CINXE.COM

Search results for: person recognition

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: person recognition</title> <meta name="description" content="Search results for: person recognition"> <meta name="keywords" content="person recognition"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="person recognition" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="person recognition"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3028</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: person recognition</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3028</span> Recognizing an Individual, Their Topic of Conversation and Cultural Background from 3D Body Movement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gheida%20J.%20Shahrour">Gheida J. Shahrour</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20J.%20Russell"> Martin J. Russell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that inter-subject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=person%20recognition" title="person recognition">person recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20recognition" title=" topic recognition"> topic recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=culture%20recognition" title=" culture recognition"> culture recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20body%20movement%20signals" title=" 3D body movement signals"> 3D body movement signals</a>, <a href="https://publications.waset.org/abstracts/search?q=variability%20compensation" title=" variability compensation"> variability compensation</a> </p> <a href="https://publications.waset.org/abstracts/19473/recognizing-an-individual-their-topic-of-conversation-and-cultural-background-from-3d-body-movement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3027</span> Face Tracking and Recognition Using Deep Learning Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Degale%20Desta">Degale Desta</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Jian"> Cheng Jian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/abstracts/search?q=fast-RCNN" title=" fast-RCNN"> fast-RCNN</a> </p> <a href="https://publications.waset.org/abstracts/163134/face-tracking-and-recognition-using-deep-learning-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3026</span> Real Time Multi Person Action Recognition Using Pose Estimates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aishrith%20Rao">Aishrith Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human activity recognition is an important aspect of video analytics, and many approaches have been recommended to enable action recognition. In this approach, the model is used to identify the action of the multiple people in the frame and classify them accordingly. A few approaches use RNNs and 3D CNNs, which are computationally expensive and cannot be trained with the small datasets which are currently available. Multi-person action recognition has been performed in order to understand the positions and action of people present in the video frame. The size of the video frame can be adjusted as a hyper-parameter depending on the hardware resources available. OpenPose has been used to calculate pose estimate using CNN to produce heap-maps, one of which provides skeleton features, which are basically joint features. The features are then extracted, and a classification algorithm can be applied to classify the action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20activity%20recognition" title="human activity recognition">human activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=pose%20estimates" title=" pose estimates"> pose estimates</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a> </p> <a href="https://publications.waset.org/abstracts/127872/real-time-multi-person-action-recognition-using-pose-estimates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3025</span> Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajpal%20Kaur">Rajpal Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Choudhary"> Pooja Choudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offline%20signature%20verification" title="offline signature verification">offline signature verification</a>, <a href="https://publications.waset.org/abstracts/search?q=offline%20signature%20recognition" title=" offline signature recognition"> offline signature recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=signatures" title=" signatures"> signatures</a>, <a href="https://publications.waset.org/abstracts/search?q=SURF%20features" title=" SURF features"> SURF features</a>, <a href="https://publications.waset.org/abstracts/search?q=HMM" title=" HMM "> HMM </a> </p> <a href="https://publications.waset.org/abstracts/20259/offline-signature-verification-in-punjabi-based-on-surf-features-and-critical-point-matching-using-hmm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3024</span> A Contribution to Human Activities Recognition Using Expert System Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malika%20Yaici">Malika Yaici</a>, <a href="https://publications.waset.org/abstracts/search?q=Soraya%20Aloui"> Soraya Aloui</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Semchaoui"> Sara Semchaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with human activity recognition from sensor data. It is an active research area, and the main objective is to obtain a high recognition rate. In this work, a recognition system based on expert systems is proposed; the recognition is performed using the objects, object states, and gestures and taking into account the context (the location of the objects and of the person performing the activity, the duration of the elementary actions and the activity). The system recognizes complex activities after decomposing them into simple, easy-to-recognize activities. The proposed method can be applied to any type of activity. The simulation results show the robustness of our system and its speed of decision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20activity%20recognition" title="human activity recognition">human activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title=" ubiquitous computing"> ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=context-awareness" title=" context-awareness"> context-awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a> </p> <a href="https://publications.waset.org/abstracts/171721/a-contribution-to-human-activities-recognition-using-expert-system-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3023</span> Human Activities Recognition Based on Expert System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malika%20Yaici">Malika Yaici</a>, <a href="https://publications.waset.org/abstracts/search?q=Soraya%20Aloui"> Soraya Aloui</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Semchaoui"> Sara Semchaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recognition of human activities from sensor data is an active research area, and the main objective is to obtain a high recognition rate. In this work, we propose a recognition system based on expert systems. The proposed system makes the recognition based on the objects, object states, and gestures, taking into account the context (the location of the objects and of the person performing the activity, the duration of the elementary actions, and the activity). This work focuses on complex activities which are decomposed into simple easy to recognize activities. The proposed method can be applied to any type of activity. The simulation results show the robustness of our system and its speed of decision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20activity%20recognition" title="human activity recognition">human activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title=" ubiquitous computing"> ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=context-awareness" title=" context-awareness"> context-awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a> </p> <a href="https://publications.waset.org/abstracts/151943/human-activities-recognition-based-on-expert-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3022</span> Biometric Recognition Techniques: A Survey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shabir%20Ahmad%20Sofi">Shabir Ahmad Sofi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Aggarwal"> Shubham Aggarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanyam%20Singhal"> Sanyam Singhal</a>, <a href="https://publications.waset.org/abstracts/search?q=Roohie%20Naaz"> Roohie Naaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biometric recognition refers to an automatic recognition of individuals based on a feature vector(s) derived from their physiological and/or behavioral characteristic. Biometric recognition systems should provide a reliable personal recognition schemes to either confirm or determine the identity of an individual. These features are used to provide an authentication for computer based security systems. Applications of such a system include computer systems security, secure electronic banking, mobile phones, credit cards, secure access to buildings, health and social services. By using biometrics a person could be identified based on 'who she/he is' rather than 'what she/he has' (card, token, key) or 'what she/he knows' (password, PIN). In this paper, a brief overview of biometric methods, both unimodal and multimodal and their advantages and disadvantages, will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biometric" title="biometric">biometric</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint" title=" fingerprint"> fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=ear" title=" ear"> ear</a>, <a href="https://publications.waset.org/abstracts/search?q=face" title=" face"> face</a>, <a href="https://publications.waset.org/abstracts/search?q=retina%20scan" title=" retina scan"> retina scan</a>, <a href="https://publications.waset.org/abstracts/search?q=gait" title=" gait"> gait</a>, <a href="https://publications.waset.org/abstracts/search?q=iris" title=" iris"> iris</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20recognition" title=" voice recognition"> voice recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=unimodal%20biometric" title=" unimodal biometric"> unimodal biometric</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20biometric" title=" multimodal biometric"> multimodal biometric</a> </p> <a href="https://publications.waset.org/abstracts/15520/biometric-recognition-techniques-a-survey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">756</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3021</span> To Study the New Invocation of Biometric Authentication Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aparna%20Gulhane">Aparna Gulhane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biometrics is the science and technology of measuring and analyzing biological data form the basis of research in biological measuring techniques for the purpose of people identification and recognition. In information technology, biometrics refers to technologies that measure and analyze human body characteristics, such as DNA, fingerprints, eye retinas and irises, voice patterns, facial patterns and hand measurements. Biometric systems are used to authenticate the person's identity. The idea is to use the special characteristics of a person to identify him. These papers present a biometric authentication techniques and actual deployment of potential by overall invocation of biometrics recognition, with an independent testing of various biometric authentication products and technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=types%20of%20biometrics" title="types of biometrics">types of biometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=importance%20of%20biometric" title=" importance of biometric"> importance of biometric</a>, <a href="https://publications.waset.org/abstracts/search?q=review%20for%20biometrics%20and%20getting%20a%20new%20implementation" title=" review for biometrics and getting a new implementation"> review for biometrics and getting a new implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=biometric%20authentication%20technique" title=" biometric authentication technique"> biometric authentication technique</a> </p> <a href="https://publications.waset.org/abstracts/23939/to-study-the-new-invocation-of-biometric-authentication-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3020</span> Gender Recognition with Deep Belief Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoqi%20Jia">Xiaoqi Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing%20Zhu"> Qing Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Zhang"> Hao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Yang"> Su Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gender%20recognition" title="gender recognition">gender recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=beep%20belief%20net-works" title=" beep belief net-works"> beep belief net-works</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-supervised%20learning" title=" semi-supervised learning"> semi-supervised learning</a>, <a href="https://publications.waset.org/abstracts/search?q=greedy-layer%20wise%20RBMs" title=" greedy-layer wise RBMs"> greedy-layer wise RBMs</a> </p> <a href="https://publications.waset.org/abstracts/56147/gender-recognition-with-deep-belief-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3019</span> Gait Biometric for Person Re-Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lavanya%20Srinivasan">Lavanya Srinivasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biometric identification is to identify unique features in a person like fingerprints, iris, ear, and voice recognition that need the subject's permission and physical contact. Gait biometric is used to identify the unique gait of the person by extracting moving features. The main advantage of gait biometric to identify the gait of a person at a distance, without any physical contact. In this work, the gait biometric is used for person re-identification. The person walking naturally compared with the same person walking with bag, coat, and case recorded using longwave infrared, short wave infrared, medium wave infrared, and visible cameras. The videos are recorded in rural and in urban environments. The pre-processing technique includes human identified using YOLO, background subtraction, silhouettes extraction, and synthesis Gait Entropy Image by averaging the silhouettes. The moving features are extracted from the Gait Entropy Energy Image. The extracted features are dimensionality reduced by the principal component analysis and recognised using different classifiers. The comparative results with the different classifier show that linear discriminant analysis outperforms other classifiers with 95.8% for visible in the rural dataset and 94.8% for longwave infrared in the urban dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biometric" title="biometric">biometric</a>, <a href="https://publications.waset.org/abstracts/search?q=gait" title=" gait"> gait</a>, <a href="https://publications.waset.org/abstracts/search?q=silhouettes" title=" silhouettes"> silhouettes</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLO" title=" YOLO"> YOLO</a> </p> <a href="https://publications.waset.org/abstracts/136879/gait-biometric-for-person-re-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3018</span> Handwriting Recognition of Gurmukhi Script: A Survey of Online and Offline Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravneet%20Kaur">Ravneet Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Character recognition is a very interesting area of pattern recognition. From past few decades, an intensive research on character recognition for Roman, Chinese, and Japanese and Indian scripts have been reported. In this paper, a review of Handwritten Character Recognition work on Indian Script Gurmukhi is being highlighted. Most of the published papers were summarized, various methodologies were analysed and their results are reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurmukhi%20character%20recognition" title="Gurmukhi character recognition">Gurmukhi character recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=online" title=" online"> online</a>, <a href="https://publications.waset.org/abstracts/search?q=offline" title=" offline"> offline</a>, <a href="https://publications.waset.org/abstracts/search?q=HCR%20survey" title=" HCR survey"> HCR survey</a> </p> <a href="https://publications.waset.org/abstracts/46337/handwriting-recognition-of-gurmukhi-script-a-survey-of-online-and-offline-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3017</span> OCR/ICR Text Recognition Using ABBYY FineReader as an Example Text</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Bagirzade">A. R. Bagirzade</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sh.%20Najafova"> A. Sh. Najafova</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Yessirkepova"> S. M. Yessirkepova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20S.%20Albert"> E. S. Albert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article describes a text recognition method based on Optical Character Recognition (OCR). The features of the OCR method were examined using the ABBYY FineReader program. It describes automatic text recognition in images. OCR is necessary because optical input devices can only transmit raster graphics as a result. Text recognition describes the task of recognizing letters shown as such, to identify and assign them an assigned numerical value in accordance with the usual text encoding (ASCII, Unicode). The peculiarity of this study conducted by the authors using the example of the ABBYY FineReader, was confirmed and shown in practice, the improvement of digital text recognition platforms developed by Electronic Publication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABBYY%20FineReader%20system" title="ABBYY FineReader system">ABBYY FineReader system</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm%20symbol%20recognition" title=" algorithm symbol recognition"> algorithm symbol recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=OCR%2FICR%20techniques" title=" OCR/ICR techniques"> OCR/ICR techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=recognition%20technologies" title=" recognition technologies"> recognition technologies</a> </p> <a href="https://publications.waset.org/abstracts/130255/ocricr-text-recognition-using-abbyy-finereader-as-an-example-text" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3016</span> Development of a Sequential Multimodal Biometric System for Web-Based Physical Access Control into a Security Safe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babatunde%20Olumide%20Olawale">Babatunde Olumide Olawale</a>, <a href="https://publications.waset.org/abstracts/search?q=Oyebode%20Olumide%20Oyediran"> Oyebode Olumide Oyediran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The security safe is a place or building where classified document and precious items are kept. To prevent unauthorised persons from gaining access to this safe a lot of technologies had been used. But frequent reports of an unauthorised person gaining access into security safes with the aim of removing document and items from the safes are pointers to the fact that there is still security gap in the recent technologies used as access control for the security safe. In this paper we try to solve this problem by developing a multimodal biometric system for physical access control into a security safe using face and voice recognition. The safe is accessed by the combination of face and speech pattern recognition and also in that sequential order. User authentication is achieved through the use of camera/sensor unit and a microphone unit both attached to the door of the safe. The user face was captured by the camera/sensor while the speech was captured by the use of the microphone unit. The Scale Invariance Feature Transform (SIFT) algorithm was used to train images to form templates for the face recognition system while the Mel-Frequency Cepitral Coefficients (MFCC) algorithm was used to train the speech recognition system to recognise authorise user’s speech. Both algorithms were hosted in two separate web based servers and for automatic analysis of our work; our developed system was simulated in a MATLAB environment. The results obtained shows that the developed system was able to give access to authorise users while declining unauthorised person access to the security safe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=access%20control" title="access control">access control</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20biometrics" title=" multimodal biometrics"> multimodal biometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20safe" title=" security safe"> security safe</a> </p> <a href="https://publications.waset.org/abstracts/73150/development-of-a-sequential-multimodal-biometric-system-for-web-based-physical-access-control-into-a-security-safe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3015</span> An Improved OCR Algorithm on Appearance Recognition of Electronic Components Based on Self-adaptation of Multifont Template</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhu-Qing%20Jia">Zhu-Qing Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Lin"> Tao Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Zhou"> Tong Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recognition method of Optical Character Recognition has been expensively utilized, while it is rare to be employed specifically in recognition of electronic components. This paper suggests a high-effective algorithm on appearance identification of integrated circuit components based on the existing methods of character recognition, and analyze the pros and cons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20character%20recognition" title="optical character recognition">optical character recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20page%20identification" title=" fuzzy page identification"> fuzzy page identification</a>, <a href="https://publications.waset.org/abstracts/search?q=mutual%20correlation%20matrix" title=" mutual correlation matrix"> mutual correlation matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=confidence%20self-adaptation" title=" confidence self-adaptation"> confidence self-adaptation</a> </p> <a href="https://publications.waset.org/abstracts/14322/an-improved-ocr-algorithm-on-appearance-recognition-of-electronic-components-based-on-self-adaptation-of-multifont-template" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3014</span> Career Anchors and Job Satisfaction of Managers: The Mediating Role of Person-job Fit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azadeh%20Askari">Azadeh Askari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Nasery%20Mohamad%20Abadi"> Ali Nasery Mohamad Abadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was conducted to investigate the relationship between career anchors and job satisfaction with emphasis on the mediating role of person-job fit. 502 managers and supervisors of ten operational areas of a large energy Company were selected as a cluster sample appropriate to the volume. The instruments used in this study were Career Anchor Questionnaire, Job Satisfaction Questionnaire and Person-job fit Questionnaire. Pearson correlation coefficient was used to analyze the data and AMOS software was used to determine the effect of career anchor variables and person-job fit on job satisfaction. Anchors of service and dedication, pure challenge and security and stability increase the person-job fit among managers and also the person-job fit plays a mediating role in relation to the effect it has on job satisfaction through these anchors. In contrast, the anchors of independence and autonomy reduce the person-job fit. Considering the importance of positive organizational attitudes and in order to have an optimal fit between job and worker, it is better that in human resources processes such as hiring and employing, the career anchors of the person should be considered so that the person can have more job satisfaction; and thus bring higher productivity for themselves and the organization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=career%20anchor" title="career anchor">career anchor</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20satisfaction" title=" job satisfaction"> job satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=person-job%20fit" title=" person-job fit"> person-job fit</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20company" title=" energy company"> energy company</a>, <a href="https://publications.waset.org/abstracts/search?q=managers" title=" managers"> managers</a> </p> <a href="https://publications.waset.org/abstracts/145999/career-anchors-and-job-satisfaction-of-managers-the-mediating-role-of-person-job-fit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3013</span> Proposed Solutions Based on Affective Computing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20Adrian%20Cardenas%20Jorge">Diego Adrian Cardenas Jorge</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerardo%20Mirando%20Guisado"> Gerardo Mirando Guisado</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20Barrientos%20Padilla"> Alfredo Barrientos Padilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A system based on Affective Computing can detect and interpret human information like voice, facial expressions and body movement to detect emotions and execute a corresponding response. This data is important due to the fact that a person can communicate more effectively with emotions than can be possible with words. This information can be processed through technological components like Facial Recognition, Gait Recognition or Gesture Recognition. As of now, solutions proposed using this technology only consider one component at a given moment. This research investigation proposes two solutions based on Affective Computing taking into account more than one component for emotion detection. The proposals reflect the levels of dependency between hardware devices and software, as well as the interaction process between the system and the user which implies the development of scenarios where both proposals will be put to the test in a live environment. Both solutions are to be developed in code by software engineers to prove the feasibility. To validate the impact on society and business interest, interviews with stakeholders are conducted with an investment mind set where each solution is labeled on a scale of 1 through 5, being one a minimum possible investment and 5 the maximum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=affective%20computing" title="affective computing">affective computing</a>, <a href="https://publications.waset.org/abstracts/search?q=emotions" title=" emotions"> emotions</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion%20detection" title=" emotion detection"> emotion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=gait%20recognition" title=" gait recognition"> gait recognition</a> </p> <a href="https://publications.waset.org/abstracts/43577/proposed-solutions-based-on-affective-computing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3012</span> Facial Recognition on the Basis of Facial Fragments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tetyana%20Baydyk">Tetyana Baydyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernst%20Kussul"> Ernst Kussul</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Bonilla%20Meza"> Sandra Bonilla Meza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild<em>) </em>face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title="face recognition">face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=labeled%20faces%20in%20the%20wild%20%28LFW%29%20database" title=" labeled faces in the wild (LFW) database"> labeled faces in the wild (LFW) database</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20local%20descriptor%20%28RLD%29" title=" random local descriptor (RLD)"> random local descriptor (RLD)</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20features" title=" random features"> random features</a> </p> <a href="https://publications.waset.org/abstracts/50117/facial-recognition-on-the-basis-of-facial-fragments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3011</span> Person-Environment Fit (PE Fit): Evidence from Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jucelia%20Appio">Jucelia Appio</a>, <a href="https://publications.waset.org/abstracts/search?q=Danielle%20Deimling%20De%20Carli"> Danielle Deimling De Carli</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Henrique%20Rocha%20Fernandes"> Bruno Henrique Rocha Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Nelson%20Natalino%20Frizon"> Nelson Natalino Frizon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to investigate if there are positive and significant correlations between the dimensions of Person-Environment Fit (Person-Job, Person-Organization, Person-Group and Person-Supervisor) at the &ldquo;Best Companies to Work for&rdquo; in Brazil in 2017. For that, a quantitative approach was used with a descriptive method being defined as a research sample the &quot;150 Best Companies to Work for&quot;, according to data base collected in 2017 and provided by Funda&ccedil;&atilde;o Instituto of Administra&ccedil;&atilde;o (FIA) of the University of S&atilde;o Paulo (USP). About the data analysis procedures, asymmetry and kurtosis, factorial analysis, Kaiser-Meyer-Olkin (KMO) tests, Bartlett sphericity and Cronbach&#39;s alpha were used for the 69 research variables, and as a statistical technique for the purpose of analyzing the hypothesis, Pearson&#39;s correlation analysis was performed. As a main result, we highlight that there was a positive and significant correlation between the dimensions of Person-Environment Fit, corroborating the H1 hypothesis that there is a positive and significant correlation between Person-Job Fit, Person-Organization Fit, Person-Group Fit and Person-Supervisor Fit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Human%20Resource%20Management%20%28HRM%29" title="Human Resource Management (HRM)">Human Resource Management (HRM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Person-Environment%20Fit%20%28PE%29" title=" Person-Environment Fit (PE)"> Person-Environment Fit (PE)</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20people%20management" title=" strategic people management"> strategic people management</a>, <a href="https://publications.waset.org/abstracts/search?q=best%20companies%20to%20work%20for" title=" best companies to work for"> best companies to work for</a> </p> <a href="https://publications.waset.org/abstracts/101954/person-environment-fit-pe-fit-evidence-from-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3010</span> Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruce%20X.%20B.%20Yu">Bruce X. B. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Liu"> Yan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Keith%20C.%20C.%20Chan"> Keith C. C. Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daily%20activity%20recognition" title="daily activity recognition">daily activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT%20sensors" title=" IoT sensors"> IoT sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20learning" title=" transfer learning"> transfer learning</a> </p> <a href="https://publications.waset.org/abstracts/126592/vision-based-daily-routine-recognition-for-healthcare-with-transfer-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3009</span> DBN-Based Face Recognition System Using Light Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%20Gu">Bing Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract—Most of Conventional facial recognition systems are based on image features, such as LBP, SIFT. Recently some DBN-based 2D facial recognition systems have been proposed. However, we find there are few DBN-based 3D facial recognition system and relative researches. 3D facial images include all the individual biometric information. We can use these information to build more accurate features, So we present our DBN-based face recognition system using Light Field. We can see Light Field as another presentation of 3D image, and Light Field Camera show us a way to receive a Light Field. We use the commercially available Light Field Camera to act as the collector of our face recognition system, and the system receive a state-of-art performance as convenient as conventional 2D face recognition system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DBN" title="DBN">DBN</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20field" title=" light field"> light field</a>, <a href="https://publications.waset.org/abstracts/search?q=Lytro" title=" Lytro"> Lytro</a> </p> <a href="https://publications.waset.org/abstracts/10821/dbn-based-face-recognition-system-using-light-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3008</span> Recognition of Gene Names from Gene Pathway Figures Using Siamese Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Azam">Muhammad Azam</a>, <a href="https://publications.waset.org/abstracts/search?q=Micheal%20Olaolu%20Arowolo"> Micheal Olaolu Arowolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20He"> Fei He</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihail%20Popescu"> Mihail Popescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Xu"> Dong Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than OCR results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20pathway" title="biological pathway">biological pathway</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20understanding" title=" image understanding"> image understanding</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20name%20recognition" title=" gene name recognition"> gene name recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Siamese%20network" title=" Siamese network"> Siamese network</a>, <a href="https://publications.waset.org/abstracts/search?q=VGG" title=" VGG"> VGG</a> </p> <a href="https://publications.waset.org/abstracts/160723/recognition-of-gene-names-from-gene-pathway-figures-using-siamese-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3007</span> Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Almadan">Ali Almadan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anoop%20Krishnan"> Anoop Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajita%20Rattani"> Ajita Rattani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title="face recognition">face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=body-worn%20cameras" title=" body-worn cameras"> body-worn cameras</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=person%20identification" title=" person identification"> person identification</a> </p> <a href="https://publications.waset.org/abstracts/127551/face-recognition-using-body-worn-camera-dataset-and-baseline-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3006</span> Conversational Assistive Technology of Visually Impaired Person for Social Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Komal%20Ghafoor">Komal Ghafoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Tauqir%20Ahmad"> Tauqir Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Murtaza%20Hanif"> Murtaza Hanif</a>, <a href="https://publications.waset.org/abstracts/search?q=Hira%20Zaheer"> Hira Zaheer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assistive technology has been developed to support visually impaired people in their social interactions. Conversation assistive technology is designed to enhance communication skills, facilitate social interaction, and improve the quality of life of visually impaired individuals. This technology includes speech recognition, text-to-speech features, and other communication devices that enable users to communicate with others in real time. The technology uses natural language processing and machine learning algorithms to analyze spoken language and provide appropriate responses. It also includes features such as voice commands and audio feedback to provide users with a more immersive experience. These technologies have been shown to increase the confidence and independence of visually impaired individuals in social situations and have the potential to improve their social skills and relationships with others. Overall, conversation-assistive technology is a promising tool for empowering visually impaired people and improving their social interactions. One of the key benefits of conversation-assistive technology is that it allows visually impaired individuals to overcome communication barriers that they may face in social situations. It can help them to communicate more effectively with friends, family, and colleagues, as well as strangers in public spaces. By providing a more seamless and natural way to communicate, this technology can help to reduce feelings of isolation and improve overall quality of life. The main objective of this research is to give blind users the capability to move around in unfamiliar environments through a user-friendly device by face, object, and activity recognition system. This model evaluates the accuracy of activity recognition. This device captures the front view of the blind, detects the objects, recognizes the activities, and answers the blind query. It is implemented using the front view of the camera. The local dataset is collected that includes different 1st-person human activities. The results obtained are the identification of the activities that the VGG-16 model was trained on, where Hugging, Shaking Hands, Talking, Walking, Waving video, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dataset" title="dataset">dataset</a>, <a href="https://publications.waset.org/abstracts/search?q=visually%20impaired%20person" title=" visually impaired person"> visually impaired person</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20process" title=" natural language process"> natural language process</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20activity%20recognition" title=" human activity recognition"> human activity recognition</a> </p> <a href="https://publications.waset.org/abstracts/175724/conversational-assistive-technology-of-visually-impaired-person-for-social-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3005</span> Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Kirandziska">Vesna Kirandziska</a>, <a href="https://publications.waset.org/abstracts/search?q=Nevena%20Ackovska"> Nevena Ackovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Madevska%20Bogdanova"> Ana Madevska Bogdanova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotion%20recognition" title="emotion recognition">emotion recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20recognition" title=" facial recognition"> facial recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/42384/comparing-emotion-recognition-from-voice-and-facial-data-using-time-invariant-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3004</span> Possibilities, Challenges and the State of the Art of Automatic Speech Recognition in Air Traffic Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van%20Nhan%20Nguyen">Van Nhan Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20Holone"> Harald Holone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past few years, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various areas of Air Traffic Control (ATC), such as air traffic control simulation and training, monitoring live operators for with the aim of safety improvements, air traffic controller workload measurement and conducting analysis on large quantities controller-pilot speech. Due to the high accuracy requirements of the ATC context and its unique challenges, automatic speech recognition has not been widely adopted in this field. With the aim of providing a good starting point for researchers who are interested bringing automatic speech recognition into ATC, this paper gives an overview of possibilities and challenges of applying automatic speech recognition in air traffic control. To provide this overview, we present an updated literature review of speech recognition technologies in general, as well as specific approaches relevant to the ATC context. Based on this literature review, criteria for selecting speech recognition approaches for the ATC domain are presented, and remaining challenges and possible solutions are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20speech%20recognition" title="automatic speech recognition">automatic speech recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=asr" title=" asr"> asr</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20traffic%20control" title=" air traffic control"> air traffic control</a>, <a href="https://publications.waset.org/abstracts/search?q=atc" title=" atc"> atc</a> </p> <a href="https://publications.waset.org/abstracts/31004/possibilities-challenges-and-the-state-of-the-art-of-automatic-speech-recognition-in-air-traffic-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3003</span> Switching to the Latin Alphabet in Kazakhstan: A Brief Overview of Character Recognition Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ainagul%20Yermekova">Ainagul Yermekova</a>, <a href="https://publications.waset.org/abstracts/search?q=Liudmila%20Goncharenko"> Liudmila Goncharenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Baghirzade"> Ali Baghirzade</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Sybachin"> Sergey Sybachin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we address the problem of Kazakhstan's transition to the Latin alphabet. The transition process started in 2017 and is scheduled to be completed in 2025. In connection with these events, the problem of recognizing the characters of the new alphabet is raised. Well-known character recognition programs such as ABBYY FineReader, FormReader, MyScript Stylus did not recognize specific Kazakh letters that were used in Cyrillic. The author tries to give an assessment of the well-known method of character recognition that could be in demand as part of the country's transition to the Latin alphabet. Three methods of character recognition: template, structured, and feature-based, are considered through the algorithms of operation. At the end of the article, a general conclusion is made about the possibility of applying a certain method to a particular recognition process: for example, in the process of population census, recognition of typographic text in Latin, or recognition of photos of car numbers, store signs, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=text%20detection" title="text detection">text detection</a>, <a href="https://publications.waset.org/abstracts/search?q=template%20method" title=" template method"> template method</a>, <a href="https://publications.waset.org/abstracts/search?q=recognition%20algorithm" title=" recognition algorithm"> recognition algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20method" title=" structured method"> structured method</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20method" title=" feature method"> feature method</a> </p> <a href="https://publications.waset.org/abstracts/138734/switching-to-the-latin-alphabet-in-kazakhstan-a-brief-overview-of-character-recognition-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3002</span> Person Re-Identification using Siamese Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sello%20Mokwena">Sello Mokwena</a>, <a href="https://publications.waset.org/abstracts/search?q=Monyepao%20Thabang"> Monyepao Thabang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis on benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camera%20network" title="camera network">camera network</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network%20topology" title=" convolutional neural network topology"> convolutional neural network topology</a>, <a href="https://publications.waset.org/abstracts/search?q=person%20tracking" title=" person tracking"> person tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=person%20re-identification" title=" person re-identification"> person re-identification</a>, <a href="https://publications.waset.org/abstracts/search?q=siamese" title=" siamese"> siamese</a> </p> <a href="https://publications.waset.org/abstracts/171989/person-re-identification-using-siamese-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3001</span> Face Recognition Using Eigen Faces Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shweta%20Pinjarkar">Shweta Pinjarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrutika%20Yawale"> Shrutika Yawale</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayuri%20Patil"> Mayuri Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Reshma%20Adagale"> Reshma Adagale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20detection" title="face detection">face detection</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=eigen%20faces" title=" eigen faces"> eigen faces</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a> </p> <a href="https://publications.waset.org/abstracts/20577/face-recognition-using-eigen-faces-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3000</span> Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yalong%20Jiang">Yalong Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zheru%20Chi"> Zheru Chi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNN" title="CNN">CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=capsule%20network" title=" capsule network"> capsule network</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20optimization" title=" capacity optimization"> capacity optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=character%20recognition" title=" character recognition"> character recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20augmentation" title=" data augmentation"> data augmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20segmentation" title=" semantic segmentation"> semantic segmentation</a> </p> <a href="https://publications.waset.org/abstracts/95551/optimizing-the-capacity-of-a-convolutional-neural-network-for-image-segmentation-and-pattern-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2999</span> Enhanced Face Recognition with Daisy Descriptors Using 1BT Based Registration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sevil%20Igit">Sevil Igit</a>, <a href="https://publications.waset.org/abstracts/search?q=Merve%20Meric"> Merve Meric</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarp%20Erturk"> Sarp Erturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, it is proposed to improve Daisy descriptor based face recognition using a novel One-Bit Transform (1BT) based pre-registration approach. The 1BT based pre-registration procedure is fast and has low computational complexity. It is shown that the face recognition accuracy is improved with the proposed approach. The proposed approach can facilitate highly accurate face recognition using DAISY descriptor with simple matching and thereby facilitate a low-complexity approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title="face recognition">face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=Daisy%20descriptor" title=" Daisy descriptor"> Daisy descriptor</a>, <a href="https://publications.waset.org/abstracts/search?q=One-Bit%20Transform" title=" One-Bit Transform"> One-Bit Transform</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20registration" title=" image registration"> image registration</a> </p> <a href="https://publications.waset.org/abstracts/12593/enhanced-face-recognition-with-daisy-descriptors-using-1bt-based-registration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=person%20recognition&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=person%20recognition&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=person%20recognition&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=person%20recognition&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=person%20recognition&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=person%20recognition&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=person%20recognition&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=person%20recognition&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=person%20recognition&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=person%20recognition&amp;page=100">100</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=person%20recognition&amp;page=101">101</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=person%20recognition&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10