!-- --></mo> <mi>σ<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {sgn} \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4231b394565cb9eaba08224d8ef8a2a151824f91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.088ex; height:2.009ex;" alt="{\displaystyle \operatorname {sgn} \sigma }"></span>는 <a href="/wiki/%EC%88%9C%EC%97%B4%EC%9D%98_%EB%B6%80%ED%98%B8" class="mw-redirect" title="순열의 부호">순열의 부호</a>이다. 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>의 행렬식은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f2d8fe180a2f848cf11e82a535b193cfe718742" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.36ex; height:2.176ex;" alt="{\displaystyle \det A}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |A|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |A|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/648fce92f29d925f04d39244ccfe435320dfc6de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.037ex; height:2.843ex;" alt="{\displaystyle |A|}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {D} (A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">D</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {D} (A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8030d64cbd9cfa7e113da01f10ee5196ac9a918" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle \operatorname {D} (A)}"></span> 등으로 표기한다. 특히, 2×2 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \operatorname {Mat} (2;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \operatorname {Mat} (2;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c34abae8e3d199ca7126a3ca618892d3064c8b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.552ex; height:2.843ex;" alt="{\displaystyle A\in \operatorname {Mat} (2;R)}"></span>의 행렬식은 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det A={\begin{vmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{vmatrix}}=A_{11}A_{22}-A_{12}A_{21}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det A={\begin{vmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{vmatrix}}=A_{11}A_{22}-A_{12}A_{21}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d25ccb01586cc09cd571d7fdfef220aeba9d828f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.481ex; height:6.176ex;" alt="{\displaystyle \det A={\begin{vmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{vmatrix}}=A_{11}A_{22}-A_{12}A_{21}}"></span></dd></dl> <p>행렬식은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>개의 행벡터(또는 열벡터)의 함수 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det \colon \operatorname {Mat} (n;R)=\underbrace {\operatorname {Mat} (1,n;R)\oplus \cdots \oplus \operatorname {Mat} (1,n;R)} _{n}\to R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo>:<!-- : --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>⊕<!-- ⊕ --></mo> <mo>⋯<!-- ⋯ --></mo> <mo>⊕<!-- ⊕ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <mo stretchy="false">→<!-- → --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det \colon \operatorname {Mat} (n;R)=\underbrace {\operatorname {Mat} (1,n;R)\oplus \cdots \oplus \operatorname {Mat} (1,n;R)} _{n}\to R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b5d474fb5eed809fe77f2f64eacf71c1dd59760" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:56.137ex; height:6.176ex;" alt="{\displaystyle \det \colon \operatorname {Mat} (n;R)=\underbrace {\operatorname {Mat} (1,n;R)\oplus \cdots \oplus \operatorname {Mat} (1,n;R)} _{n}\to R}"></span></dd></dl> <p>로서, <a href="/wiki/%EB%8B%A8%EC%9C%84_%ED%96%89%EB%A0%AC" class="mw-redirect" title="단위 행렬">단위 행렬</a>의 <a href="/wiki/%EC%83%81_(%EC%88%98%ED%95%99)" title="상 (수학)">상</a>이 1인 유일한 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>-<a href="/w/index.php?title=%EA%B5%90%EB%8C%80_%EB%8B%A4%EC%A4%91_%EC%84%A0%ED%98%95_%ED%98%95%EC%8B%9D&action=edit&redlink=1" class="new" title="교대 다중 선형 형식 (없는 문서)">교대 다중 선형 형식</a>이다. 또한, 행렬식은 두 환의 곱셈 <a href="/wiki/%EB%AA%A8%EB%85%B8%EC%9D%B4%EB%93%9C" title="모노이드">모노이드</a> 사이의 준동형이며, <a href="/wiki/%EC%A0%84%EC%B9%98_%ED%96%89%EB%A0%AC" title="전치 행렬">전치 행렬</a>에 대하여 불변이다. 즉, 임의의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B\in \operatorname {Mat} (n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B\in \operatorname {Mat} (n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5eb6096c69733a6be70b9b2d8574d2341db504a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.582ex; height:2.843ex;" alt="{\displaystyle A,B\in \operatorname {Mat} (n;R)}"></span>에 대하여, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(AB)=\det A\det B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">det</mo> <mi>A</mi> <mo movablelimits="true" form="prefix">det</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(AB)=\det A\det B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83244264d25b1b2cd8c0424fa1e01878a22b68e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.772ex; height:2.843ex;" alt="{\displaystyle \det(AB)=\det A\det B}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det A^{\top }=\det A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mrow> </msup> <mo>=</mo> <mo movablelimits="true" form="prefix">det</mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det A^{\top }=\det A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0076f34f2b45d94bfb67c4a0be7c22eced3ab3fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.329ex; height:2.676ex;" alt="{\displaystyle \det A^{\top }=\det A}"></span></dd></dl> <p>이다. </p><p>행렬식은 <a href="/wiki/%ED%81%AC%EB%9D%BC%EB%A9%94%EB%A5%B4_%EA%B3%B5%EC%8B%9D" class="mw-redirect" title="크라메르 공식">크라메르 공식</a>에서 사용된다. </p> <div class="mw-heading mw-heading3"><h3 id="부분_행렬과_소행렬식"><span id=".EB.B6.80.EB.B6.84_.ED.96.89.EB.A0.AC.EA.B3.BC_.EC.86.8C.ED.96.89.EB.A0.AC.EC.8B.9D"></span>부분 행렬과 소행렬식</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=11" title="부분 편집: 부분 행렬과 소행렬식"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r34311305"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> 이 부분의 본문은 <a href="/wiki/%EB%B6%80%EB%B6%84_%ED%96%89%EB%A0%AC" title="부분 행렬">부분 행렬</a>입니다.</div> <p><a href="/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학)">환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> 위의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span> 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \operatorname {Mat} (m,n;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \operatorname {Mat} (m,n;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0a7b74fc96ebe6b858c776506c1065f6932bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.858ex; height:2.843ex;" alt="{\displaystyle A\in \operatorname {Mat} (m,n;R)}"></span>의, 행과 열의 집합 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=\{i_{1},i_{2},\dotsc ,i_{|I|}\}\subseteq \{1,\dotsc ,m\}\qquad (i_{1}<i_{2}<\cdots <i_{|I|})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>⊆<!-- ⊆ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>m</mi> <mo fence="false" stretchy="false">}</mo> <mspace width="2em" /> <mo stretchy="false">(</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo><</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo><</mo> <mo>⋯<!-- ⋯ --></mo> <mo><</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=\{i_{1},i_{2},\dotsc ,i_{|I|}\}\subseteq \{1,\dotsc ,m\}\qquad (i_{1}<i_{2}<\cdots <i_{|I|})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9524030511441fcc3c8e8797628e1157ca36c51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:58.068ex; height:3.176ex;" alt="{\displaystyle I=\{i_{1},i_{2},\dotsc ,i_{|I|}\}\subseteq \{1,\dotsc ,m\}\qquad (i_{1}<i_{2}<\cdots <i_{|I|})}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J=\{j_{1},j_{2},\dotsc ,j_{|J|}\}\subseteq \{1,\dotsc ,n\}\qquad (j_{1}<j_{2}<\cdots <j_{|J|})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>⊆<!-- ⊆ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> <mspace width="2em" /> <mo stretchy="false">(</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo><</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo><</mo> <mo>⋯<!-- ⋯ --></mo> <mo><</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J=\{j_{1},j_{2},\dotsc ,j_{|J|}\}\subseteq \{1,\dotsc ,n\}\qquad (j_{1}<j_{2}<\cdots <j_{|J|})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c56b6727c0f310c70b120ab71c16cf5ec5ea92d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:59.079ex; height:3.176ex;" alt="{\displaystyle J=\{j_{1},j_{2},\dotsc ,j_{|J|}\}\subseteq \{1,\dotsc ,n\}\qquad (j_{1}<j_{2}<\cdots <j_{|J|})}"></span></dd></dl> <p>에 속하는 행과 열을 취한 <b><a href="/wiki/%EB%B6%80%EB%B6%84_%ED%96%89%EB%A0%AC" title="부분 행렬">부분 행렬</a></b>은 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{I,J}={\begin{pmatrix}A_{i_{1},j_{1}}&A_{i_{1},j_{2}}&\cdots &A_{i_{1},j_{|J|}}\\A_{i_{2},j_{1}}&A_{i_{2},j_{2}}&\cdots &A_{i_{2},j_{|J|}}\\\vdots &\vdots &\ddots &\vdots \\A_{i_{|I|},j_{1}}&A_{i_{|I|},j_{2}}&\cdots &A_{i_{|I|},j_{|J|}}\end{pmatrix}}\in \operatorname {Mat} (|I|,|J|;R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mo>,</mo> <mi>J</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msub> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msub> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msub> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msub> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>∈<!-- ∈ --></mo> <mi>Mat</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>;</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{I,J}={\begin{pmatrix}A_{i_{1},j_{1}}&A_{i_{1},j_{2}}&\cdots &A_{i_{1},j_{|J|}}\\A_{i_{2},j_{1}}&A_{i_{2},j_{2}}&\cdots &A_{i_{2},j_{|J|}}\\\vdots &\vdots &\ddots &\vdots \\A_{i_{|I|},j_{1}}&A_{i_{|I|},j_{2}}&\cdots &A_{i_{|I|},j_{|J|}}\end{pmatrix}}\in \operatorname {Mat} (|I|,|J|;R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67a108318e5a16df08fe42f50a5f2dcf567aa016" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.505ex; width:59.262ex; height:16.176ex;" alt="{\displaystyle A_{I,J}={\begin{pmatrix}A_{i_{1},j_{1}}&A_{i_{1},j_{2}}&\cdots &A_{i_{1},j_{|J|}}\\A_{i_{2},j_{1}}&A_{i_{2},j_{2}}&\cdots &A_{i_{2},j_{|J|}}\\\vdots &\vdots &\ddots &\vdots \\A_{i_{|I|},j_{1}}&A_{i_{|I|},j_{2}}&\cdots &A_{i_{|I|},j_{|J|}}\end{pmatrix}}\in \operatorname {Mat} (|I|,|J|;R)}"></span></dd></dl> <p>특히, </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>에 대한 <b><a href="/wiki/%EC%A3%BC%EB%B6%80%EB%B6%84_%ED%96%89%EB%A0%AC" class="mw-redirect" title="주부분 행렬">주부분 행렬</a></b>은 부분 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{I,I}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{I,I}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/244d57898e3062d5e0c359d8a9db88be11494d82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.09ex; height:2.843ex;" alt="{\displaystyle A_{I,I}}"></span>를 뜻한다.<sup id="cite_ref-Golub_3-0" class="reference"><a href="#cite_note-Golub-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:24, §1.3.3</sup></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\times k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>×<!-- × --></mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\times k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77bcf9346bcb189917b6b49c4331b4483f4a4a2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.263ex; height:2.176ex;" alt="{\displaystyle k\times k}"></span> <b><a href="/wiki/%EC%84%A0%ED%96%89_%EC%A3%BC%EB%B6%80%EB%B6%84_%ED%96%89%EB%A0%AC" class="mw-redirect" title="선행 주부분 행렬">선행 주부분 행렬</a></b>은 부분 행렬 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\{1,\dotsc ,k\},\{1,\dotsc ,k\}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>k</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>k</mi> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\{1,\dotsc ,k\},\{1,\dotsc ,k\}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/438336e8ed05649a83193fb36e406268ff097f92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:14.758ex; height:3.009ex;" alt="{\displaystyle A_{\{1,\dotsc ,k\},\{1,\dotsc ,k\}}}"></span>를 뜻한다.<sup id="cite_ref-Golub_3-1" class="reference"><a href="#cite_note-Golub-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:24, §1.3.3</sup></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>번째 <b><a href="/wiki/%ED%96%89%EB%B2%A1%ED%84%B0" class="mw-redirect" title="행벡터">행벡터</a></b>는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{i,\{1,\dotsc ,n\}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{i,\{1,\dotsc ,n\}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ba04db2bb47d369c951878da308eb1896475df9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:9.293ex; height:3.009ex;" alt="{\displaystyle A_{i,\{1,\dotsc ,n\}}}"></span>이다.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>번째 <b><a href="/wiki/%EC%97%B4%EB%B2%A1%ED%84%B0" class="mw-redirect" title="열벡터">열벡터</a></b>는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\{1,\dotsc ,m\},j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>m</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\{1,\dotsc ,m\},j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/179108db61ed97e970cb9dac9247b7dfb65473c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:9.859ex; height:3.009ex;" alt="{\displaystyle A_{\{1,\dotsc ,m\},j}}"></span>이다.</li></ul> <p><a href="/wiki/%EA%B0%80%ED%99%98%ED%99%98" title="가환환">가환환</a> 위의 행렬의 부분 <a href="/wiki/%EC%A0%95%EC%82%AC%EA%B0%81_%ED%96%89%EB%A0%AC" class="mw-redirect" title="정사각 행렬">정사각 행렬</a>의 <a href="/wiki/%ED%96%89%EB%A0%AC%EC%8B%9D" title="행렬식">행렬식</a>을 <b><a href="/wiki/%EC%86%8C%ED%96%89%EB%A0%AC%EC%8B%9D" class="mw-redirect" title="소행렬식">소행렬식</a></b>이라고 한다. </p> <div class="mw-heading mw-heading2"><h2 id="예"><span id=".EC.98.88"></span>예</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=12" title="부분 편집: 예"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>몇몇 특수한 행렬들은 다음이 있다. </p> <ul><li><a href="/wiki/%EC%98%81%ED%96%89%EB%A0%AC" title="영행렬">영행렬</a></li> <li><a href="/wiki/%EB%8B%A8%EC%9C%84_%ED%96%89%EB%A0%AC" class="mw-redirect" title="단위 행렬">단위 행렬</a></li> <li><a href="/wiki/%EC%8A%A4%EC%B9%BC%EB%9D%BC_%ED%96%89%EB%A0%AC" title="스칼라 행렬">스칼라 행렬</a></li> <li><a href="/wiki/%EB%8C%80%EA%B0%81_%ED%96%89%EB%A0%AC" title="대각 행렬">대각 행렬</a></li> <li><a href="/wiki/%EC%82%BC%EA%B0%81_%ED%96%89%EB%A0%AC" class="mw-redirect" title="삼각 행렬">삼각 행렬</a></li> <li><a href="/wiki/%EB%8C%80%EC%B9%AD_%ED%96%89%EB%A0%AC" class="mw-redirect" title="대칭 행렬">대칭 행렬</a></li> <li><a href="/wiki/%EB%B0%98%EB%8C%80%EC%B9%AD_%ED%96%89%EB%A0%AC" title="반대칭 행렬">반대칭 행렬</a></li> <li><a href="/wiki/%EC%A7%81%EA%B5%90_%ED%96%89%EB%A0%AC" class="mw-redirect" title="직교 행렬">직교 행렬</a></li> <li><a href="/wiki/%EC%97%90%EB%A5%B4%EB%AF%B8%ED%8A%B8_%ED%96%89%EB%A0%AC" title="에르미트 행렬">에르미트 행렬</a></li> <li><a href="/w/index.php?title=%EB%B0%98%EC%97%90%EB%A5%B4%EB%AF%B8%ED%8A%B8_%ED%96%89%EB%A0%AC&action=edit&redlink=1" class="new" title="반에르미트 행렬 (없는 문서)">반에르미트 행렬</a></li> <li><a href="/wiki/%EC%9C%A0%EB%8B%88%ED%84%B0%EB%A6%AC_%ED%96%89%EB%A0%AC" title="유니터리 행렬">유니터리 행렬</a></li> <li><a href="/wiki/%EC%A0%95%EA%B7%9C_%ED%96%89%EB%A0%AC" title="정규 행렬">정규 행렬</a></li> <li><a href="/wiki/%EC%A0%95%EB%B6%80%ED%98%B8_%ED%96%89%EB%A0%AC" title="정부호 행렬">정부호 행렬</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="역사와_어원"><span id=".EC.97.AD.EC.82.AC.EC.99.80_.EC.96.B4.EC.9B.90"></span>역사와 어원</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=13" title="부분 편집: 역사와 어원"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>1848년 수학에 처음으로 <a href="/wiki/%EC%A0%9C%EC%9E%84%EC%8A%A4_%EC%A1%B0%EC%A7%80%ED%94%84_%EC%8B%A4%EB%B2%A0%EC%8A%A4%ED%84%B0" title="제임스 조지프 실베스터">실베스터</a>가 사용한 <b>행렬(matrix)</b>이라는 단어의 <a href="/wiki/%EC%96%B4%EC%9B%90" class="mw-redirect" title="어원">어원</a>은 해부학에서 <a href="/wiki/%EC%9E%90%EA%B6%81" title="자궁">자궁</a>(子宮,모체母體)을 뜻한다. 행렬식에 대해서 행렬의 의미를 표현한 것으로 전해진다.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="같이_보기"><span id=".EA.B0.99.EC.9D.B4_.EB.B3.B4.EA.B8.B0"></span>같이 보기</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=14" title="부분 편집: 같이 보기"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%ED%85%90%EC%84%9C" title="텐서">텐서</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="참고_문헌"><span id=".EC.B0.B8.EA.B3.A0_.EB.AC.B8.ED.97.8C"></span>참고 문헌</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=15" title="부분 편집: 참고 문헌"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r35556958">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Lang-1"><span class="mw-cite-backlink"><a href="#cite_ref-Lang_1-0">↑</a></span> <span class="reference-text"><cite class="citation book"><a href="/wiki/%EC%84%9C%EC%A7%80_%EB%9E%AD" title="서지 랭">Lang, Serge</a> (2002). 《Algebra》. Graduate Texts in Mathematics (영어) <b>211</b> 개정 3판. New York, NY: Springer. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2F978-1-4613-0041-0">10.1007/978-1-4613-0041-0</a>. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-1-4612-6551-1" title="특수:책찾기/978-1-4612-6551-1"><bdi>978-1-4612-6551-1</bdi></a>. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EC%9D%BC%EB%A0%A8_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 일련 번호">ISSN</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/issn/0072-5285">0072-5285</a>. <a href="/wiki/%EC%88%98%ED%95%99_%EB%A6%AC%EB%B7%B0" title="수학 리뷰">MR</a> <a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=1878556">1878556</a>. <a href="/wiki/%EC%B2%B8%ED%8A%B8%EB%9E%84%EB%B8%94%EB%9D%BC%ED%8A%B8_%EB%A7%88%ED%8A%B8" title="첸트랄블라트 마트">Zbl</a> <a rel="nofollow" class="external text" href="//zbmath.org/?format=complete&q=an:0984.00001">0984.00001</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebra&rft.place=New+York%2C+NY&rft.series=Graduate+Texts+in+Mathematics&rft.edition=%EA%B0%9C%EC%A0%95+3&rft.pub=Springer&rft.date=2002&rft_id=%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0984.00001&rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D1878556&rft_id=info%3Adoi%2F10.1007%2F978-1-4613-0041-0&rft.issn=0072-5285&rft.isbn=978-1-4612-6551-1&rft.aulast=Lang&rft.aufirst=Serge&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%ED%96%89%EB%A0%AC" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-Kharab-2"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Kharab_2-0">가</a></sup> <sup><a href="#cite_ref-Kharab_2-1">나</a></sup> <sup><a href="#cite_ref-Kharab_2-2">다</a></sup> <sup><a href="#cite_ref-Kharab_2-3">라</a></sup> <sup><a href="#cite_ref-Kharab_2-4">마</a></sup> <sup><a href="#cite_ref-Kharab_2-5">바</a></sup></span> <span class="reference-text"><cite class="citation book">Abdelwahab Kharab; Ronald B. Guenther (2013). 《An Introduction to Numerical Methods A MATLAB Approach》 [이공학도를 위한 수치해석]. 학산미디어. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-89-966211-8-8" title="특수:책찾기/978-89-966211-8-8"><bdi>978-89-966211-8-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Introduction+to+Numerical+Methods+A+MATLAB+Approach&rft.pub=%ED%95%99%EC%82%B0%EB%AF%B8%EB%94%94%EC%96%B4&rft.date=2013&rft.isbn=978-89-966211-8-8&rft.au=Abdelwahab+Kharab&rft.au=Ronald+B.+Guenther&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%ED%96%89%EB%A0%AC" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-Golub-3"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Golub_3-0">가</a></sup> <sup><a href="#cite_ref-Golub_3-1">나</a></sup></span> <span class="reference-text"><cite class="citation book">Golub, Gene H.; Van Loan, Charles F. (2013). <a rel="nofollow" class="external text" href="https://archive.org/details/matrixcomputatio0004golu">《Matrix computations》</a>. Johns Hopkins Studies in the Mathematical Sciences (영어) 4판. Baltimore: The Johns Hopkins University Press. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-1-4214-0794-4" title="특수:책찾기/978-1-4214-0794-4"><bdi>978-1-4214-0794-4</bdi></a>. <a href="/wiki/%EB%AF%B8%EA%B5%AD_%EC%9D%98%ED%9A%8C%EB%8F%84%EC%84%9C%EA%B4%80_%EC%A0%9C%EC%96%B4_%EB%B2%88%ED%98%B8" title="미국 의회도서관 제어 번호">LCCN</a> <a rel="nofollow" class="external text" href="//lccn.loc.gov/2012943449">2012943449</a>. <a href="/wiki/%EC%88%98%ED%95%99_%EB%A6%AC%EB%B7%B0" title="수학 리뷰">MR</a> <a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=3024913">3024913</a>. <a href="/wiki/%EC%B2%B8%ED%8A%B8%EB%9E%84%EB%B8%94%EB%9D%BC%ED%8A%B8_%EB%A7%88%ED%8A%B8" title="첸트랄블라트 마트">Zbl</a> <a rel="nofollow" class="external text" href="//zbmath.org/?format=complete&q=an:1268.65037">1268.65037</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrix+computations&rft.place=Baltimore&rft.series=Johns+Hopkins+Studies+in+the+Mathematical+Sciences&rft.edition=4&rft.pub=The+Johns+Hopkins+University+Press&rft.date=2013&rft_id=%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1268.65037&rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D3024913&rft_id=info%3Alccn%2F2012943449&rft.isbn=978-1-4214-0794-4&rft.aulast=Golub&rft.aufirst=Gene+H.&rft.au=Van+Loan%2C+Charles+F.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmatrixcomputatio0004golu&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%ED%96%89%EB%A0%AC" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text">고등기하와 벡터, 성지출판 (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {I} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a458c8aeb096ce732abf346ae8edf3e4f53a126" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.014ex; height:2.176ex;" alt="{\displaystyle \mathbf {I} }"></span> 일차변환과 행렬) 수학이야기-행렬과 행렬식30p</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="외부_링크"><span id=".EC.99.B8.EB.B6.80_.EB.A7.81.ED.81.AC"></span>외부 링크</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%ED%96%89%EB%A0%AC&action=edit&section=16" title="부분 편집: 외부 링크"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> 위키미디어 공용에 <span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Matrices?uselang=ko">행렬</a></span> 관련 미디어 분류가 있습니다.</li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Matrix">“Matrix”</a>. 《Encyclopedia of Mathematics》 (영어). Springer-Verlag. 2001. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-1-55608-010-4" title="특수:책찾기/978-1-55608-010-4"><bdi>978-1-55608-010-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Encyclopedia+of+Mathematics&rft.atitle=Matrix&rft.date=2001&rft.isbn=978-1-55608-010-4&rft_id=https%3A%2F%2Fencyclopediaofmath.org%2Fwiki%2FMatrix&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%ED%96%89%EB%A0%AC" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web">Weisstein, Eric Wolfgang. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Matrix.html">“Matrix”</a>. 《<a href="/wiki/%EB%A7%A4%EC%8A%A4%EC%9B%94%EB%93%9C" title="매스월드">Wolfram MathWorld</a>》 (영어). Wolfram Research.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Wolfram+MathWorld&rft.atitle=Matrix&rft.aulast=Weisstein&rft.aufirst=Eric+Wolfgang&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FMatrix.html&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%ED%96%89%EB%A0%AC" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/matrix">“Matrix”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=Matrix&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2Fmatrix&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%ED%96%89%EB%A0%AC" class="Z3988"><span style="display:none;"> </span></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r36480591">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:", ";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" / ";font-weight:normal}</style><style data-mw-deduplicate="TemplateStyles:r38501015">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="선형대수학" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><style data-mw-deduplicate="TemplateStyles:r38585741">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-보기"><a href="/wiki/%ED%8B%80:%EC%84%A0%ED%98%95%EB%8C%80%EC%88%98%ED%95%99" title="틀:선형대수학"><abbr title="이 틀을 보기" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">v</abbr></a></li><li class="nv-토론"><a href="/w/index.php?title=%ED%8B%80%ED%86%A0%EB%A1%A0:%EC%84%A0%ED%98%95%EB%8C%80%EC%88%98%ED%95%99&action=edit&redlink=1" class="new" title="틀토론:선형대수학 (없는 문서)"><abbr title="이 틀에 관해 토론하기" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">t</abbr></a></li><li class="nv-편집"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%AC%B8%EC%84%9C%ED%8E%B8%EC%A7%91/%ED%8B%80:%EC%84%A0%ED%98%95%EB%8C%80%EC%88%98%ED%95%99" title="특수:문서편집/틀:선형대수학"><abbr title="이 틀을 편집하기" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">e</abbr></a></li></ul></div><div id="선형대수학" style="font-size:114%;margin:0 4em"><a href="/wiki/%EC%84%A0%ED%98%95%EB%8C%80%EC%88%98%ED%95%99" title="선형대수학">선형대수학</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">기본 개념</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%EC%8A%A4%EC%B9%BC%EB%9D%BC_(%EC%88%98%ED%95%99)" title="스칼라 (수학)">스칼라</a></li> <li><a href="/wiki/%EB%B2%A1%ED%84%B0_(%EB%AC%BC%EB%A6%AC)" class="mw-redirect" title="벡터 (물리)">벡터</a></li> <li><a href="/wiki/%EB%B2%A1%ED%84%B0_%EA%B3%B5%EA%B0%84" title="벡터 공간">벡터 공간</a></li> <li><a href="/wiki/%EC%8A%A4%EC%B9%BC%EB%9D%BC_%EA%B3%B1%EC%85%88" title="스칼라 곱셈">스칼라 곱셈</a></li> <li><a href="/w/index.php?title=%EB%B2%A1%ED%84%B0_%EC%82%AC%EC%98%81&action=edit&redlink=1" class="new" title="벡터 사영 (없는 문서)">벡터 사영</a></li> <li><a href="/wiki/%EC%84%A0%ED%98%95%EC%83%9D%EC%84%B1" class="mw-redirect" title="선형생성">선형생성</a></li> <li><a href="/wiki/%EC%84%A0%ED%98%95_%EB%B3%80%ED%99%98" title="선형 변환">선형 변환</a></li> <li><a href="/wiki/%EC%82%AC%EC%98%81%EC%9E%91%EC%9A%A9%EC%86%8C" title="사영작용소">사영작용소</a></li> <li><a href="/wiki/%EC%9D%BC%EC%B0%A8_%EB%8F%85%EB%A6%BD_%EC%A7%91%ED%95%A9" title="일차 독립 집합">일차 독립 집합</a></li> <li><a href="/wiki/%EC%84%A0%ED%98%95_%EA%B2%B0%ED%95%A9" title="선형 결합">선형 결합</a></li> <li><a href="/wiki/%EA%B8%B0%EC%A0%80_(%EC%84%A0%ED%98%95%EB%8C%80%EC%88%98%ED%95%99)" title="기저 (선형대수학)">기저</a></li> <li><a href="/w/index.php?title=%EA%B8%B0%EC%A0%80_%EB%B3%80%EA%B2%BD&action=edit&redlink=1" class="new" title="기저 변경 (없는 문서)">기저 변경</a></li> <li><a href="/w/index.php?title=%ED%96%89_%EB%B2%A1%ED%84%B0%EC%99%80_%EC%97%B4_%EB%B2%A1%ED%84%B0&action=edit&redlink=1" class="new" title="행 벡터와 열 벡터 (없는 문서)">행 벡터와 열 벡터</a></li> <li><a href="/w/index.php?title=%ED%96%89_%EA%B3%B5%EA%B0%84%EA%B3%BC_%EC%97%B4_%EA%B3%B5%EA%B0%84&action=edit&redlink=1" class="new" title="행 공간과 열 공간 (없는 문서)">행 공간과 열 공간</a></li> <li><a href="/wiki/%EC%A7%81%EA%B5%90" title="직교">직교</a></li> <li><a href="/wiki/%EC%98%81%EA%B3%B5%EA%B0%84" class="mw-redirect" title="영공간">영공간</a></li> <li><a href="/wiki/%EA%B3%A0%EC%9C%B3%EA%B0%92%EA%B3%BC_%EA%B3%A0%EC%9C%A0_%EB%B2%A1%ED%84%B0" title="고윳값과 고유 벡터">고윳값과 고유 벡터</a></li> <li><a href="/wiki/%EC%99%B8%EC%A0%81" title="외적">외적</a></li> <li><a href="/wiki/%EB%82%B4%EC%A0%81_%EA%B3%B5%EA%B0%84" title="내적 공간">내적 공간</a></li> <li><a href="/wiki/%EC%8A%A4%EC%B9%BC%EB%9D%BC%EA%B3%B1" title="스칼라곱">스칼라곱</a></li> <li><a href="/wiki/%EC%A0%84%EC%B9%98%ED%96%89%EB%A0%AC" class="mw-redirect" title="전치행렬">전치행렬</a></li> <li><a href="/wiki/%EA%B7%B8%EB%9E%8C-%EC%8A%88%EB%AF%B8%ED%8A%B8_%EA%B3%BC%EC%A0%95" title="그람-슈미트 과정">그람-슈미트 과정</a></li> <li><a href="/wiki/%EC%97%B0%EB%A6%BD_%EC%9D%BC%EC%B0%A8_%EB%B0%A9%EC%A0%95%EC%8B%9D" title="연립 일차 방정식">일차 방정식</a></li> <li><a href="/w/index.php?title=%EC%84%A0%ED%98%95%EB%8C%80%EC%88%98%ED%95%99%EC%9D%98_%EA%B8%B0%EB%B3%B8_%EC%A0%95%EB%A6%AC&action=edit&redlink=1" class="new" title="선형대수학의 기본 정리 (없는 문서)">기본 정리</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="6" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/Euclidean_space" title="Euclidean space"><img alt="Three dimensional Euclidean space" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/80px-Linear_subspaces_with_shading.svg.png" decoding="async" width="80" height="58" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/120px-Linear_subspaces_with_shading.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/160px-Linear_subspaces_with_shading.svg.png 2x" data-file-width="325" data-file-height="236" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">벡터 대수</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%EB%B2%A1%ED%84%B0%EA%B3%B1" title="벡터곱">벡터곱</a></li> <li><a href="/wiki/%EC%82%BC%EC%A4%91%EA%B3%B1" title="삼중곱">삼중곱</a></li> <li><a href="/wiki/7%EC%B0%A8%EC%9B%90_%EC%99%B8%EC%A0%81" class="mw-redirect" title="7차원 외적">7차원 외적</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%EB%8B%A4%EC%A4%91%EC%84%A0%ED%98%95%EB%8C%80%EC%88%98%ED%95%99" title="다중선형대수학">다중선형대수학</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%EA%B8%B0%ED%95%98%EC%A0%81_%EB%8C%80%EC%88%98%ED%95%99" title="기하적 대수학">기하적 대수학</a></li> <li><a href="/wiki/%EC%99%B8%EB%8C%80%EC%88%98" title="외대수">외대수</a></li> <li><a href="/w/index.php?title=%EC%9D%B4%EC%A4%91%EB%B2%A1%ED%84%B0&action=edit&redlink=1" class="new" title="이중벡터 (없는 문서)">이중벡터</a></li> <li><a href="/w/index.php?title=%EB%8B%A4%EC%A4%91%EB%B2%A1%ED%84%B0&action=edit&redlink=1" class="new" title="다중벡터 (없는 문서)">다중벡터</a></li> <li><a href="/wiki/%ED%85%90%EC%84%9C" title="텐서">텐서</a></li> <li><a href="/w/index.php?title=%EC%95%84%EC%9A%B0%ED%84%B0%EB%AA%A8%ED%94%BC%EC%A6%98&action=edit&redlink=1" class="new" title="아우터모피즘 (없는 문서)">아우터모피즘</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink selflink">행렬</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%EB%B8%94%EB%A1%9D_%ED%96%89%EB%A0%AC" title="블록 행렬">블록 행렬</a></li> <li><a href="/wiki/%ED%96%89%EB%A0%AC_%EB%B6%84%ED%95%B4" title="행렬 분해">행렬 분해</a></li> <li><a href="/wiki/%EA%B0%80%EC%97%AD%ED%96%89%EB%A0%AC" title="가역행렬">가역행렬</a></li> <li><a href="/wiki/%EC%86%8C%ED%96%89%EB%A0%AC%EC%8B%9D" class="mw-redirect" title="소행렬식">소행렬식</a></li> <li><a href="/wiki/%ED%96%89%EB%A0%AC_%EA%B3%B1%EC%85%88" title="행렬 곱셈">행렬 곱셈</a></li> <li><a href="/wiki/%EA%B3%84%EC%88%98_(%EC%84%A0%ED%98%95%EB%8C%80%EC%88%98%ED%95%99)" title="계수 (선형대수학)">계수</a></li> <li><a href="/wiki/%EB%B3%80%ED%99%98%ED%96%89%EB%A0%AC" title="변환행렬">변환행렬</a></li> <li><a href="/wiki/%ED%81%AC%EB%9D%BC%EB%A9%94%EB%A5%B4_%EA%B3%B5%EC%8B%9D" class="mw-redirect" title="크라메르 공식">크라메르 공식</a></li> <li><a href="/wiki/%EA%B0%80%EC%9A%B0%EC%8A%A4_%EC%86%8C%EA%B1%B0%EB%B2%95" title="가우스 소거법">가우스 소거법</a></li> <li><a href="/wiki/%ED%96%89%EB%A0%AC%EC%8B%9D" title="행렬식">행렬식</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%EC%B6%94%EC%83%81%EB%8C%80%EC%88%98%ED%95%99" title="추상대수학">대수적</a> 구성</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%EC%8C%8D%EB%8C%80_%EA%B3%B5%EA%B0%84" class="mw-redirect" title="쌍대 공간">쌍대 공간</a></li> <li><a href="/wiki/%EC%A7%81%ED%95%A9" title="직합">직합</a></li> <li><a href="/wiki/%ED%95%A8%EC%88%98_%EA%B3%B5%EA%B0%84" title="함수 공간">함수 공간</a></li> <li><a href="/wiki/%EB%AA%AB_%EB%B2%A1%ED%84%B0_%EA%B3%B5%EA%B0%84" class="mw-redirect" title="몫 벡터 공간">몫공간</a></li> <li><a href="/wiki/%EB%B6%80%EB%B6%84_%EB%B2%A1%ED%84%B0_%EA%B3%B5%EA%B0%84" class="mw-redirect" title="부분 벡터 공간">부분공간</a></li> <li><a href="/wiki/%ED%85%90%EC%84%9C%EA%B3%B1" title="텐서곱">텐서곱</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%EC%88%98%EC%B9%98%EC%84%A0%ED%98%95%EB%8C%80%EC%88%98%ED%95%99" title="수치선형대수학">수치선형대수학</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%EB%B6%80%EB%8F%99%EC%86%8C%EC%88%98%EC%A0%90" title="부동소수점">부동소수점</a></li> <li><a href="/w/index.php?title=%EC%88%98%EC%B9%98%EC%A0%81_%EC%95%88%EC%A0%95%EC%84%B1&action=edit&redlink=1" class="new" title="수치적 안정성 (없는 문서)">수치적 안정성</a></li> <li><a href="/w/index.php?title=BLAS&action=edit&redlink=1" class="new" title="BLAS (없는 문서)">BLAS</a>(Basic Linear Algebra Subprogram)</li> <li><a href="/wiki/%ED%9D%AC%EC%86%8C%ED%96%89%EB%A0%AC" class="mw-redirect" title="희소행렬">희소행렬</a></li> <li><a href="/w/index.php?title=%EC%84%A0%ED%98%95%EB%8C%80%EC%88%98%ED%95%99_%EB%9D%BC%EC%9D%B4%EB%B8%8C%EB%9F%AC%EB%A6%AC_%EB%B9%84%EA%B5%90&action=edit&redlink=1" class="new" title="선형대수학 라이브러리 비교 (없는 문서)">선형대수학 라이브러리 비교</a></li> <li><a href="/w/index.php?title=%EC%88%98%EC%B9%98_%EB%B6%84%EC%84%9D_%EC%86%8C%ED%94%84%ED%8A%B8%EC%9B%A8%EC%96%B4_%EB%B9%84%EA%B5%90&action=edit&redlink=1" class="new" title="수치 분석 소프트웨어 비교 (없는 문서)">수치 분석 소프트웨어 비교</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3" style="font-weight:bold;"><div> <ul><li><span typeof="mw:File"><span title="분류"><img alt="분류" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Folder_Hexagonal_Icon.svg/16px-Folder_Hexagonal_Icon.svg.png" decoding="async" width="16" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Folder_Hexagonal_Icon.svg/24px-Folder_Hexagonal_Icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Folder_Hexagonal_Icon.svg/32px-Folder_Hexagonal_Icon.svg.png 2x" data-file-width="36" data-file-height="31" /></span></span> <a href="/wiki/%EB%B6%84%EB%A5%98:%EC%84%A0%ED%98%95%EB%8C%80%EC%88%98%ED%95%99" title="분류:선형대수학">분류</a></li> <li><span typeof="mw:File"><span title="목록 문서"><img alt="목록 문서" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/w/index.php?title=%EC%84%A0%ED%98%95%EB%8C%80%EC%88%98%ED%95%99_%EC%A3%BC%EC%A0%9C_%EB%AA%A9%EB%A1%9D&action=edit&redlink=1" class="new" title="선형대수학 주제 목록 (없는 문서)">개요</a></li> <li><span typeof="mw:File"><span title="포털"><img alt="포털" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Portal.svg/16px-Portal.svg.png" decoding="async" width="16" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Portal.svg/24px-Portal.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Portal.svg/32px-Portal.svg.png 2x" data-file-width="36" data-file-height="32" /></span></span> <a href="/wiki/%ED%8F%AC%ED%84%B8:%EC%88%98%ED%95%99" title="포털:수학">수학 포털</a></li> <li><span typeof="mw:File"><span title="위키책"><img alt="위키책" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/16px-Wikibooks-logo.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/24px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/32px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></span></span> <a href="https://en.wikipedia.org/wiki/wikibooks:Linear_algebra" class="extiw" title="en:wikibooks:Linear algebra">위키책</a></li> <li><span typeof="mw:File"><span title="위키배움터"><img alt="위키배움터" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Wikiversity-logo.svg/16px-Wikiversity-logo.svg.png" decoding="async" width="16" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Wikiversity-logo.svg/24px-Wikiversity-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/91/Wikiversity-logo.svg/32px-Wikiversity-logo.svg.png 2x" data-file-width="1000" data-file-height="800" /></span></span> <a href="https://en.wikipedia.org/wiki/wikiversity:Linear_algebra" class="extiw" title="en:wikiversity:Linear algebra">위키배움터</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r38501015"></div><div role="navigation" class="navbox authority-control" aria-labelledby="전거_통제_frameless&#124;text-top&#124;10px&#124;alt=위키데이터에서_편집하기&#124;link=https&#58;//www.wikidata.org/wiki/Q44337#identifiers&#124;class=noprint&#124;위키데이터에서_편집하기" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="전거_통제_frameless&#124;text-top&#124;10px&#124;alt=위키데이터에서_편집하기&#124;link=https&#58;//www.wikidata.org/wiki/Q44337#identifiers&#124;class=noprint&#124;위키데이터에서_편집하기" style="font-size:114%;margin:0 4em"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A0%84%EA%B1%B0_%ED%86%B5%EC%A0%9C" title="위키백과:전거 통제">전거 통제</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q44337#identifiers" title="위키데이터에서 편집하기"><img alt="위키데이터에서 편집하기" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">국가</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><abbr title="Matrices (Matemáticas)"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&authority_id=XX529678">스페인</a></abbr></span></li> <li><span class="uid"><abbr title="Matrices"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119324420">프랑스</a></abbr></span></li> <li><span class="uid"><abbr title="Matrices"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119324420">BnF 데이터</a></abbr></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4037968-1">독일</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://uli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007557992905171">이스라엘</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85082210">미국</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://kopkatalogs.lv/F?func=direct&local_base=lnc10&doc_number=000117517&P_CON_LNG=ENG">라트비아</a></span></li> <li><span class="uid"><abbr title="matice (matematika)"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph122686&CON_LNG=ENG">체코</a></abbr></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">기타</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://esu.com.ua/search_articles.php?id=62919">현대 우크라이나 백과사전</a></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐b766959bd‐l7xhn Cached time: 20250217090531 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.622 seconds Real time usage: 0.974 seconds Preprocessor visited node count: 4058/1000000 Post‐expand include size: 48373/2097152 bytes Template argument size: 1891/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 16/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 31749/5000000 bytes Lua time usage: 0.199/10.000 seconds Lua memory usage: 4849221/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 530.465 1 -total 28.58% 151.587 1 틀:위키데이터_속성_추적 18.45% 97.849 1 틀:선형대수학 18.01% 95.526 1 틀:둘러보기_상자 15.53% 82.399 1 틀:각주 12.16% 64.522 3 틀:서적_인용 7.52% 39.892 1 틀:전거_통제 6.54% 34.713 1 틀:위키공용분류-줄 6.49% 34.446 6 틀:본문 6.00% 31.821 1 틀:Sister-inline --> <!-- Saved in parser cache with key kowiki:pcache:594:|#|:idhash:canonical and timestamp 20250217090531 and revision id 38711857. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">원본 주소 "<a dir="ltr" href="https://ko.wikipedia.org/w/index.php?title=행렬&oldid=38711857">https://ko.wikipedia.org/w/index.php?title=행렬&oldid=38711857</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%B6%84%EB%A5%98" title="특수:분류">분류</a>: <ul><li><a href="/wiki/%EB%B6%84%EB%A5%98:%ED%96%89%EB%A0%AC" title="분류:행렬">행렬</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">숨은 분류: <ul><li><a href="/wiki/%EB%B6%84%EB%A5%98:%ED%95%B4%EA%B2%B0%EB%90%98%EC%A7%80_%EC%95%8A%EC%9D%80_%EC%86%8D%EC%84%B1%EC%9D%B4_%EC%9E%88%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:해결되지 않은 속성이 있는 문서">해결되지 않은 속성이 있는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:CS1_-_%EC%98%81%EC%96%B4_%EC%9D%B8%EC%9A%A9_(en)" title="분류:CS1 - 영어 인용 (en)">CS1 - 영어 인용 (en)</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P18%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P18을 사용하는 문서">위키데이터 속성 P18을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P373%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P373을 사용하는 문서">위키데이터 속성 P373을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P227%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P227을 사용하는 문서">위키데이터 속성 P227을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P244%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P244를 사용하는 문서">위키데이터 속성 P244를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P268%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P268을 사용하는 문서">위키데이터 속성 P268을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P691%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P691을 사용하는 문서">위키데이터 속성 P691을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P950%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P950을 사용하는 문서">위키데이터 속성 P950을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P1368%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P1368을 사용하는 문서">위키데이터 속성 P1368을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P4613%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P4613을 사용하는 문서">위키데이터 속성 P4613을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P7859%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P7859를 사용하는 문서">위키데이터 속성 P7859를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P8189%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P8189를 사용하는 문서">위키데이터 속성 P8189를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%98%81%EC%96%B4_%ED%91%9C%EA%B8%B0%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EB%AC%B8%EC%84%9C" title="분류:영어 표기를 포함한 문서">영어 표기를 포함한 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%A1%B4%EC%9E%AC%ED%95%98%EC%A7%80_%EC%95%8A%EB%8A%94_%EB%AC%B8%EC%84%9C%EB%A5%BC_%EB%8C%80%EC%83%81%EC%9C%BC%EB%A1%9C_%ED%95%98%EB%8A%94_hatnote_%ED%8B%80%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:존재하지 않는 문서를 대상으로 하는 hatnote 틀을 사용하는 문서">존재하지 않는 문서를 대상으로 하는 hatnote 틀을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:BNE_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:BNE 식별자를 포함한 위키백과 문서">BNE 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:BNF_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:BNF 식별자를 포함한 위키백과 문서">BNF 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:BNFdata_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:BNFdata 식별자를 포함한 위키백과 문서">BNFdata 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:GND_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:GND 식별자를 포함한 위키백과 문서">GND 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:J9U_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:J9U 식별자를 포함한 위키백과 문서">J9U 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:LCCN_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:LCCN 식별자를 포함한 위키백과 문서">LCCN 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:LNB_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:LNB 식별자를 포함한 위키백과 문서">LNB 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:NKC_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:NKC 식별자를 포함한 위키백과 문서">NKC 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:EMU_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:EMU 식별자를 포함한 위키백과 문서">EMU 식별자를 포함한 위키백과 문서</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 이 문서는 2025년 2월 14일 (금) 10:49에 마지막으로 편집되었습니다.</li> <li id="footer-info-copyright">모든 문서는 <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.ko">크리에이티브 커먼즈 저작자표시-동일조건변경허락 4.0</a>에 따라 사용할 수 있으며, 추가적인 조건이 적용될 수 있습니다. 자세한 내용은 <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/ko">이용 약관</a>을 참고하십시오.<br />Wikipedia®는 미국 및 다른 국가에 등록되어 있는 <a rel="nofollow" class="external text" href="https://www.wikimediafoundation.org">Wikimedia Foundation, Inc.</a> 소유의 등록 상표입니다.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">개인정보처리방침</a></li> <li id="footer-places-about"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%86%8C%EA%B0%9C">위키백과 소개</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%A9%B4%EC%B1%85_%EC%A1%B0%ED%95%AD">면책 조항</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">행동 강령</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">개발자</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ko.wikipedia.org">통계</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">쿠키 정책</a></li> <li id="footer-places-mobileview"><a href="//ko.m.wikipedia.org/w/index.php?title=%ED%96%89%EB%A0%AC&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">모바일 보기</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>검색</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="위키백과 검색"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="특수:검색"> </div> <button class="cdx-button cdx-search-input__end-button">검색</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="목차" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="목차 토글" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">목차 토글</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">행렬</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>93개 언어</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>새 주제</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6f5945bd9d-pj4t6","wgBackendResponseTime":123,"wgPageParseReport":{"limitreport":{"cputime":"0.622","walltime":"0.974","ppvisitednodes":{"value":4058,"limit":1000000},"postexpandincludesize":{"value":48373,"limit":2097152},"templateargumentsize":{"value":1891,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":16,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":31749,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 530.465 1 -total"," 28.58% 151.587 1 틀:위키데이터_속성_추적"," 18.45% 97.849 1 틀:선형대수학"," 18.01% 95.526 1 틀:둘러보기_상자"," 15.53% 82.399 1 틀:각주"," 12.16% 64.522 3 틀:서적_인용"," 7.52% 39.892 1 틀:전거_통제"," 6.54% 34.713 1 틀:위키공용분류-줄"," 6.49% 34.446 6 틀:본문"," 6.00% 31.821 1 틀:Sister-inline"]},"scribunto":{"limitreport-timeusage":{"value":"0.199","limit":"10.000"},"limitreport-memusage":{"value":4849221,"limit":52428800},"limitreport-logs":"14\n"},"cachereport":{"origin":"mw-web.codfw.main-b766959bd-l7xhn","timestamp":"20250217090531","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\ud589\ub82c","url":"https:\/\/ko.wikipedia.org\/wiki\/%ED%96%89%EB%A0%AC","sameAs":"http:\/\/www.wikidata.org\/entity\/Q44337","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q44337","author":{"@type":"Organization","name":"\uc704\ud0a4\ubbf8\ub514\uc5b4 \ud504\ub85c\uc81d\ud2b8 \uae30\uc5ec\uc790"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-09-20T11:31:19Z","dateModified":"2025-02-14T01:49:52Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/4\/4d\/Matrix_ko.svg"}</script> </body> </html>