CINXE.COM

Arithmetica - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Arithmetica - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"5d173a68-5ceb-4cf9-bd67-903750a39f00","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Arithmetica","wgTitle":"Arithmetica","wgCurRevisionId":1260059821,"wgRevisionId":1260059821,"wgArticleId":1777555,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Articles needing additional references from July 2010","All articles needing additional references","Articles containing Ancient Greek (to 1453)-language text","Use dmy dates from April 2017","3rd-century books","Ancient Greek mathematical works","History of algebra"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Arithmetica","wgRelevantArticleId":1777555, "wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q668560","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled": false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.17"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/3/3b/Diophantus-cover.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1877"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Diophantus-cover.png/800px-Diophantus-cover.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1251"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Diophantus-cover.png/640px-Diophantus-cover.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="1001"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Arithmetica - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Arithmetica"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Arithmetica&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Arithmetica"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Arithmetica rootpage-Arithmetica skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Arithmetica" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Arithmetica" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Arithmetica" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Arithmetica" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Summary" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Summary"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Summary</span> </div> </a> <ul id="toc-Summary-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Syncopated_algebra" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Syncopated_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Syncopated algebra</span> </div> </a> <ul id="toc-Syncopated_algebra-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><i>Arithmetica</i></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 15 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-15" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">15 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A3%D8%B1%D9%8A%D8%AB%D9%85%D9%8A%D8%AA%D9%8A%D9%83%D8%A7_(%D9%83%D8%AA%D8%A7%D8%A8)" title="أريثميتيكا (كتاب) – Arabic" lang="ar" hreflang="ar" data-title="أريثميتيكا (كتاب)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Aritm%C3%A8tica_(llibre)" title="Aritmètica (llibre) – Catalan" lang="ca" hreflang="ca" data-title="Aritmètica (llibre)" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Arithmetica" title="Arithmetica – German" lang="de" hreflang="de" data-title="Arithmetica" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%91%CF%81%CE%B9%CE%B8%CE%BC%CE%B7%CF%84%CE%B9%CE%BA%CE%AC_(%CE%94%CE%B9%CF%8C%CF%86%CE%B1%CE%BD%CF%84%CE%BF%CF%82)" title="Αριθμητικά (Διόφαντος) – Greek" lang="el" hreflang="el" data-title="Αριθμητικά (Διόφαντος)" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Arithmetica" title="Arithmetica – Spanish" lang="es" hreflang="es" data-title="Arithmetica" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Arithm%C3%A9tiques" title="Arithmétiques – French" lang="fr" hreflang="fr" data-title="Arithmétiques" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Arithmetica" title="Arithmetica – Indonesian" lang="id" hreflang="id" data-title="Arithmetica" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%A8%D7%99%D7%AA%D7%9E%D7%98%D7%99%D7%A7%D7%94_(%D7%A1%D7%A4%D7%A8)" title="אריתמטיקה (ספר) – Hebrew" lang="he" hreflang="he" data-title="אריתמטיקה (ספר)" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Arithmetica" title="Arithmetica – Dutch" lang="nl" hreflang="nl" data-title="Arithmetica" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%AE%97%E8%A1%93_(%E6%9B%B8%E7%89%A9)" title="算術 (書物) – Japanese" lang="ja" hreflang="ja" data-title="算術 (書物)" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%90%D1%80%D0%B8%D1%84%D0%BC%D0%B5%D1%82%D0%B8%D0%BA%D0%B0_(%D0%94%D0%B8%D0%BE%D1%84%D0%B0%D0%BD%D1%82)" title="Арифметика (Диофант) – Russian" lang="ru" hreflang="ru" data-title="Арифметика (Диофант)" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Arithmetica" title="Arithmetica – Slovenian" lang="sl" hreflang="sl" data-title="Arithmetica" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Arithmetica" title="Arithmetica – Swedish" lang="sv" hreflang="sv" data-title="Arithmetica" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%90%D1%80%D0%B8%D1%84%D0%BC%D0%B5%D1%82%D0%B8%D0%BA%D0%B0_(%D0%94%D0%B8%D0%BE%D1%84%D0%B0%D0%BD%D1%82)" title="Арифметика (Диофант) – Tajik" lang="tg" hreflang="tg" data-title="Арифметика (Диофант)" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Arithmetika" title="Arithmetika – Turkish" lang="tr" hreflang="tr" data-title="Arithmetika" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q668560#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Arithmetica" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Arithmetica" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Arithmetica"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Arithmetica&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Arithmetica&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Arithmetica"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Arithmetica&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Arithmetica&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Arithmetica" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Arithmetica" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Arithmetica&amp;oldid=1260059821" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Arithmetica&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Arithmetica&amp;id=1260059821&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FArithmetica"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FArithmetica"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Arithmetica&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Arithmetica&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Arithmetica_(Diophantus)" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q668560" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Ancient Greek text on mathematics</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Arithmetica" title="Special:EditPage/Arithmetica">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i>&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&amp;q=%22Arithmetica%22">"Arithmetica"</a>&#160;–&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&amp;q=%22Arithmetica%22+-wikipedia&amp;tbs=ar:1">news</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&amp;q=%22Arithmetica%22&amp;tbs=bkt:s&amp;tbm=bks">newspapers</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&amp;q=%22Arithmetica%22+-wikipedia">books</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Arithmetica%22">scholar</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Arithmetica%22&amp;acc=on&amp;wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">July 2010</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><table class="infobox vcard"><caption class="infobox-title" style="font-size:125%; font-style:italic; padding-bottom:0.2em;"><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=&amp;rft.author=%5B%5BDiophantus%5D%5D"></span></caption><tbody><tr><td colspan="2" class="infobox-image"><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:Diophantus-cover.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Diophantus-cover.png/220px-Diophantus-cover.png" decoding="async" width="220" height="344" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Diophantus-cover.png/330px-Diophantus-cover.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Diophantus-cover.png/440px-Diophantus-cover.png 2x" data-file-width="828" data-file-height="1295" /></a></span><div class="infobox-caption">Cover of the 1621 edition, translated into <a href="/wiki/Latin" title="Latin">Latin</a> from <a href="/wiki/Greek_language" title="Greek language">Greek</a> by <a href="/wiki/Claude_Gaspard_Bachet_de_M%C3%A9ziriac" class="mw-redirect" title="Claude Gaspard Bachet de Méziriac">Claude Gaspard Bachet de Méziriac</a>.</div></td></tr><tr><th scope="row" class="infobox-label">Author</th><td class="infobox-data"><a href="/wiki/Diophantus" title="Diophantus">Diophantus</a></td></tr></tbody></table> <p><i><b>Arithmetica</b></i> (<a href="/wiki/Ancient_Greek_language" class="mw-redirect" title="Ancient Greek language">Ancient Greek</a>: <span lang="grc">Ἀριθμητικά</span>) is an <a href="/wiki/Ancient_Greek" title="Ancient Greek">Ancient Greek</a> text on <a href="/wiki/Mathematics" title="Mathematics">mathematics</a> written by the <a href="/wiki/Mathematician" title="Mathematician">mathematician</a> <a href="/wiki/Diophantus" title="Diophantus">Diophantus</a> (<a href="https://en.wiktionary.org/wiki/circa#English" class="extiw" title="wikt:circa">c.</a><span style="white-space:nowrap;">&#8201;200/214&#160;AD</span>&#160;– c.<span style="white-space:nowrap;">&#8201;284/298&#160;AD</span>) in the 3rd century AD.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> It is a collection of 130 <a href="/wiki/Algebra" title="Algebra">algebraic</a> problems giving numerical solutions of determinate <a href="/wiki/Equations" class="mw-redirect" title="Equations">equations</a> (those with a unique solution) and <a href="/wiki/Indeterminate_equation" title="Indeterminate equation">indeterminate equations</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Summary">Summary</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Arithmetica&amp;action=edit&amp;section=1" title="Edit section: Summary"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Equations in the book are presently called <a href="/wiki/Diophantine_equation" title="Diophantine equation">Diophantine equations</a>. The method for solving these equations is known as <a href="/wiki/Diophantine_analysis" class="mw-redirect" title="Diophantine analysis">Diophantine analysis</a>. Most of the <i>Arithmetica</i> problems lead to <a href="/wiki/Quadratic_equation" title="Quadratic equation">quadratic equations</a>. </p><p>In Book 3, Diophantus solves problems of finding values which make two linear expressions simultaneously into squares or cubes. In book 4, he finds rational powers between given numbers. He also noticed that numbers of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4n+3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mi>n</mi> <mo>+</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4n+3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b64683d9a6ebd4e5644740d0bbe76ffa42e90ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.56ex; height:2.343ex;" alt="{\displaystyle 4n+3}"></span> cannot be the sum of two squares. Diophantus also appears to know that <a href="/wiki/Lagrange%27s_four-square_theorem" title="Lagrange&#39;s four-square theorem">every number can be written as the sum of four squares</a>. If he did know this result (in the sense of having proved it as opposed to merely conjectured it), his doing so would be truly remarkable: even Fermat, who stated the result, failed to provide a proof of it and it was not settled until <a href="/wiki/Joseph_Louis_Lagrange" class="mw-redirect" title="Joseph Louis Lagrange">Joseph Louis Lagrange</a> proved it using results due to <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a>. </p><p><i>Arithmetica</i> was originally written in thirteen books, but the Greek manuscripts that survived to the present contain no more than six books.<sup id="cite_ref-magill_2-0" class="reference"><a href="#cite_note-magill-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> In 1968, <a href="/wiki/Fuat_Sezgin" title="Fuat Sezgin">Fuat Sezgin</a> found four previously unknown books of <i>Arithmetica</i> at the shrine of Imam Rezā in the holy Islamic city of <a href="/wiki/Mashhad" title="Mashhad">Mashhad</a> in northeastern Iran.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> The four books are thought to have been translated from Greek to Arabic by <a href="/wiki/Qusta_ibn_Luqa" title="Qusta ibn Luqa">Qusta ibn Luqa</a> (820–912).<sup id="cite_ref-magill_2-1" class="reference"><a href="#cite_note-magill-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> Norbert Schappacher has written: </p> <blockquote> <p>[The four missing books] resurfaced around 1971 in the <a href="/wiki/Central_Library_of_Astan_Quds_Razavi" title="Central Library of Astan Quds Razavi">Astan Quds Library</a> in Meshed (Iran) in a copy from 1198 AD. It was not catalogued under the name of Diophantus (but under that of <a href="/wiki/Qusta_ibn_Luqa" title="Qusta ibn Luqa">Qusta ibn Luqa</a>) because the librarian was apparently not able to read the main line of the cover page where Diophantus’s name appears in geometric <a href="/wiki/Kufic" title="Kufic">Kufi calligraphy</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> </blockquote> <p><i>Arithmetica</i> became known to <a href="/wiki/Mathematics_in_medieval_Islam" class="mw-redirect" title="Mathematics in medieval Islam">mathematicians in the Islamic world</a> in the tenth century<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> when <a href="/wiki/Ab%C5%ABl_Waf%C4%81%27_B%C5%ABzj%C4%81n%C4%AB" class="mw-redirect" title="Abūl Wafā&#39; Būzjānī">Abu'l-Wefa</a> translated it into Arabic.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Syncopated_algebra">Syncopated algebra</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Arithmetica&amp;action=edit&amp;section=2" title="Edit section: Syncopated algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Syncopated_algebra" class="mw-redirect" title="Syncopated algebra">Syncopated algebra</a></div> <p><a href="/wiki/Diophantus" title="Diophantus">Diophantus</a> was a <a href="/wiki/Hellenistic_civilization" class="mw-redirect" title="Hellenistic civilization">Hellenistic</a> mathematician who lived circa 250 AD, but the uncertainty of this date is so great that it may be off by more than a century. He is known for having written <i>Arithmetica</i>, a treatise that was originally thirteen books but of which only the first six have survived.<sup id="cite_ref-Boyer_Diophantus_7-0" class="reference"><a href="#cite_note-Boyer_Diophantus-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p><i>Arithmetica</i> is the earliest extant work present that solve arithmetic problems by algebra. Diophantus however did not invent the method of algebra, which existed before him.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> Algebra was practiced and diffused orally by practitioners, with Diophantus picking up technique to solve problems in arithmetic.<sup id="cite_ref-:0_9-0" class="reference"><a href="#cite_note-:0-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>In modern algebra a <a href="/wiki/Laurent_polynomial" title="Laurent polynomial">Laurent polynomial</a> is linear combination of some variables, raised to integer powers, which behaves under multiplication, addition, and subtraction. Algebra of Diophantus, similar to medieval arabic algebra is aggregation of objects of different types with no operations present<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p><p>For example, the Laurent polynomial written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6{\tfrac {1}{4}}x^{-1}+25x^{2}-9}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mn>25</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>9</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6{\tfrac {1}{4}}x^{-1}+25x^{2}-9}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9861c1b36b904f508f07de9189e90f54d79bfa87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:18.035ex; height:3.509ex;" alt="{\displaystyle 6{\tfrac {1}{4}}x^{-1}+25x^{2}-9}"></span> in modern notation is written by Diophantus as "6 4<span class="nowrap" style="padding-left:0.15em;">′</span> inverse Powers, 25 Powers lacking 9 units", or "a collection of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6{\tfrac {1}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6{\tfrac {1}{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/222bc69e612578a83545878a0599c999774cb0f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:2.821ex; height:3.509ex;" alt="{\displaystyle 6{\tfrac {1}{4}}}"></span> object of one kind with 25 object of second kind which lack 9 objects of third kind with no operation present".<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>Similar to medieval Arabic algebra Diophantus uses three stages to solution of a problem by Algebra: </p><p>1) An unknown is named and an equation is set up </p><p>2) An equation is simplified to a standard form( al-jabr and al-muqābala in arabic) </p><p>3) Simplified equation is solved<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p>Diophantus does not give classification of equations in six types like Al-Khwarizmi in extant parts of Arithmetica. He does says that he would give solution to three terms equations later, so this part of work is possibly just lost<sup id="cite_ref-:0_9-1" class="reference"><a href="#cite_note-:0-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>In <i>Arithmetica</i>, Diophantus is the first to use symbols for unknown numbers as well as abbreviations for powers of numbers, relationships, and operations;<sup id="cite_ref-Boyer_Arithmetica_13-0" class="reference"><a href="#cite_note-Boyer_Arithmetica-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> thus he used what is now known as <em>syncopated algebra</em>. The main difference between Diophantine syncopated algebra and modern algebraic notation is that the former lacked special symbols for operations, relations, and exponentials.<sup id="cite_ref-Boyer_14-0" class="reference"><a href="#cite_note-Boyer-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> So for example, what would be written in modern notation as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{3}-2x^{2}+10x-1=5,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>10</mn> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>5</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{3}-2x^{2}+10x-1=5,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45bb2d540b72127f8e7906b93caaef85e1969acc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:24.176ex; height:3.009ex;" alt="{\displaystyle x^{3}-2x^{2}+10x-1=5,}"></span> which can be rewritten as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({x^{3}}1+{x}10\right)-\left({x^{2}}2+{x^{0}}1\right)={x^{0}}5,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mn>10</mn> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mrow> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mrow> <mn>5</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({x^{3}}1+{x}10\right)-\left({x^{2}}2+{x^{0}}1\right)={x^{0}}5,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22148789d81e1423c7b5f20e224d3b9d0f0248a6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:34.366ex; height:3.343ex;" alt="{\displaystyle \left({x^{3}}1+{x}10\right)-\left({x^{2}}2+{x^{0}}1\right)={x^{0}}5,}"></span> would be written in Diophantus's syncopated notation as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {K} ^{\upsilon }{\overline {\alpha }}\;\zeta {\overline {\iota }}\;\,\pitchfork \;\,\Delta ^{\upsilon }{\overline {\beta }}\;\mathrm {M} {\overline {\alpha }}\,\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">K</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C5;<!-- υ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thickmathspace" /> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B9;<!-- ι --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mo>&#x22D4;<!-- ⋔ --></mo> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <msup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C5;<!-- υ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {K} ^{\upsilon }{\overline {\alpha }}\;\zeta {\overline {\iota }}\;\,\pitchfork \;\,\Delta ^{\upsilon }{\overline {\beta }}\;\mathrm {M} {\overline {\alpha }}\,\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a6f34b992f64ad82a6963fea1a3f486c0d7a67e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.039ex; height:3.343ex;" alt="{\displaystyle \mathrm {K} ^{\upsilon }{\overline {\alpha }}\;\zeta {\overline {\iota }}\;\,\pitchfork \;\,\Delta ^{\upsilon }{\overline {\beta }}\;\mathrm {M} {\overline {\alpha }}\,\;}"></span><span title="Ancient Greek (to 1453)-language text"><span lang="grc">ἴ</span></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma \;\,\mathrm {M} {\overline {\varepsilon }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B5;<!-- ε --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma \;\,\mathrm {M} {\overline {\varepsilon }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73f8355814a4935d44d03603d240df778f7d15f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.691ex; height:2.343ex;" alt="{\displaystyle \sigma \;\,\mathrm {M} {\overline {\varepsilon }}}"></span></dd></dl> <p>where the symbols represent the following: <sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Diophantus_Syncopation_16-0" class="reference"><a href="#cite_note-Diophantus_Syncopation-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable"> <tbody><tr> <th>Symbol </th> <th>What it represents </th></tr> <tr> <td>&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\alpha }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\alpha }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f87618f0333926d073474c3e9b99c65628f6c09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.603ex; height:2.343ex;" alt="{\displaystyle {\overline {\alpha }}}"></span> </td> <td>1 (<a href="/wiki/Alpha" title="Alpha">Alpha</a> is the 1st letter of the <a href="/wiki/Greek_alphabet" title="Greek alphabet">Greek alphabet</a>) </td></tr> <tr> <td>&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\beta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\beta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63c4114445a608fb557f7671a11e5006ec8e5909" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.458ex; height:3.343ex;" alt="{\displaystyle {\overline {\beta }}}"></span> </td> <td>2 (<a href="/wiki/Beta" title="Beta">Beta</a> is the 2nd letter of the Greek alphabet) </td></tr> <tr> <td>&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\varepsilon }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B5;<!-- ε --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\varepsilon }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b2218c42327a03e8cd7483b392523f02e6e20cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.198ex; height:2.343ex;" alt="{\displaystyle {\overline {\varepsilon }}}"></span> </td> <td>5 (<a href="/wiki/Epsilon" title="Epsilon">Epsilon</a> is the 5th letter of the Greek alphabet) </td></tr> <tr> <td>&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\iota }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B9;<!-- ι --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\iota }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57a48f3d398ea03e7686b2f73e223af7a3b40baa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.938ex; height:2.343ex;" alt="{\displaystyle {\overline {\iota }}}"></span> </td> <td>10 (<a href="/wiki/Iota" title="Iota">Iota</a> is the 9th letter of the <a href="/wiki/History_of_the_Greek_alphabet" title="History of the Greek alphabet"><em>modern</em> Greek alphabet</a> but it was the 10th letter of an <a href="/wiki/Archaic_Greek_alphabets" title="Archaic Greek alphabets">ancient archaic Greek alphabet</a> that had the letter <a href="/wiki/Digamma" title="Digamma">digamma</a> (uppercase: Ϝ, lowercase: ϝ) in the 6th position between <a href="/wiki/Epsilon" title="Epsilon">epsilon</a> ε and <a href="/wiki/Zeta" title="Zeta">zeta</a> ζ.) </td></tr> <tr> <td><span title="Ancient Greek (to 1453)-language text"><span lang="grc">ἴσ</span></span> </td> <td>"equals" (short for <span title="Ancient Greek (to 1453)-language text"><span lang="grc"><a href="https://en.wiktionary.org/wiki/%E1%BC%B4%CF%83%CE%BF%CF%82" class="extiw" title="wiktionary:ἴσος">ἴσος</a></span></span>) </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pitchfork }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22D4;<!-- ⋔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pitchfork }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/131d2d6f4e4161d53e274221b9a2d514d0ae790f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.343ex;" alt="{\displaystyle \pitchfork }"></span> </td> <td>represents the subtraction of everything that follows <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pitchfork }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22D4;<!-- ⋔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pitchfork }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/131d2d6f4e4161d53e274221b9a2d514d0ae790f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.343ex;" alt="{\displaystyle \pitchfork }"></span> up to <span title="Ancient Greek (to 1453)-language text"><span lang="grc">ἴσ</span></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {M} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {M} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1ec92b986053ec4967f418634cf062b9d980f9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.131ex; height:2.176ex;" alt="{\displaystyle \mathrm {M} }"></span> </td> <td>the zeroth power (that is, a constant term) </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c3916703cae7938143d38865f78f27faadd4ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.095ex; height:2.509ex;" alt="{\displaystyle \zeta }"></span> </td> <td>the unknown quantity (because a number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> raised to the first power is just <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feff4d40084c7351bf57b11ba2427f6331f5bdbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x,}"></span> this may be thought of as "the first power") </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta ^{\upsilon }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C5;<!-- υ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta ^{\upsilon }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5da33a571fc1f5109907a46f966c0830e26194af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.056ex; height:2.343ex;" alt="{\displaystyle \Delta ^{\upsilon }}"></span> </td> <td>the second power, from Greek <span title="Ancient Greek (to 1453)-language text"><span lang="grc">δύναμις</span></span>, meaning strength or power </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {K} ^{\upsilon }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">K</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C5;<!-- υ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {K} ^{\upsilon }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a46f73e9841d00eec65acac5171dc2039425494" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.928ex; height:2.343ex;" alt="{\displaystyle \mathrm {K} ^{\upsilon }}"></span> </td> <td>the third power, from Greek <span title="Ancient Greek (to 1453)-language text"><span lang="grc">κύβος</span></span>, meaning a cube </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta ^{\upsilon }\Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C5;<!-- υ --></mi> </mrow> </msup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta ^{\upsilon }\Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3023654863d1d4cc497d166539d450b325b2d3e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.992ex; height:2.343ex;" alt="{\displaystyle \Delta ^{\upsilon }\Delta }"></span> </td> <td>the fourth power </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathrm {K} ^{\upsilon }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">K</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C5;<!-- υ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \mathrm {K} ^{\upsilon }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f619f6cd368b886daf528fa8955cbf3a8bf22c06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.864ex; height:2.343ex;" alt="{\displaystyle \Delta \mathrm {K} ^{\upsilon }}"></span> </td> <td>the fifth power </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {K} ^{\upsilon }\mathrm {K} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">K</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C5;<!-- υ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">K</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {K} ^{\upsilon }\mathrm {K} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7804bdc32af45823667897e3e42ee597d9c76f68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.736ex; height:2.343ex;" alt="{\displaystyle \mathrm {K} ^{\upsilon }\mathrm {K} }"></span> </td> <td>the sixth power </td></tr> </tbody></table> <p>Unlike in modern notation, the coefficients come after the variables and addition is represented by the juxtaposition of terms. A literal symbol-for-symbol translation of Diophantus's syncopated equation into a modern symbolic equation would be the following:<sup id="cite_ref-Diophantus_Syncopation_16-1" class="reference"><a href="#cite_note-Diophantus_Syncopation-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {x^{3}}1{x}10-{x^{2}}2{x^{0}}1={x^{0}}5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mn>10</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mrow> <mn>1</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mrow> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {x^{3}}1{x}10-{x^{2}}2{x^{0}}1={x^{0}}5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/199cd6a4d18c4b4ae9ba30d9900beff5c8d190e6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:23.779ex; height:2.843ex;" alt="{\displaystyle {x^{3}}1{x}10-{x^{2}}2{x^{0}}1={x^{0}}5}"></span> where to clarify, if the modern parentheses and plus are used then the above equation can be rewritten as:<sup id="cite_ref-Diophantus_Syncopation_16-2" class="reference"><a href="#cite_note-Diophantus_Syncopation-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({x^{3}}1+{x}10\right)-\left({x^{2}}2+{x^{0}}1\right)={x^{0}}5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mn>10</mn> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mrow> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mrow> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({x^{3}}1+{x}10\right)-\left({x^{2}}2+{x^{0}}1\right)={x^{0}}5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf926dcdef491e159138f5398d39e42f89ece9a8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:33.719ex; height:3.343ex;" alt="{\displaystyle \left({x^{3}}1+{x}10\right)-\left({x^{2}}2+{x^{0}}1\right)={x^{0}}5}"></span>However the distinction between "rhetorical algebra", "syncopated algebra" and "symbolic algebra" is considered outdated by Jeffrey Oaks and Jean Christianidis. The problems were solved on dust-board using some notation, while in books solution were written in "rhetorical style".<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p><p><i>Arithmetica</i> also makes use of the identities:<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{4}\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)&amp;=(ac+db)^{2}+(bc-ad)^{2}\\&amp;=(ad+bc)^{2}+(ac-bd)^{2}\\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mrow> <mo>(</mo> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>d</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>d</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{4}\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)&amp;=(ac+db)^{2}+(bc-ad)^{2}\\&amp;=(ad+bc)^{2}+(ac-bd)^{2}\\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c0d567469a22f77b1c8a883aa8defc7b80aaedd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:45.995ex; height:6.843ex;" alt="{\displaystyle {\begin{alignedat}{4}\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)&amp;=(ac+db)^{2}+(bc-ad)^{2}\\&amp;=(ad+bc)^{2}+(ac-bd)^{2}\\\end{alignedat}}}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Arithmetica&amp;action=edit&amp;section=3" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Diophantus_II.VIII" title="Diophantus II.VIII">Diophantus II.VIII</a></li> <li><a href="/wiki/Muhammad_ibn_M%C5%ABs%C4%81_al-Khw%C4%81rizm%C4%AB" class="mw-redirect" title="Muhammad ibn Mūsā al-Khwārizmī">Muhammad ibn Mūsā al-Khwārizmī</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Citations">Citations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Arithmetica&amp;action=edit&amp;section=4" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.britannica.com/EBchecked/topic/164347/Diophantus-of-Alexandria#ref704023">"Diophantus of Alexandria (Greek mathematician)"</a>. Encyclopædia Britannica<span class="reference-accessdate">. Retrieved <span class="nowrap">11 April</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Diophantus+of+Alexandria+%28Greek+mathematician%29&amp;rft.pub=Encyclop%C3%A6dia+Britannica&amp;rft_id=http%3A%2F%2Fwww.britannica.com%2FEBchecked%2Ftopic%2F164347%2FDiophantus-of-Alexandria%23ref704023&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></span> </li> <li id="cite_note-magill-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-magill_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-magill_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMagill1998" class="citation book cs1">Magill, Frank N., ed. (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_CMl8ziTbKYC&amp;pg=PA362"><i>Dictionary of World Biography</i></a>. Vol.&#160;1. Salem Press. p.&#160;362. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781135457396" title="Special:BookSources/9781135457396"><bdi>9781135457396</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Dictionary+of+World+Biography&amp;rft.pages=362&amp;rft.pub=Salem+Press&amp;rft.date=1998&amp;rft.isbn=9781135457396&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D_CMl8ziTbKYC%26pg%3DPA362&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHogendijk1985" class="citation web cs1"><a href="/wiki/Jan_Hogendijk" title="Jan Hogendijk">Hogendijk, Jan P.</a> (1985). <a rel="nofollow" class="external text" href="http://www.jphogendijk.nl/reviews/sesiano.html">"Review of J. Sesiano, Books IV to VII of Diophantus' Arithmetica"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">6 July</span> 2014</span>. <q>Only six of the thirteen books of the <i>Arithmetica</i> of Diophantus (ca. A.D. 250) are extant in Greek. The remaining books were believed to be lost, until the recent discovery of a medieval Arabic translation of four of the remaining books in a manuscript in the Shrine Library in Meshed in Iran (see the catalogue [Gulchin-i Ma'ani 1971-1972, pp. 235-236]. The manuscript was discovered in 1968 by F. Sezgin).</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Review+of+J.+Sesiano%2C+Books+IV+to+VII+of+Diophantus%27+Arithmetica&amp;rft.date=1985&amp;rft.aulast=Hogendijk&amp;rft.aufirst=Jan+P.&amp;rft_id=http%3A%2F%2Fwww.jphogendijk.nl%2Freviews%2Fsesiano.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchappacher2005" class="citation web cs1">Schappacher, Norbert (April 2005). <a rel="nofollow" class="external text" href="http://www-irma.u-strasbg.fr/~schappa/NSch/Publications_files/1998cBis_Dioph.pdf">"Diophantus of Alexandria&#160;: a Text and its History"</a> <span class="cs1-format">(PDF)</span>. p.&#160;18<span class="reference-accessdate">. Retrieved <span class="nowrap">9 October</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Diophantus+of+Alexandria+%3A+a+Text+and+its+History&amp;rft.pages=18&amp;rft.date=2005-04&amp;rft.aulast=Schappacher&amp;rft.aufirst=Norbert&amp;rft_id=http%3A%2F%2Fwww-irma.u-strasbg.fr%2F~schappa%2FNSch%2FPublications_files%2F1998cBis_Dioph.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Revival and Decline of Greek Mathematics" p. <a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema00boye/page/234">234</a>) "Note the omission of Diophantus and Pappus, authors who evidently were not at first known in Arabia, although the Diophantine <i>Arithmetica</i> became familiar before the end of the tenth century."</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Revival and Decline of Greek Mathematics" p. <a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema00boye/page/239">239</a>) "Abu'l-Wefa was a capable algebraist as well as a trigonometer. He commented on al-Khwarizmi's <i>Algebra</i> and translated from Greek one of the last great classics, the <i>Arithmetica</i> of Diophantus."</span> </li> <li id="cite_note-Boyer_Diophantus-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boyer_Diophantus_7-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Revival and Decline of Greek Mathematics" p. 178) "Uncertainty about the life of Diophantus is so great that we do not know definitely in which century he lived. Generally he is assumed to have flourished about A.D. 250, but dates a century or more earlier or later are sometimes suggested[...] If this conundrum is historically accurate, Diophantus lived to be eighty-four-years old. [...] The chief Diophantine work known to us is the <i>Arithmetica</i>, a treatise originally in thirteen books, only the first six of which have survived."</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOaksChristianidis" class="citation book cs1">Oaks, Jeffrey; Christianidis, Jean. <i>The Arithmetica of Diophantus A Complete Translation and Commentary</i>. p.&#160;80.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Arithmetica+of+Diophantus+A+Complete+Translation+and+Commentary&amp;rft.pages=80&amp;rft.aulast=Oaks&amp;rft.aufirst=Jeffrey&amp;rft.au=Christianidis%2C+Jean&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></span> </li> <li id="cite_note-:0-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOaksChristianidis2013" class="citation journal cs1">Oaks, Jeffrey; Christianidis, Jean (2013). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.hm.2012.09.001">"Practicing algebra in late antiquity: The problem-solving of Diophantus of Alexandria"</a>. <i>Historia Mathematica</i>. <b>40</b> (2): <span class="nowrap">158–</span>160. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.hm.2012.09.001">10.1016/j.hm.2012.09.001</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=Practicing+algebra+in+late+antiquity%3A+The+problem-solving+of+Diophantus+of+Alexandria&amp;rft.volume=40&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E158-%3C%2Fspan%3E160&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1016%2Fj.hm.2012.09.001&amp;rft.aulast=Oaks&amp;rft.aufirst=Jeffrey&amp;rft.au=Christianidis%2C+Jean&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.hm.2012.09.001&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOaksChristianidis2013" class="citation journal cs1">Oaks, Jeffrey; Christianidis, Jean (2013). <a rel="nofollow" class="external text" href="https://www.academia.edu/5821882">"Practicing algebra in late antiquity: The problem-solving of Diophantus of Alexandria"</a>. <i>Historia Mathematica</i>. <b>40</b>: 150.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=Practicing+algebra+in+late+antiquity%3A+The+problem-solving+of+Diophantus+of+Alexandria&amp;rft.volume=40&amp;rft.pages=150&amp;rft.date=2013&amp;rft.aulast=Oaks&amp;rft.aufirst=Jeffrey&amp;rft.au=Christianidis%2C+Jean&amp;rft_id=https%3A%2F%2Fwww.academia.edu%2F5821882&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOaksChristianidis2023" class="citation book cs1">Oaks, Jeffrey; Christianidis, Jean (2023). <i>The Arithmetica of Diophantus A Complete Translation and Commentary</i>. pp.&#160;<span class="nowrap">51–</span>52.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Arithmetica+of+Diophantus+A+Complete+Translation+and+Commentary&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E51-%3C%2Fspan%3E52&amp;rft.date=2023&amp;rft.aulast=Oaks&amp;rft.aufirst=Jeffrey&amp;rft.au=Christianidis%2C+Jean&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOaksChristianidis2021" class="citation book cs1">Oaks, Jeffrey; Christianidis, Jean (2021). <i>The Arithmetica of Diophantus A Complete Translation and Commentary</i>. pp.&#160;<span class="nowrap">53–</span>66.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Arithmetica+of+Diophantus+A+Complete+Translation+and+Commentary&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E53-%3C%2Fspan%3E66&amp;rft.date=2021&amp;rft.aulast=Oaks&amp;rft.aufirst=Jeffrey&amp;rft.au=Christianidis%2C+Jean&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></span> </li> <li id="cite_note-Boyer_Arithmetica-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boyer_Arithmetica_13-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Revival and Decline of Greek Mathematics" pp. 180-182) "In this respect it can be compared with the great classics of the earlier Alexandrian Age; yet it has practically nothing in common with these or, in fact, with any traditional Greek mathematics. It represents essentially a new branch and makes use of a different approach. Being divorced from geometric methods, it resembles Babylonian algebra to a large extent. But whereas Babylonian mathematicians had been concerned primarily with <i>approximate</i> solutions of <i>determinate</i> equations as far as the third degree, the <i>Arithmetica</i> of Diophantus (such as we have it) is almost entirely devoted to the <i>exact</i> solution of equations, both <i>determinate</i> and <i>indeterminate</i>. [...] Throughout the six surviving books of <i>Arithmetica</i> there is a systematic use of abbreviations for powers of numbers and for relationships and operations. An unknown number is represented by a symbol resembling the Greek letter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c3916703cae7938143d38865f78f27faadd4ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.095ex; height:2.509ex;" alt="{\displaystyle \zeta }"></span> (perhaps for the last letter of arithmos). [...] It is instead a collection of some 150 problems, all worked out in terms of specific numerical examples, although perhaps generality of method was intended. There is no postulation development, nor is an effort made to find all possible solutions. In the case of quadratic equations with two positive roots, only the larger is give, and negative roots are not recognized. No clear-cut distinction is made between determinate and indeterminate problems, and even for the latter for which the number of solutions generally is unlimited, only a single answer is given. Diophantus solved problems involving several unknown numbers by skillfully expressing all unknown quantities, where possible, in terms of only one of them."</span> </li> <li id="cite_note-Boyer-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boyer_14-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Revival and Decline of Greek Mathematics" p. 178) "The chief difference between Diophantine syncopation and the modern algebraic notation is the lack of special symbols for operations and relations, as well as of the exponential notation."</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">(<a href="#CITEREFCooke1997">Cooke 1997</a>, "Mathematics in the Roman Empire" pp. 167-168)</span> </li> <li id="cite_note-Diophantus_Syncopation-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-Diophantus_Syncopation_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Diophantus_Syncopation_16-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Diophantus_Syncopation_16-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFDerbyshire2006">Derbyshire 2006</a>, "The Father of Algebra" pp. 35-36)</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOaksChristianidis2023" class="citation book cs1">Oaks, Jeffrey; Christianidis, Jean (2023). <i>The Arithmetica of Diophantus A Complete Translation and Commentary</i>. pp.&#160;<span class="nowrap">78–</span>79. <q>There are two major flaws with this trichotomy. First, the language written in books is not always the language in which problems were worked out. In Arabic, problems were often solved in notation on a dust-board or some other temporary surface, and then for inclusion in a book a rhetorical version was composed. Also, because of the two-dimensional character of the Arabic notation, it would have been written and read visually, independent of real or imagined speech. It thus fits nicely into Nesselmann's "symbolic" category. The rhetorical version of the same work, on the other hand, was categorized as being "rhetorical". These two ways of writing algebra do not reflect two stages of the development of algebra but are different ways of expressing the same ideas. Second, Nesselmann was unaware of the conceptual differences between premodern and modern algebra, and thus, he could not have appreciated the leap made in the time of Viète and Descartes that included a radical shift in how notation was interpreted.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Arithmetica+of+Diophantus+A+Complete+Translation+and+Commentary&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E78-%3C%2Fspan%3E79&amp;rft.date=2023&amp;rft.aulast=Oaks&amp;rft.aufirst=Jeffrey&amp;rft.au=Christianidis%2C+Jean&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Europe in the Middle Ages" p. 257) "The book makes frequent use of the identities [...] which had appeared in Diophantus and had been widely used by the Arabs."</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Arithmetica&amp;action=edit&amp;section=5" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoyer1991" class="citation book cs1"><a href="/wiki/Carl_Benjamin_Boyer" title="Carl Benjamin Boyer">Boyer, Carl B.</a> (1991). <i>A History of Mathematics</i> (Second&#160;ed.). John Wiley &amp; Sons, Inc. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-54397-7" title="Special:BookSources/0-471-54397-7"><bdi>0-471-54397-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Mathematics&amp;rft.edition=Second&amp;rft.pub=John+Wiley+%26+Sons%2C+Inc.&amp;rft.date=1991&amp;rft.isbn=0-471-54397-7&amp;rft.aulast=Boyer&amp;rft.aufirst=Carl+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChristianidisOaks2023" class="citation book cs1">Christianidis, Jean; Oaks, Jeffrey A. (2023). <i>The Arithmetica of Diophantus: a complete translation and commentary</i>. Abingdon, Oxon New York, NY: Routledge. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1138046353" title="Special:BookSources/1138046353"><bdi>1138046353</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Arithmetica+of+Diophantus%3A+a+complete+translation+and+commentary&amp;rft.place=Abingdon%2C+Oxon+New+York%2C+NY&amp;rft.pub=Routledge&amp;rft.date=2023&amp;rft.isbn=1138046353&amp;rft.aulast=Christianidis&amp;rft.aufirst=Jean&amp;rft.au=Oaks%2C+Jeffrey+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCooke1997" class="citation book cs1">Cooke, Roger (1997). <i>The History of Mathematics: A Brief Course</i>. Wiley-Interscience. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-18082-3" title="Special:BookSources/0-471-18082-3"><bdi>0-471-18082-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+History+of+Mathematics%3A+A+Brief+Course&amp;rft.pub=Wiley-Interscience&amp;rft.date=1997&amp;rft.isbn=0-471-18082-3&amp;rft.aulast=Cooke&amp;rft.aufirst=Roger&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDerbyshire2006" class="citation book cs1"><a href="/wiki/John_Derbyshire" title="John Derbyshire">Derbyshire, John</a> (2006). <i>Unknown Quantity: A Real And Imaginary History of Algebra</i>. Joseph Henry Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-309-09657-X" title="Special:BookSources/0-309-09657-X"><bdi>0-309-09657-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Unknown+Quantity%3A+A+Real+And+Imaginary+History+of+Algebra&amp;rft.pub=Joseph+Henry+Press&amp;rft.date=2006&amp;rft.isbn=0-309-09657-X&amp;rft.aulast=Derbyshire&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeath2009" class="citation book cs1"><a href="/wiki/Thomas_L._Heath" class="mw-redirect" title="Thomas L. Heath">Heath, Sir Thomas L.</a> (2009). <i>Diophantus of Alexandria: A Study in the History of Greek Algebra</i>. Martino Fine Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-57898-754-2" title="Special:BookSources/978-1-57898-754-2"><bdi>978-1-57898-754-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Diophantus+of+Alexandria%3A+A+Study+in+the+History+of+Greek+Algebra&amp;rft.pub=Martino+Fine+Books&amp;rft.date=2009&amp;rft.isbn=978-1-57898-754-2&amp;rft.aulast=Heath&amp;rft.aufirst=Sir+Thomas+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatzParshall2014" class="citation book cs1">Katz, Victor J.; Parshall, Karen Hunger (2014). <i>Taming the Unknown: A History of Algebra from Antiquity to the Early Twentieth Century</i>. Princeton University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-14905-9" title="Special:BookSources/978-0-691-14905-9"><bdi>978-0-691-14905-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Taming+the+Unknown%3A+A+History+of+Algebra+from+Antiquity+to+the+Early+Twentieth+Century&amp;rft.pub=Princeton+University+Press&amp;rft.date=2014&amp;rft.isbn=978-0-691-14905-9&amp;rft.aulast=Katz&amp;rft.aufirst=Victor+J.&amp;rft.au=Parshall%2C+Karen+Hunger&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSesiano2011" class="citation book cs1">Sesiano, Jacques (2011). <i>Books IV to VII of Diophantus' Arithmetica in the Arabic translation attributed to Qusṭā ibn Lūqā</i>. New York Heidelberg Berlin: Springer-Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1461381762" title="Special:BookSources/1461381762"><bdi>1461381762</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Books+IV+to+VII+of+Diophantus%27+Arithmetica+in+the+Arabic+translation+attributed+to+Qus%E1%B9%AD%C4%81+ibn+L%C5%ABq%C4%81&amp;rft.place=New+York+Heidelberg+Berlin&amp;rft.pub=Springer-Verlag&amp;rft.date=2011&amp;rft.isbn=1461381762&amp;rft.aulast=Sesiano&amp;rft.aufirst=Jacques&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AArithmetica" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Arithmetica&amp;action=edit&amp;section=6" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Diophantus Alexandrinus, Pierre de Fermat, Claude Gaspard Bachet de Meziriac, <i>Diophanti Alexandrini Arithmeticorum libri 6, et De numeris multangulis liber unus</i>. Cum comm. C(laude) G(aspar) Bacheti et observationibus P(ierre) de Fermat. Acc. doctrinae analyticae inventum novum, coll. ex variis eiu. Tolosae 1670, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3931%2Fe-rara-9423">10.3931/e-rara-9423</a>.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Ancient_Greek_mathematics550" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Ancient_Greek_mathematics" title="Template:Ancient Greek mathematics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Ancient_Greek_mathematics" title="Template talk:Ancient Greek mathematics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Ancient_Greek_mathematics" title="Special:EditPage/Template:Ancient Greek mathematics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Ancient_Greek_mathematics550" style="font-size:114%;margin:0 4em"><a href="/wiki/Greek_mathematics" title="Greek mathematics">Ancient Greek mathematics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/List_of_Greek_mathematicians" title="List of Greek mathematicians">Mathematicians</a><br /><a href="/wiki/Timeline_of_ancient_Greek_mathematicians" title="Timeline of ancient Greek mathematicians">(timeline)</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Anaxagoras" title="Anaxagoras">Anaxagoras</a></li> <li><a href="/wiki/Anthemius_of_Tralles" title="Anthemius of Tralles">Anthemius</a></li> <li><a href="/wiki/Archytas" title="Archytas">Archytas</a></li> <li><a href="/wiki/Aristaeus_the_Elder" title="Aristaeus the Elder">Aristaeus the Elder</a></li> <li><a href="/wiki/Aristarchus_of_Samos" title="Aristarchus of Samos">Aristarchus</a></li> <li><a href="/wiki/Aristotle" title="Aristotle">Aristotle</a></li> <li><a href="/wiki/Apollonius_of_Perga" title="Apollonius of Perga">Apollonius</a></li> <li><a href="/wiki/Archimedes" title="Archimedes">Archimedes</a></li> <li><a href="/wiki/Autolycus_of_Pitane" title="Autolycus of Pitane">Autolycus</a></li> <li><a href="/wiki/Bion_of_Abdera" title="Bion of Abdera">Bion</a></li> <li><a href="/wiki/Bryson_of_Heraclea" title="Bryson of Heraclea">Bryson</a></li> <li><a href="/wiki/Callippus" title="Callippus">Callippus</a></li> <li><a href="/wiki/Carpus_of_Antioch" title="Carpus of Antioch">Carpus</a></li> <li><a href="/wiki/Chrysippus" title="Chrysippus">Chrysippus</a></li> <li><a href="/wiki/Cleomedes" title="Cleomedes">Cleomedes</a></li> <li><a href="/wiki/Conon_of_Samos" title="Conon of Samos">Conon</a></li> <li><a href="/wiki/Ctesibius" title="Ctesibius">Ctesibius</a></li> <li><a href="/wiki/Democritus" title="Democritus">Democritus</a></li> <li><a href="/wiki/Dicaearchus" title="Dicaearchus">Dicaearchus</a></li> <li><a href="/wiki/Diocles_(mathematician)" title="Diocles (mathematician)">Diocles</a></li> <li><a href="/wiki/Diophantus" title="Diophantus">Diophantus</a></li> <li><a href="/wiki/Dinostratus" title="Dinostratus">Dinostratus</a></li> <li><a href="/wiki/Dionysodorus" title="Dionysodorus">Dionysodorus</a></li> <li><a href="/wiki/Domninus_of_Larissa" title="Domninus of Larissa">Domninus</a></li> <li><a href="/wiki/Eratosthenes" title="Eratosthenes">Eratosthenes</a></li> <li><a href="/wiki/Eudemus_of_Rhodes" title="Eudemus of Rhodes">Eudemus</a></li> <li><a href="/wiki/Euclid" title="Euclid">Euclid</a></li> <li><a href="/wiki/Eudoxus_of_Cnidus" title="Eudoxus of Cnidus">Eudoxus</a></li> <li><a href="/wiki/Eutocius_of_Ascalon" title="Eutocius of Ascalon">Eutocius</a></li> <li><a href="/wiki/Geminus" title="Geminus">Geminus</a></li> <li><a href="/wiki/Heliodorus_of_Larissa" title="Heliodorus of Larissa">Heliodorus</a></li> <li><a href="/wiki/Hero_of_Alexandria" title="Hero of Alexandria">Heron</a></li> <li><a href="/wiki/Hipparchus" title="Hipparchus">Hipparchus</a></li> <li><a href="/wiki/Hippasus" title="Hippasus">Hippasus</a></li> <li><a href="/wiki/Hippias" title="Hippias">Hippias</a></li> <li><a href="/wiki/Hippocrates_of_Chios" title="Hippocrates of Chios">Hippocrates</a></li> <li><a href="/wiki/Hypatia" title="Hypatia">Hypatia</a></li> <li><a href="/wiki/Hypsicles" title="Hypsicles">Hypsicles</a></li> <li><a href="/wiki/Isidore_of_Miletus" title="Isidore of Miletus">Isidore of Miletus</a></li> <li><a href="/wiki/Leon_(mathematician)" title="Leon (mathematician)">Leon</a></li> <li><a href="/wiki/Marinus_of_Neapolis" title="Marinus of Neapolis">Marinus</a></li> <li><a href="/wiki/Menaechmus" title="Menaechmus">Menaechmus</a></li> <li><a href="/wiki/Menelaus_of_Alexandria" title="Menelaus of Alexandria">Menelaus</a></li> <li><a href="/wiki/Metrodorus_(grammarian)" title="Metrodorus (grammarian)">Metrodorus</a></li> <li><a href="/wiki/Nicomachus" title="Nicomachus">Nicomachus</a></li> <li><a href="/wiki/Nicomedes_(mathematician)" title="Nicomedes (mathematician)">Nicomedes</a></li> <li><a href="/wiki/Nicoteles_of_Cyrene" title="Nicoteles of Cyrene">Nicoteles</a></li> <li><a href="/wiki/Oenopides" title="Oenopides">Oenopides</a></li> <li><a href="/wiki/Pappus_of_Alexandria" title="Pappus of Alexandria">Pappus</a></li> <li><a href="/wiki/Perseus_(geometer)" title="Perseus (geometer)">Perseus</a></li> <li><a href="/wiki/Philolaus" title="Philolaus">Philolaus</a></li> <li><a href="/wiki/Philon" title="Philon">Philon</a></li> <li><a href="/wiki/Philonides_of_Laodicea" title="Philonides of Laodicea">Philonides</a></li> <li><a href="/wiki/Plato" title="Plato">Plato</a></li> <li><a href="/wiki/Porphyry_(philosopher)" title="Porphyry (philosopher)">Porphyry</a></li> <li><a href="/wiki/Posidonius" title="Posidonius">Posidonius</a></li> <li><a href="/wiki/Proclus" title="Proclus">Proclus</a></li> <li><a href="/wiki/Ptolemy" title="Ptolemy">Ptolemy</a></li> <li><a href="/wiki/Pythagoras" title="Pythagoras">Pythagoras</a></li> <li><a href="/wiki/Serenus_of_Antino%C3%B6polis" title="Serenus of Antinoöpolis">Serenus </a></li> <li><a href="/wiki/Simplicius_of_Cilicia" title="Simplicius of Cilicia">Simplicius</a></li> <li><a href="/wiki/Sosigenes_of_Alexandria" class="mw-redirect" title="Sosigenes of Alexandria">Sosigenes</a></li> <li><a href="/wiki/Sporus_of_Nicaea" title="Sporus of Nicaea">Sporus</a></li> <li><a href="/wiki/Thales_of_Miletus" title="Thales of Miletus">Thales</a></li> <li><a href="/wiki/Theaetetus_(mathematician)" title="Theaetetus (mathematician)">Theaetetus</a></li> <li><a href="/wiki/Theano_(philosopher)" title="Theano (philosopher)">Theano</a></li> <li><a href="/wiki/Theodorus_of_Cyrene" title="Theodorus of Cyrene">Theodorus</a></li> <li><a href="/wiki/Theodosius_of_Bithynia" title="Theodosius of Bithynia">Theodosius</a></li> <li><a href="/wiki/Theon_of_Alexandria" title="Theon of Alexandria">Theon of Alexandria</a></li> <li><a href="/wiki/Theon_of_Smyrna" title="Theon of Smyrna">Theon of Smyrna</a></li> <li><a href="/wiki/Thymaridas" title="Thymaridas">Thymaridas</a></li> <li><a href="/wiki/Xenocrates" title="Xenocrates">Xenocrates</a></li> <li><a href="/wiki/Zeno_of_Elea" title="Zeno of Elea">Zeno of Elea</a></li> <li><a href="/wiki/Zeno_of_Sidon" title="Zeno of Sidon">Zeno of Sidon</a></li> <li><a href="/wiki/Zenodorus_(mathematician)" title="Zenodorus (mathematician)">Zenodorus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Treatises</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/Almagest" title="Almagest">Almagest</a></i></li> <li><a href="/wiki/Archimedes_Palimpsest" title="Archimedes Palimpsest">Archimedes Palimpsest</a></li> <li><i><a class="mw-selflink selflink">Arithmetica</a></i></li> <li><a href="/wiki/Apollonius_of_Perga#Conics" title="Apollonius of Perga"><i>Conics</i> <span style="font-size:85%;">(Apollonius)</span></a></li> <li><i><a href="/wiki/Catoptrics" title="Catoptrics">Catoptrics</a></i></li> <li><a href="/wiki/Data_(Euclid)" class="mw-redirect" title="Data (Euclid)"><i>Data</i> <span style="font-size:85%;">(Euclid)</span></a></li> <li><a href="/wiki/Euclid%27s_Elements" title="Euclid&#39;s Elements"><i>Elements</i> <span style="font-size:85%;">(Euclid)</span></a></li> <li><i><a href="/wiki/Measurement_of_a_Circle" title="Measurement of a Circle">Measurement of a Circle</a></i></li> <li><i><a href="/wiki/On_Conoids_and_Spheroids" title="On Conoids and Spheroids">On Conoids and Spheroids</a></i></li> <li><a href="/wiki/On_the_Sizes_and_Distances_(Aristarchus)" title="On the Sizes and Distances (Aristarchus)"><i>On the Sizes and Distances</i> <span style="font-size:85%;">(Aristarchus)</span></a></li> <li><a href="/wiki/On_Sizes_and_Distances_(Hipparchus)" title="On Sizes and Distances (Hipparchus)"><i>On Sizes and Distances</i> <span style="font-size:85%;">(Hipparchus)</span></a></li> <li><a href="/wiki/Autolycus_of_Pitane" title="Autolycus of Pitane"><i>On the Moving Sphere</i> <span style="font-size:85%;">(Autolycus)</span></a></li> <li><a href="/wiki/Euclid%27s_Optics" title="Euclid&#39;s Optics"><i>Optics</i> <span style="font-size:85%;">(Euclid)</span></a></li> <li><i><a href="/wiki/On_Spirals" title="On Spirals">On Spirals</a></i></li> <li><i><a href="/wiki/On_the_Sphere_and_Cylinder" title="On the Sphere and Cylinder">On the Sphere and Cylinder</a></i></li> <li><i><a href="/wiki/Ostomachion" title="Ostomachion">Ostomachion</a></i></li> <li><i><a href="/wiki/Planisphaerium" title="Planisphaerium">Planisphaerium</a></i></li> <li><a href="/wiki/Theodosius%27_Spherics" title="Theodosius&#39; Spherics"><i>Spherics</i> <span style="font-size:85%;">(Theodosius)</span></a></li> <li><a href="/wiki/Menelaus_of_Alexandria" title="Menelaus of Alexandria"><i>Spherics</i> <span style="font-size:85%;">(Menelaus)</span></a></li> <li><i><a href="/wiki/The_Quadrature_of_the_Parabola" class="mw-redirect" title="The Quadrature of the Parabola">The Quadrature of the Parabola</a></i></li> <li><i><a href="/wiki/The_Sand_Reckoner" title="The Sand Reckoner">The Sand Reckoner</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Problems</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Constructible_number" title="Constructible number">Constructible numbers</a> <ul><li><a href="/wiki/Angle_trisection" title="Angle trisection">Angle trisection</a></li> <li><a href="/wiki/Doubling_the_cube" title="Doubling the cube">Doubling the cube</a></li> <li><a href="/wiki/Squaring_the_circle" title="Squaring the circle">Squaring the circle</a></li></ul></li> <li><a href="/wiki/Problem_of_Apollonius" title="Problem of Apollonius">Problem of Apollonius</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Concepts<br />and definitions</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Angle" title="Angle">Angle</a> <ul><li><a href="/wiki/Central_angle" title="Central angle">Central</a></li> <li><a href="/wiki/Inscribed_angle" title="Inscribed angle">Inscribed</a></li></ul></li> <li><a href="/wiki/Axiomatic_system" title="Axiomatic system">Axiomatic system</a> <ul><li><a href="/wiki/Axiom" title="Axiom">Axiom</a></li></ul></li> <li><a href="/wiki/Chord_(geometry)" title="Chord (geometry)">Chord</a></li> <li><a href="/wiki/Circles_of_Apollonius" title="Circles of Apollonius">Circles of Apollonius</a> <ul><li><a href="/wiki/Apollonian_circles" title="Apollonian circles">Apollonian circles</a></li> <li><a href="/wiki/Apollonian_gasket" title="Apollonian gasket">Apollonian gasket</a></li></ul></li> <li><a href="/wiki/Circumscribed_circle" title="Circumscribed circle">Circumscribed circle</a></li> <li><a href="/wiki/Commensurability_(mathematics)" title="Commensurability (mathematics)">Commensurability</a></li> <li><a href="/wiki/Diophantine_equation" title="Diophantine equation">Diophantine equation</a></li> <li><a href="https://en.wikiquote.org/wiki/Doctrine_of_proportion_(mathematics)" class="extiw" title="wikiquote:Doctrine of proportion (mathematics)">Doctrine of proportionality</a></li> <li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a></li> <li><a href="/wiki/Golden_ratio" title="Golden ratio">Golden ratio</a></li> <li><a href="/wiki/Greek_numerals" title="Greek numerals">Greek numerals</a></li> <li><a href="/wiki/Incircle_and_excircles_of_a_triangle" class="mw-redirect" title="Incircle and excircles of a triangle">Incircle and excircles of a triangle</a></li> <li><a href="/wiki/Method_of_exhaustion" title="Method of exhaustion">Method of exhaustion</a></li> <li><a href="/wiki/Parallel_postulate" title="Parallel postulate">Parallel postulate</a></li> <li><a href="/wiki/Platonic_solid" title="Platonic solid">Platonic solid</a></li> <li><a href="/wiki/Lune_of_Hippocrates" title="Lune of Hippocrates">Lune of Hippocrates</a></li> <li><a href="/wiki/Quadratrix_of_Hippias" title="Quadratrix of Hippias">Quadratrix of Hippias</a></li> <li><a href="/wiki/Regular_polygon" title="Regular polygon">Regular polygon</a></li> <li><a href="/wiki/Straightedge_and_compass_construction" title="Straightedge and compass construction">Straightedge and compass construction</a></li> <li><a href="/wiki/Triangle_center" title="Triangle center">Triangle center</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Results</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">In <a href="/wiki/Euclid%27s_elements" class="mw-redirect" title="Euclid&#39;s elements"><i>Elements</i></a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Angle_bisector_theorem" title="Angle bisector theorem">Angle bisector theorem</a></li> <li><a href="/wiki/Exterior_angle_theorem" title="Exterior angle theorem">Exterior angle theorem</a></li> <li><a href="/wiki/Euclidean_algorithm" title="Euclidean algorithm">Euclidean algorithm</a></li> <li><a href="/wiki/Euclid%27s_theorem" title="Euclid&#39;s theorem">Euclid's theorem</a></li> <li><a href="/wiki/Geometric_mean_theorem" title="Geometric mean theorem">Geometric mean theorem</a></li> <li><a href="/wiki/Greek_geometric_algebra" class="mw-redirect" title="Greek geometric algebra">Greek geometric algebra</a></li> <li><a href="/wiki/Hinge_theorem" title="Hinge theorem">Hinge theorem</a></li> <li><a href="/wiki/Inscribed_angle_theorem" class="mw-redirect" title="Inscribed angle theorem">Inscribed angle theorem</a></li> <li><a href="/wiki/Intercept_theorem" title="Intercept theorem">Intercept theorem</a></li> <li><a href="/wiki/Intersecting_chords_theorem" title="Intersecting chords theorem">Intersecting chords theorem</a></li> <li><a href="/wiki/Intersecting_secants_theorem" title="Intersecting secants theorem">Intersecting secants theorem</a></li> <li><a href="/wiki/Law_of_cosines" title="Law of cosines">Law of cosines</a></li> <li><a href="/wiki/Pons_asinorum" title="Pons asinorum">Pons asinorum</a></li> <li><a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a></li> <li><a href="/wiki/Tangent-secant_theorem" class="mw-redirect" title="Tangent-secant theorem">Tangent-secant theorem</a></li> <li><a href="/wiki/Thales%27s_theorem" title="Thales&#39;s theorem">Thales's theorem</a></li> <li><a href="/wiki/Theorem_of_the_gnomon" title="Theorem of the gnomon">Theorem of the gnomon</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Apollonius_of_Tyana" title="Apollonius of Tyana">Apollonius</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Apollonius%27s_theorem" title="Apollonius&#39;s theorem">Apollonius's theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aristarchus%27s_inequality" title="Aristarchus&#39;s inequality">Aristarchus's inequality</a></li> <li><a href="/wiki/Crossbar_theorem" title="Crossbar theorem">Crossbar theorem</a></li> <li><a href="/wiki/Heron%27s_formula" title="Heron&#39;s formula">Heron's formula</a></li> <li><a href="/wiki/Irrational_number" title="Irrational number">Irrational numbers</a></li> <li><a href="/wiki/Law_of_sines" title="Law of sines">Law of sines</a></li> <li><a href="/wiki/Menelaus%27s_theorem" title="Menelaus&#39;s theorem">Menelaus's theorem</a></li> <li><a href="/wiki/Pappus%27s_area_theorem" title="Pappus&#39;s area theorem">Pappus's area theorem</a></li> <li><a href="/wiki/Diophantus_II.VIII" title="Diophantus II.VIII">Problem II.8 of <i>Arithmetica</i></a></li> <li><a href="/wiki/Ptolemy%27s_inequality" title="Ptolemy&#39;s inequality">Ptolemy's inequality</a></li> <li><a href="/wiki/Ptolemy%27s_table_of_chords" title="Ptolemy&#39;s table of chords">Ptolemy's table of chords</a></li> <li><a href="/wiki/Ptolemy%27s_theorem" title="Ptolemy&#39;s theorem">Ptolemy's theorem</a></li> <li><a href="/wiki/Spiral_of_Theodorus" title="Spiral of Theodorus">Spiral of Theodorus</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Centers</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cyrene,_Libya" title="Cyrene, Libya">Cyrene</a></li> <li><a href="/wiki/Musaeum" class="mw-redirect" title="Musaeum">Mouseion of Alexandria</a></li> <li><a href="/wiki/Platonic_Academy" title="Platonic Academy">Platonic Academy</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ancient_Greek_astronomy" title="Ancient Greek astronomy">Ancient Greek astronomy</a></li> <li><a href="/wiki/Attic_numerals" title="Attic numerals">Attic numerals</a></li> <li><a href="/wiki/Greek_numerals" title="Greek numerals">Greek numerals</a></li> <li><a href="/wiki/Latin_translations_of_the_12th_century" title="Latin translations of the 12th century">Latin translations of the 12th century</a></li> <li><a href="/wiki/Non-Euclidean_geometry" title="Non-Euclidean geometry">Non-Euclidean geometry</a></li> <li><a href="/wiki/Philosophy_of_mathematics" title="Philosophy of mathematics">Philosophy of mathematics</a></li> <li><a href="/wiki/Neusis_construction" title="Neusis construction">Neusis construction</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">History of</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/A_History_of_Greek_Mathematics" title="A History of Greek Mathematics">A History of Greek Mathematics</a></i> <ul><li>by <a href="/wiki/Thomas_Heath_(classicist)" title="Thomas Heath (classicist)">Thomas Heath</a></li></ul></li> <li><a href="/wiki/History_of_algebra" title="History of algebra">algebra</a> <ul><li><a href="/wiki/Timeline_of_algebra" title="Timeline of algebra">timeline</a></li></ul></li> <li><a href="/wiki/History_of_arithmetic" class="mw-redirect" title="History of arithmetic">arithmetic</a> <ul><li><a href="/wiki/Timeline_of_numerals_and_arithmetic" title="Timeline of numerals and arithmetic">timeline</a></li></ul></li> <li><a href="/wiki/History_of_calculus" title="History of calculus">calculus</a> <ul><li><a href="/wiki/Timeline_of_calculus_and_mathematical_analysis" title="Timeline of calculus and mathematical analysis">timeline</a></li></ul></li> <li><a href="/wiki/History_of_geometry" title="History of geometry">geometry</a> <ul><li><a href="/wiki/Timeline_of_geometry" title="Timeline of geometry">timeline</a></li></ul></li> <li><a href="/wiki/History_of_logic" title="History of logic">logic</a> <ul><li><a href="/wiki/Timeline_of_mathematical_logic" title="Timeline of mathematical logic">timeline</a></li></ul></li> <li><a href="/wiki/History_of_mathematics" title="History of mathematics">mathematics</a> <ul><li><a href="/wiki/Timeline_of_mathematics" title="Timeline of mathematics">timeline</a></li></ul></li> <li><a href="/wiki/History_of_numbers" class="mw-redirect" title="History of numbers">numbers</a> <ul><li><a href="/wiki/Prehistoric_counting" class="mw-redirect" title="Prehistoric counting">prehistoric counting</a></li></ul></li> <li><a href="/wiki/History_of_ancient_numeral_systems" title="History of ancient numeral systems">numeral systems</a> <ul><li><a href="/wiki/List_of_numeral_systems" title="List of numeral systems">list</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other cultures</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematics_in_the_medieval_Islamic_world" title="Mathematics in the medieval Islamic world">Arabian/Islamic</a></li> <li><a href="/wiki/Babylonian_mathematics" title="Babylonian mathematics">Babylonian</a></li> <li><a href="/wiki/Chinese_mathematics" title="Chinese mathematics">Chinese</a></li> <li><a href="/wiki/Ancient_Egyptian_mathematics" title="Ancient Egyptian mathematics">Egyptian</a></li> <li><a href="/wiki/Mathematics_of_the_Incas" title="Mathematics of the Incas">Incan</a></li> <li><a href="/wiki/Indian_mathematics" title="Indian mathematics">Indian</a></li> <li><a href="/wiki/Japanese_mathematics" title="Japanese mathematics">Japanese</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Parthenon_from_west.jpg/16px-Parthenon_from_west.jpg" decoding="async" width="16" height="12" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Parthenon_from_west.jpg/24px-Parthenon_from_west.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Parthenon_from_west.jpg/32px-Parthenon_from_west.jpg 2x" data-file-width="2048" data-file-height="1536" /></span></span> </span><a href="/wiki/Portal:Ancient_Greece" title="Portal:Ancient Greece">Ancient Greece&#32;portal</a></b>&#160;&#8226;&#32; <b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics&#32;portal</a></b></div></td></tr></tbody></table></div> <p class="mw-empty-elt"> </p> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐7f7b9dd5f8‐c986w Cached time: 20250219161058 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.209 seconds Real time usage: 1.461 seconds Preprocessor visited node count: 2543/1000000 Post‐expand include size: 82340/2097152 bytes Template argument size: 1597/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 6/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 73321/5000000 bytes Lua time usage: 0.603/10.000 seconds Lua memory usage: 23103228/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1192.938 1 -total 36.51% 435.532 1 Template:Reflist 11.84% 141.199 1 Template:Short_description 11.83% 141.134 3 Template:Cite_web 10.63% 126.797 1 Template:Langx 10.58% 126.219 1 Template:Greek_mathematics 10.16% 121.183 1 Template:Infobox_book 9.79% 116.814 1 Template:Navbox 8.09% 96.512 1 Template:More_citations_needed 7.94% 94.777 2 Template:Pagetype --> <!-- Saved in parser cache with key enwiki:pcache:1777555:|#|:idhash:canonical and timestamp 20250219161058 and revision id 1260059821. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Arithmetica&amp;oldid=1260059821">https://en.wikipedia.org/w/index.php?title=Arithmetica&amp;oldid=1260059821</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:3rd-century_books" title="Category:3rd-century books">3rd-century books</a></li><li><a href="/wiki/Category:Ancient_Greek_mathematical_works" title="Category:Ancient Greek mathematical works">Ancient Greek mathematical works</a></li><li><a href="/wiki/Category:History_of_algebra" title="Category:History of algebra">History of algebra</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_July_2010" title="Category:Articles needing additional references from July 2010">Articles needing additional references from July 2010</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Articles_containing_Ancient_Greek_(to_1453)-language_text" title="Category:Articles containing Ancient Greek (to 1453)-language text">Articles containing Ancient Greek (to 1453)-language text</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_April_2017" title="Category:Use dmy dates from April 2017">Use dmy dates from April 2017</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 28 November 2024, at 16:42<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Arithmetica&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><i>Arithmetica</i></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>15 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.canary-7cf7cb559d-q8759","wgBackendResponseTime":141,"wgPageParseReport":{"limitreport":{"cputime":"1.209","walltime":"1.461","ppvisitednodes":{"value":2543,"limit":1000000},"postexpandincludesize":{"value":82340,"limit":2097152},"templateargumentsize":{"value":1597,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":6,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":73321,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1192.938 1 -total"," 36.51% 435.532 1 Template:Reflist"," 11.84% 141.199 1 Template:Short_description"," 11.83% 141.134 3 Template:Cite_web"," 10.63% 126.797 1 Template:Langx"," 10.58% 126.219 1 Template:Greek_mathematics"," 10.16% 121.183 1 Template:Infobox_book"," 9.79% 116.814 1 Template:Navbox"," 8.09% 96.512 1 Template:More_citations_needed"," 7.94% 94.777 2 Template:Pagetype"]},"scribunto":{"limitreport-timeusage":{"value":"0.603","limit":"10.000"},"limitreport-memusage":{"value":23103228,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBoyer1991\"] = 1,\n [\"CITEREFChristianidisOaks2023\"] = 1,\n [\"CITEREFCooke1997\"] = 1,\n [\"CITEREFDerbyshire2006\"] = 1,\n [\"CITEREFHeath2009\"] = 1,\n [\"CITEREFHogendijk1985\"] = 1,\n [\"CITEREFKatzParshall2014\"] = 1,\n [\"CITEREFMagill1998\"] = 1,\n [\"CITEREFOaksChristianidis\"] = 1,\n [\"CITEREFOaksChristianidis2013\"] = 2,\n [\"CITEREFOaksChristianidis2021\"] = 1,\n [\"CITEREFOaksChristianidis2023\"] = 2,\n [\"CITEREFSchappacher2005\"] = 1,\n [\"CITEREFSesiano2011\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Circa\"] = 1,\n [\"Cite book\"] = 12,\n [\"Cite journal\"] = 2,\n [\"Cite web\"] = 3,\n [\"Doi\"] = 1,\n [\"Em\"] = 2,\n [\"Greek mathematics\"] = 1,\n [\"Harv\"] = 8,\n [\"Infobox book\"] = 1,\n [\"Lang\"] = 6,\n [\"Langx\"] = 1,\n [\"Main\"] = 1,\n [\"More citations needed\"] = 1,\n [\"Prime\"] = 1,\n [\"Reflist\"] = 1,\n [\"Short description\"] = 1,\n [\"Use dmy dates\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-7f7b9dd5f8-c986w","timestamp":"20250219161058","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Arithmetica","url":"https:\/\/en.wikipedia.org\/wiki\/Arithmetica","sameAs":"http:\/\/www.wikidata.org\/entity\/Q668560","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q668560","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-04-22T00:20:49Z","dateModified":"2024-11-28T16:42:00Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/3\/3b\/Diophantus-cover.png","headline":"ancient Greek text on mathematics"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10