CINXE.COM
Search results for: dynamic soil-structure interaction
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: dynamic soil-structure interaction</title> <meta name="description" content="Search results for: dynamic soil-structure interaction"> <meta name="keywords" content="dynamic soil-structure interaction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="dynamic soil-structure interaction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="dynamic soil-structure interaction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7552</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: dynamic soil-structure interaction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7552</span> Fluid Structure Interaction of Offshore Concrete Columns under Explosion Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganga%20K.%20V.%20Prakhya">Ganga K. V. Prakhya</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Karthigeyan"> V. Karthigeyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes the influences of the fluid and structure interaction in concrete structures that support large oil platforms in the North Sea. The dynamic interaction of the fluid both in 2D and 3D are demonstrated through a Computational Fluid Dynamics analysis in the event of explosion following a gas leak inside of the concrete column. The structural response characteristics of the column in water under dynamic conditions are quite complex involving axial, radial and circumferential modes. Fluid structure interaction (FSI) modelling showed that there are some frequencies of the column in water which are not found for a column in air. For example, it was demonstrated that one of the axial breathing modes can never be simulated without the use of FSI models. The occurrence of a shift in magnitude and time of pressure from explosion following gas leak along the height of the shaft not only excited the modes of vibration involving breathing (axial), bending and squashing (radial) modes but also magnified the forces in the column. FSI models revealed that dynamic effects resulted in dynamic amplification of loads. The results are summarized from a detailed study that was carried out by the first author for the Offshore Safety Division of Health & Safety Executive United Kingdom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=explosion" title=" explosion"> explosion</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20structure%20interaction" title=" fluid structure interaction"> fluid structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20structures" title=" offshore structures"> offshore structures</a> </p> <a href="https://publications.waset.org/abstracts/93999/fluid-structure-interaction-of-offshore-concrete-columns-under-explosion-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7551</span> The Omicron Variant BA.2.86.1 of SARS- 2 CoV-2 Demonstrates an Altered Interaction Network and Dynamic Features to Enhance the Interaction with the hACE2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taimur%20Khan">Taimur Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakirullah"> Zakirullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahab"> Muhammad Shahab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The SARS-CoV-2 variant BA.2.86 (Omicron) has emerged with unique mutations that may increase its transmission and infectivity. This study investigates how these mutations alter the Omicron receptor-binding domain's interaction network and dynamic properties (RBD) compared to the wild-type virus, focusing on its binding affinity to the human ACE2 (hACE2) receptor. Protein-protein docking and all-atom molecular dynamics simulations were used to analyze structural and dynamic differences. Despite the structural similarity to the wild-type virus, the Omicron variant exhibits a distinct interaction network involving new residues that enhance its binding capacity. The dynamic analysis reveals increased flexibility in the RBD, particularly in loop regions crucial for hACE2 interaction. Mutations significantly alter the secondary structure, leading to greater flexibility and conformational adaptability compared to the wild type. Binding free energy calculations confirm that the Omicron RBD has a higher binding affinity (-70.47 kcal/mol) to hACE2 than the wild-type RBD (-61.38 kcal/mol). These results suggest that the altered interaction network and enhanced dynamics of the Omicron variant contribute to its increased infectivity, providing insights for the development of targeted therapeutics and vaccines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SARS-CoV-2" title="SARS-CoV-2">SARS-CoV-2</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamic%20simulation" title=" molecular dynamic simulation"> molecular dynamic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=receptor%20binding%20domain" title=" receptor binding domain"> receptor binding domain</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccine" title=" vaccine"> vaccine</a> </p> <a href="https://publications.waset.org/abstracts/192479/the-omicron-variant-ba2861-of-sars-2-cov-2-demonstrates-an-altered-interaction-network-and-dynamic-features-to-enhance-the-interaction-with-the-hace2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7550</span> Assessment of Drug Delivery Systems from Molecular Dynamic Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahimnejad">M. Rahimnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Vahidi"> B. Vahidi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ebrahimi%20Hoseinzadeh"> B. Ebrahimi Hoseinzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Yazdian"> F. Yazdian</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Motamed%20Fath"> P. Motamed Fath</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Jamjah"> R. Jamjah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-cancer%20drug" title="anti-cancer drug">anti-cancer drug</a>, <a href="https://publications.waset.org/abstracts/search?q=center%20of%20mass" title=" center of mass"> center of mass</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20energy" title=" interaction energy"> interaction energy</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocarrier" title=" nanocarrier"> nanocarrier</a> </p> <a href="https://publications.waset.org/abstracts/73548/assessment-of-drug-delivery-systems-from-molecular-dynamic-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7549</span> Analysis of Structure-Flow Interaction for Water Brake Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murat%20Avci">Murat Avci</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Kosar"> Fatih Kosar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Yilmaz"> Ismail Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, structure-flow interaction for water brake mechanism is studied with Abaqus CEL approach. The water brake mechanism is used for dynamic systems such as sled system on rail. For the achievement of these system tests, structure-flow interaction should be investigated in detail. This study is about a sled test of an aircraft subsystem which rises to supersonic speeds thanks to rocket engines. To decrease or to stop the thrusting rocket sleds, water brake mechanisms are used. Water brake mechanism provides the deceleration of the structures that have supersonic speeds. Therefore, structure-flow interaction may cause damage to the water brake mechanism. To verify all design revisions with system tests are so costly so that some decisions are taken in accordance with numerical methods. In this study, structure-flow interaction that belongs to water brake mechanism is solved with Abaqus CEL approach. Fluid and deformation on the structure behaviors are modeled at the same time thanks to CEL approach. Provided analysis results are corrected with the dynamic tests. Deformation zones seen in numerical analysis are also observed in dynamic tests. Finally, Johnson-Cook material model parameters used for this analysis are proven, and it is understood that these parameters can be used for dynamic analysis like water brake mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket" title=" rocket"> rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-flow" title=" structure-flow"> structure-flow</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic" title=" supersonic"> supersonic</a> </p> <a href="https://publications.waset.org/abstracts/104502/analysis-of-structure-flow-interaction-for-water-brake-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7548</span> Dynamic Test and Numerical Analysis of Twin Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changwon%20Kwak">Changwon Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Innjoon%20Park"> Innjoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongin%20Jang"> Dongin Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic load affects the behavior of underground structure like tunnel broadly. Seismic soil-structure interaction can play an important role in the dynamic behavior of tunnel. In this research, twin tunnel with flexible joint was physically modeled and the dynamic centrifuge test was performed to investigate seismic behavior of twin tunnel. Seismic waves have different frequency were exerted and the characteristics of response were obtained from the test. Test results demonstrated the amplification of peak acceleration in the longitudinal direction in seismic waves. The effect of the flexible joint was also verified. Additionally, 3-dimensional finite difference dynamic analysis was conducted and the analysis results exhibited good agreement with the test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3-dimensional%20finite%20difference%20dynamic%20analysis" title="3-dimensional finite difference dynamic analysis">3-dimensional finite difference dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20centrifuge%20test" title=" dynamic centrifuge test"> dynamic centrifuge test</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20joint" title=" flexible joint"> flexible joint</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20soil-structure%20interaction" title=" seismic soil-structure interaction"> seismic soil-structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/47381/dynamic-test-and-numerical-analysis-of-twin-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7547</span> Dynamic Soil-Structure Interaction Analysis of Reinforced Concrete Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhacine%20Gouasmia">Abdelhacine Gouasmia</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Belkhiri"> Abdelhamid Belkhiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Allaeddine%20Athmani"> Allaeddine Athmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to evaluate the effects of soil-structure interaction (SSI) on the modal characteristics and on the dynamic response of current structures. The objective is on the overall behaviour of a real structure of five storeys reinforced concrete (R/C) building typically encountered in Algeria. Sensitivity studies are undertaken in order to study the effects of frequency content of the input motion, frequency of the soil-structure system, rigidity and depth of the soil layer on the dynamic response of such structures. This investigation indicated that the rigidity of the soil layer is the predominant factor in soil-structure interaction and its increases would definitely reduce the deformation in the R/C structure. On the other hand, increasing the period of the underlying soil will cause an increase in the lateral displacements at story levels and create irregularity in the distribution of story shears. Possible resonance between the frequency content of the input motion and soil could also play an important role in increasing the structural response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20method" title="direct method">direct method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation" title=" foundation"> foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=R%2FC%20Frame" title=" R/C Frame"> R/C Frame</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/25951/dynamic-soil-structure-interaction-analysis-of-reinforced-concrete-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">640</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7546</span> Peak Floor Response for Buildings with Flexible Base</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luciano%20Roberto%20Fernandez-Sola">Luciano Roberto Fernandez-Sola</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Augusto%20Arredondo-Velez"> Cesar Augusto Arredondo-Velez</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Angel%20Jaimes-Tellez"> Miguel Angel Jaimes-Tellez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the modifications on peak acceleration, velocity and displacement profiles over the structure due to dynamic soil-structure interaction (DSSI). A shear beam model is used for the structure. Soil-foundation flexibility (inertial interaction) is considered by a set of springs and dashpots at the structure base. Kinematic interaction is considered using transfer functions. Impedance functions are computed using simplified expressions for rigid foundations. The research studies the influence of the slenderness ratio on the value of the peak floor response. It is shown that the modifications of peak floor responses are not the same for acceleration, velocity and displacement. This is opposite to the hypothesis used by methods included in several building codes. Results show that modifications produced by DSSI on different response quantities are not equal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peak%20floor%20intensities" title="peak floor intensities">peak floor intensities</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction" title=" dynamic soil-structure interaction"> dynamic soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=buildings%20with%20flexible%20base" title=" buildings with flexible base"> buildings with flexible base</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20and%20inertial%20interaction" title=" kinematic and inertial interaction"> kinematic and inertial interaction</a> </p> <a href="https://publications.waset.org/abstracts/65705/peak-floor-response-for-buildings-with-flexible-base" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7545</span> Finite Element Analysis of a Dynamic Linear Crack Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brian%20E.%20Usibe">Brian E. Usibe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses the problem of a linear crack located in the middle of a homogeneous elastic media under normal tension-compression harmonic loading. The problem of deformation of the fractured media is solved using the direct finite element numerical procedure, including the analysis of the dynamic field variables of the problem. A finite element algorithm that satisfies the unilateral Signorini contact constraint is also presented for the solution of the contact interaction of the crack faces and how this accounts for the qualitative and quantitative changes in the solution when determining the dynamic fracture parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=harmonic%20loading" title="harmonic loading">harmonic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20crack" title=" linear crack"> linear crack</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20parameter" title=" fracture parameter"> fracture parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20number" title=" wave number"> wave number</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20interaction" title=" contact interaction"> contact interaction</a> </p> <a href="https://publications.waset.org/abstracts/186593/finite-element-analysis-of-a-dynamic-linear-crack-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7544</span> Seismic Investigation on the Effect of Surface Structures and Twin Tunnel on the Site Response in Urban Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeideh%20Mohammadi"> Saeideh Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Site response has a profound effect on earthquake damages. Seismic interaction of urban tunnels with surface structures could also affect seismic site response<strong><span dir="RTL">.</span></strong> Here, we use FLAC 2D to investigate the interaction of a single tunnel and twin tunnels-surface structures on the site response. Soil stratification and properties are selected based on Line. No 7 of the Tehran subway. The effect of surface structure is considered in two ways: Equivalent surcharge and geometrical modeling of the structure. Comparison of the results shows that consideration of the structure geometry is vital in dynamic analysis and leads to the changes in the magnitude of displacements, accelerations and response spectrum. Therefore it is necessary for the surface structures to be wholly modeled and not just considered as a surcharge in dynamic analysis. The use of twin tunnel also leads to the reduction of dynamic residual settlement<span dir="RTL">.</span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superstructure" title="superstructure">superstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=tunnel" title=" tunnel"> tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20response" title=" site response"> site response</a>, <a href="https://publications.waset.org/abstracts/search?q=surcharge" title=" surcharge"> surcharge</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a> </p> <a href="https://publications.waset.org/abstracts/106616/seismic-investigation-on-the-effect-of-surface-structures-and-twin-tunnel-on-the-site-response-in-urban-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7543</span> Combination Rule for Homonuclear Dipole Dispersion Coefficients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giorgio%20Visentin">Giorgio Visentin</a>, <a href="https://publications.waset.org/abstracts/search?q=Inna%20S.%20Kalinina"> Inna S. Kalinina</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20A.%20Buchachenko"> Alexei A. Buchachenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the ambit of intermolecular interactions, a combination rule is defined as a relation linking a potential parameter for the interaction of two unlike species with the same parameters for interaction pairs of like species. Some of their most exemplificative applications cover the construction of molecular dynamics force fields and dispersion-corrected density functionals. Here, an extended combination rule is proposed, relating the dipole-dipole dispersion coefficients for the interaction of like target species to the same coefficients for the interaction of the target and a set of partner species. The rule can be devised in two different ways, either by uniform discretization of the Casimir-Polder integral on a Gauss-Legendre quadrature or by relating the dynamic polarizabilities of the target and the partner species. Both methods return the same system of linear equations, which requires the knowledge of the dispersion coefficients for interaction between the partner species to be solved. The test examples show a high accuracy for dispersion coefficients (better than 1% in the pristine test for the interaction of Yb atom with rare gases and alkaline-earth metal atoms). In contrast, the rule does not ensure correct monotonic behavior of the dynamic polarizability of the target species. Acknowledgment: The work is supported by Russian Science Foundation grant # 17-13-01466. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combination%20rule" title="combination rule">combination rule</a>, <a href="https://publications.waset.org/abstracts/search?q=dipole-dipole%20dispersion%20coefficient" title=" dipole-dipole dispersion coefficient"> dipole-dipole dispersion coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=Casimir-Polder%20integral" title=" Casimir-Polder integral"> Casimir-Polder integral</a>, <a href="https://publications.waset.org/abstracts/search?q=Gauss-Legendre%20quadrature" title=" Gauss-Legendre quadrature"> Gauss-Legendre quadrature</a> </p> <a href="https://publications.waset.org/abstracts/130113/combination-rule-for-homonuclear-dipole-dispersion-coefficients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7542</span> Response of Buildings with Soil-Structure Interaction with Varying Soil Types</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Thusoo">Shreya Thusoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Karan%20Modi"> Karan Modi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar"> Rajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitesh%20Madahar"> Hitesh Madahar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the years, it has been extensively established that the practice of assuming a structure being fixed at base, leads to gross errors in evaluation of its overall response due to dynamic loadings and overestimations in design. The extent of these errors depends on a number of variables; soil type being one of the major factor. This paper studies the effect of Soil Structure Interaction (SSI) on multi-storey buildings with varying under-laying soil types after proper validation of the effect of SSI. Analysis for soft, stiff and very stiff base soils has been carried out, using a powerful Finite Element Method (FEM) software package ANSYS v14.5. Results lead to some very important conclusions regarding time period, deflection and acceleration responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title="dynamic response">dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-storey%20building" title=" multi-storey building"> multi-storey building</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=varying%20soil%20types" title=" varying soil types"> varying soil types</a> </p> <a href="https://publications.waset.org/abstracts/24745/response-of-buildings-with-soil-structure-interaction-with-varying-soil-types" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7541</span> Spillage Prediction Using Fluid-Structure Interaction Simulation with Coupled Eulerian-Lagrangian Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Soni">Ravi Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Irfan%20Pathan"> Irfan Pathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Pande"> Manish Pande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current product development process needs simultaneous consideration of different physics. The performance of the product needs to be considered under both structural and fluid loads. Examples include ducts and valves where structural behavior affects fluid motion and vice versa. Simulation of fluid-structure interaction involves modeling interaction between moving components and the fluid flow. In these scenarios, it is difficult to calculate the damping provided by fluid flow because of dynamic motions of components and the transient nature of the flow. Abaqus Explicit offers general capabilities for modeling fluid-structure interaction with the Coupled Eulerian-Lagrangian (CEL) method. The Coupled Eulerian-Lagrangian technique has been used to simulate fluid spillage through fuel valves during dynamic closure events. The technique to simulate pressure drops across Eulerian domains has been developed using stagnation pressure. Also, the fluid flow is calculated considering material flow through elements at the outlet section of the valves. The methodology has been verified on Eaton products and shows a good correlation with the test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coupled%20Eulerian-Lagrangian%20Technique" title="Coupled Eulerian-Lagrangian Technique">Coupled Eulerian-Lagrangian Technique</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20structure%20interaction" title=" fluid structure interaction"> fluid structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=spillage%20prediction" title=" spillage prediction"> spillage prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20pressure" title=" stagnation pressure"> stagnation pressure</a> </p> <a href="https://publications.waset.org/abstracts/56823/spillage-prediction-using-fluid-structure-interaction-simulation-with-coupled-eulerian-lagrangian-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7540</span> Analysis of Moving Loads on Bridges Using Surrogate Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Susmita%20Panda">Susmita Panda</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Banerjee"> Arnab Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajinkya%20Baxy"> Ajinkya Baxy</a>, <a href="https://publications.waset.org/abstracts/search?q=Bappaditya%20Manna"> Bappaditya Manna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of short to medium-span high-speed bridges in critical locations is an essential aspect of vehicle-bridge interaction. Due to dynamic interaction between moving load and bridge, mathematical models or finite element modeling computations become time-consuming. Thus, to reduce the computational effort, a universal approximator using an artificial neural network (ANN) has been used to evaluate the dynamic response of the bridge. The data set generation and training of surrogate models have been conducted over the results obtained from mathematical modeling. Further, the robustness of the surrogate model has been investigated, which showed an error percentage of less than 10% with conventional methods. Additionally, the dependency of the dynamic response of the bridge on various load and bridge parameters has been highlighted through a parametric study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20superposition%20method" title=" mode superposition method"> mode superposition method</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20load%20analysis" title=" moving load analysis"> moving load analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=surrogate%20models" title=" surrogate models"> surrogate models</a> </p> <a href="https://publications.waset.org/abstracts/156677/analysis-of-moving-loads-on-bridges-using-surrogate-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7539</span> Stability and Performance Improvement of a Two-Degree-of-Freedom Robot under Interaction Using the Impedance Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Reza%20Mirdehghan">Seyed Reza Mirdehghan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Haeri%20Yazdi"> Mohammad Reza Haeri Yazdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the stability and the performance of a two-degree-of-freedom robot under an interaction with a unknown environment has been investigated. The time when the robot returns to its initial position after an interaction and the primary resistance of the robot against the impact must be reduced. Thus, the applied torque on the motor will be reduced. The impedance control is an appropriate method for robot control in these conditions. The stability of the robot at interaction moment was transformed to be a robust stability problem. The dynamic of the unknown environment was modeled as a weight function and the stability of the robot under an interaction with the environment has been investigated using the robust control concept. To improve the performance of the system, a force controller has been designed which the normalized impedance after interaction has been reduced. The resistance of the robot has been considered as a normalized cost function and its value was 0.593. The results has showed reduction of resistance of the robot against impact and the reduction of convergence time by lower than one second. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impedance%20control" title="impedance control">impedance control</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=robots" title=" robots"> robots</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a> </p> <a href="https://publications.waset.org/abstracts/15189/stability-and-performance-improvement-of-a-two-degree-of-freedom-robot-under-interaction-using-the-impedance-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7538</span> Home Range and Spatial Interaction Modelling of Black Bears</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fekadu%20L.%20Bayisa">Fekadu L. Bayisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Elvan%20Ceyhan"> Elvan Ceyhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Todd%20D.%20Steury"> Todd D. Steury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interaction between individuals within the same species is an important component of population dynamics. An interaction can be either static (based on spatial overlap) or dynamic (based on movement interactions). Using GPS collar data, we can quantify both static and dynamic interactions between black bears. The goal of this work is to determine the level of black bear interactions using the 95% and 50% home ranges, as well as to model black bear spatial interactions, which could be attraction, avoidance/repulsion, or a lack of interaction at all, to gain new insights and improve our understanding of ecological processes. Recent methodological developments in home range estimation, inhomogeneous multitype/cross-type summary statistics, and envelope testing methods are explored to study the nature of black bear interactions. Our findings, in general, indicate that the black bears of one type in our data set tend to cluster around another type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autocorrelated%20kernel%20density%20estimator" title="autocorrelated kernel density estimator">autocorrelated kernel density estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-type%20summary%20function" title=" cross-type summary function"> cross-type summary function</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneous%20multitype%20Poisson%20process" title=" inhomogeneous multitype Poisson process"> inhomogeneous multitype Poisson process</a>, <a href="https://publications.waset.org/abstracts/search?q=kernel%20density%20estimator" title=" kernel density estimator"> kernel density estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20convex%20polygon" title=" minimum convex polygon"> minimum convex polygon</a>, <a href="https://publications.waset.org/abstracts/search?q=pointwise%20and%20global%20envelope%20tests" title=" pointwise and global envelope tests"> pointwise and global envelope tests</a> </p> <a href="https://publications.waset.org/abstracts/164437/home-range-and-spatial-interaction-modelling-of-black-bears" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7537</span> Comprehensive Critical Review for Static and Dynamic Soil-Structure Interaction Between Winkler, Pasternak and Three-Dimensional Method of Buried Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20E.Sam">N. E.Sam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.Singh"> S. R.Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pipeline infrastructure are a valuable asset to the country that help in transporting fluid and gas from one place to another and contribute in keeping the country functioning both physically and economically. During seismic activity, additional loads are acted on the buried pipelines becoming a salient parameter to be studied in soil pipe interaction. Winkler Beam Theory is a commonly used approach for design of underground buried structures however this theory does not take into account shear and dynamic loading parameters in consideration. Shear can be addressed in Pasternak Theory – an improved model of Winkler Theory. However dynamic loading condition and horizontal displacement is not considered in either method. A comprehensive critical review between Winkler Beam Method, Pasternak Method and Three-Dimensional Method in finite element analysis is to be done in this paper for seismic forces. Study of the influence of depth and displacement of soil in correspondence to stiffness value and influence of horizontal displacement for design of underground structures is considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=pasternak%20theory" title=" pasternak theory"> pasternak theory</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20theory" title=" three-dimensional theory"> three-dimensional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=winkler%20theory" title=" winkler theory"> winkler theory</a> </p> <a href="https://publications.waset.org/abstracts/165830/comprehensive-critical-review-for-static-and-dynamic-soil-structure-interaction-between-winkler-pasternak-and-three-dimensional-method-of-buried-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7536</span> Tuned Mass Damper Effects of Stationary People on Structural Damping of Footbridge Due to Dynamic Interaction in Vertical Motion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yoneda">M. Yoneda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that stationary human occupants act as dynamic mass-spring-damper systems and can change the modal properties of civil engineering structures. This paper describes the full scale measurement to explain the tuned mass damper effects of stationary people on structural damping of footbridge with center span length of 33 m. A human body can be represented by a lumped system consisting of masses, springs, and dashpots. Complex eigenvalue calculation is also conducted by using ISO5982:1981 human model (two degree of freedom system). Based on experimental and analytical results for the footbridge with the stationary people in the standing position, it is demonstrated that stationary people behave as a tuned mass damper and that ISO5982:1981 human model can explain the structural damping characteristics measured in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20interaction" title="dynamic interaction">dynamic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=footbridge" title=" footbridge"> footbridge</a>, <a href="https://publications.waset.org/abstracts/search?q=stationary%20people" title=" stationary people"> stationary people</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20damping" title=" structural damping"> structural damping</a> </p> <a href="https://publications.waset.org/abstracts/47682/tuned-mass-damper-effects-of-stationary-people-on-structural-damping-of-footbridge-due-to-dynamic-interaction-in-vertical-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7535</span> Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mahdi%20S.%20Kolbadi">S. Mahdi S. Kolbadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramezan%20Ali%20Alvand"> Ramezan Ali Alvand</a>, <a href="https://publications.waset.org/abstracts/search?q=Afrasiab%20Mirzaei"> Afrasiab Mirzaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20behavior" title="dynamic behavior">dynamic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20wall" title=" flexible wall"> flexible wall</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20storage%20tank" title=" water storage tank"> water storage tank</a> </p> <a href="https://publications.waset.org/abstracts/83646/three-dimensional-dynamic-analysis-of-water-storage-tanks-considering-fsi-using-fem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7534</span> Localized Dynamic Lensing with Extended Depth of Field via Enhanced Light Sound Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20R.%20Chabok">Hamid R. Chabok</a>, <a href="https://publications.waset.org/abstracts/search?q=Demetrios%20N.%20Christodoulides"> Demetrios N. Christodoulides</a>, <a href="https://publications.waset.org/abstracts/search?q=Mercedeh%20Khajavikhan"> Mercedeh Khajavikhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, acousto-optic (AO) lenses with tunable foci have emerged as a powerful tool for optical beam shaping, imaging, and particle manipulation. In most current AO lenses, the incident light that propagates orthogonally to a standing ultrasonic wave converts to a Bessel-like beam pattern due to the Raman-Nath effect, thus forming annular fringes that result in compromised focus response. Here, we report a new class of AO dynamic lensing based on generating a 3D-variable refractive index profile via a z-axis-scan ultrasound transducer. By utilizing the co- /counter propagation of light and acoustic waves that interact over a longer distance, the laser beam can be strongly focused in a fully controllable manner. Using this approach, we demonstrate AO lenses with instantaneous extended depth of field (DoF) and laterally localized dynamic focusing. This new light-sound interaction scheme may pave the way towards applications that require remote focusing, 3D micromanipulation, and deep tissue therapy/imaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acousto-optic" title="acousto-optic">acousto-optic</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20beam%20shaping" title=" optical beam shaping"> optical beam shaping</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20lensing" title=" dynamic lensing"> dynamic lensing</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/168812/localized-dynamic-lensing-with-extended-depth-of-field-via-enhanced-light-sound-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7533</span> Dynamic Interaction between Two Neighboring Tunnels in a Layered Half-Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao%20He">Chao He</a>, <a href="https://publications.waset.org/abstracts/search?q=Shunhua%20Zhou"> Shunhua Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Peijun%20Guo"> Peijun Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vast majority of existing underground railway lines consist of twin tunnels. In this paper, the dynamic interaction between two neighboring tunnels in a layered half-space is investigated by an analytical model. The two tunnels are modelled as cylindrical thin shells, while the soil in the form of a layered half-space with two cylindrical cavities is simulated by the elastic continuum theory. The transfer matrix method is first used to derive the relationship between the plane wave vectors in arbitrary layers and the source layer. Thereafter, the wave translation and transformation are introduced to determine the plane and cylindrical wave vectors in the source layer. The solution for the dynamic interaction between twin tunnels in a layered half-space is obtained by means of the compatibility of displacements and equilibrium of stresses on the two tunnel–soil interfaces. By coupling the proposed model with a fully track model, the train-induced vibrations from twin tunnels in a multi-layered half-space are investigated. The numerical results demonstrate that the existence of a neighboring tunnel has a significant effect on ground vibrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underground%20railway" title="underground railway">underground railway</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20tunnels" title=" twin tunnels"> twin tunnels</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20translation%20and%20transformation" title=" wave translation and transformation"> wave translation and transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix%20method" title=" transfer matrix method"> transfer matrix method</a> </p> <a href="https://publications.waset.org/abstracts/110095/dynamic-interaction-between-two-neighboring-tunnels-in-a-layered-half-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7532</span> Theoretical Modeling of Self-Healing Polymers Crosslinked by Dynamic Bonds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiming%20Wang">Qiming Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic polymer networks (DPNs) crosslinked by dynamic bonds have received intensive attention because of their special crack-healing capability. Diverse DPNs have been synthesized using a number of dynamic bonds, including dynamic covalent bond, hydrogen bond, ionic bond, metal-ligand coordination, hydrophobic interaction, and others. Despite the promising success in the polymer synthesis, the fundamental understanding of their self-healing mechanics is still at the very beginning. Especially, a general analytical model to understand the interfacial self-healing behaviors of DPNs has not been established. Here, we develop polymer-network based analytical theories that can mechanistically model the constitutive behaviors and interfacial self-healing behaviors of DPNs. We consider that the DPN is composed of interpenetrating networks crosslinked by dynamic bonds. bonds obey a force-dependent chemical kinetics. During the self-healing process, we consider the The network chains follow inhomogeneous chain-length distributions and the dynamic polymer chains diffuse across the interface to reform the dynamic bonds, being modeled by a diffusion-reaction theory. The theories can predict the stress-stretch behaviors of original and self-healed DPNs, as well as the healing strength in a function of healing time. We show that the theoretically predicted healing behaviors can consistently match the documented experimental results of DPNs with various dynamic bonds, including dynamic covalent bonds (diarylbibenzofuranone and olefin metathesis), hydrogen bonds, and ionic bonds. We expect our model to be a powerful tool for the self-healing community to invent, design, understand, and optimize self-healing DPNs with various dynamic bonds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-healing%20polymers" title="self-healing polymers">self-healing polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20covalent%20bonds" title=" dynamic covalent bonds"> dynamic covalent bonds</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20bonds" title=" hydrogen bonds"> hydrogen bonds</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20bonds" title=" ionic bonds"> ionic bonds</a> </p> <a href="https://publications.waset.org/abstracts/93704/theoretical-modeling-of-self-healing-polymers-crosslinked-by-dynamic-bonds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7531</span> Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abolfazl%20Mohammadijoo">Abolfazl Mohammadijoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we are investigating the sliding mode control approach for trajectory tracking of a two-link-manipulator with a wheeled mobile robot in its base. The main challenge of this work is the dynamic interaction between mobile base and manipulator, which makes trajectory tracking more difficult than n-link manipulators with a fixed base. Another challenging part of this work is to avoid from chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of the sliding mode control approach for the desired trajectory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20manipulator" title="mobile manipulator">mobile manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20interaction" title=" dynamic interaction"> dynamic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robotics" title=" mobile robotics"> mobile robotics</a> </p> <a href="https://publications.waset.org/abstracts/128498/trajectory-tracking-of-a-2-link-mobile-manipulator-using-sliding-mode-control-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7530</span> Modeling of Foundation-Soil Interaction Problem by Using Reduced Soil Shear Modulus </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yesim%20Tumsek">Yesim Tumsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Erkan%20Celebi"> Erkan Celebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to simulate the infinite soil medium for soil-foundation interaction problem, the essential geotechnical parameter on which the foundation stiffness depends, is the value of soil shear modulus. This parameter directly affects the site and structural response of the considered model under earthquake ground motions. Strain-dependent shear modulus under cycling loads makes difficult to estimate the accurate value in computation of foundation stiffness for the successful dynamic soil-structure interaction analysis. The aim of this study is to discuss in detail how to use the appropriate value of soil shear modulus in the computational analyses and to evaluate the effect of the variation in shear modulus with strain on the impedance functions used in the sub-structure method for idealizing the soil-foundation interaction problem. Herein, the impedance functions compose of springs and dashpots to represent the frequency-dependent stiffness and damping characteristics at the soil-foundation interface. Earthquake-induced vibration energy is dissipated into soil by both radiation and hysteretic damping. Therefore, flexible-base system damping, as well as the variability in shear strengths, should be considered in the calculation of impedance functions for achievement a more realistic dynamic soil-foundation interaction model. In this study, it has been written a Matlab code for addressing these purposes. The case-study example chosen for the analysis is considered as a 4-story reinforced concrete building structure located in Istanbul consisting of shear walls and moment resisting frames with a total height of 12m from the basement level. The foundation system composes of two different sized strip footings on clayey soil with different plasticity (Herein, PI=13 and 16). In the first stage of this study, the shear modulus reduction factor was not considered in the MATLAB algorithm. The static stiffness, dynamic stiffness modifiers and embedment correction factors of two rigid rectangular foundations measuring 2m wide by 17m long below the moment frames and 7m wide by 17m long below the shear walls are obtained for translation and rocking vibrational modes. Afterwards, the dynamic impedance functions of those have been calculated for reduced shear modulus through the developed Matlab code. The embedment effect of the foundation is also considered in these analyses. It can easy to see from the analysis results that the strain induced in soil will depend on the extent of the earthquake demand. It is clearly observed that when the strain range increases, the dynamic stiffness of the foundation medium decreases dramatically. The overall response of the structure can be affected considerably because of the degradation in soil stiffness even for a moderate earthquake. Therefore, it is very important to arrive at the corrected dynamic shear modulus for earthquake analysis including soil-structure interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay%20soil" title="clay soil">clay soil</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20functions" title=" impedance functions"> impedance functions</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-foundation%20interaction" title=" soil-foundation interaction"> soil-foundation interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-structure%20approach" title=" sub-structure approach"> sub-structure approach</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20shear%20modulus" title=" reduced shear modulus"> reduced shear modulus</a> </p> <a href="https://publications.waset.org/abstracts/76102/modeling-of-foundation-soil-interaction-problem-by-using-reduced-soil-shear-modulus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7529</span> Conduction Model Compatible for Multi-Physical Domain Dynamic Investigations: Bond Graph Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Zanj">A. Zanj</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20He"> F. He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current paper, a domain independent conduction model compatible for multi-physical system dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear conduction model containing physical states is first represented. A compatible discrete configuration of the thermal domain in line with the elastic domain is then generated through the enhancement of the configuration of the conventional thermal element. The presented simulation results of a sample structure indicate that the suggested conductive model can cover a wide range of dynamic behavior of the thermal domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-physical%20domain" title="multi-physical domain">multi-physical domain</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction%20model" title=" conduction model"> conduction model</a>, <a href="https://publications.waset.org/abstracts/search?q=port%20based%20modeling" title=" port based modeling"> port based modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20interaction" title=" dynamic interaction"> dynamic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20modeling" title=" physical modeling"> physical modeling</a> </p> <a href="https://publications.waset.org/abstracts/42625/conduction-model-compatible-for-multi-physical-domain-dynamic-investigations-bond-graph-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7528</span> Numerical Simulation of Fluid Structure Interaction Using Two-Way Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Laidaoui">Samira Laidaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Djermane"> Mohammed Djermane</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazihe%20Terfaya"> Nazihe Terfaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fluid-structure coupling is a natural phenomenon which reflects the effects of two continuums: fluid and structure of different types in the reciprocal action on each other, involving knowledge of elasticity and fluid mechanics. The solution for such problems is based on the relations of continuum mechanics and is mostly solved with numerical methods. It is a computational challenge to solve such problems because of the complex geometries, intricate physics of fluids, and complicated fluid-structure interactions. The way in which the interaction between fluid and solid is described gives the largest opportunity for reducing the computational effort. In this paper, a problem of fluid structure interaction is investigated with two-way coupling method. The formulation Arbitrary Lagrangian-Eulerian (ALE) was used, by considering a dynamic grid, where the solid is described by a Lagrangian formulation and the fluid by a Eulerian formulation. The simulation was made on the ANSYS software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ALE" title="ALE">ALE</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure" title=" fluid-structure"> fluid-structure</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=one-way%20method" title=" one-way method"> one-way method</a>, <a href="https://publications.waset.org/abstracts/search?q=two-way%20method" title=" two-way method"> two-way method</a> </p> <a href="https://publications.waset.org/abstracts/36752/numerical-simulation-of-fluid-structure-interaction-using-two-way-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">678</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7527</span> Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Bensouilah">H. Bensouilah</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Boucherit"> H. Boucherit</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lahmar"> M. Lahmar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially when the dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elasto-aerodynamic%20lubrication" title="elasto-aerodynamic lubrication">elasto-aerodynamic lubrication</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20foil%20bearing" title=" air foil bearing"> air foil bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state%20deformation" title=" steady-state deformation"> steady-state deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20deformation" title=" dynamic deformation"> dynamic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping%20coefficients" title=" stiffness and damping coefficients"> stiffness and damping coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=perturbation%20method" title=" perturbation method"> perturbation method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerk%20infinite%20element%20method" title=" Galerk infinite element method"> Galerk infinite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a> </p> <a href="https://publications.waset.org/abstracts/14356/analysis-of-a-self-acting-air-journal-bearing-effect-of-dynamic-deformation-of-bump-foil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7526</span> Evaluating Seismic Earth Pressure Effects on Building Lateral Stability: Sensitivity to Retention Height Differences and Sloped Site Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rod%20Davis">Rod Davis</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Saminfar"> Sara Saminfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes can induce dynamic earth pressures on retaining walls, which are in addition to the static earth pressures. This raises questions about how to effectively combine the seismic lateral earth pressure with other loads on buildings, including static lateral earth pressure. When basement walls retain soil with differing exterior grades on opposite sides, the seismic increment of active earth pressure should be considered. Additionally, buildings situated on sloped sites with stepped retention may experience unique dynamic effects due to soil-structure interactions, potentially amplifying the lateral pressures exerted on the retaining walls and influencing the building's response during seismic events. To account for the dynamic effects of the retained soil on the building's responses, it is essential to interconnect the building structure with the surrounding soil to facilitate their interaction as the embedded structure and the surrounding soil move together during an earthquake. Consequently, a finite element model of the building is developed, with the rigid retaining walls and restrained to the floor diaphragms. This paper aims to explore the dynamic effects of retained soil on the lateral stability of buildings and the sensitivity of the building's responses to differences in the retained heights on opposite sides of the building basement. Furthermore, the results are compared with those from a sloped site to evaluate the impact of stepped retention on dynamic soil pressure. These findings will help establish a minimum threshold for differences in retained heights on opposite sides of a building that necessitates the inclusion of dynamic soil pressure in the building's lateral stability analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20earth%20pressures" title="dynamic earth pressures">dynamic earth pressures</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=stepped%20retention" title=" stepped retention"> stepped retention</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20retention" title=" building retention"> building retention</a> </p> <a href="https://publications.waset.org/abstracts/193288/evaluating-seismic-earth-pressure-effects-on-building-lateral-stability-sensitivity-to-retention-height-differences-and-sloped-site-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7525</span> Docking and Dynamic Molecular Study of Isoniazid Derivatives as Anti-Tuberculosis Drug Candidate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richa%20Mardianingrum">Richa Mardianingrum</a>, <a href="https://publications.waset.org/abstracts/search?q=Srie%20R.%20N.%20Endah"> Srie R. N. Endah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we have designed four isoniazid derivatives i.e., isonicotinohydrazide (1-isonicotinoyl semicarbazide, 1-thiosemi isonicotinoyl carbazide, N '-(1,3-dimethyl-1 h-pyrazole-5-carbonyl) isonicotino hydrazide, and N '-(1,2,3- 4-thiadiazole-carbonyl) isonicotinohydrazide. The docking and molecular dynamic have performed to them in order to study its interaction with Mycobacterium tuberculosis Enoyl-Acyl Carrier Protein Reductase (InhA). Based on this research, all of the compounds were predicted to have a stable interaction with Mycobacterium tuberculosis Enoyl-Acyl Carrier Protein Reductase (INHA) receptor, so they could be used as an anti-tuberculosis drug candidate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-tuberculosis" title="anti-tuberculosis">anti-tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=Inhibin%20alpha%20subunit" title=" Inhibin alpha subunit"> Inhibin alpha subunit</a>, <a href="https://publications.waset.org/abstracts/search?q=InhA" title=" InhA"> InhA</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition" title=" inhibition"> inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=isonicotinohydrazide" title=" isonicotinohydrazide"> isonicotinohydrazide</a> </p> <a href="https://publications.waset.org/abstracts/92270/docking-and-dynamic-molecular-study-of-isoniazid-derivatives-as-anti-tuberculosis-drug-candidate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7524</span> Stimulation of NCAM1-14.3.3.ζδ-derived Peptide Interaction Fuels Angiogenesis and Osteogenesis in Ageing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taha%20Kadir%20Yesin">Taha Kadir Yesin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanyu%20Liu"> Hanyu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhangfan%20Ding"> Zhangfan Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Singh"> Amit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Tian"> Qi Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuheng%20Zhang"> Yuheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswajyoti%20Borah"> Biswajyoti Borah</a>, <a href="https://publications.waset.org/abstracts/search?q=Junyu%20Chen"> Junyu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjali%20P.%20Kusumbe"> Anjali P. Kusumbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The skeletal structure and bone marrow endothelium collectively form a critical functional unit essential for bone development, health, and aging. At the core of osteogenesis and bone formation lies the dynamic process of angiogenesis. In this study, we reveal a potent endogenous anabolic NCAM1-14.3.3. ζδ-derived- Peptide interaction, which stimulates bone angiogenesis and osteogenesis during homeostasis, aging, and age-related bone diseases. Employing high-resolution imaging and inducible cell-specific mouse genetics, our results elucidate the pivotal role of the NCAM1-14.3.3.ζδ-derived-Peptide interaction in driving the expansion of Clec14a+ angiogenic endothelial cells. Notably, Clec14a+ endothelial cells express key osteogenic factors. The NCAM1-14.3.3.ζδ-derived-Peptide interaction in osteoblasts drives osteoblast differentiation, ultimately contributing to the genesis of bone. Moreover, the NCAM1-14.3.3.ζδ-derived-Peptide interaction leads to a reduction in bone resorption. In age-associated vascular and bone loss diseases, stimulating the NCAM1-14.3.3.ζδ-derived-Peptide interaction not only promotes angiogenesis but also reverses bone loss. Consequently, harnessing the endogenous anabolic potential of the NCAM1-14.3.3.ζδ-derived-Peptide interaction emerges as a promising therapeutic modality for managing age-related bone diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endothelial%20cell" title="endothelial cell">endothelial cell</a>, <a href="https://publications.waset.org/abstracts/search?q=NCAM1" title=" NCAM1"> NCAM1</a>, <a href="https://publications.waset.org/abstracts/search?q=Clec14a" title=" Clec14a"> Clec14a</a>, <a href="https://publications.waset.org/abstracts/search?q=14.3.3.%CE%B6%CE%B4" title=" 14.3.3.ζδ"> 14.3.3.ζδ</a> </p> <a href="https://publications.waset.org/abstracts/184055/stimulation-of-ncam1-1433zd-derived-peptide-interaction-fuels-angiogenesis-and-osteogenesis-in-ageing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7523</span> Stress Study in Implants Dental</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Benlebna">M. Benlebna</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Serier"> B. Serier</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bachir%20Bouiadjra"> B. Bachir Bouiadjra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khalkhal"> S. Khalkhal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the mechanical behavior of a dental prosthesis subjected to dynamic loads chewing. It covers a three-dimensional analysis by the finite element method, the level of distribution of equivalent stresses induced in the bone between the implants (depending on the number of implants). The studied structure, consisting of a braced, implant and mandibular bone is subjected to dynamic loading of variable amplitude in three directions corrono-apical, mesial-distal and bucco-lingual. These efforts simulate those of mastication. We show that compared to the implantation of a single implant, implantology using two implants promotes the weakening of the bones. This weakness is all the more likely that the implants are located in close proximity to one another. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress" title="stress">stress</a>, <a href="https://publications.waset.org/abstracts/search?q=bone" title=" bone"> bone</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20implant" title=" dental implant"> dental implant</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution" title=" distribution"> distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20levels" title=" stress levels"> stress levels</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic" title=" dynamic"> dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=effort" title=" effort"> effort</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=prosthesis" title=" prosthesis"> prosthesis</a> </p> <a href="https://publications.waset.org/abstracts/13570/stress-study-in-implants-dental" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction&page=251">251</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction&page=252">252</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>