CINXE.COM
Icosahedral symmetry - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Icosahedral symmetry - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"210f18a4-a2aa-425c-846e-faebac51e0d3","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Icosahedral_symmetry","wgTitle":"Icosahedral symmetry","wgCurRevisionId":1245738611,"wgRevisionId":1245738611,"wgArticleId":2877844,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles lacking in-text citations from May 2020","All articles lacking in-text citations","CS1 maint: postscript","Webarchive template wayback links","Finite groups","Rotational symmetry"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Icosahedral_symmetry","wgRelevantArticleId":2877844,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q5986738","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics": true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.tablesorter.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.tablesorter","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.tablesorter.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/e/eb/Icosahedral_reflection_domains.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1201"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Icosahedral_reflection_domains.png/800px-Icosahedral_reflection_domains.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="801"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Icosahedral_reflection_domains.png/640px-Icosahedral_reflection_domains.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="641"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Icosahedral symmetry - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Icosahedral_symmetry"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Icosahedral_symmetry&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Icosahedral_symmetry"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Icosahedral_symmetry rootpage-Icosahedral_symmetry skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Icosahedral+symmetry" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Icosahedral+symmetry" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Icosahedral+symmetry" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Icosahedral+symmetry" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Description" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Description"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Description</span> </div> </a> <ul id="toc-Description-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-As_point_group" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#As_point_group"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>As point group</span> </div> </a> <button aria-controls="toc-As_point_group-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle As point group subsection</span> </button> <ul id="toc-As_point_group-sublist" class="vector-toc-list"> <li id="toc-Visualizations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Visualizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Visualizations</span> </div> </a> <ul id="toc-Visualizations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Group_structure" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Group_structure"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Group structure</span> </div> </a> <button aria-controls="toc-Group_structure-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Group structure subsection</span> </button> <ul id="toc-Group_structure-sublist" class="vector-toc-list"> <li id="toc-Isomorphism_of_I_with_A5" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Isomorphism_of_I_with_A5"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Isomorphism of <i>I</i> with A<sub>5</sub></span> </div> </a> <ul id="toc-Isomorphism_of_I_with_A5-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Commonly_confused_groups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Commonly_confused_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Commonly confused groups</span> </div> </a> <ul id="toc-Commonly_confused_groups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conjugacy_classes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conjugacy_classes"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Conjugacy classes</span> </div> </a> <ul id="toc-Conjugacy_classes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Subgroups_of_the_full_icosahedral_symmetry_group" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Subgroups_of_the_full_icosahedral_symmetry_group"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Subgroups of the full icosahedral symmetry group</span> </div> </a> <ul id="toc-Subgroups_of_the_full_icosahedral_symmetry_group-sublist" class="vector-toc-list"> <li id="toc-Vertex_stabilizers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Vertex_stabilizers"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4.1</span> <span>Vertex stabilizers</span> </div> </a> <ul id="toc-Vertex_stabilizers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Edge_stabilizers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Edge_stabilizers"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4.2</span> <span>Edge stabilizers</span> </div> </a> <ul id="toc-Edge_stabilizers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Face_stabilizers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Face_stabilizers"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4.3</span> <span>Face stabilizers</span> </div> </a> <ul id="toc-Face_stabilizers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Polyhedron_stabilizers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Polyhedron_stabilizers"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4.4</span> <span>Polyhedron stabilizers</span> </div> </a> <ul id="toc-Polyhedron_stabilizers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Coxeter_group_generators" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Coxeter_group_generators"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4.5</span> <span>Coxeter group generators</span> </div> </a> <ul id="toc-Coxeter_group_generators-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Fundamental_domain" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Fundamental_domain"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Fundamental domain</span> </div> </a> <ul id="toc-Fundamental_domain-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Polyhedra_with_icosahedral_symmetry" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Polyhedra_with_icosahedral_symmetry"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Polyhedra with icosahedral symmetry</span> </div> </a> <button aria-controls="toc-Polyhedra_with_icosahedral_symmetry-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Polyhedra with icosahedral symmetry subsection</span> </button> <ul id="toc-Polyhedra_with_icosahedral_symmetry-sublist" class="vector-toc-list"> <li id="toc-Chiral_polyhedra" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Chiral_polyhedra"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Chiral polyhedra</span> </div> </a> <ul id="toc-Chiral_polyhedra-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Full_icosahedral_symmetry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Full_icosahedral_symmetry"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Full icosahedral symmetry</span> </div> </a> <ul id="toc-Full_icosahedral_symmetry-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Other_objects_with_icosahedral_symmetry" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Other_objects_with_icosahedral_symmetry"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Other objects with icosahedral symmetry</span> </div> </a> <button aria-controls="toc-Other_objects_with_icosahedral_symmetry-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Other objects with icosahedral symmetry subsection</span> </button> <ul id="toc-Other_objects_with_icosahedral_symmetry-sublist" class="vector-toc-list"> <li id="toc-Liquid_crystals_with_icosahedral_symmetry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Liquid_crystals_with_icosahedral_symmetry"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Liquid crystals with icosahedral symmetry</span> </div> </a> <ul id="toc-Liquid_crystals_with_icosahedral_symmetry-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Related_geometries" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Related_geometries"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Related geometries</span> </div> </a> <ul id="toc-Related_geometries-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Icosahedral symmetry</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 7 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-7" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">7 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Simetr%C3%ADa_icosa%C3%A9drica" title="Simetría icosaédrica – Spanish" lang="es" hreflang="es" data-title="Simetría icosaédrica" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Dudekedra_simetrio" title="Dudekedra simetrio – Esperanto" lang="eo" hreflang="eo" data-title="Dudekedra simetrio" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Simetri_ikosahedral" title="Simetri ikosahedral – Indonesian" lang="id" hreflang="id" data-title="Simetri ikosahedral" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Icosahedrale_symmetrie" title="Icosahedrale symmetrie – Dutch" lang="nl" hreflang="nl" data-title="Icosahedrale symmetrie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Simetrie_icosaedric%C4%83" title="Simetrie icosaedrică – Romanian" lang="ro" hreflang="ro" data-title="Simetrie icosaedrică" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%98%D0%BA%D0%BE%D1%81%D0%B0%D1%8D%D0%B4%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%81%D0%B8%D0%BC%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Икосаэдральная симметрия – Russian" lang="ru" hreflang="ru" data-title="Икосаэдральная симметрия" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Ikosaedrinen_symmetria" title="Ikosaedrinen symmetria – Finnish" lang="fi" hreflang="fi" data-title="Ikosaedrinen symmetria" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5986738#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Icosahedral_symmetry" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Icosahedral_symmetry" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Icosahedral_symmetry"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Icosahedral_symmetry&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Icosahedral_symmetry&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Icosahedral_symmetry"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Icosahedral_symmetry&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Icosahedral_symmetry&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Icosahedral_symmetry" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Icosahedral_symmetry" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Icosahedral_symmetry&oldid=1245738611" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Icosahedral_symmetry&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Icosahedral_symmetry&id=1245738611&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIcosahedral_symmetry"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIcosahedral_symmetry"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Icosahedral_symmetry&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Icosahedral_symmetry&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Icosahedral_symmetry" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5986738" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">3D symmetry group</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_footnotes_needed plainlinks metadata ambox ambox-style ambox-More_footnotes_needed" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/40px-Text_document_with_red_question_mark.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/60px-Text_document_with_red_question_mark.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/80px-Text_document_with_red_question_mark.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article includes a list of <a href="/wiki/Wikipedia:Citing_sources#General_references" title="Wikipedia:Citing sources">general references</a>, but <b>it lacks sufficient corresponding <a href="/wiki/Wikipedia:Citing_sources#Inline_citations" title="Wikipedia:Citing sources">inline citations</a></b>.<span class="hide-when-compact"> Please help to <a href="/wiki/Wikipedia:WikiProject_Reliability" title="Wikipedia:WikiProject Reliability">improve</a> this article by <a href="/wiki/Wikipedia:When_to_cite" title="Wikipedia:When to cite">introducing</a> more precise citations.</span> <span class="date-container"><i>(<span class="date">May 2020</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <table class="wikitable" style="float:right; margin-left:1em" width="300"> <caption>Selected <a href="/wiki/Point_groups_in_three_dimensions" title="Point groups in three dimensions">point groups in three dimensions</a> </caption> <tbody><tr style="text-align:center;"> <td><span typeof="mw:File"><a href="/wiki/File:Sphere_symmetry_group_cs.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Sphere_symmetry_group_cs.png/100px-Sphere_symmetry_group_cs.png" decoding="async" width="100" height="98" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Sphere_symmetry_group_cs.png/150px-Sphere_symmetry_group_cs.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Sphere_symmetry_group_cs.png/200px-Sphere_symmetry_group_cs.png 2x" data-file-width="636" data-file-height="622" /></a></span><br /><a href="/wiki/List_of_spherical_symmetry_groups#Involutional_symmetry" title="List of spherical symmetry groups">Involutional symmetry</a><br />C<sub>s</sub>, (*)<br />[ ] = <span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/4/4d/CDel_node_c2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Sphere_symmetry_group_c3v.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/Sphere_symmetry_group_c3v.png/100px-Sphere_symmetry_group_c3v.png" decoding="async" width="100" height="100" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/Sphere_symmetry_group_c3v.png/150px-Sphere_symmetry_group_c3v.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/22/Sphere_symmetry_group_c3v.png/200px-Sphere_symmetry_group_c3v.png 2x" data-file-width="621" data-file-height="620" /></a></span><br /><a href="/wiki/Cyclic_symmetry_in_three_dimensions" title="Cyclic symmetry in three dimensions">Cyclic symmetry</a><br />C<sub>nv</sub>, (*nn)<br />[n] = <span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/80/CDel_node_c1.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/4/46/CDel_n.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/80/CDel_node_c1.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Sphere_symmetry_group_d3h.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Sphere_symmetry_group_d3h.png/100px-Sphere_symmetry_group_d3h.png" decoding="async" width="100" height="100" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Sphere_symmetry_group_d3h.png/150px-Sphere_symmetry_group_d3h.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Sphere_symmetry_group_d3h.png/200px-Sphere_symmetry_group_d3h.png 2x" data-file-width="621" data-file-height="620" /></a></span><br /><a href="/wiki/Dihedral_symmetry_in_three_dimensions" title="Dihedral symmetry in three dimensions">Dihedral symmetry</a><br />D<sub>nh</sub>, (*n22)<br />[n,2] = <span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/80/CDel_node_c1.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/4/46/CDel_n.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/80/CDel_node_c1.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_2.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/80/CDel_node_c1.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span> </td></tr> <tr> <th colspan="4"><a href="/wiki/Polyhedral_group" title="Polyhedral group">Polyhedral group</a>, [n,3], (*n32) </th></tr> <tr style="text-align:center;"> <td><span typeof="mw:File"><a href="/wiki/File:Sphere_symmetry_group_td.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Sphere_symmetry_group_td.png/100px-Sphere_symmetry_group_td.png" decoding="async" width="100" height="96" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Sphere_symmetry_group_td.png/150px-Sphere_symmetry_group_td.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Sphere_symmetry_group_td.png/200px-Sphere_symmetry_group_td.png 2x" data-file-width="649" data-file-height="625" /></a></span><br /><a href="/wiki/Tetrahedral_symmetry" title="Tetrahedral symmetry">Tetrahedral symmetry</a><br />T<sub>d</sub>, (*332)<br />[3,3] = <span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/80/CDel_node_c1.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/80/CDel_node_c1.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/80/CDel_node_c1.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Sphere_symmetry_group_oh.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Sphere_symmetry_group_oh.png/100px-Sphere_symmetry_group_oh.png" decoding="async" width="100" height="96" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Sphere_symmetry_group_oh.png/150px-Sphere_symmetry_group_oh.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/19/Sphere_symmetry_group_oh.png/200px-Sphere_symmetry_group_oh.png 2x" data-file-width="649" data-file-height="625" /></a></span><br /><a href="/wiki/Octahedral_symmetry" title="Octahedral symmetry">Octahedral symmetry</a><br />O<sub>h</sub>, (*432)<br />[4,3] = <span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/4/4d/CDel_node_c2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/8c/CDel_4.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/80/CDel_node_c1.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/80/CDel_node_c1.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Sphere_symmetry_group_ih.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Sphere_symmetry_group_ih.png/100px-Sphere_symmetry_group_ih.png" decoding="async" width="100" height="92" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Sphere_symmetry_group_ih.png/150px-Sphere_symmetry_group_ih.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Sphere_symmetry_group_ih.png/200px-Sphere_symmetry_group_ih.png 2x" data-file-width="671" data-file-height="617" /></a></span><br /><a class="mw-selflink selflink">Icosahedral symmetry</a><br />I<sub>h</sub>, (*532)<br />[5,3] = <span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/4/4d/CDel_node_c2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/4/4d/CDel_node_c2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/4/4d/CDel_node_c2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span> </td></tr></tbody></table> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Icosahedral_reflection_domains.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Icosahedral_reflection_domains.png/220px-Icosahedral_reflection_domains.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Icosahedral_reflection_domains.png/330px-Icosahedral_reflection_domains.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Icosahedral_reflection_domains.png/440px-Icosahedral_reflection_domains.png 2x" data-file-width="811" data-file-height="812" /></a><figcaption>Icosahedral symmetry fundamental domains</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Soccer_ball.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/e/ec/Soccer_ball.svg/220px-Soccer_ball.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/e/ec/Soccer_ball.svg/330px-Soccer_ball.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/e/ec/Soccer_ball.svg/440px-Soccer_ball.svg.png 2x" data-file-width="800" data-file-height="800" /></a><figcaption>A <a href="/wiki/Ball_(association_football)" title="Ball (association football)">soccer ball</a>, a common example of a <a href="/wiki/Spherical_polyhedron" title="Spherical polyhedron">spherical</a> <a href="/wiki/Truncated_icosahedron" title="Truncated icosahedron">truncated icosahedron</a>, has full icosahedral symmetry.</figcaption></figure> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Sixteenth_stellation_of_icosahedron.png" class="mw-file-description"><img alt="A great icosahedron" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Sixteenth_stellation_of_icosahedron.png/200px-Sixteenth_stellation_of_icosahedron.png" decoding="async" width="200" height="191" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Sixteenth_stellation_of_icosahedron.png/300px-Sixteenth_stellation_of_icosahedron.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Sixteenth_stellation_of_icosahedron.png/400px-Sixteenth_stellation_of_icosahedron.png 2x" data-file-width="940" data-file-height="900" /></a><figcaption>Rotations and reflections form the symmetry group of a <a href="/wiki/Great_icosahedron" title="Great icosahedron">great icosahedron</a>.</figcaption></figure> <p>In mathematics, and especially in geometry, an object has <b>icosahedral symmetry</b> if it has the same <a href="/wiki/Symmetries" class="mw-redirect" title="Symmetries">symmetries</a> as a <a href="/wiki/Regular_icosahedron" title="Regular icosahedron">regular icosahedron</a>. Examples of other <a href="/wiki/Polyhedra" class="mw-redirect" title="Polyhedra">polyhedra</a> with icosahedral symmetry include the <a href="/wiki/Regular_dodecahedron" title="Regular dodecahedron">regular dodecahedron</a> (the <a href="/wiki/Dual_polyhedron" title="Dual polyhedron">dual</a> of the icosahedron) and the <a href="/wiki/Rhombic_triacontahedron" title="Rhombic triacontahedron">rhombic triacontahedron</a>. </p><p>Every polyhedron with icosahedral symmetry has 60 <a href="/wiki/Rotational_symmetry" title="Rotational symmetry">rotational</a> (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a <a href="/wiki/Reflection_symmetry" title="Reflection symmetry">reflection</a>), for a total <a href="/wiki/Symmetry_order" class="mw-redirect" title="Symmetry order">symmetry order</a> of 120. The full <a href="/wiki/Symmetry_group" title="Symmetry group">symmetry group</a> is the <a href="/wiki/Coxeter_group" title="Coxeter group">Coxeter group</a> of type <span class="texhtml">H<sub>3</sub></span>. It may be represented by <a href="/wiki/Coxeter_notation" title="Coxeter notation">Coxeter notation</a> <span class="texhtml">[5,3]</span> and <a href="/wiki/Coxeter_diagram" class="mw-redirect" title="Coxeter diagram">Coxeter diagram</a> <span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span>. The set of rotational symmetries forms a subgroup that is isomorphic to the <a href="/wiki/Alternating_group" title="Alternating group">alternating group</a> <span class="texhtml">A<sub>5</sub></span> on 5 letters. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Description">Description</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=1" title="Edit section: Description"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Icosahedral symmetry is a mathematical property of objects indicating that an object has the same <a href="/wiki/Symmetry" title="Symmetry">symmetries</a> as a <a href="/wiki/Regular_icosahedron" title="Regular icosahedron">regular icosahedron</a>. </p> <div class="mw-heading mw-heading2"><h2 id="As_point_group">As point group</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=2" title="Edit section: As point group"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Apart from the two infinite series of prismatic and antiprismatic symmetry, <b>rotational icosahedral symmetry</b> or <b>chiral icosahedral symmetry</b> of chiral objects and <b>full icosahedral symmetry</b> or <b>achiral icosahedral symmetry</b> are the <a href="/wiki/Point_groups_in_three_dimensions" title="Point groups in three dimensions">discrete point symmetries</a> (or equivalently, <a href="/wiki/List_of_spherical_symmetry_groups" title="List of spherical symmetry groups">symmetries on the sphere</a>) with the largest <a href="/wiki/Symmetry_group" title="Symmetry group">symmetry groups</a>. </p><p>Icosahedral symmetry is not compatible with <a href="/wiki/Translational_symmetry" title="Translational symmetry">translational symmetry</a>, so there are no associated <a href="/wiki/Crystal_system#Overview_of_point_groups_by_crystal_system" title="Crystal system">crystallographic point groups</a> or <a href="/wiki/Space_group" title="Space group">space groups</a>. </p> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Arthur_Moritz_Sch%C3%B6nflies" class="mw-redirect" title="Arthur Moritz Schönflies">Schö.</a> </th> <th colspan="2"><a href="/wiki/Coxeter_notation" title="Coxeter notation">Coxeter</a> </th> <th><a href="/wiki/Orbifold_notation" title="Orbifold notation">Orb.</a> </th> <th>Abstract<br />structure </th> <th><a href="/wiki/Symmetry_order" class="mw-redirect" title="Symmetry order">Order</a> </th></tr> <tr align="center"> <td><i>I</i></td> <td>[5,3]<sup>+</sup></td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span></td> <td>532</td> <td><a href="/wiki/Alternating_group" title="Alternating group">A<sub>5</sub></a></td> <td>60 </td></tr> <tr align="center"> <td><i>I<sub>h</sub></i></td> <td>[5,3]</td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span></td> <td>*532</td> <td>A<sub>5</sub>×2</td> <td>120 </td></tr></tbody></table> <p><a href="/wiki/Presentation_of_a_group" title="Presentation of a group">Presentations</a> corresponding to the above are: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I:\langle s,t\mid s^{2},t^{3},(st)^{5}\rangle \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>:</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>∣<!-- ∣ --></mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>,</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I:\langle s,t\mid s^{2},t^{3},(st)^{5}\rangle \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2451a3262390b371bc95c9cb1f9626e54b465788" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.3ex; height:3.176ex;" alt="{\displaystyle I:\langle s,t\mid s^{2},t^{3},(st)^{5}\rangle \ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{h}:\langle s,t\mid s^{3}(st)^{-2},t^{5}(st)^{-2}\rangle .\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>:</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>∣<!-- ∣ --></mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>s</mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>s</mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>.</mo> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{h}:\langle s,t\mid s^{3}(st)^{-2},t^{5}(st)^{-2}\rangle .\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5386a338b501fad22176c7b8db3bc1b7262c623" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.681ex; height:3.176ex;" alt="{\displaystyle I_{h}:\langle s,t\mid s^{3}(st)^{-2},t^{5}(st)^{-2}\rangle .\ }"></span></dd></dl> <p>These correspond to the icosahedral groups (rotational and full) being the (2,3,5) <a href="/wiki/Triangle_group" title="Triangle group">triangle groups</a>. </p><p>The first presentation was given by <a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">William Rowan Hamilton</a> in 1856, in his paper on <a href="/wiki/Icosian_calculus" title="Icosian calculus">icosian calculus</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>Note that other presentations are possible, for instance as an <a href="/wiki/Alternating_group" title="Alternating group">alternating group</a> (for <i>I</i>). </p> <div class="mw-heading mw-heading3"><h3 id="Visualizations">Visualizations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=3" title="Edit section: Visualizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The full <a href="/wiki/Symmetry_group" title="Symmetry group">symmetry group</a> is the <a href="/wiki/Coxeter_group" title="Coxeter group">Coxeter group</a> of type <span class="texhtml">H<sub>3</sub></span>. It may be represented by <a href="/wiki/Coxeter_notation" title="Coxeter notation">Coxeter notation</a> <span class="texhtml">[5,3]</span> and <a href="/wiki/Coxeter_diagram" class="mw-redirect" title="Coxeter diagram">Coxeter diagram</a> <span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span>. The set of rotational symmetries forms a subgroup that is isomorphic to the <a href="/wiki/Alternating_group" title="Alternating group">alternating group</a> <span class="texhtml">A<sub>5</sub></span> on 5 letters. </p> <table class="wikitable"> <tbody><tr valign="top"> <th rowspan="2"><a href="/wiki/Schoenflies_notation" title="Schoenflies notation">Schoe.</a><br />(<a href="/wiki/Orbifold_notation" title="Orbifold notation">Orb.</a>) </th> <th rowspan="2"><a href="/wiki/Coxeter_notation" title="Coxeter notation">Coxeter<br />notation</a> </th> <th rowspan="2">Elements </th> <th colspan="4">Mirror diagrams </th></tr> <tr> <th>Orthogonal </th> <th colspan="3"><a href="/wiki/Stereographic_projection" title="Stereographic projection">Stereographic projection</a> </th></tr> <tr align="center"> <th>I<sub>h</sub><br />(*532) </th> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/80/CDel_node_c1.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/80/CDel_node_c1.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/80/CDel_node_c1.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span><br />[5,3]</td> <td>Mirror<br />lines:<br />15 <span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/80/CDel_node_c1.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Spherical_disdyakis_triacontahedron.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Spherical_disdyakis_triacontahedron.png/120px-Spherical_disdyakis_triacontahedron.png" decoding="async" width="120" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Spherical_disdyakis_triacontahedron.png/180px-Spherical_disdyakis_triacontahedron.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Spherical_disdyakis_triacontahedron.png/240px-Spherical_disdyakis_triacontahedron.png 2x" data-file-width="564" data-file-height="562" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Disdyakis_triacontahedron_stereographic_d5.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/82/Disdyakis_triacontahedron_stereographic_d5.svg/150px-Disdyakis_triacontahedron_stereographic_d5.svg.png" decoding="async" width="150" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/82/Disdyakis_triacontahedron_stereographic_d5.svg/225px-Disdyakis_triacontahedron_stereographic_d5.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/82/Disdyakis_triacontahedron_stereographic_d5.svg/300px-Disdyakis_triacontahedron_stereographic_d5.svg.png 2x" data-file-width="960" data-file-height="960" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Disdyakis_triacontahedron_stereographic_d3.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Disdyakis_triacontahedron_stereographic_d3.svg/150px-Disdyakis_triacontahedron_stereographic_d3.svg.png" decoding="async" width="150" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Disdyakis_triacontahedron_stereographic_d3.svg/225px-Disdyakis_triacontahedron_stereographic_d3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Disdyakis_triacontahedron_stereographic_d3.svg/300px-Disdyakis_triacontahedron_stereographic_d3.svg.png 2x" data-file-width="960" data-file-height="960" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Disdyakis_triacontahedron_stereographic_d2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Disdyakis_triacontahedron_stereographic_d2.svg/150px-Disdyakis_triacontahedron_stereographic_d2.svg.png" decoding="async" width="150" height="125" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Disdyakis_triacontahedron_stereographic_d2.svg/225px-Disdyakis_triacontahedron_stereographic_d2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Disdyakis_triacontahedron_stereographic_d2.svg/300px-Disdyakis_triacontahedron_stereographic_d2.svg.png 2x" data-file-width="1200" data-file-height="1000" /></a></span> </td></tr> <tr align="center"> <th>I<br />(532) </th> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span><br /><span class="mw-default-size" typeof="mw:File"><a href="/wiki/File:Coxeter_diagram_chiral_icosahedral_group.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/e/e0/Coxeter_diagram_chiral_icosahedral_group.png" decoding="async" width="30" height="31" class="mw-file-element" data-file-width="30" data-file-height="31" /></a></span><br />[5,3]<sup>+</sup></td> <td>Gyration<br />points:<br />12<sub>5</sub><span typeof="mw:File"><a href="/wiki/File:Patka_piechota.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Patka_piechota.png/12px-Patka_piechota.png" decoding="async" width="12" height="12" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Patka_piechota.png/18px-Patka_piechota.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Patka_piechota.png/24px-Patka_piechota.png 2x" data-file-width="1030" data-file-height="1004" /></a></span><br />20<sub>3</sub><span typeof="mw:File"><a href="/wiki/File:Armed_forces_red_triangle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Armed_forces_red_triangle.svg/12px-Armed_forces_red_triangle.svg.png" decoding="async" width="12" height="11" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Armed_forces_red_triangle.svg/18px-Armed_forces_red_triangle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Armed_forces_red_triangle.svg/24px-Armed_forces_red_triangle.svg.png 2x" data-file-width="270" data-file-height="240" /></a></span><br />30<sub>2</sub><span typeof="mw:File"><a href="/wiki/File:Rhomb.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Rhomb.svg/12px-Rhomb.svg.png" decoding="async" width="12" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Rhomb.svg/18px-Rhomb.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Rhomb.svg/24px-Rhomb.svg.png 2x" data-file-width="63" data-file-height="80" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Sphere_symmetry_group_i.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Sphere_symmetry_group_i.png/120px-Sphere_symmetry_group_i.png" decoding="async" width="120" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Sphere_symmetry_group_i.png/180px-Sphere_symmetry_group_i.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/03/Sphere_symmetry_group_i.png/240px-Sphere_symmetry_group_i.png 2x" data-file-width="985" data-file-height="987" /></a></span> </td> <td valign="bottom"><span typeof="mw:File"><a href="/wiki/File:Disdyakis_triacontahedron_stereographic_d5_gyrations.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Disdyakis_triacontahedron_stereographic_d5_gyrations.png/150px-Disdyakis_triacontahedron_stereographic_d5_gyrations.png" decoding="async" width="150" height="133" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Disdyakis_triacontahedron_stereographic_d5_gyrations.png/225px-Disdyakis_triacontahedron_stereographic_d5_gyrations.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Disdyakis_triacontahedron_stereographic_d5_gyrations.png/300px-Disdyakis_triacontahedron_stereographic_d5_gyrations.png 2x" data-file-width="665" data-file-height="589" /></a></span><br /><span typeof="mw:File"><a href="/wiki/File:Patka_piechota.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Patka_piechota.png/12px-Patka_piechota.png" decoding="async" width="12" height="12" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Patka_piechota.png/18px-Patka_piechota.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Patka_piechota.png/24px-Patka_piechota.png 2x" data-file-width="1030" data-file-height="1004" /></a></span> </td> <td valign="bottom"><span typeof="mw:File"><a href="/wiki/File:Disdyakis_triacontahedron_stereographic_d3_gyrations.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Disdyakis_triacontahedron_stereographic_d3_gyrations.png/150px-Disdyakis_triacontahedron_stereographic_d3_gyrations.png" decoding="async" width="150" height="107" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Disdyakis_triacontahedron_stereographic_d3_gyrations.png/225px-Disdyakis_triacontahedron_stereographic_d3_gyrations.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Disdyakis_triacontahedron_stereographic_d3_gyrations.png/300px-Disdyakis_triacontahedron_stereographic_d3_gyrations.png 2x" data-file-width="827" data-file-height="588" /></a></span><br /><span typeof="mw:File"><a href="/wiki/File:Armed_forces_red_triangle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Armed_forces_red_triangle.svg/12px-Armed_forces_red_triangle.svg.png" decoding="async" width="12" height="11" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Armed_forces_red_triangle.svg/18px-Armed_forces_red_triangle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Armed_forces_red_triangle.svg/24px-Armed_forces_red_triangle.svg.png 2x" data-file-width="270" data-file-height="240" /></a></span> </td> <td valign="bottom"><span typeof="mw:File"><a href="/wiki/File:Disdyakis_triacontahedron_stereographic_d2_gyrations.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Disdyakis_triacontahedron_stereographic_d2_gyrations.png/150px-Disdyakis_triacontahedron_stereographic_d2_gyrations.png" decoding="async" width="150" height="93" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Disdyakis_triacontahedron_stereographic_d2_gyrations.png/225px-Disdyakis_triacontahedron_stereographic_d2_gyrations.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Disdyakis_triacontahedron_stereographic_d2_gyrations.png/300px-Disdyakis_triacontahedron_stereographic_d2_gyrations.png 2x" data-file-width="945" data-file-height="589" /></a></span><br /><span typeof="mw:File"><a href="/wiki/File:Rhomb.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Rhomb.svg/12px-Rhomb.svg.png" decoding="async" width="12" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Rhomb.svg/18px-Rhomb.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Rhomb.svg/24px-Rhomb.svg.png 2x" data-file-width="63" data-file-height="80" /></a></span> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Group_structure">Group structure</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=4" title="Edit section: Group structure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Every <a href="/wiki/Polyhedron" title="Polyhedron">polyhedron</a> with icosahedral symmetry has 60 <a href="/wiki/Rotational_symmetry" title="Rotational symmetry">rotational</a> (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a <a href="/wiki/Reflection_symmetry" title="Reflection symmetry">reflection</a>), for a total <a href="/wiki/Symmetry_order" class="mw-redirect" title="Symmetry order">symmetry order</a> of 120. </p> <table class="wikitable" width="320" align="right"> <tbody><tr> <td><span typeof="mw:File"><a href="/wiki/File:Spherical_compound_of_five_octahedra.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Spherical_compound_of_five_octahedra.png/160px-Spherical_compound_of_five_octahedra.png" decoding="async" width="160" height="162" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Spherical_compound_of_five_octahedra.png/240px-Spherical_compound_of_five_octahedra.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Spherical_compound_of_five_octahedra.png/320px-Spherical_compound_of_five_octahedra.png 2x" data-file-width="603" data-file-height="612" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Disdyakis_triacontahedron_stereographic_d2_5-color.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/04/Disdyakis_triacontahedron_stereographic_d2_5-color.png/200px-Disdyakis_triacontahedron_stereographic_d2_5-color.png" decoding="async" width="200" height="127" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/04/Disdyakis_triacontahedron_stereographic_d2_5-color.png/300px-Disdyakis_triacontahedron_stereographic_d2_5-color.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/04/Disdyakis_triacontahedron_stereographic_d2_5-color.png/400px-Disdyakis_triacontahedron_stereographic_d2_5-color.png 2x" data-file-width="934" data-file-height="592" /></a></span> </td></tr> <tr> <td colspan="2">The edges of a spherical <a href="/wiki/Compound_of_five_octahedra" title="Compound of five octahedra">compound of five octahedra</a> represent the 15 mirror planes as colored great circles. Each octahedron can represent 3 orthogonal mirror planes by its edges. </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/File:Spherical_compound_of_five_octahedra-pyritohedral_symmetry.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Spherical_compound_of_five_octahedra-pyritohedral_symmetry.png/160px-Spherical_compound_of_five_octahedra-pyritohedral_symmetry.png" decoding="async" width="160" height="163" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Spherical_compound_of_five_octahedra-pyritohedral_symmetry.png/240px-Spherical_compound_of_five_octahedra-pyritohedral_symmetry.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Spherical_compound_of_five_octahedra-pyritohedral_symmetry.png/320px-Spherical_compound_of_five_octahedra-pyritohedral_symmetry.png 2x" data-file-width="602" data-file-height="612" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Disdyakis_triacontahedron_stereographic_d2_pyritohedral.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Disdyakis_triacontahedron_stereographic_d2_pyritohedral.png/200px-Disdyakis_triacontahedron_stereographic_d2_pyritohedral.png" decoding="async" width="200" height="127" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Disdyakis_triacontahedron_stereographic_d2_pyritohedral.png/300px-Disdyakis_triacontahedron_stereographic_d2_pyritohedral.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Disdyakis_triacontahedron_stereographic_d2_pyritohedral.png/400px-Disdyakis_triacontahedron_stereographic_d2_pyritohedral.png 2x" data-file-width="934" data-file-height="592" /></a></span> </td></tr> <tr> <td colspan="2">The <a href="/wiki/Pyritohedral_symmetry" class="mw-redirect" title="Pyritohedral symmetry">pyritohedral symmetry</a> is an index 5 subgroup of icosahedral symmetry, with 3 orthogonal green reflection lines and 8 red order-3 gyration points. There are 5 different orientations of pyritohedral symmetry. </td></tr></tbody></table> <p>The <b><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="icosahedral_rotation_group"></span><span class="vanchor-text">icosahedral rotation group</span></span></b> <i><b>I</b></i> is of order 60. The group <i>I</i> is <a href="/wiki/Isomorphic" class="mw-redirect" title="Isomorphic">isomorphic</a> to <i>A</i><sub>5</sub>, the <a href="/wiki/Alternating_group" title="Alternating group">alternating group</a> of even permutations of five objects. This isomorphism can be realized by <i>I</i> acting on various compounds, notably the <a href="/wiki/Compound_of_five_cubes" title="Compound of five cubes">compound of five cubes</a> (which inscribe in the <a href="/wiki/Dodecahedron" title="Dodecahedron">dodecahedron</a>), the <a href="/wiki/Compound_of_five_octahedra" title="Compound of five octahedra">compound of five octahedra</a>, or either of the two <a href="/wiki/Compound_of_five_tetrahedra" title="Compound of five tetrahedra">compounds of five tetrahedra</a> (which are <a href="/wiki/Enantiomorphs" class="mw-redirect" title="Enantiomorphs">enantiomorphs</a>, and inscribe in the dodecahedron). The group contains 5 versions of <i>T</i><sub>h</sub> with 20 versions of <i>D<sub>3</sub></i> (10 axes, 2 per axis), and 6 versions of <i>D<sub>5</sub></i>. </p><p>The <b><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="full_icosahedral_group"></span><span class="vanchor-text">full icosahedral group</span></span></b> <i><b>I<sub>h</sub></b></i> has order 120. It has <i>I</i> as <a href="/wiki/Normal_subgroup" title="Normal subgroup">normal subgroup</a> of <a href="/wiki/Index_of_a_subgroup" title="Index of a subgroup">index</a> 2. The group <i>I<sub>h</sub></i> is isomorphic to <i>I</i> × <i>Z</i><sub>2</sub>, or <i>A</i><sub>5</sub> × <i>Z</i><sub>2</sub>, with the <a href="/wiki/Inversion_in_a_point" class="mw-redirect" title="Inversion in a point">inversion in the center</a> corresponding to element (identity,-1), where <i>Z</i><sub>2</sub> is written multiplicatively. </p><p><i>I<sub>h</sub></i> acts on the <a href="/wiki/Compound_of_five_cubes" title="Compound of five cubes">compound of five cubes</a> and the <a href="/wiki/Compound_of_five_octahedra" title="Compound of five octahedra">compound of five octahedra</a>, but −1 acts as the identity (as cubes and octahedra are centrally symmetric). It acts on the <a href="/wiki/Compound_of_ten_tetrahedra" title="Compound of ten tetrahedra">compound of ten tetrahedra</a>: <i>I</i> acts on the two chiral halves (<a href="/wiki/Compound_of_five_tetrahedra" title="Compound of five tetrahedra">compounds of five tetrahedra</a>), and −1 interchanges the two halves. Notably, it does <i>not</i> act as S<sub>5</sub>, and these groups are not isomorphic; see below for details. </p><p>The group contains 10 versions of <i>D<sub>3d</sub></i> and 6 versions of <i>D<sub>5d</sub></i> (symmetries like antiprisms). </p><p><i>I</i> is also isomorphic to PSL<sub>2</sub>(5), but <i>I<sub>h</sub></i> is not isomorphic to SL<sub>2</sub>(5). </p> <div class="mw-heading mw-heading3"><h3 id="Isomorphism_of_I_with_A5">Isomorphism of <i>I</i> with A<sub>5</sub></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=5" title="Edit section: Isomorphism of I with A5"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It is useful to describe explicitly what the isomorphism between <i>I</i> and A<sub>5</sub> looks like. In the following table, permutations P<sub>i</sub> and Q<sub>i</sub> act on 5 and 12 elements respectively, while the rotation matrices M<sub>i</sub> are the elements of <i>I</i>. If P<sub>k</sub> is the product of taking the permutation P<sub>i</sub> and applying P<sub>j</sub> to it, then for the same values of <i>i</i>, <i>j</i> and <i>k</i>, it is also true that Q<sub>k</sub> is the product of taking Q<sub>i</sub> and applying Q<sub>j</sub>, and also that premultiplying a vector by M<sub>k</sub> is the same as premultiplying that vector by M<sub>i</sub> and then premultiplying that result with M<sub>j</sub>, that is M<sub>k</sub> = M<sub>j</sub> × M<sub>i</sub>. Since the permutations P<sub>i</sub> are all the 60 even permutations of 12345, the <a href="/wiki/Bijection" title="Bijection">one-to-one correspondence</a> is made explicit, therefore the isomorphism too. </p> <table class="wikitable collapsible collapsed" align="center" style="font-family:'DejaVu Sans Mono','monospace'"> <tbody><tr> <th width="25%">Rotation matrix </th> <th width="25%">Permutation of 5<br />on 1 2 3 4 5 </th> <th width="50%">Permutation of 12<br />on 1 2 3 4 5 6 7 8 9 10 11 12 </th></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{1}={\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{1}={\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a806a740b2eade1b3624aa8aae7bba44116fc97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:18.391ex; height:9.176ex;" alt="{\displaystyle M_{1}={\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/398f438d75434e6fbf48dc232c1ad7228a738568" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{1}}"></span> = () </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8ea6463cb36d8278ff71214fb4d13127039ae53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.893ex; height:2.509ex;" alt="{\displaystyle Q_{1}}"></span> = () </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{2}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{2}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a53856a09282da581d12f64c1cc792edc98e7996" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:27.262ex; height:13.843ex;" alt="{\displaystyle M_{2}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87858df7457aa93caaef5a316db87a7240cc8c29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{2}}"></span> = (3 4 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b86e8bff64d5e62fc8f45a35875e78bc9bef74a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.893ex; height:2.509ex;" alt="{\displaystyle Q_{2}}"></span> = (1 11 8)(2 9 6)(3 5 12)(4 7 10) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{3}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{3}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/869753f9815790a8f340814af314cc8f023aaffe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:27.262ex; height:13.843ex;" alt="{\displaystyle M_{3}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f92db8e65bb75b79799f0f3a29e975b37e227069" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{3}}"></span> = (3 5 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7b6c2a91a49263a333768fc2ebebdc379ddf5d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.893ex; height:2.509ex;" alt="{\displaystyle Q_{3}}"></span> = (1 8 11)(2 6 9)(3 12 5)(4 10 7) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{4}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{4}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eeb1cee779ca8c351ed09634de607018ce05d019" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:25.776ex; height:13.843ex;" alt="{\displaystyle M_{4}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48763cb9875de7b4125c40e95e542e775c1cbc4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{4}}"></span> = (2 3)(4 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39c450d0ca92013fa4e40c20c47768466d0a71ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.893ex; height:2.509ex;" alt="{\displaystyle Q_{4}}"></span> = (1 12)(2 8)(3 6)(4 9)(5 10)(7 11) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{5}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{5}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e9cb6269c5891b7e981edafddf1c13f88b55e3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:27.42ex; height:13.843ex;" alt="{\displaystyle M_{5}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9446d54bf4a29799ff14169ffc7ba4423102fd08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{5}}"></span> = (2 3 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edd88f6ad0c94313d98590e698dc5c2868e94071" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.893ex; height:2.509ex;" alt="{\displaystyle Q_{5}}"></span> = (1 2 3)(4 5 6)(7 9 8)(10 11 12) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{6}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{6}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dd8949fcd75a808d37c13f389c07f0b66ae3a2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:27.42ex; height:13.843ex;" alt="{\displaystyle M_{6}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{6}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{6}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c5f49ca9f3cde19f364ea96c7d35fa36812b633" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{6}}"></span> = (2 3 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{6}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{6}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29e42a16164b1e0be76312f5fe177c9bb7b41937" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.893ex; height:2.509ex;" alt="{\displaystyle Q_{6}}"></span> = (1 7 5)(2 4 11)(3 10 9)(6 8 12) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{7}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{7}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f2ff1aec9bdf60293b51f105f0494d2c67771e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:26.434ex; height:13.843ex;" alt="{\displaystyle M_{7}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{7}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{7}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ada04c60312be4ff31aa8131f3aefe12e285449d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{7}}"></span> = (2 4 3) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{7}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{7}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d2745b4dcfb278ef072efb99935b211149039d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.893ex; height:2.509ex;" alt="{\displaystyle Q_{7}}"></span> = (1 3 2)(4 6 5)(7 8 9)(10 12 11) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{8}={\begin{bmatrix}0&-1&0\\0&0&1\\-1&0&0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{8}={\begin{bmatrix}0&-1&0\\0&0&1\\-1&0&0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52ffc1e91a07ad14bd47757f41c2592cc0679e8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:22.008ex; height:9.176ex;" alt="{\displaystyle M_{8}={\begin{bmatrix}0&-1&0\\0&0&1\\-1&0&0\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{8}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{8}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8dc39edfd481c14b9bec617ba49f675b9d5107b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{8}}"></span> = (2 4 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{8}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{8}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e87378c5c1811891cbc1e5c334b2c1ba4b84d4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.893ex; height:2.509ex;" alt="{\displaystyle Q_{8}}"></span> = (1 10 6)(2 7 12)(3 4 8)(5 11 9) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{9}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{9}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4cb210dbb2127b5337eadcfc490f9d77deebd0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:24.632ex; height:13.843ex;" alt="{\displaystyle M_{9}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{9}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{9}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/deb74c250e77f086cccd7724a80c6210e4344bf7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{9}}"></span> = (2 4)(3 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{9}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{9}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6efcf0d263472c48649110e18268619efa77317d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.893ex; height:2.509ex;" alt="{\displaystyle Q_{9}}"></span> = (1 9)(2 5)(3 11)(4 12)(6 7)(8 10) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{10}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{10}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09cf863efbe97e73b3ecc1fccd1ab63872c1bd66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:27.256ex; height:13.843ex;" alt="{\displaystyle M_{10}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{10}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{10}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9ba3dedab8f977111ccb2fb6495105684ae007a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{10}}"></span> = (2 5 3) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{10}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{10}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da3c9c06a9e2a32b3b395bc7632593c146f7d412" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{10}}"></span> = (1 5 7)(2 11 4)(3 9 10)(6 12 8) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{11}={\begin{bmatrix}0&0&-1\\-1&0&0\\0&1&0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{11}={\begin{bmatrix}0&0&-1\\-1&0&0\\0&1&0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3ff8110ffc8feb96347137fad8028bf4cef6bbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:22.83ex; height:9.176ex;" alt="{\displaystyle M_{11}={\begin{bmatrix}0&0&-1\\-1&0&0\\0&1&0\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{11}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{11}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ed365f0389ecd7c5159589246f8962bcab211f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{11}}"></span> = (2 5 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{11}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{11}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b4a436d88f2b0d4d35ac935ac179657786828b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{11}}"></span> = (1 6 10)(2 12 7)(3 8 4)(5 9 11) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{12}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{12}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15231d19c20e541f5b9551983ecd373173f8e2d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{12}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{12}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{12}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7004712437b915c081c9f53451c9cadce4061863" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{12}}"></span> = (2 5)(3 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{12}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{12}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65f8f748898a063e66d70ac80acb023099ef82d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{12}}"></span> = (1 4)(2 10)(3 7)(5 8)(6 11)(9 12) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{13}={\begin{bmatrix}1&0&0\\0&-1&0\\0&0&-1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{13}={\begin{bmatrix}1&0&0\\0&-1&0\\0&0&-1\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ff653e3ff530f72d9f8244f04fcf5d51b686dc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:22.83ex; height:9.176ex;" alt="{\displaystyle M_{13}={\begin{bmatrix}1&0&0\\0&-1&0\\0&0&-1\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{13}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{13}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9310fd1f3a3589444006baa707f72739761d3356" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{13}}"></span> = (1 2)(4 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{13}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{13}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/578b199baec4a626ff027726610a0759582a252d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{13}}"></span> = (1 3)(2 4)(5 8)(6 7)(9 10)(11 12) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{14}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>14</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{14}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/362c718ce98b647cd63fe24ce3112e109404a098" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:25.454ex; height:13.843ex;" alt="{\displaystyle M_{14}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{14}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>14</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{14}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8c647d9970b8e27302b4a448f2fe6d2bec0e1c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{14}}"></span> = (1 2)(3 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{14}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>14</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{14}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/379614ca2f05fcbdb131a138d8fe8490633e81ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{14}}"></span> = (1 5)(2 7)(3 11)(4 9)(6 10)(8 12) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{15}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>15</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{15}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e99815f70f1b2ca01a2c86d05e76c07192ec18dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{15}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{15}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>15</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{15}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d06f0dc3713cd9f803b00f9efdb1085369b6b269" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{15}}"></span> = (1 2)(3 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{15}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>15</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{15}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9deba7e9f00e9edb96eb76c535fdb9f2a52a585c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{15}}"></span> = (1 12)(2 10)(3 8)(4 6)(5 11)(7 9) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{16}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>16</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{16}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16ce9f95b3a4702262fcda2062acf3570c7d3228" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{16}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{16}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>16</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{16}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f42c8029bd6f5641034e378f353ab2f62b074eec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{16}}"></span> = (1 2 3) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{16}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>16</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{16}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dba93838d0896e645d6deb7dee3ed433a35d03b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{16}}"></span> = (1 11 6)(2 5 9)(3 7 12)(4 10 8) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{17}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>17</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{17}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cce4e5f672f20bb0438fe2c81af55585cdc6180" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{17}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{17}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>17</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{17}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c29941ff0a902b0f9d9e19b25573086241a84a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{17}}"></span> = (1 2 3 4 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{17}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>17</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{17}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7060b35925f54db26dbaea8126c1b48bac6150d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{17}}"></span> = (1 6 5 3 9)(4 12 7 8 11) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{18}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>18</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{18}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9d08bcde304d68d838534ccf4f7e0b4f4a72985" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{18}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{18}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>18</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{18}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c9c2c21334a2300d8c0468f14f2942fea086d3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{18}}"></span> = (1 2 3 5 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{18}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>18</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{18}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6386dd33c48c411d9213e01434f67ffed783faa4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{18}}"></span> = (1 4 8 6 2)(5 7 10 12 9) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{19}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>19</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{19}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ba06542618b7919bc610fcfed839a1285904fc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{19}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{19}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>19</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{19}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/982cf32b421807b0511466bcc924496606546b5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{19}}"></span> = (1 2 4 5 3) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{19}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>19</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{19}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fec129dcce39948e034a67f5a7eb5792e31a56bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{19}}"></span> = (1 8 7 3 10)(2 12 5 6 11) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{20}={\begin{bmatrix}0&0&1\\-1&0&0\\0&-1&0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>20</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{20}={\begin{bmatrix}0&0&1\\-1&0&0\\0&-1&0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9fad3d4cb99a6b3d7063603df9c07ddf57aaf3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:22.83ex; height:9.176ex;" alt="{\displaystyle M_{20}={\begin{bmatrix}0&0&1\\-1&0&0\\0&-1&0\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{20}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>20</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{20}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67ffc819301cf072f7fa6ccc3078e79a15e02bc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{20}}"></span> = (1 2 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{20}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>20</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{20}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4785513a97795e1e4cca78ac396d21ddcae89d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{20}}"></span> = (1 7 4)(2 11 8)(3 5 10)(6 9 12) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{21}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{21}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ed7f9e6c53355f01645360455ea5c0623a05599" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:25.454ex; height:13.843ex;" alt="{\displaystyle M_{21}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{21}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{21}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a8d11e3ae15dde0a77bc9c9863bbbf5694d0b4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{21}}"></span> = (1 2 4 3 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{21}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{21}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2225037cd6255b3c4a4c23716cbfaa5730892f32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{21}}"></span> = (1 2 9 11 7)(3 6 12 10 4) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{22}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{22}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d4a4dc00e27d076b8325b31492f892fd0e7093e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:25.454ex; height:13.843ex;" alt="{\displaystyle M_{22}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{22}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{22}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6ee776028f8e9ce699fac5d53fad4173ba04f1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{22}}"></span> = (1 2 5 4 3) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{22}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{22}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a690383c0bb27a954c9cdef88a23618fc6703a3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{22}}"></span> = (2 3 4 7 5)(6 8 10 11 9) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{23}={\begin{bmatrix}0&1&0\\0&0&-1\\-1&0&0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{23}={\begin{bmatrix}0&1&0\\0&0&-1\\-1&0&0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d165834f35a29a7112ab7ef70e10aa68b4648cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:22.83ex; height:9.176ex;" alt="{\displaystyle M_{23}={\begin{bmatrix}0&1&0\\0&0&-1\\-1&0&0\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{23}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{23}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4df367250134b7eba998805de9bae274e813ad94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{23}}"></span> = (1 2 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{23}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{23}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3db8d2149383fe3b4609bb4136e0b3638ffebf05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{23}}"></span> = (1 9 8)(2 6 3)(4 5 12)(7 11 10) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{24}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>24</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{24}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29c4dffd81d6574f0dfd098967f66ba60201ce40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{24}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{24}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>24</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{24}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/247559482bc9939502e11f991b16169de4a1834c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{24}}"></span> = (1 2 5 3 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{24}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>24</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{24}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c0e0e465460d57707ab2ee7d9b3e01243a2de16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{24}}"></span> = (1 10 5 4 11)(2 8 9 3 12) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{25}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>25</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{25}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39b7e76e993c075fe2a9f741ec72f3d3b27eb5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:27.256ex; height:13.843ex;" alt="{\displaystyle M_{25}={\begin{bmatrix}-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{25}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>25</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{25}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1f3b6b738f3b9214a57dbd9907cd51473e76ba5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{25}}"></span> = (1 3 2) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{25}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>25</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{25}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6397d13f4d7b30332eafe37b672b396a023065d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{25}}"></span> = (1 6 11)(2 9 5)(3 12 7)(4 8 10) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{26}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>26</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{26}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/977b11d5553fcc0eb973dd3a0aa974dcbb3c1f52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:25.454ex; height:13.843ex;" alt="{\displaystyle M_{26}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{26}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>26</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{26}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a46236165cff046069a89b6731e5c46459491ce1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{26}}"></span> = (1 3 4 5 2) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{26}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>26</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{26}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a429d8ad379b7d585f64ce58203682820ac29a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{26}}"></span> = (2 5 7 4 3)(6 9 11 10 8) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{27}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>27</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{27}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d5c53129066c378a0fac1b96ecc3236fcdd79ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{27}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{27}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>27</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{27}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9073aec51254c136ff1c6d53462700ee9f490510" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{27}}"></span> = (1 3 5 4 2) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{27}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>27</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{27}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b211eea7f170597baae1c0fabb2e18e8d36a7b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{27}}"></span> = (1 10 3 7 8)(2 11 6 5 12) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{28}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>28</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{28}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9845991751f096b9b8dbaaf84d20c6685b054cd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.084ex; height:13.843ex;" alt="{\displaystyle M_{28}={\begin{bmatrix}-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{28}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>28</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{28}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9f781cb85b488874ad9e20200d03cd78b043075" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{28}}"></span> = (1 3)(4 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{28}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>28</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{28}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ea1adc89e5d63029f378c469ac681117fcca5e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{28}}"></span> = (1 7)(2 10)(3 11)(4 5)(6 12)(8 9) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{29}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>29</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{29}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cc40f0e347366313bcd25e3cbef61c82971bb32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.084ex; height:13.843ex;" alt="{\displaystyle M_{29}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{29}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>29</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{29}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9828d2f7a9a3dd2bb6b7250951722c741de0ba51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{29}}"></span> = (1 3 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{29}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>29</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{29}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb3bdf8bc893948d32e4655c40edb0c3dc489068" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{29}}"></span> = (1 9 10)(2 12 4)(3 6 8)(5 11 7) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{30}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>30</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{30}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/111e67ce276143b346ffcfd0276c0894753f0258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.084ex; height:13.843ex;" alt="{\displaystyle M_{30}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{30}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>30</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{30}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ab472253d9c7914eaf0582bac99e34a2f2d08ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{30}}"></span> = (1 3 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{30}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>30</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{30}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3da8f6452145f06adb92019fca6438d1ded8ddd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{30}}"></span> = (1 3 4)(2 8 7)(5 6 10)(9 12 11) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{31}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{31}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a56beb25402b0f07d35826901a3ba01877e165b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{31}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{31}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{31}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e49e5ecdb4ae7c281b09007ba5ba6cef523bb5b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{31}}"></span> = (1 3)(2 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{31}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{31}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bc781dc65cdc301887ad324a04eb9e5da28376c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{31}}"></span> = (1 12)(2 6)(3 9)(4 11)(5 8)(7 10) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{32}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{32}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac5e7cd058eb9685208e07a550dc277211118712" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:27.256ex; height:13.843ex;" alt="{\displaystyle M_{32}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{32}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{32}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d11709eccc6da5af8b7edf3098a9682ea49c456" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{32}}"></span> = (1 3 2 4 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{32}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{32}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/825b1fca218d27ff43b9ab8b94802a75f72bddcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{32}}"></span> = (1 4 10 11 5)(2 3 8 12 9) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{33}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{33}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5521942b0b8628499374ffb3d302c366f2f1d53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:25.454ex; height:13.843ex;" alt="{\displaystyle M_{33}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{33}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{33}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/287b7d4bd9b562833d7939e758845bfb9c1fe719" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{33}}"></span> = (1 3 5 2 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{33}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{33}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1a95d6aa3cdea16f6c5b755f7d3ebaae4b8104a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{33}}"></span> = (1 5 9 6 3)(4 7 11 12 8) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{34}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>34</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{34}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f41db12ff64ab871ff50f97f3d391167d1208ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:25.454ex; height:13.843ex;" alt="{\displaystyle M_{34}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{34}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>34</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{34}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91c6ceef0fb3e15d95ea46ef867038391207b318" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{34}}"></span> = (1 3)(2 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{34}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>34</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{34}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4878158ae6ba5a1abb38c8b3559fe400b9d5497" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{34}}"></span> = (1 2)(3 5)(4 9)(6 7)(8 11)(10 12) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{35}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>35</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{35}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c154dc633c6d7aefa0b54bb6444ecf6ab546b5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:27.256ex; height:13.843ex;" alt="{\displaystyle M_{35}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{35}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>35</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{35}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eda8e0c426047c6139e036b6a23e20e681909b87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{35}}"></span> = (1 3 2 5 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{35}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>35</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{35}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/726b558e171f84d8af86630a0c1f3be5058bff25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{35}}"></span> = (1 11 2 7 9)(3 10 6 4 12) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{36}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>36</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{36}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f68f0878e52fed098b0fd9c1d5663b38cc69b53e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{36}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{36}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>36</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{36}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/404c56ef7a23cbf7f2e341308ead634951cfc781" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{36}}"></span> = (1 3 4 2 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{36}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>36</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{36}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcdb54235724f53f2161422451f44567c1daca36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{36}}"></span> = (1 8 2 4 6)(5 10 9 7 12) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{37}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>37</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{37}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/917441bbc4f43bbb175f753f0bf81ce38034f719" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:27.256ex; height:13.843ex;" alt="{\displaystyle M_{37}={\begin{bmatrix}{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{37}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>37</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{37}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8691b7f462c454b3ab35e8093c5b8ab6cec73148" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{37}}"></span> = (1 4 5 3 2) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{37}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>37</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{37}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb3448453c0526dd73532d606270d70b6a9e53f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{37}}"></span> = (1 2 6 8 4)(5 9 12 10 7) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{38}={\begin{bmatrix}0&-1&0\\0&0&-1\\1&0&0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>38</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{38}={\begin{bmatrix}0&-1&0\\0&0&-1\\1&0&0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24fa2e4d30186e6e33169a45198b87fac4fc2a18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:22.83ex; height:9.176ex;" alt="{\displaystyle M_{38}={\begin{bmatrix}0&-1&0\\0&0&-1\\1&0&0\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{38}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>38</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{38}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9851c8a63bcece8b9dd4aa854e493438522049ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{38}}"></span> = (1 4 2) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{38}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>38</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{38}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3d1cbe5f072ac9f92d3ba56a76946f6a83c7582" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{38}}"></span> = (1 4 7)(2 8 11)(3 10 5)(6 12 9) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{39}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>39</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{39}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08c33e783e2b1d8bcb6906cf38a106c853fba219" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{39}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{39}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>39</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{39}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da8444f3d3782d67d0e52bc5f33db40a41bf8a56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{39}}"></span> = (1 4 3 5 2) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{39}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>39</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{39}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9b25aa2dd2e9908eee11d61ffceaca5e838a261" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{39}}"></span> = (1 11 4 5 10)(2 12 3 9 8) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{40}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>40</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{40}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f074f1b11bc2b3515704ac13bdb84bad27a8001a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.084ex; height:13.843ex;" alt="{\displaystyle M_{40}={\begin{bmatrix}-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{40}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>40</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{40}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ace6c0798993357ef2588e279ac7b507fe570cf8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{40}}"></span> = (1 4 3) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{40}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>40</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{40}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd965158a4a557e62d97d97aeeb6444ed9783b05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{40}}"></span> = (1 10 9)(2 4 12)(3 8 6)(5 7 11) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{41}={\begin{bmatrix}0&0&1\\1&0&0\\0&1&0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>41</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{41}={\begin{bmatrix}0&0&1\\1&0&0\\0&1&0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcfd1c0dae81df1a6ba5f69539032efce06fc179" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:19.213ex; height:9.176ex;" alt="{\displaystyle M_{41}={\begin{bmatrix}0&0&1\\1&0&0\\0&1&0\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{41}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>41</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{41}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c05a7a24652cdba31e21c50d6da6a5a46e647e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{41}}"></span> = (1 4 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{41}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>41</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{41}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38496081e0b202093332e45745b6c80312ef3cc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{41}}"></span> = (1 5 2)(3 7 9)(4 11 6)(8 10 12) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{42}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>42</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{42}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1df8e3f5b998c8203cf7bc3d3d04dfbbf1cd360" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.084ex; height:13.843ex;" alt="{\displaystyle M_{42}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{42}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>42</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{42}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5acc62c0e53adce99d50fdff39332b32572d7413" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{42}}"></span> = (1 4)(3 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{42}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>42</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{42}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/945220dbe550020da68fed754c52bc1264153448" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{42}}"></span> = (1 6)(2 3)(4 9)(5 8)(7 12)(10 11) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{43}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>43</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{43}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/612d8c230552b6fdd074356c31d62ef9c86fd2ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{43}={\begin{bmatrix}-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{43}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>43</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{43}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5c23b206afa4387cca55440d0afc18c1517b11e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{43}}"></span> = (1 4 5 2 3) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{43}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>43</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{43}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bdb16483f46f2cfdb5d507f2731ee3425cdaeca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{43}}"></span> = (1 9 7 2 11)(3 12 4 6 10) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{44}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>44</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{44}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fabaf7bc93e59f3b00b4b49127228bff4356e278" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:26.598ex; height:13.843ex;" alt="{\displaystyle M_{44}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{44}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>44</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{44}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1ef56899ab0bf21c7100e441df853e9055b6c45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{44}}"></span> = (1 4)(2 3) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{44}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>44</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{44}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3646bf324a36263b702fd149171e83c4819fe23f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{44}}"></span> = (1 8)(2 10)(3 4)(5 12)(6 7)(9 11) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{45}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>45</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{45}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1711ecf0a9964b405be019a26fad213017f7ba4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{45}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{45}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>45</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{45}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/122e6743824a8b285470cf525d560e772a3b8284" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{45}}"></span> = (1 4 2 3 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{45}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>45</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{45}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71fa22aac4b5e7927b25fdf0d4e40d39be6e410d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{45}}"></span> = (2 7 3 5 4)(6 11 8 9 10) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{46}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>46</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{46}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b49d8ed67256dfbcf9bd9bed70ad467a33cfb0c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:25.454ex; height:13.843ex;" alt="{\displaystyle M_{46}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{46}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>46</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{46}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/180974f60490d2e20daa5e2601331ba8a4dd375d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{46}}"></span> = (1 4 2 5 3) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{46}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>46</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{46}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25a8fea62d781141ef744b4eb989d46f830f40b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{46}}"></span> = (1 3 6 9 5)(4 8 12 11 7) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{47}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>47</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{47}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da06f844e24470163423c1da43d457e8787156b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:27.256ex; height:13.843ex;" alt="{\displaystyle M_{47}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{47}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>47</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{47}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a381565cbbab1bb5f659e5751ff2c2c41a59cbaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{47}}"></span> = (1 4 3 2 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{47}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>47</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{47}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/878202545907def693005df1f85c78035f441a22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{47}}"></span> = (1 7 10 8 3)(2 5 11 12 6) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{48}={\begin{bmatrix}-1&0&0\\0&1&0\\0&0&-1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>48</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{48}={\begin{bmatrix}-1&0&0\\0&1&0\\0&0&-1\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cff76a0d971f8f71271b0d743f2ca1040a392f0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:22.83ex; height:9.176ex;" alt="{\displaystyle M_{48}={\begin{bmatrix}-1&0&0\\0&1&0\\0&0&-1\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{48}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>48</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{48}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0d8a44bc7d4a44f268ea2d09d32de180c36debc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{48}}"></span> = (1 4)(2 5) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{48}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>48</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{48}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8147a5d1ce419b702eaa6f00c17c7c0eaf523cac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{48}}"></span> = (1 12)(2 9)(3 11)(4 10)(5 6)(7 8) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{49}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>49</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{49}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb75b5e90e9e1e87abc7ae12956402ccab699f5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:27.256ex; height:13.843ex;" alt="{\displaystyle M_{49}={\begin{bmatrix}-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{49}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>49</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{49}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff6f9df4ed8fc6437c98294de3922bb52428c67e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{49}}"></span> = (1 5 4 3 2) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{49}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>49</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{49}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7921702a3fbbc0e167e28c076a206b6ffbc944a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{49}}"></span> = (1 9 3 5 6)(4 11 8 7 12) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{50}={\begin{bmatrix}0&0&-1\\1&0&0\\0&-1&0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>50</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{50}={\begin{bmatrix}0&0&-1\\1&0&0\\0&-1&0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82bcae77b283060f02342d19a9e8afd5f1ffc11a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:22.83ex; height:9.176ex;" alt="{\displaystyle M_{50}={\begin{bmatrix}0&0&-1\\1&0&0\\0&-1&0\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{50}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>50</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{50}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99ed8916510b4099d60a240f183258821f29d0ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{50}}"></span> = (1 5 2) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{50}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>50</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{50}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3dde3f211b2ac081e04076c71dfa1b2850acca0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{50}}"></span> = (1 8 9)(2 3 6)(4 12 5)(7 10 11) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{51}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>51</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{51}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c663a9a60b72f5c3428450946e1439482c64c9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:25.454ex; height:13.843ex;" alt="{\displaystyle M_{51}={\begin{bmatrix}{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{51}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>51</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{51}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/851991092c4e206bfddf702966554c952c5ee999" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{51}}"></span> = (1 5 3 4 2) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{51}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>51</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{51}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53817e0ff55329a56f5fde4ce38d67fb9a4ffb11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{51}}"></span> = (1 7 11 9 2)(3 4 10 12 6) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{52}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>52</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{52}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47e857dc884f78ddb38dde3fb1b7336a852d800e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.084ex; height:13.843ex;" alt="{\displaystyle M_{52}={\begin{bmatrix}{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{52}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>52</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{52}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b89ecdc1ddb0970f864106cee44f049259612651" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{52}}"></span> = (1 5 3) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{52}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>52</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{52}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a1214e0ca0312104abcf2506e5c5bed6081bf7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{52}}"></span> = (1 4 3)(2 7 8)(5 10 6)(9 11 12) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{53}={\begin{bmatrix}0&1&0\\0&0&1\\1&0&0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>53</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{53}={\begin{bmatrix}0&1&0\\0&0&1\\1&0&0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b789540ae2850e145b94b5f5e8b4af46e1f0abe9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:19.213ex; height:9.176ex;" alt="{\displaystyle M_{53}={\begin{bmatrix}0&1&0\\0&0&1\\1&0&0\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{53}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>53</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{53}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b62158eb9240063e5ba2048f19c2e176fd6d3354" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{53}}"></span> = (1 5 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{53}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>53</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{53}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6944e644acfcf623500e906cbefffdc5b1981a91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{53}}"></span> = (1 2 5)(3 9 7)(4 6 11)(8 12 10) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{54}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>54</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{54}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce2d600e08a9c3b84765f44bf6414048e30b8d6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.084ex; height:13.843ex;" alt="{\displaystyle M_{54}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{54}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>54</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{54}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d526ad2d1c226a1ffb3d147fffebd7932154b36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{54}}"></span> = (1 5)(3 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{54}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>54</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{54}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c9d47af72ce1bfbe11c353f0e2f1fef4d24f9b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{54}}"></span> = (1 12)(2 11)(3 10)(4 8)(5 9)(6 7) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{55}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>55</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{55}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8ce9c6f2f30621d2a5208463dcd0c18d347377c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{55}={\begin{bmatrix}{\frac {1}{2\phi }}&{\frac {\phi }{2}}&{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\\-{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{55}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>55</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{55}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb544d64f92082b64019b292091111b35b2fe579" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{55}}"></span> = (1 5 4 2 3) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{55}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>55</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{55}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0329473b8343df2f3430c211c6686c43ab90f361" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{55}}"></span> = (1 5 11 10 4)(2 9 12 8 3) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{56}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>56</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{56}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/557c5daa9766f6bbea5508b221325716a98862e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:26.598ex; height:13.843ex;" alt="{\displaystyle M_{56}={\begin{bmatrix}-{\frac {\phi }{2}}&-{\frac {1}{2}}&{\frac {1}{2\phi }}\\-{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{56}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>56</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{56}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82f7d0c4377a54393ccdb96e92867d27b507446d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{56}}"></span> = (1 5)(2 3) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{56}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>56</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{56}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f0d4ad12125e600866557404691f14ce4c6b151" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{56}}"></span> = (1 10)(2 12)(3 11)(4 7)(5 8)(6 9) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{57}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>57</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{57}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/695e634c74b3a3725a5c406b4d8dd5ca69d6ece6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{57}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{57}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>57</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{57}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dab906c60e68beefa89e178a464e71b956d7175e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{57}}"></span> = (1 5 2 3 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{57}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>57</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{57}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e9fd60bb7a336e6fbe36b5d6f7ac014d8c2e511" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{57}}"></span> = (1 3 8 10 7)(2 6 12 11 5) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{58}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>58</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{58}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00a434c0809d51319ae1d77b4f90050cac0f6292" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.242ex; height:13.843ex;" alt="{\displaystyle M_{58}={\begin{bmatrix}{\frac {1}{2}}&{\frac {1}{2\phi }}&-{\frac {\phi }{2}}\\-{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\-{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{58}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>58</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{58}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5382d4169c41cbc607f304f15179d809a48b49a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{58}}"></span> = (1 5 2 4 3) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{58}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>58</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{58}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9745821431e4e646b912e550e33ecd3bbb9b9df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{58}}"></span> = (1 6 4 2 8)(5 12 7 9 10) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{59}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>59</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{59}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3ad9219b7c5cecb41ce2f84269c75af5c869e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:27.256ex; height:13.843ex;" alt="{\displaystyle M_{59}={\begin{bmatrix}{\frac {1}{2}}&-{\frac {1}{2\phi }}&{\frac {\phi }{2}}\\{\frac {1}{2\phi }}&-{\frac {\phi }{2}}&-{\frac {1}{2}}\\{\frac {\phi }{2}}&{\frac {1}{2}}&-{\frac {1}{2\phi }}\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{59}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>59</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{59}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/050573b3bbc7f09cd2a394b3c841c99c66c6a81b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{59}}"></span> = (1 5 3 2 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{59}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>59</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{59}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4959d62a3c36572379c9d895145b48a5029ece9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{59}}"></span> = (2 4 5 3 7)(6 10 9 8 11) </td></tr> <tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{60}={\begin{bmatrix}-1&0&0\\0&-1&0\\0&0&1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>60</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{60}={\begin{bmatrix}-1&0&0\\0&-1&0\\0&0&1\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6e798672e745d345cca86d598260e5e68571fa0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:22.83ex; height:9.176ex;" alt="{\displaystyle M_{60}={\begin{bmatrix}-1&0&0\\0&-1&0\\0&0&1\end{bmatrix}}}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{60}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>60</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{60}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a29907080fd9822e7b482ce96ede16f288a69957" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.368ex; height:2.509ex;" alt="{\displaystyle P_{60}}"></span> = (1 5)(2 4) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{60}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>60</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{60}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4715b9f338eaedf04acea0ccb928ae6010424aca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.715ex; height:2.509ex;" alt="{\displaystyle Q_{60}}"></span> = (1 11)(2 10)(3 12)(4 9)(5 7)(6 8) </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Commonly_confused_groups">Commonly confused groups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=6" title="Edit section: Commonly confused groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following groups all have order 120, but are not isomorphic: </p> <ul><li><i>S</i><sub>5</sub>, the <a href="/wiki/Symmetric_group" title="Symmetric group">symmetric group</a> on 5 elements</li> <li><i>I<sub>h</sub></i>, the full icosahedral group (subject of this article, also known as <i>H</i><sub>3</sub>)</li> <li>2<i>I</i>, the <a href="/wiki/Binary_icosahedral_group" title="Binary icosahedral group">binary icosahedral group</a></li></ul> <p>They correspond to the following <a href="/wiki/Short_exact_sequence" class="mw-redirect" title="Short exact sequence">short exact sequences</a> (the latter of which does not split) and product </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\to A_{5}\to S_{5}\to Z_{2}\to 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\to A_{5}\to S_{5}\to Z_{2}\to 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8035c227946848c9a772468095f9d37162b1e8ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:24.699ex; height:2.509ex;" alt="{\displaystyle 1\to A_{5}\to S_{5}\to Z_{2}\to 1}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{h}=A_{5}\times Z_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{h}=A_{5}\times Z_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/378423a36a631f97b40bb710c60f533651a66a98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.58ex; height:2.509ex;" alt="{\displaystyle I_{h}=A_{5}\times Z_{2}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\to Z_{2}\to 2I\to A_{5}\to 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <mn>2</mn> <mi>I</mi> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\to Z_{2}\to 2I\to A_{5}\to 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1d696170a4446731b645213e8636e9aed84437b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:24.554ex; height:2.509ex;" alt="{\displaystyle 1\to Z_{2}\to 2I\to A_{5}\to 1}"></span></dd></dl> <p>In words, </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e213bbb69691c65e1391fe16cd79a0029471446" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.797ex; height:2.509ex;" alt="{\displaystyle A_{5}}"></span> is a <i><a href="/wiki/Normal_subgroup" title="Normal subgroup">normal subgroup</a></i> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d113353a42f71fc5e7154ddef2257079ab2e25a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.479ex; height:2.509ex;" alt="{\displaystyle S_{5}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e213bbb69691c65e1391fe16cd79a0029471446" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.797ex; height:2.509ex;" alt="{\displaystyle A_{5}}"></span> is a <i>factor</i> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{h}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{h}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4c84ca7860f66cd4ed8ecb07b4c5691f73c7365" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.202ex; height:2.509ex;" alt="{\displaystyle I_{h}}"></span>, which is a <i><a href="/wiki/Direct_product_of_groups" title="Direct product of groups">direct product</a></i></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e213bbb69691c65e1391fe16cd79a0029471446" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.797ex; height:2.509ex;" alt="{\displaystyle A_{5}}"></span> is a <i><a href="/wiki/Quotient_group" title="Quotient group">quotient group</a></i> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dbd6170826fcd1a6f8c7b3505344307cb48d0d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.334ex; height:2.176ex;" alt="{\displaystyle 2I}"></span></li></ul> <p>Note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e213bbb69691c65e1391fe16cd79a0029471446" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.797ex; height:2.509ex;" alt="{\displaystyle A_{5}}"></span> has an <a href="/wiki/Exceptional_object" title="Exceptional object">exceptional</a> irreducible 3-dimensional <a href="/wiki/Linear_representation" class="mw-redirect" title="Linear representation">representation</a> (as the icosahedral rotation group), but <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d113353a42f71fc5e7154ddef2257079ab2e25a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.479ex; height:2.509ex;" alt="{\displaystyle S_{5}}"></span> does not have an irreducible 3-dimensional representation, corresponding to the full icosahedral group not being the symmetric group. </p><p>These can also be related to linear groups over the <a href="/wiki/Finite_field" title="Finite field">finite field</a> with five elements, which exhibit the subgroups and covering groups directly; none of these are the full icosahedral group: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{5}\cong \operatorname {PSL} (2,5),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>≅<!-- ≅ --></mo> <mi>PSL</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{5}\cong \operatorname {PSL} (2,5),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c393c965fb8eede443a78d31ff58cce76a0bceb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.039ex; height:2.843ex;" alt="{\displaystyle A_{5}\cong \operatorname {PSL} (2,5),}"></span> the <a href="/wiki/Projective_special_linear_group" class="mw-redirect" title="Projective special linear group">projective special linear group</a>, see <a href="/wiki/Projective_linear_group#Action_on_p_points" title="Projective linear group">here</a> for a proof;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{5}\cong \operatorname {PGL} (2,5),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>≅<!-- ≅ --></mo> <mi>PGL</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{5}\cong \operatorname {PGL} (2,5),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c10a93487ee7f8bfeb874426257bcf1e02bce9b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.253ex; height:2.843ex;" alt="{\displaystyle S_{5}\cong \operatorname {PGL} (2,5),}"></span> the <a href="/wiki/Projective_general_linear_group" class="mw-redirect" title="Projective general linear group">projective general linear group</a>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2I\cong \operatorname {SL} (2,5),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>I</mi> <mo>≅<!-- ≅ --></mo> <mi>SL</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2I\cong \operatorname {SL} (2,5),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18b7590823236302445cfb8ab3ae5b7a5643b0c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.993ex; height:2.843ex;" alt="{\displaystyle 2I\cong \operatorname {SL} (2,5),}"></span> the <a href="/wiki/Special_linear_group" title="Special linear group">special linear group</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Conjugacy_classes">Conjugacy classes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=7" title="Edit section: Conjugacy classes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The 120 symmetries fall into 10 conjugacy classes. </p> <table class="wikitable"> <caption><a href="/wiki/Conjugacy_class" title="Conjugacy class">conjugacy classes</a> </caption> <tbody><tr> <th><i>I</i> </th> <th>additional classes of <i>I<sub>h</sub></i> </th></tr> <tr> <td> <ul><li>identity, order 1</li> <li>12 × rotation by ±72°, order 5, around the 6 axes through the face centers of the dodecahedron</li> <li>12 × rotation by ±144°, order 5, around the 6 axes through the face centers of the dodecahedron</li> <li>20 × rotation by ±120°, order 3, around the 10 axes through vertices of the dodecahedron</li> <li>15 × rotation by 180°, order 2, around the 15 axes through midpoints of edges of the dodecahedron</li></ul> </td> <td> <ul><li>central inversion, order 2</li> <li>12 × rotoreflection by ±36°, order 10, around the 6 axes through the face centers of the dodecahedron</li> <li>12 × rotoreflection by ±108°, order 10, around the 6 axes through the face centers of the dodecahedron</li> <li>20 × rotoreflection by ±60°, order 6, around the 10 axes through the vertices of the dodecahedron</li> <li>15 × reflection, order 2, at 15 planes through edges of the dodecahedron</li></ul> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Subgroups_of_the_full_icosahedral_symmetry_group">Subgroups of the full icosahedral symmetry group</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=8" title="Edit section: Subgroups of the full icosahedral symmetry group"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Icosahedral_subgroup_tree.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b1/Icosahedral_subgroup_tree.png/320px-Icosahedral_subgroup_tree.png" decoding="async" width="320" height="260" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b1/Icosahedral_subgroup_tree.png/480px-Icosahedral_subgroup_tree.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b1/Icosahedral_subgroup_tree.png/640px-Icosahedral_subgroup_tree.png 2x" data-file-width="840" data-file-height="682" /></a><figcaption>Subgroup relations</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Chiral_icosahedral_subgroup_tree.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Chiral_icosahedral_subgroup_tree.png/220px-Chiral_icosahedral_subgroup_tree.png" decoding="async" width="220" height="265" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Chiral_icosahedral_subgroup_tree.png/330px-Chiral_icosahedral_subgroup_tree.png 1.5x, //upload.wikimedia.org/wikipedia/commons/8/87/Chiral_icosahedral_subgroup_tree.png 2x" data-file-width="431" data-file-height="520" /></a><figcaption>Chiral subgroup relations</figcaption></figure> <p>Each line in the following table represents one class of conjugate (i.e., geometrically equivalent) subgroups. The column "Mult." (multiplicity) gives the number of different subgroups in the conjugacy class. </p><p>Explanation of colors: green = the groups that are generated by reflections, red = the chiral (orientation-preserving) groups, which contain only rotations. </p><p>The groups are described geometrically in terms of the dodecahedron. </p><p>The abbreviation "h.t.s.(edge)" means "halfturn swapping this edge with its opposite edge", and similarly for "face" and "vertex". </p> <table class="wikitable sortable"> <tbody><tr> <th><a href="/wiki/Schoenflies_notation" title="Schoenflies notation">Schön.</a></th> <th colspan="2"><a href="/wiki/Coxeter_notation" title="Coxeter notation">Coxeter</a></th> <th><a href="/wiki/Orbifold_notation" title="Orbifold notation">Orb.</a></th> <th><a href="/wiki/Hermann%E2%80%93Mauguin_notation" title="Hermann–Mauguin notation">H-M</a></th> <th><a href="/wiki/List_of_small_groups" title="List of small groups">Structure</a></th> <th><a href="/wiki/Cycle_diagram" class="mw-redirect" title="Cycle diagram">Cyc.</a></th> <th><a href="/wiki/Symmetry_number" title="Symmetry number">Order</a></th> <th><a href="/wiki/Index_of_a_subgroup" title="Index of a subgroup">Index</a></th> <th>Mult.</th> <th>Description </th></tr> <tr align="center" bgcolor="#e0f0f0"> <td>I<sub>h</sub></td> <td>[5,3]</td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span></td> <td>*532</td> <td><span style="text-decoration:overline;">53</span>2/m</td> <td><a href="/wiki/Alternating_group" title="Alternating group">A<sub>5</sub></a>×Z<sub>2</sub></td> <td></td> <td>120</td> <td>1</td> <td>1</td> <td>full group </td></tr> <tr align="center" bgcolor="#e0f0f0"> <td>D<sub>2h</sub></td> <td>[2,2]</td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_2.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_2.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span></td> <td>*222</td> <td>mmm</td> <td><a href="/wiki/Dihedral_group" title="Dihedral group">D<sub>4</sub></a>×D<sub>2</sub>=D<sub>2</sub><sup>3</sup></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniC2x3.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/GroupDiagramMiniC2x3.svg/25px-GroupDiagramMiniC2x3.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/GroupDiagramMiniC2x3.svg/38px-GroupDiagramMiniC2x3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c9/GroupDiagramMiniC2x3.svg/50px-GroupDiagramMiniC2x3.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>8</td> <td>15</td> <td>5</td> <td>fixing two opposite edges, possibly swapping them </td></tr> <tr align="center" bgcolor="#e0f0f0"> <td>C<sub>5v</sub></td> <td>[5]</td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span></td> <td>*55</td> <td>5m</td> <td>D<sub>10</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniD10.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/ce/GroupDiagramMiniD10.svg/25px-GroupDiagramMiniD10.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/ce/GroupDiagramMiniD10.svg/38px-GroupDiagramMiniD10.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/ce/GroupDiagramMiniD10.svg/50px-GroupDiagramMiniD10.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>10</td> <td>12</td> <td>6</td> <td>fixing a face </td></tr> <tr align="center" bgcolor="#e0f0f0"> <td>C<sub>3v</sub></td> <td>[3]</td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span></td> <td>*33</td> <td>3m</td> <td>D<sub>6</sub>=S<sub>3</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniD6.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c0/GroupDiagramMiniD6.svg/25px-GroupDiagramMiniD6.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c0/GroupDiagramMiniD6.svg/38px-GroupDiagramMiniD6.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c0/GroupDiagramMiniD6.svg/50px-GroupDiagramMiniD6.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>6</td> <td>20</td> <td>10</td> <td>fixing a vertex </td></tr> <tr align="center" bgcolor="#e0f0f0"> <td>C<sub>2v</sub></td> <td>[2]</td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_2.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span></td> <td>*22</td> <td>2mm</td> <td>D<sub>4</sub>=D<sub>2</sub><sup>2</sup></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniD4.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/GroupDiagramMiniD4.svg/25px-GroupDiagramMiniD4.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/GroupDiagramMiniD4.svg/38px-GroupDiagramMiniD4.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/47/GroupDiagramMiniD4.svg/50px-GroupDiagramMiniD4.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>4</td> <td>30</td> <td>15</td> <td>fixing an edge </td></tr> <tr align="center" bgcolor="#e0f0f0"> <td>C<sub>s</sub></td> <td>[ ]</td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span></td> <td>*</td> <td><span style="text-decoration:overline;">2</span> or m</td> <td>D<sub>2</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniC2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/da/GroupDiagramMiniC2.svg/25px-GroupDiagramMiniC2.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/da/GroupDiagramMiniC2.svg/38px-GroupDiagramMiniC2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/da/GroupDiagramMiniC2.svg/50px-GroupDiagramMiniC2.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>2</td> <td>60</td> <td>15</td> <td>reflection swapping two endpoints of an edge </td></tr> <tr align="center" bgcolor="#f0f0e0"> <td>T<sub>h</sub></td> <td>[3<sup>+</sup>,4]</td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/8/8c/CDel_4.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span></td> <td>3*2</td> <td>m<span style="text-decoration:overline;">3</span></td> <td>A<sub>4</sub>×Z<sub>2</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniA4xC2.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/GroupDiagramMiniA4xC2.png/25px-GroupDiagramMiniA4xC2.png" decoding="async" width="25" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/GroupDiagramMiniA4xC2.png/38px-GroupDiagramMiniA4xC2.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/GroupDiagramMiniA4xC2.png/50px-GroupDiagramMiniA4xC2.png 2x" data-file-width="630" data-file-height="497" /></a></span></td> <td>24</td> <td>5</td> <td>5</td> <td>pyritohedral group </td></tr> <tr align="center" bgcolor="#f0f0e0"> <td>D<sub>5d</sub></td> <td>[2<sup>+</sup>,10]</td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/1c/CDel_2x.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c6/CDel_10.png" decoding="async" width="10" height="23" class="mw-file-element" data-file-width="10" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span></td> <td>2*5</td> <td><span style="text-decoration:overline;">10</span>m2</td> <td>D<sub>20</sub>=Z<sub>2</sub>×D<sub>10</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniD20.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/GroupDiagramMiniD20.png/25px-GroupDiagramMiniD20.png" decoding="async" width="25" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/GroupDiagramMiniD20.png/38px-GroupDiagramMiniD20.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/74/GroupDiagramMiniD20.png/50px-GroupDiagramMiniD20.png 2x" data-file-width="749" data-file-height="817" /></a></span></td> <td>20</td> <td>6</td> <td>6</td> <td>fixing two opposite faces, possibly swapping them </td></tr> <tr align="center" bgcolor="#f0f0e0"> <td>D<sub>3d</sub></td> <td>[2<sup>+</sup>,6]</td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/1c/CDel_2x.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/3/32/CDel_6.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span></td> <td>2*3</td> <td><span style="text-decoration:overline;">3</span>m</td> <td>D<sub>12</sub>=Z<sub>2</sub>×D<sub>6</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniD12.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/GroupDiagramMiniD12.svg/25px-GroupDiagramMiniD12.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/GroupDiagramMiniD12.svg/38px-GroupDiagramMiniD12.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5a/GroupDiagramMiniD12.svg/50px-GroupDiagramMiniD12.svg.png 2x" data-file-width="64" data-file-height="64" /></a></span></td> <td>12</td> <td>10</td> <td>10</td> <td>fixing two opposite vertices, possibly swapping them </td></tr> <tr align="center" bgcolor="#f0f0e0"> <td>D<sub>1d</sub> = C<sub>2h</sub></td> <td>[2<sup>+</sup>,2]</td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/1c/CDel_2x.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/1c/CDel_2x.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span></td> <td>2*</td> <td>2/m</td> <td>D<sub>4</sub>=<a href="/wiki/Cyclic_group" title="Cyclic group">Z<sub>2</sub></a>×D<sub>2</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniD4.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/GroupDiagramMiniD4.svg/25px-GroupDiagramMiniD4.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/GroupDiagramMiniD4.svg/38px-GroupDiagramMiniD4.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/47/GroupDiagramMiniD4.svg/50px-GroupDiagramMiniD4.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>4</td> <td>30</td> <td>15</td> <td>halfturn around edge midpoint, plus central inversion </td></tr> <tr align="center" bgcolor="#e0e0e0"> <td>S<sub>10</sub></td> <td>[2<sup>+</sup>,10<sup>+</sup>]</td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/1c/CDel_2x.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/e/e2/CDel_node_h4.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c6/CDel_10.png" decoding="async" width="10" height="23" class="mw-file-element" data-file-width="10" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span></td> <td>5×</td> <td><span style="text-decoration:overline;">5</span></td> <td>Z<sub>10</sub>=Z<sub>2</sub>×Z<sub>5</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniC10.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/GroupDiagramMiniC10.svg/25px-GroupDiagramMiniC10.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/GroupDiagramMiniC10.svg/38px-GroupDiagramMiniC10.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9e/GroupDiagramMiniC10.svg/50px-GroupDiagramMiniC10.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>10</td> <td>12</td> <td>6</td> <td>rotations of a face, plus central inversion </td></tr> <tr align="center" bgcolor="#e0e0e0"> <td>S<sub>6</sub></td> <td>[2<sup>+</sup>,6<sup>+</sup>]</td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/1c/CDel_2x.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/e/e2/CDel_node_h4.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/3/32/CDel_6.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span></td> <td>3×</td> <td><span style="text-decoration:overline;">3</span></td> <td>Z<sub>6</sub>=Z<sub>2</sub>×Z<sub>3</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniC6.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/GroupDiagramMiniC6.svg/25px-GroupDiagramMiniC6.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/GroupDiagramMiniC6.svg/38px-GroupDiagramMiniC6.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fb/GroupDiagramMiniC6.svg/50px-GroupDiagramMiniC6.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>6</td> <td>20</td> <td>10</td> <td>rotations about a vertex, plus central inversion </td></tr> <tr align="center" bgcolor="#e0e0e0"> <td>S<sub>2</sub></td> <td>[2<sup>+</sup>,2<sup>+</sup>]</td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/1c/CDel_2x.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/e/e2/CDel_node_h4.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/1c/CDel_2x.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span></td> <td>×</td> <td><span style="text-decoration:overline;">1</span></td> <td>Z<sub>2</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniC2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/da/GroupDiagramMiniC2.svg/25px-GroupDiagramMiniC2.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/da/GroupDiagramMiniC2.svg/38px-GroupDiagramMiniC2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/da/GroupDiagramMiniC2.svg/50px-GroupDiagramMiniC2.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>2</td> <td>60</td> <td>1</td> <td>central inversion </td></tr> <tr align="center" bgcolor="#f0e0f0"> <td>I</td> <td>[5,3]<sup>+</sup></td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span></td> <td>532</td> <td>532</td> <td>A<sub>5</sub></td> <td></td> <td>60</td> <td>2</td> <td>1</td> <td>all rotations </td></tr> <tr align="center" bgcolor="#f0e0f0"> <td>T</td> <td>[3,3]<sup>+</sup></td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span></td> <td>332</td> <td>332</td> <td>A<sub>4</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniA4.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/GroupDiagramMiniA4.svg/25px-GroupDiagramMiniA4.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/GroupDiagramMiniA4.svg/38px-GroupDiagramMiniA4.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/02/GroupDiagramMiniA4.svg/50px-GroupDiagramMiniA4.svg.png 2x" data-file-width="64" data-file-height="64" /></a></span></td> <td>12</td> <td>10</td> <td>5</td> <td>rotations of a contained tetrahedron </td></tr> <tr align="center" bgcolor="#f0e0f0"> <td>D<sub>5</sub></td> <td>[2,5]<sup>+</sup></td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/1c/CDel_2x.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span></td> <td>522</td> <td>522</td> <td>D<sub>10</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniD10.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/ce/GroupDiagramMiniD10.svg/25px-GroupDiagramMiniD10.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/ce/GroupDiagramMiniD10.svg/38px-GroupDiagramMiniD10.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/ce/GroupDiagramMiniD10.svg/50px-GroupDiagramMiniD10.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>10</td> <td>12</td> <td>6</td> <td>rotations around the center of a face, and h.t.s.(face) </td></tr> <tr align="center" bgcolor="#f0e0f0"> <td>D<sub>3</sub></td> <td>[2,3]<sup>+</sup></td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/1c/CDel_2x.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span></td> <td>322</td> <td>322</td> <td>D<sub>6</sub>=S<sub>3</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniD6.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c0/GroupDiagramMiniD6.svg/25px-GroupDiagramMiniD6.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c0/GroupDiagramMiniD6.svg/38px-GroupDiagramMiniD6.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c0/GroupDiagramMiniD6.svg/50px-GroupDiagramMiniD6.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>6</td> <td>20</td> <td>10</td> <td>rotations around a vertex, and h.t.s.(vertex) </td></tr> <tr align="center" bgcolor="#f0e0f0"> <td>D<sub>2</sub></td> <td>[2,2]<sup>+</sup></td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/1c/CDel_2x.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/1c/CDel_2x.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span></td> <td>222</td> <td>222</td> <td>D<sub>4</sub>=Z<sub>2</sub><sup>2</sup></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniD4.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/GroupDiagramMiniD4.svg/25px-GroupDiagramMiniD4.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/GroupDiagramMiniD4.svg/38px-GroupDiagramMiniD4.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/47/GroupDiagramMiniD4.svg/50px-GroupDiagramMiniD4.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>4</td> <td>30</td> <td>5</td> <td>halfturn around edge midpoint, and h.t.s.(edge) </td></tr> <tr align="center" bgcolor="#f0e0f0"> <td>C<sub>5</sub></td> <td>[5]<sup>+</sup></td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span></td> <td>55</td> <td>5</td> <td>Z<sub>5</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniC5.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/GroupDiagramMiniC5.svg/25px-GroupDiagramMiniC5.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/GroupDiagramMiniC5.svg/38px-GroupDiagramMiniC5.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cd/GroupDiagramMiniC5.svg/50px-GroupDiagramMiniC5.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>5</td> <td>24</td> <td>6</td> <td>rotations around a face center </td></tr> <tr align="center" bgcolor="#f0e0f0"> <td>C<sub>3</sub></td> <td>[3]<sup>+</sup></td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span></td> <td>33</td> <td>3</td> <td>Z<sub>3</sub>=A<sub>3</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniC3.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/GroupDiagramMiniC3.svg/25px-GroupDiagramMiniC3.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/GroupDiagramMiniC3.svg/38px-GroupDiagramMiniC3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/GroupDiagramMiniC3.svg/50px-GroupDiagramMiniC3.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>3</td> <td>40</td> <td>10</td> <td>rotations around a vertex </td></tr> <tr align="center" bgcolor="#f0e0f0"> <td>C<sub>2</sub></td> <td>[2]<sup>+</sup></td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/1c/CDel_2x.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span></td> <td>22</td> <td>2</td> <td>Z<sub>2</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniC2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/da/GroupDiagramMiniC2.svg/25px-GroupDiagramMiniC2.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/da/GroupDiagramMiniC2.svg/38px-GroupDiagramMiniC2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/da/GroupDiagramMiniC2.svg/50px-GroupDiagramMiniC2.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>2</td> <td>60</td> <td>15</td> <td>half-turn around edge midpoint </td></tr> <tr align="center" bgcolor="#f0e0f0"> <td>C<sub>1</sub></td> <td>[ ]<sup>+</sup></td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span></td> <td>11</td> <td>1</td> <td>Z<sub>1</sub></td> <td><span typeof="mw:File"><a href="/wiki/File:GroupDiagramMiniC1.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/GroupDiagramMiniC1.svg/25px-GroupDiagramMiniC1.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/GroupDiagramMiniC1.svg/38px-GroupDiagramMiniC1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f2/GroupDiagramMiniC1.svg/50px-GroupDiagramMiniC1.svg.png 2x" data-file-width="32" data-file-height="32" /></a></span></td> <td>1</td> <td>120</td> <td>1</td> <td>trivial group </td></tr></tbody></table> <div class="mw-heading mw-heading4"><h4 id="Vertex_stabilizers">Vertex stabilizers</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=9" title="Edit section: Vertex stabilizers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Stabilizers of an opposite pair of vertices can be interpreted as stabilizers of the axis they generate. </p> <ul><li>vertex stabilizers in <i>I</i> give <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic groups</a> <i>C</i><sub>3</sub></li> <li>vertex stabilizers in <i>I<sub>h</sub></i> give <a href="/wiki/Dihedral_symmetry_in_three_dimensions" title="Dihedral symmetry in three dimensions">dihedral groups</a> <i>D</i><sub>3</sub></li> <li>stabilizers of an opposite pair of vertices in <i>I</i> give dihedral groups <i>D</i><sub>3</sub></li> <li>stabilizers of an opposite pair of vertices in <i>I<sub>h</sub></i> give <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{3}\times \pm 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>×<!-- × --></mo> <mo>±<!-- ± --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{3}\times \pm 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c633e910868413a255c185be4e799d2c218ab56d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.789ex; height:2.509ex;" alt="{\displaystyle D_{3}\times \pm 1}"></span></li></ul> <div class="mw-heading mw-heading4"><h4 id="Edge_stabilizers">Edge stabilizers</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=10" title="Edit section: Edge stabilizers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Stabilizers of an opposite pair of edges can be interpreted as stabilizers of the rectangle they generate. </p> <ul><li>edges stabilizers in <i>I</i> give cyclic groups <i>Z</i><sub>2</sub></li> <li>edges stabilizers in <i>I<sub>h</sub></i> give <a href="/wiki/Klein_four-group" title="Klein four-group">Klein four-groups</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z_{2}\times Z_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z_{2}\times Z_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e55f4fa0a6e390a7edf3a1e8d141034f2fcb2da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.124ex; height:2.509ex;" alt="{\displaystyle Z_{2}\times Z_{2}}"></span></li> <li>stabilizers of a pair of edges in <i>I</i> give <a href="/wiki/Klein_four-group" title="Klein four-group">Klein four-groups</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z_{2}\times Z_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z_{2}\times Z_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e55f4fa0a6e390a7edf3a1e8d141034f2fcb2da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.124ex; height:2.509ex;" alt="{\displaystyle Z_{2}\times Z_{2}}"></span>; there are 5 of these, given by rotation by 180° in 3 perpendicular axes.</li> <li>stabilizers of a pair of edges in <i>I<sub>h</sub></i> give <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z_{2}\times Z_{2}\times Z_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z_{2}\times Z_{2}\times Z_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d953a906608cfbdef7a2b36602498d4cd89df340" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.606ex; height:2.509ex;" alt="{\displaystyle Z_{2}\times Z_{2}\times Z_{2}}"></span>; there are 5 of these, given by reflections in 3 perpendicular axes.</li></ul> <div class="mw-heading mw-heading4"><h4 id="Face_stabilizers">Face stabilizers</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=11" title="Edit section: Face stabilizers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Stabilizers of an opposite pair of faces can be interpreted as stabilizers of the <a href="/wiki/Antiprism" title="Antiprism">antiprism</a> they generate. </p> <ul><li>face stabilizers in <i>I</i> give cyclic groups <i>C</i><sub>5</sub></li> <li>face stabilizers in <i>I<sub>h</sub></i> give dihedral groups <i>D</i><sub>5</sub></li> <li>stabilizers of an opposite pair of faces in <i>I</i> give dihedral groups <i>D</i><sub>5</sub></li> <li>stabilizers of an opposite pair of faces in <i>I<sub>h</sub></i> give <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{5}\times \pm 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>×<!-- × --></mo> <mo>±<!-- ± --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{5}\times \pm 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/435f95647411264d39c51d9a5c1c1f61e8dad3a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.789ex; height:2.509ex;" alt="{\displaystyle D_{5}\times \pm 1}"></span></li></ul> <div class="mw-heading mw-heading4"><h4 id="Polyhedron_stabilizers">Polyhedron stabilizers</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=12" title="Edit section: Polyhedron stabilizers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For each of these, there are 5 conjugate copies, and the conjugation action gives a map, indeed an isomorphism, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I{\stackrel {\sim }{\to }}A_{5}<S_{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">→<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∼<!-- ∼ --></mo> </mrow> </mover> </mrow> </mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo><</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I{\stackrel {\sim }{\to }}A_{5}<S_{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e09e712547d5689ea9234569d52c18c556d1dd69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.87ex; height:3.176ex;" alt="{\displaystyle I{\stackrel {\sim }{\to }}A_{5}<S_{5}}"></span>. </p> <ul><li>stabilizers of the inscribed tetrahedra in <i>I</i> are a copy of <i>T</i></li> <li>stabilizers of the inscribed tetrahedra in <i>I<sub>h</sub></i> are a copy of <i>T</i></li> <li>stabilizers of the inscribed cubes (or opposite pair of tetrahedra, or octahedra) in <i>I</i> are a copy of <i>T</i></li> <li>stabilizers of the inscribed cubes (or opposite pair of tetrahedra, or octahedra) in <i>I<sub>h</sub></i> are a copy of <i>T<sub>h</sub></i></li></ul> <div class="mw-heading mw-heading4"><h4 id="Coxeter_group_generators">Coxeter group generators</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=13" title="Edit section: Coxeter group generators"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The full icosahedral symmetry group [5,3] (<span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/a/a8/CDel_node_n0.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/6/6d/CDel_node_n1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/2/20/CDel_node_n2.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span>) of order 120 has generators represented by the reflection matrices R<sub>0</sub>, R<sub>1</sub>, R<sub>2</sub> below, with relations R<sub>0</sub><sup>2</sup> = R<sub>1</sub><sup>2</sup> = R<sub>2</sub><sup>2</sup> = (R<sub>0</sub>×R<sub>1</sub>)<sup>5</sup> = (R<sub>1</sub>×R<sub>2</sub>)<sup>3</sup> = (R<sub>0</sub>×R<sub>2</sub>)<sup>2</sup> = Identity. The group [5,3]<sup>+</sup> (<span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span>) of order 60 is generated by any two of the rotations S<sub>0,1</sub>, S<sub>1,2</sub>, S<sub>0,2</sub>. A <a href="/wiki/Rotoreflection" class="mw-redirect" title="Rotoreflection">rotoreflection</a> of order 10 is generated by V<sub>0,1,2</sub>, the product of all 3 reflections. Here <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi ={\tfrac {{\sqrt {5}}+1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi ={\tfrac {{\sqrt {5}}+1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/422d2d2bb8b6aaa7577a3f39c8fd7e00cf6c488f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:9.611ex; height:4.176ex;" alt="{\displaystyle \phi ={\tfrac {{\sqrt {5}}+1}{2}}}"></span> denotes the <a href="/wiki/Golden_ratio" title="Golden ratio">golden ratio</a>. </p> <table class="wikitable"> <caption>[5,3], <span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/a/a8/CDel_node_n0.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/6/6d/CDel_node_n1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/2/20/CDel_node_n2.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> </caption> <tbody><tr> <th> </th> <th colspan="3">Reflections </th> <th colspan="3">Rotations </th> <th>Rotoreflection </th></tr> <tr> <th>Name </th> <th>R<sub>0</sub> </th> <th>R<sub>1</sub> </th> <th>R<sub>2</sub> </th> <th>S<sub>0,1</sub> </th> <th>S<sub>1,2</sub> </th> <th>S<sub>0,2</sub> </th> <th>V<sub>0,1,2</sub> </th></tr> <tr align="center"> <th>Group </th> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/a/a8/CDel_node_n0.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> </td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/6/6d/CDel_node_n1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> </td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/2/20/CDel_node_n2.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> </td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span> </td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span> </td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_2.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span> </td> <td><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c6/CDel_10.png" decoding="async" width="10" height="23" class="mw-file-element" data-file-width="10" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/e/e2/CDel_node_h4.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_2.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/7/70/CDel_node_h2.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span></span> </td></tr> <tr align="center"> <th>Order </th> <td>2</td> <td>2</td> <td>2</td> <td>5</td> <td>3</td> <td>2</td> <td>10 </td></tr> <tr align="center"> <th>Matrix </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\begin{smallmatrix}-1&0&0\\0&1&0\\0&0&1\end{smallmatrix}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle scriptlevel="1"> <mtable rowspacing=".2em" columnspacing="0.333em" displaystyle="false"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mstyle> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[{\begin{smallmatrix}-1&0&0\\0&1&0\\0&0&1\end{smallmatrix}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b81bf2648cef2b0f3cb2f82f0f0bcba89c595af1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:8.498ex; height:6.176ex;" alt="{\displaystyle \left[{\begin{smallmatrix}-1&0&0\\0&1&0\\0&0&1\end{smallmatrix}}\right]}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\begin{smallmatrix}{\frac {1-\phi }{2}}&{\frac {-\phi }{2}}&{\frac {-1}{2}}\\{\frac {-\phi }{2}}&{\frac {1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {1-\phi }{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle scriptlevel="1"> <mtable rowspacing=".2em" columnspacing="0.333em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mstyle> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[{\begin{smallmatrix}{\frac {1-\phi }{2}}&{\frac {-\phi }{2}}&{\frac {-1}{2}}\\{\frac {-\phi }{2}}&{\frac {1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {1-\phi }{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94a2f124af793abcdec2a757fa54eacd8e12183f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.548ex; margin-bottom: -0.29ex; width:15.409ex; height:10.843ex;" alt="{\displaystyle \left[{\begin{smallmatrix}{\frac {1-\phi }{2}}&{\frac {-\phi }{2}}&{\frac {-1}{2}}\\{\frac {-\phi }{2}}&{\frac {1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {1-\phi }{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\begin{smallmatrix}1&0&0\\0&-1&0\\0&0&1\end{smallmatrix}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle scriptlevel="1"> <mtable rowspacing=".2em" columnspacing="0.333em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mstyle> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[{\begin{smallmatrix}1&0&0\\0&-1&0\\0&0&1\end{smallmatrix}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d98311a57b2d6575867fb3100199be36b656299" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:8.498ex; height:6.176ex;" alt="{\displaystyle \left[{\begin{smallmatrix}1&0&0\\0&-1&0\\0&0&1\end{smallmatrix}}\right]}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\begin{smallmatrix}{\frac {\phi -1}{2}}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {-\phi }{2}}&{\frac {1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {1-\phi }{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle scriptlevel="1"> <mtable rowspacing=".2em" columnspacing="0.333em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ϕ<!-- ϕ --></mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mstyle> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[{\begin{smallmatrix}{\frac {\phi -1}{2}}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {-\phi }{2}}&{\frac {1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {1-\phi }{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bef78ac2c56b1aeecf4b2ee91fa450dd1b0bbc29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.548ex; margin-bottom: -0.29ex; width:15.409ex; height:10.843ex;" alt="{\displaystyle \left[{\begin{smallmatrix}{\frac {\phi -1}{2}}&{\frac {\phi }{2}}&{\frac {1}{2}}\\{\frac {-\phi }{2}}&{\frac {1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {1-\phi }{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\begin{smallmatrix}{\frac {1-\phi }{2}}&{\frac {\phi }{2}}&{\frac {-1}{2}}\\{\frac {-\phi }{2}}&{\frac {-1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {\phi -1}{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle scriptlevel="1"> <mtable rowspacing=".2em" columnspacing="0.333em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ϕ<!-- ϕ --></mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mstyle> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[{\begin{smallmatrix}{\frac {1-\phi }{2}}&{\frac {\phi }{2}}&{\frac {-1}{2}}\\{\frac {-\phi }{2}}&{\frac {-1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {\phi -1}{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c62a981424dfb7bce1a413d58b0ee62a9322924" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.548ex; margin-bottom: -0.29ex; width:15.409ex; height:10.843ex;" alt="{\displaystyle \left[{\begin{smallmatrix}{\frac {1-\phi }{2}}&{\frac {\phi }{2}}&{\frac {-1}{2}}\\{\frac {-\phi }{2}}&{\frac {-1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {\phi -1}{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\begin{smallmatrix}-1&0&0\\0&-1&0\\0&0&1\end{smallmatrix}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle scriptlevel="1"> <mtable rowspacing=".2em" columnspacing="0.333em" displaystyle="false"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mstyle> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[{\begin{smallmatrix}-1&0&0\\0&-1&0\\0&0&1\end{smallmatrix}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29ecfba65b611468342e533ba54ae7b9f240f3bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:9.776ex; height:6.176ex;" alt="{\displaystyle \left[{\begin{smallmatrix}-1&0&0\\0&-1&0\\0&0&1\end{smallmatrix}}\right]}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\begin{smallmatrix}{\frac {\phi -1}{2}}&{\frac {-\phi }{2}}&{\frac {1}{2}}\\{\frac {-\phi }{2}}&{\frac {-1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {\phi -1}{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle scriptlevel="1"> <mtable rowspacing=".2em" columnspacing="0.333em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ϕ<!-- ϕ --></mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ϕ<!-- ϕ --></mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mstyle> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[{\begin{smallmatrix}{\frac {\phi -1}{2}}&{\frac {-\phi }{2}}&{\frac {1}{2}}\\{\frac {-\phi }{2}}&{\frac {-1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {\phi -1}{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f358516e6f6d9c29e3ca1c9f6bac53e18019636" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.548ex; margin-bottom: -0.29ex; width:15.409ex; height:10.843ex;" alt="{\displaystyle \left[{\begin{smallmatrix}{\frac {\phi -1}{2}}&{\frac {-\phi }{2}}&{\frac {1}{2}}\\{\frac {-\phi }{2}}&{\frac {-1}{2}}&{\frac {1-\phi }{2}}\\{\frac {-1}{2}}&{\frac {\phi -1}{2}}&{\frac {\phi }{2}}\end{smallmatrix}}\right]}"></span> </td></tr> <tr align="center"> <th> </th> <td>(1,0,0)<sub>n</sub> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\begin{smallmatrix}{\frac {\phi }{2}},{\frac {1}{2}},{\frac {\phi -1}{2}}\end{smallmatrix}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle scriptlevel="1"> <mtable rowspacing=".2em" columnspacing="0.333em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ϕ<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ϕ<!-- ϕ --></mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mstyle> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\begin{smallmatrix}{\frac {\phi }{2}},{\frac {1}{2}},{\frac {\phi -1}{2}}\end{smallmatrix}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5badffa1c426d6b1384ccf2a5734034503b7aff3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:9.947ex; height:3.509ex;" alt="{\displaystyle ({\begin{smallmatrix}{\frac {\phi }{2}},{\frac {1}{2}},{\frac {\phi -1}{2}}\end{smallmatrix}})}"></span><sub>n</sub> </td> <td>(0,1,0)<sub>n</sub> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,-1,\phi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,-1,\phi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a7c920f35e51d8d621783f0c070e9f375c5e07d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.396ex; height:2.843ex;" alt="{\displaystyle (0,-1,\phi )}"></span><sub>axis</sub> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1-\phi ,0,\phi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1-\phi ,0,\phi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0db7f81f7b2df759441bdcaffcc9e37d7b2e96c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.813ex; height:2.843ex;" alt="{\displaystyle (1-\phi ,0,\phi )}"></span><sub>axis</sub> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25b35543ef5f96df2e9aea6cced9bdd57dab7e1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.365ex; height:2.843ex;" alt="{\displaystyle (0,0,1)}"></span><sub>axis</sub> </td> <td> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Fundamental_domain">Fundamental domain</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=14" title="Edit section: Fundamental domain"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Fundamental_domain" title="Fundamental domain">Fundamental domains</a> for the icosahedral rotation group and the full icosahedral group are given by: </p> <table class="wikitable" width="580"> <tbody><tr align="center" valign="top"> <td><span typeof="mw:File"><a href="/wiki/File:Sphere_symmetry_group_i.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Sphere_symmetry_group_i.png/200px-Sphere_symmetry_group_i.png" decoding="async" width="200" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Sphere_symmetry_group_i.png/300px-Sphere_symmetry_group_i.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/03/Sphere_symmetry_group_i.png/400px-Sphere_symmetry_group_i.png 2x" data-file-width="985" data-file-height="987" /></a></span><br />Icosahedral rotation group<br /><i>I</i> </td> <td><span typeof="mw:File"><a href="/wiki/File:Sphere_symmetry_group_ih.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Sphere_symmetry_group_ih.png/200px-Sphere_symmetry_group_ih.png" decoding="async" width="200" height="184" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Sphere_symmetry_group_ih.png/300px-Sphere_symmetry_group_ih.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Sphere_symmetry_group_ih.png/400px-Sphere_symmetry_group_ih.png 2x" data-file-width="671" data-file-height="617" /></a></span><br />Full icosahedral group<br /><i>I</i><sub>h</sub> </td> <td><span typeof="mw:File"><a href="/wiki/File:Disdyakistriacontahedron.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Disdyakistriacontahedron.jpg/180px-Disdyakistriacontahedron.jpg" decoding="async" width="180" height="188" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Disdyakistriacontahedron.jpg/270px-Disdyakistriacontahedron.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Disdyakistriacontahedron.jpg/360px-Disdyakistriacontahedron.jpg 2x" data-file-width="812" data-file-height="847" /></a></span><br />Faces of <a href="/wiki/Disdyakis_triacontahedron" title="Disdyakis triacontahedron">disdyakis triacontahedron</a> are the fundamental domain </td></tr></tbody></table> <p>In the <a href="/wiki/Disdyakis_triacontahedron" title="Disdyakis triacontahedron">disdyakis triacontahedron</a> one full face is a fundamental domain; other solids with the same symmetry can be obtained by adjusting the orientation of the faces, e.g. flattening selected subsets of faces to combine each subset into one face, or replacing each face by multiple faces, or a curved surface. </p> <div class="mw-heading mw-heading2"><h2 id="Polyhedra_with_icosahedral_symmetry">Polyhedra with icosahedral symmetry</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=15" title="Edit section: Polyhedra with icosahedral symmetry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Solids_with_icosahedral_symmetry" title="Solids with icosahedral symmetry">Solids with icosahedral symmetry</a></div><p>Examples of other <a href="/wiki/Polyhedra" class="mw-redirect" title="Polyhedra">polyhedra</a> with icosahedral symmetry include the <a href="/wiki/Regular_dodecahedron" title="Regular dodecahedron">regular dodecahedron</a> (the <a href="/wiki/Dual_polyhedron" title="Dual polyhedron">dual</a> of the icosahedron) and the <a href="/wiki/Rhombic_triacontahedron" title="Rhombic triacontahedron">rhombic triacontahedron</a>. </p><div class="mw-heading mw-heading3"><h3 id="Chiral_polyhedra">Chiral polyhedra</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=16" title="Edit section: Chiral polyhedra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <th>Class </th> <th>Symbols </th> <th>Picture </th></tr> <tr align="center"> <th><a href="/wiki/Archimedean_solid" title="Archimedean solid">Archimedean</a> </th> <th><a href="/wiki/Snub_dodecahedron" title="Snub dodecahedron">sr{5,3}</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/2/28/CDel_node_h.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/2/28/CDel_node_h.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/2/28/CDel_node_h.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span></span> </th> <td><span typeof="mw:File"><a href="/wiki/File:Snubdodecahedronccw.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Snubdodecahedronccw.jpg/50px-Snubdodecahedronccw.jpg" decoding="async" width="50" height="51" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Snubdodecahedronccw.jpg/75px-Snubdodecahedronccw.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/Snubdodecahedronccw.jpg/100px-Snubdodecahedronccw.jpg 2x" data-file-width="853" data-file-height="866" /></a></span> </td></tr> <tr align="center"> <th><a href="/wiki/Catalan_solid" title="Catalan solid">Catalan</a> </th> <th><a href="/wiki/Pentagonal_hexecontahedron" title="Pentagonal hexecontahedron">V3.3.3.3.5</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/6/6f/CDel_node_fh.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/6/6f/CDel_node_fh.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/6/6f/CDel_node_fh.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span></span> </th> <td><span typeof="mw:File"><a href="/wiki/File:Pentagonalhexecontahedronccw.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/90/Pentagonalhexecontahedronccw.jpg/50px-Pentagonalhexecontahedronccw.jpg" decoding="async" width="50" height="51" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/90/Pentagonalhexecontahedronccw.jpg/75px-Pentagonalhexecontahedronccw.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/90/Pentagonalhexecontahedronccw.jpg/100px-Pentagonalhexecontahedronccw.jpg 2x" data-file-width="834" data-file-height="851" /></a></span> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Full_icosahedral_symmetry">Full icosahedral symmetry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=17" title="Edit section: Full icosahedral symmetry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <th colspan="1"><a href="/wiki/Platonic_solid" title="Platonic solid">Platonic solid</a></th> <th colspan="2"><a href="/wiki/Kepler%E2%80%93Poinsot_polyhedron" title="Kepler–Poinsot polyhedron">Kepler–Poinsot polyhedra</a> </th> <th colspan="5"><a href="/wiki/Archimedean_solid" title="Archimedean solid">Archimedean solids</a> </th></tr> <tr align="center"> <td><span typeof="mw:File"><a href="/wiki/File:Dodecahedron.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Dodecahedron.svg/50px-Dodecahedron.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Dodecahedron.svg/75px-Dodecahedron.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Dodecahedron.svg/100px-Dodecahedron.svg.png 2x" data-file-width="300" data-file-height="300" /></a></span><br /><a href="/wiki/Dodecahedron" title="Dodecahedron">{5,3}</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:SmallStellatedDodecahedron.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/SmallStellatedDodecahedron.jpg/50px-SmallStellatedDodecahedron.jpg" decoding="async" width="50" height="53" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/SmallStellatedDodecahedron.jpg/75px-SmallStellatedDodecahedron.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ad/SmallStellatedDodecahedron.jpg/100px-SmallStellatedDodecahedron.jpg 2x" data-file-width="770" data-file-height="822" /></a></span><br /><a href="/wiki/Small_stellated_dodecahedron" title="Small stellated dodecahedron">{5/2,5}</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/6/67/CDel_5-2.png" decoding="async" width="14" height="23" class="mw-file-element" data-file-width="14" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:GreatStellatedDodecahedron.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/GreatStellatedDodecahedron.jpg/50px-GreatStellatedDodecahedron.jpg" decoding="async" width="50" height="47" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/GreatStellatedDodecahedron.jpg/75px-GreatStellatedDodecahedron.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/51/GreatStellatedDodecahedron.jpg/100px-GreatStellatedDodecahedron.jpg 2x" data-file-width="853" data-file-height="794" /></a></span><br /><a href="/wiki/Great_stellated_dodecahedron" title="Great stellated dodecahedron">{5/2,3}</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/6/67/CDel_5-2.png" decoding="async" width="14" height="23" class="mw-file-element" data-file-width="14" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Truncateddodecahedron.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Truncateddodecahedron.jpg/50px-Truncateddodecahedron.jpg" decoding="async" width="50" height="46" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Truncateddodecahedron.jpg/75px-Truncateddodecahedron.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Truncateddodecahedron.jpg/100px-Truncateddodecahedron.jpg 2x" data-file-width="876" data-file-height="802" /></a></span><br /><a href="/wiki/Truncated_dodecahedron" title="Truncated dodecahedron">t{5,3}</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Truncatedicosahedron.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Truncatedicosahedron.jpg/50px-Truncatedicosahedron.jpg" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Truncatedicosahedron.jpg/75px-Truncatedicosahedron.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Truncatedicosahedron.jpg/100px-Truncatedicosahedron.jpg 2x" data-file-width="878" data-file-height="874" /></a></span><br /><a href="/wiki/Truncated_icosahedron" title="Truncated icosahedron">t{3,5}</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Icosidodecahedron.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Icosidodecahedron.svg/50px-Icosidodecahedron.svg.png" decoding="async" width="50" height="51" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Icosidodecahedron.svg/75px-Icosidodecahedron.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Icosidodecahedron.svg/100px-Icosidodecahedron.svg.png 2x" data-file-width="841" data-file-height="861" /></a></span><br /><a href="/wiki/Icosidodecahedron" title="Icosidodecahedron">r{3,5}</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Rhombicosidodecahedron.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Rhombicosidodecahedron.jpg/50px-Rhombicosidodecahedron.jpg" decoding="async" width="50" height="51" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Rhombicosidodecahedron.jpg/75px-Rhombicosidodecahedron.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/96/Rhombicosidodecahedron.jpg/100px-Rhombicosidodecahedron.jpg 2x" data-file-width="858" data-file-height="871" /></a></span><br /><a href="/wiki/Rhombicosidodecahedron" title="Rhombicosidodecahedron">rr{3,5}</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Truncatedicosidodecahedron.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Truncatedicosidodecahedron.jpg/50px-Truncatedicosidodecahedron.jpg" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Truncatedicosidodecahedron.jpg/75px-Truncatedicosidodecahedron.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Truncatedicosidodecahedron.jpg/100px-Truncatedicosidodecahedron.jpg 2x" data-file-width="868" data-file-height="869" /></a></span><br /><a href="/wiki/Truncated_icosidodecahedron" title="Truncated icosidodecahedron">tr{3,5}</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span></span> </td></tr> <tr align="center"> <th>Platonic solid</th> <th colspan="2">Kepler–Poinsot polyhedra </th> <th colspan="5"><a href="/wiki/Catalan_solid" title="Catalan solid">Catalan solids</a> </th></tr> <tr align="center"> <td><span typeof="mw:File"><a href="/wiki/File:Icosahedron.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Icosahedron.svg/50px-Icosahedron.svg.png" decoding="async" width="50" height="48" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Icosahedron.svg/75px-Icosahedron.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Icosahedron.svg/100px-Icosahedron.svg.png 2x" data-file-width="512" data-file-height="492" /></a></span><br /><a href="/wiki/Icosahedron" title="Icosahedron">{3,5}</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/9/9b/CDel_node_f1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> = <span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:GreatDodecahedron.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/GreatDodecahedron.jpg/50px-GreatDodecahedron.jpg" decoding="async" width="50" height="54" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/GreatDodecahedron.jpg/75px-GreatDodecahedron.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6b/GreatDodecahedron.jpg/100px-GreatDodecahedron.jpg 2x" data-file-width="752" data-file-height="814" /></a></span><br /><a href="/wiki/Great_dodecahedron" title="Great dodecahedron">{5,5/2}</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/9/9b/CDel_node_f1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/6/67/CDel_5-2.png" decoding="async" width="14" height="23" class="mw-file-element" data-file-width="14" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> = <span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/6/67/CDel_5-2.png" decoding="async" width="14" height="23" class="mw-file-element" data-file-width="14" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:GreatIcosahedron.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/GreatIcosahedron.jpg/50px-GreatIcosahedron.jpg" decoding="async" width="50" height="51" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/GreatIcosahedron.jpg/75px-GreatIcosahedron.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/GreatIcosahedron.jpg/100px-GreatIcosahedron.jpg 2x" data-file-width="831" data-file-height="848" /></a></span><br /><a href="/wiki/Great_icosahedron" title="Great icosahedron">{3,5/2}</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/9/9b/CDel_node_f1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/6/67/CDel_5-2.png" decoding="async" width="14" height="23" class="mw-file-element" data-file-width="14" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> = <span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/6/67/CDel_5-2.png" decoding="async" width="14" height="23" class="mw-file-element" data-file-width="14" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/b/bd/CDel_node_1.png" decoding="async" width="9" height="23" class="mw-file-element" data-file-width="9" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Triakisicosahedron.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Triakisicosahedron.jpg/50px-Triakisicosahedron.jpg" decoding="async" width="50" height="52" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Triakisicosahedron.jpg/75px-Triakisicosahedron.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Triakisicosahedron.jpg/100px-Triakisicosahedron.jpg 2x" data-file-width="819" data-file-height="849" /></a></span><br /><a href="/wiki/Triakis_icosahedron" title="Triakis icosahedron">V3.10.10</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/9/9b/CDel_node_f1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/9/9b/CDel_node_f1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Pentakisdodecahedron.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Pentakisdodecahedron.jpg/50px-Pentakisdodecahedron.jpg" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Pentakisdodecahedron.jpg/75px-Pentakisdodecahedron.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/03/Pentakisdodecahedron.jpg/100px-Pentakisdodecahedron.jpg 2x" data-file-width="844" data-file-height="843" /></a></span><br /><a href="/wiki/Pentakis_dodecahedron" title="Pentakis dodecahedron">V5.6.6</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/9/9b/CDel_node_f1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/9/9b/CDel_node_f1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Rhombictriacontahedron.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Rhombictriacontahedron.svg/50px-Rhombictriacontahedron.svg.png" decoding="async" width="50" height="55" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Rhombictriacontahedron.svg/75px-Rhombictriacontahedron.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Rhombictriacontahedron.svg/100px-Rhombictriacontahedron.svg.png 2x" data-file-width="560" data-file-height="620" /></a></span><br /><a href="/wiki/Rhombic_triacontahedron" title="Rhombic triacontahedron">V3.5.3.5</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/9/9b/CDel_node_f1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Deltoidalhexecontahedron.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ef/Deltoidalhexecontahedron.jpg/50px-Deltoidalhexecontahedron.jpg" decoding="async" width="50" height="49" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ef/Deltoidalhexecontahedron.jpg/75px-Deltoidalhexecontahedron.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ef/Deltoidalhexecontahedron.jpg/100px-Deltoidalhexecontahedron.jpg 2x" data-file-width="854" data-file-height="843" /></a></span><br /><a href="/wiki/Deltoidal_hexecontahedron" title="Deltoidal hexecontahedron">V3.4.5.4</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/9/9b/CDel_node_f1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/CDel_node.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/9/9b/CDel_node_f1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Disdyakistriacontahedron.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Disdyakistriacontahedron.jpg/50px-Disdyakistriacontahedron.jpg" decoding="async" width="50" height="52" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Disdyakistriacontahedron.jpg/75px-Disdyakistriacontahedron.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Disdyakistriacontahedron.jpg/100px-Disdyakistriacontahedron.jpg 2x" data-file-width="812" data-file-height="847" /></a></span><br /><a href="/wiki/Disdyakis_triacontahedron" title="Disdyakis triacontahedron">V4.6.10</a><br /><span style="display:inline-block;"><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/9/9b/CDel_node_f1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/1/16/CDel_5.png" decoding="async" width="7" height="23" class="mw-file-element" data-file-width="7" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/9/9b/CDel_node_f1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/c/c3/CDel_3.png" decoding="async" width="6" height="23" class="mw-file-element" data-file-width="6" data-file-height="23" /></span></span><span class="mw-default-size" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/9/9b/CDel_node_f1.png" decoding="async" width="5" height="23" class="mw-file-element" data-file-width="5" data-file-height="23" /></span></span></span> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Other_objects_with_icosahedral_symmetry">Other objects with icosahedral symmetry</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=18" title="Edit section: Other objects with icosahedral symmetry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1237032888/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:204px;max-width:204px"><div class="trow"><div class="theader">Examples of icosahedral symmetry</div></div><div class="trow"><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Circogoniaicosahedra_ekw.jpg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/0/02/Circogoniaicosahedra_ekw.jpg" decoding="async" width="200" height="223" class="mw-file-element" data-file-width="157" data-file-height="175" /></a></span></div><div class="thumbcaption"><i><a href="/w/index.php?title=Circogonia_icosahedra&action=edit&redlink=1" class="new" title="Circogonia icosahedra (page does not exist)">Circogonia icosahedra</a></i>, a <a href="/wiki/Radiolarian" class="mw-redirect" title="Radiolarian">Radiolarian</a></div></div></div><div class="trow"><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Adenovirus_3D_schematic.png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Adenovirus_3D_schematic.png/200px-Adenovirus_3D_schematic.png" decoding="async" width="200" height="228" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Adenovirus_3D_schematic.png/300px-Adenovirus_3D_schematic.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Adenovirus_3D_schematic.png/400px-Adenovirus_3D_schematic.png 2x" data-file-width="1512" data-file-height="1726" /></a></span></div><div class="thumbcaption">Capsid of an <a href="/wiki/Adenoviridae" title="Adenoviridae">Adenovirus</a></div></div></div><div class="trow"><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Dodecaborate(12)-dianion-from-xtal-3D-bs-17.png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Dodecaborate%2812%29-dianion-from-xtal-3D-bs-17.png/200px-Dodecaborate%2812%29-dianion-from-xtal-3D-bs-17.png" decoding="async" width="200" height="224" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Dodecaborate%2812%29-dianion-from-xtal-3D-bs-17.png/300px-Dodecaborate%2812%29-dianion-from-xtal-3D-bs-17.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Dodecaborate%2812%29-dianion-from-xtal-3D-bs-17.png/400px-Dodecaborate%2812%29-dianion-from-xtal-3D-bs-17.png 2x" data-file-width="2122" data-file-height="2380" /></a></span></div><div class="thumbcaption">The <a href="/wiki/Dodecaborate" title="Dodecaborate">dodecaborate</a> ion [B<sub>12</sub>H<sub>12</sub>]<sup>2−</sup></div></div></div></div></div> <ul><li><a href="/wiki/Barth_surface" title="Barth surface">Barth surfaces</a></li> <li><a href="/wiki/Virus_structure" class="mw-redirect" title="Virus structure">Virus structure</a>, and <a href="/wiki/Capsid" title="Capsid">Capsid</a></li> <li>In chemistry, the <a href="/wiki/Dodecaborate" title="Dodecaborate">dodecaborate</a> ion ([B<sub>12</sub>H<sub>12</sub>]<sup>2−</sup>) and the <a href="/wiki/Dodecahedrane" title="Dodecahedrane">dodecahedrane</a> molecule (C<sub>20</sub>H<sub>20</sub>)</li></ul> <div class="mw-heading mw-heading3"><h3 id="Liquid_crystals_with_icosahedral_symmetry">Liquid crystals with icosahedral symmetry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=19" title="Edit section: Liquid crystals with icosahedral symmetry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For the intermediate material phase called <a href="/wiki/Liquid_crystals" class="mw-redirect" title="Liquid crystals">liquid crystals</a> the existence of icosahedral symmetry was proposed by <a href="/wiki/Hagen_Kleinert" title="Hagen Kleinert">H. Kleinert</a> and K. Maki<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> and its structure was first analyzed in detail in that paper. See the review article <a rel="nofollow" class="external text" href="http://chemgroups.northwestern.edu/seideman/Publications/The%20liquid-crystalline%20blue%20phases.pdf">here</a>. In aluminum, the icosahedral structure was discovered experimentally three years after this by <a href="/wiki/Dan_Shechtman" title="Dan Shechtman">Dan Shechtman</a>, which earned him the Nobel Prize in 2011. </p> <div class="mw-heading mw-heading2"><h2 id="Related_geometries">Related geometries</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=20" title="Edit section: Related geometries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Icosahedral symmetry is equivalently the <a href="/wiki/Projective_special_linear_group" class="mw-redirect" title="Projective special linear group">projective special linear group</a> PSL(2,5), and is the symmetry group of the <a href="/wiki/Modular_curve" title="Modular curve">modular curve</a> X(5), and more generally PSL(2,<i>p</i>) is the symmetry group of the modular curve X(<i>p</i>). The modular curve X(5) is geometrically a dodecahedron with a cusp at the center of each polygonal face, which demonstrates the symmetry group. </p><p>This geometry, and associated symmetry group, was studied by <a href="/wiki/Felix_Klein" title="Felix Klein">Felix Klein</a> as the <a href="/wiki/Monodromy_group" class="mw-redirect" title="Monodromy group">monodromy groups</a> of a Belyi surface – a Riemann surface with a holomorphic map to the Riemann sphere, ramified only at 0, 1, and infinity (a <a href="/wiki/Belyi_function" class="mw-redirect" title="Belyi function">Belyi function</a>) – the cusps are the points lying over infinity, while the vertices and the centers of each edge lie over 0 and 1; the degree of the covering (number of sheets) equals 5. </p><p>This arose from his efforts to give a geometric setting for why icosahedral symmetry arose in the solution of the <a href="/wiki/Quintic_equation" class="mw-redirect" title="Quintic equation">quintic equation</a>, with the theory given in the famous (<a href="#CITEREFKlein1888">Klein 1888</a>); a modern exposition is given in (<a href="#CITEREFTóth2002">Tóth 2002</a>, Section 1.6, Additional Topic: Klein's Theory of the Icosahedron, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=i76mmyvDHYUC&pg=PA66">p. 66</a>). </p><p>Klein's investigations continued with his discovery of order 7 and order 11 symmetries in (<a href="#CITEREFKlein1878">Klein 1878</a>) and (<a href="#CITEREFKlein1879">Klein 1879</a>) (and associated coverings of degree 7 and 11) and <a href="/wiki/Dessins_d%27enfants" class="mw-redirect" title="Dessins d'enfants">dessins d'enfants</a>, the first yielding the <a href="/wiki/Klein_quartic" title="Klein quartic">Klein quartic</a>, whose associated geometry has a tiling by 24 heptagons (with a cusp at the center of each). </p><p>Similar geometries occur for PSL(2,<i>n</i>) and more general groups for other modular curves. </p><p>More exotically, there are special connections between the groups PSL(2,5) (order 60), <a href="/wiki/PSL(2,7)" title="PSL(2,7)">PSL(2,7)</a> (order 168) and PSL(2,11) (order 660), which also admit geometric interpretations – PSL(2,5) is the symmetries of the icosahedron (genus 0), PSL(2,7) of the <a href="/wiki/Klein_quartic" title="Klein quartic">Klein quartic</a> (genus 3), and PSL(2,11) the <a href="/wiki/Buckyball_surface" class="mw-redirect" title="Buckyball surface">buckyball surface</a> (genus 70). These groups form a "<a href="/wiki/ADE_classification#Trinities" title="ADE classification">trinity</a>" in the sense of <a href="/wiki/Vladimir_Arnold" title="Vladimir Arnold">Vladimir Arnold</a>, which gives a framework for the various relationships; see <i><a href="/wiki/ADE_classification#Trinities" title="ADE classification">trinities</a></i> for details. </p><p>There is a close relationship to other <a href="/wiki/Platonic_solids" class="mw-redirect" title="Platonic solids">Platonic solids</a>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=21" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Tetrahedral_symmetry" title="Tetrahedral symmetry">Tetrahedral symmetry</a></li> <li><a href="/wiki/Octahedral_symmetry" title="Octahedral symmetry">Octahedral symmetry</a></li> <li><a href="/wiki/Binary_icosahedral_group" title="Binary icosahedral group">Binary icosahedral group</a></li> <li><a href="/wiki/Icosian_calculus" title="Icosian calculus">Icosian calculus</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=22" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFSir_William_Rowan_Hamilton1856" class="citation cs2"><a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">Sir William Rowan Hamilton</a> (1856), <a rel="nofollow" class="external text" href="http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Icosian/NewSys.pdf">"Memorandum respecting a new System of Roots of Unity"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/Philosophical_Magazine" title="Philosophical Magazine">Philosophical Magazine</a></i>, <b>12</b>: 446</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Philosophical+Magazine&rft.atitle=Memorandum+respecting+a+new+System+of+Roots+of+Unity&rft.volume=12&rft.pages=446&rft.date=1856&rft.au=Sir+William+Rowan+Hamilton&rft_id=http%3A%2F%2Fwww.maths.tcd.ie%2Fpub%2FHistMath%2FPeople%2FHamilton%2FIcosian%2FNewSys.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIcosahedral+symmetry" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleinert,_H.Maki,_K.1981" class="citation journal cs1"><a href="/wiki/Hagen_Kleinert" title="Hagen Kleinert">Kleinert, H.</a> & Maki, K. (1981). <a rel="nofollow" class="external text" href="http://www.physik.fu-berlin.de/~kleinert/75/75.pdf">"Lattice Textures in Cholesteric Liquid Crystals"</a> <span class="cs1-format">(PDF)</span>. <i>Fortschritte der Physik</i>. <b>29</b> (5): 219–259. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fprop.19810290503">10.1002/prop.19810290503</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Fortschritte+der+Physik&rft.atitle=Lattice+Textures+in+Cholesteric+Liquid+Crystals&rft.volume=29&rft.issue=5&rft.pages=219-259&rft.date=1981&rft_id=info%3Adoi%2F10.1002%2Fprop.19810290503&rft.au=Kleinert%2C+H.&rft.au=Maki%2C+K.&rft_id=http%3A%2F%2Fwww.physik.fu-berlin.de%2F~kleinert%2F75%2F75.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIcosahedral+symmetry" class="Z3988"></span></span> </li> </ol></div></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlein1878" class="citation journal cs1"><a href="/wiki/Felix_Klein" title="Felix Klein">Klein, F.</a> (1878). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1635511">"Ueber die Transformation siebenter Ordnung der elliptischen Functionen"</a> [On the order-seven transformation of elliptic functions]. <i>Mathematische Annalen</i>. <b>14</b> (3): 428–471. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01677143">10.1007/BF01677143</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121407539">121407539</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematische+Annalen&rft.atitle=Ueber+die+Transformation+siebenter+Ordnung+der+elliptischen+Functionen&rft.volume=14&rft.issue=3&rft.pages=428-471&rft.date=1878&rft_id=info%3Adoi%2F10.1007%2FBF01677143&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121407539%23id-name%3DS2CID&rft.aulast=Klein&rft.aufirst=F.&rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1635511&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIcosahedral+symmetry" class="Z3988"></span> Translated in <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLevy1999" class="citation book cs1">Levy, Silvio, ed. (1999). <a rel="nofollow" class="external text" href="http://www.msri.org/communications/books/Book35/index.html"><i>The Eightfold Way</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-66066-2" title="Special:BookSources/978-0-521-66066-2"><bdi>978-0-521-66066-2</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1722410">1722410</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Eightfold+Way&rft.pub=Cambridge+University+Press&rft.date=1999&rft.isbn=978-0-521-66066-2&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1722410%23id-name%3DMR&rft_id=http%3A%2F%2Fwww.msri.org%2Fcommunications%2Fbooks%2FBook35%2Findex.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIcosahedral+symmetry" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlein1879" class="citation cs2"><a href="/wiki/Felix_Klein" title="Felix Klein">Klein, F.</a> (1879), <a rel="nofollow" class="external text" href="https://zenodo.org/record/1642598">"Ueber die Transformation elfter Ordnung der elliptischen Functionen (On the eleventh order transformation of elliptic functions)"</a>, <i>Mathematische Annalen</i>, <b>15</b> (3–4): 533–555, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02086276">10.1007/BF02086276</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120316938">120316938</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematische+Annalen&rft.atitle=Ueber+die+Transformation+elfter+Ordnung+der+elliptischen+Functionen+%28On+the+eleventh+order+transformation+of+elliptic+functions%29&rft.volume=15&rft.issue=3%E2%80%934&rft.pages=533-555&rft.date=1879&rft_id=info%3Adoi%2F10.1007%2FBF02086276&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120316938%23id-name%3DS2CID&rft.aulast=Klein&rft.aufirst=F.&rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1642598&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIcosahedral+symmetry" class="Z3988"></span>, collected as pp. 140–165 in <a rel="nofollow" class="external text" href="http://mathdoc.emath.fr/cgi-bin/oetoc?id=OE_KLEIN__3">Oeuvres, Tome 3</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlein1888" class="citation cs2">Klein, Felix (1888), <i>Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree</i>, Trübner & Co., <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-49528-0" title="Special:BookSources/0-486-49528-0"><bdi>0-486-49528-0</bdi>trans</a>. George Gavin Morrice</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lectures+on+the+Icosahedron+and+the+Solution+of+Equations+of+the+Fifth+Degree&rft.pub=Tr%C3%BCbner+%26+Co.&rft.date=1888&rft.isbn=0-486-49528-0&rft.aulast=Klein&rft.aufirst=Felix&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIcosahedral+symmetry" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Citation" title="Template:Citation">citation</a>}}</code>: CS1 maint: postscript (<a href="/wiki/Category:CS1_maint:_postscript" title="Category:CS1 maint: postscript">link</a>)</span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTóth2002" class="citation cs2">Tóth, Gábor (2002), <i>Finite Möbius groups, minimal immersions of spheres, and moduli</i></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Finite+M%C3%B6bius+groups%2C+minimal+immersions+of+spheres%2C+and+moduli&rft.date=2002&rft.aulast=T%C3%B3th&rft.aufirst=G%C3%A1bor&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIcosahedral+symmetry" class="Z3988"></span></li> <li>Peter R. Cromwell, <i>Polyhedra</i> (1997), p. 296</li> <li><i>The Symmetries of Things</i> 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-56881-220-5" title="Special:BookSources/978-1-56881-220-5">978-1-56881-220-5</a></li> <li><i>Kaleidoscopes: Selected Writings of <a href="/wiki/Harold_Scott_MacDonald_Coxeter" title="Harold Scott MacDonald Coxeter">H.S.M. Coxeter</a></i>, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-01003-6" title="Special:BookSources/978-0-471-01003-6">978-0-471-01003-6</a> <a rel="nofollow" class="external autonumber" href="http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html">[1]</a></li> <li><a href="/wiki/Norman_Johnson_(mathematician)" title="Norman Johnson (mathematician)">N.W. Johnson</a>: <i>Geometries and Transformations</i>, (2018) <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-107-10340-5" title="Special:BookSources/978-1-107-10340-5">978-1-107-10340-5</a> Chapter 11: <i>Finite symmetry groups</i>, 11.5 Spherical Coxeter groups</li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Icosahedral_symmetry&action=edit&section=23" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="citation mathworld" id="Reference-Mathworld-Icosahedral_group"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/IcosahedralGroup.html">"Icosahedral group"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Icosahedral+group&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FIcosahedralGroup.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIcosahedral+symmetry" class="Z3988"></span></span></li> <li><a rel="nofollow" class="external text" href="http://schmidt.nuigalway.ie/subgroups/h3.pdf">THE SUBGROUPS OF W(H3)</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210830211728/http://schmidt.nuigalway.ie/subgroups/h3.pdf">Archived</a> 2021-08-30 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> (<a rel="nofollow" class="external text" href="http://schmidt.nuigalway.ie/subgroups/cox.html">Subgroups of other Coxeter groups</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200802022826/http://schmidt.nuigalway.ie/subgroups/cox.html">Archived</a> 2020-08-02 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>) Gotz Pfeiffer</li></ul> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐fg5m9 Cached time: 20241122145333 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.031 seconds Real time usage: 1.420 seconds Preprocessor visited node count: 4078/1000000 Post‐expand include size: 52759/2097152 bytes Template argument size: 1584/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 40737/5000000 bytes Lua time usage: 0.342/10.000 seconds Lua memory usage: 6734474/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 606.693 1 -total 23.98% 145.468 1 Template:Short_description 19.39% 117.655 1 Template:Reflist 19.08% 115.761 4 Template:Citation 18.65% 113.154 2 Template:Pagetype 11.28% 68.454 1 Template:More_footnotes 9.83% 59.652 1 Template:Ambox 8.18% 49.637 67 Template:CDD 6.72% 40.785 4 Template:Harv 4.34% 26.351 1 Template:Multiple_image --> <!-- Saved in parser cache with key enwiki:pcache:2877844:|#|:idhash:canonical and timestamp 20241122145333 and revision id 1245738611. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Icosahedral_symmetry&oldid=1245738611">https://en.wikipedia.org/w/index.php?title=Icosahedral_symmetry&oldid=1245738611</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Finite_groups" title="Category:Finite groups">Finite groups</a></li><li><a href="/wiki/Category:Rotational_symmetry" title="Category:Rotational symmetry">Rotational symmetry</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_lacking_in-text_citations_from_May_2020" title="Category:Articles lacking in-text citations from May 2020">Articles lacking in-text citations from May 2020</a></li><li><a href="/wiki/Category:All_articles_lacking_in-text_citations" title="Category:All articles lacking in-text citations">All articles lacking in-text citations</a></li><li><a href="/wiki/Category:CS1_maint:_postscript" title="Category:CS1 maint: postscript">CS1 maint: postscript</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 14 September 2024, at 19:51<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Icosahedral_symmetry&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-n4k26","wgBackendResponseTime":147,"wgPageParseReport":{"limitreport":{"cputime":"1.031","walltime":"1.420","ppvisitednodes":{"value":4078,"limit":1000000},"postexpandincludesize":{"value":52759,"limit":2097152},"templateargumentsize":{"value":1584,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":40737,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 606.693 1 -total"," 23.98% 145.468 1 Template:Short_description"," 19.39% 117.655 1 Template:Reflist"," 19.08% 115.761 4 Template:Citation"," 18.65% 113.154 2 Template:Pagetype"," 11.28% 68.454 1 Template:More_footnotes"," 9.83% 59.652 1 Template:Ambox"," 8.18% 49.637 67 Template:CDD"," 6.72% 40.785 4 Template:Harv"," 4.34% 26.351 1 Template:Multiple_image"]},"scribunto":{"limitreport-timeusage":{"value":"0.342","limit":"10.000"},"limitreport-memusage":{"value":6734474,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFKlein1878\"] = 1,\n [\"CITEREFKlein1879\"] = 1,\n [\"CITEREFKlein1888\"] = 1,\n [\"CITEREFKleinert,_H.Maki,_K.1981\"] = 1,\n [\"CITEREFLevy1999\"] = 1,\n [\"CITEREFSir_William_Rowan_Hamilton1856\"] = 1,\n [\"CITEREFTóth2002\"] = 1,\n}\ntemplate_list = table#1 {\n [\"3d point group navigator\"] = 1,\n [\"CDD\"] = 61,\n [\"Citation\"] = 4,\n [\"Cite book\"] = 1,\n [\"Cite journal\"] = 2,\n [\"Further\"] = 1,\n [\"Harv\"] = 4,\n [\"ISBN\"] = 3,\n [\"Math\"] = 6,\n [\"MathWorld\"] = 1,\n [\"More footnotes\"] = 1,\n [\"Multiple image\"] = 1,\n [\"Overline\"] = 8,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"Short description\"] = 1,\n [\"Sub\"] = 4,\n [\"Visible anchor\"] = 2,\n [\"Webarchive\"] = 2,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-fg5m9","timestamp":"20241122145333","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Icosahedral symmetry","url":"https:\/\/en.wikipedia.org\/wiki\/Icosahedral_symmetry","sameAs":"http:\/\/www.wikidata.org\/entity\/Q5986738","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q5986738","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-10-10T19:15:55Z","dateModified":"2024-09-14T19:51:36Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/e\/eb\/Icosahedral_reflection_domains.png","headline":"full icosahedral symmetry"}</script> </body> </html>