CINXE.COM
Search results for: liver cancer
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: liver cancer</title> <meta name="description" content="Search results for: liver cancer"> <meta name="keywords" content="liver cancer"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="liver cancer" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="liver cancer"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2745</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: liver cancer</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2745</span> Evaluating the Diagnostic Accuracy of the ctDNA Methylation for Liver Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maomao%20Cao">Maomao Cao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To test the performance of ctDNA methylation for the detection of liver cancer. Methods: A total of 1233 individuals have been recruited in 2017. 15 male and 15 female samples (including 10 cases of liver cancer) were randomly selected in the present study. CfDNA was extracted by MagPure Circulating DNA Maxi Kit. The concentration of cfDNA was obtained by Qubit™ dsDNA HS Assay Kit. A pre-constructed predictive model was used to analyze methylation data and to give a predictive score for each cfDNA sample. Individuals with a predictive score greater than or equal to 80 were classified as having liver cancer. CT tests were considered the gold standard. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis of liver cancer were calculated. Results: 9 patients were diagnosed with liver cancer according to the prediction model (with high sensitivity and threshold of 80 points), with scores of 99.2, 91.9, 96.6, 92.4, 91.3, 92.5, 96.8, 91.1, and 92.2, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of ctDNA methylation for the diagnosis of liver cancer were 0.70, 0.90, 0.78, and 0.86, respectively. Conclusions: ctDNA methylation could be an acceptable diagnostic modality for the detection of liver cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liver%20cancer" title="liver cancer">liver cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=ctDNA%20methylation" title=" ctDNA methylation"> ctDNA methylation</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic%20performance" title=" diagnostic performance"> diagnostic performance</a> </p> <a href="https://publications.waset.org/abstracts/146512/evaluating-the-diagnostic-accuracy-of-the-ctdna-methylation-for-liver-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2744</span> Higher Freshwater Fish and Sea Fish Intake Is Inversely Associated with Liver Cancer in Patients with Hepatitis B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maomao%20Cao">Maomao Cao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and aims While the association between higher consumption of fish and lower liver cancer risk has been confirmed, however, the association between specific fish intake and liver cancer risk remains unknown. We aimed to identify the association between specific fish consumption and the risk of liver cancer. Methods: Based on a community-based seropositive hepatitis B cohort involving 18404 individuals, face to face interview was conducted by a standardized questionnaire to acquire baseline information. Three common fish types in this study were analyzed, including freshwater fish, sea fish, and small fish (shrimp, crab, conch, and shell). All participants received liver cancer screening, and possible cases were identified by CT or MRI. Multivariable logistic models were applied to estimate the odds ratio (OR) and 95% confidence intervals (CI). Multivariate multiple imputations were utilized to impute observations with missing values. Results: 179 liver cancer cases were identified. Consumption of freshwater fish and sea fish at least once a week had a strong inverse association with liver cancer risk compared with the lowest intake level, with an adjusted OR of 0.53 (95% CI, 0.38-0.75) and 0.38 (95% CI, 0.19-0.73), respectively. This inverse association was also observed after the imputation. There was no statistically significant association between intake of small fish and liver cancer risk (OR=0.58, 95%, CI 0.32-1.08). Conclusions: Our findings suggest that consumption of freshwater fish and sea fish at least once a week could reduce liver cancer risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-sectional%20study" title="cross-sectional study">cross-sectional study</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20intake" title=" fish intake"> fish intake</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20cancer" title=" liver cancer"> liver cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factor" title=" risk factor"> risk factor</a> </p> <a href="https://publications.waset.org/abstracts/139256/higher-freshwater-fish-and-sea-fish-intake-is-inversely-associated-with-liver-cancer-in-patients-with-hepatitis-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2743</span> Metastasis of Breast Cancer to the Lungs: Implications of Molecular Biology and Treatment Options</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fakhrosadat%20Sajjadian">Fakhrosadat Sajjadian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The majority of deaths in cancer patients are caused by distant metastasis. Breast cancer shows a unique spread pattern, often affecting bone, liver, lung, and brain. Breast cancer can be categorized into various subtypes according to gene expression patterns, and these subtypes exhibit specific preferences for organs where metastasis occurs. Breast tumors with luminal characteristics have a preference for spreading to the bone, whereas basal-like breast cancer (BLBC) shows a tendency to metastasize to the lungs. Still, the mechanisms behind this particular pattern of metastasis in organs have yet to be fully understood. In this evaluation, we will outline the latest progress in molecular signaling pathways and treatment methods for breast cancer lung metastasis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer" title="lung cancer">lung cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20cancer" title=" liver cancer"> liver cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=BLBC" title=" BLBC"> BLBC</a>, <a href="https://publications.waset.org/abstracts/search?q=metastasis" title=" metastasis"> metastasis</a> </p> <a href="https://publications.waset.org/abstracts/185132/metastasis-of-breast-cancer-to-the-lungs-implications-of-molecular-biology-and-treatment-options" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2742</span> The Effect of Sorafenibe on Soat1 Protein by Using Molecular Docking Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdiyeh%20Gholaminezhad">Mahdiyeh Gholaminezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: The study focuses on the potential impact of Sorafenib on SOAT1 protein in liver cancer treatment, addressing the need for more effective therapeutic options. Research aim: To explore the effects of Sorafenib on the activity of SOAT1 protein in liver cancer cells. Methodology: Molecular docking was employed to analyze the interaction between Sorafenib and SOAT1 protein. Findings: The study revealed a significant effect of Sorafenib on the stability and activity of SOAT1 protein, suggesting its potential as a treatment for liver cancer. Theoretical importance: This research highlights the molecular mechanism underlying Sorafenib's anti-cancer properties, contributing to the understanding of its therapeutic effects. Data collection: Data on the molecular structure of Sorafenib and SOAT1 protein were obtained from computational simulations and databases. Analysis procedures: Molecular docking simulations were performed to predict the binding interactions between Sorafenib and SOAT1 protein. Question addressed: How does Sorafenib influence the activity of SOAT1 protein and what are the implications for liver cancer treatment? Conclusion: The study demonstrates the potential of Sorafenib as a targeted therapy for liver cancer by affecting the activity of SOAT1 protein. Reviewers' Comments: The study provides valuable insights into the molecular basis of Sorafenib's action on SOAT1 protein, suggesting its therapeutic potential. To enhance the methodology, the authors could consider validating the docking results with experimental data for further validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liver%20cancer" title="liver cancer">liver cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=sorafenib" title=" sorafenib"> sorafenib</a>, <a href="https://publications.waset.org/abstracts/search?q=SOAT1" title=" SOAT1"> SOAT1</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a> </p> <a href="https://publications.waset.org/abstracts/189263/the-effect-of-sorafenibe-on-soat1-protein-by-using-molecular-docking-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2741</span> Classifier for Liver Ultrasound Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumya%20Sajjan">Soumya Sajjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=segmentation" title="segmentation">segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Support%20Vector%20Machine" title=" Support Vector Machine"> Support Vector Machine</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20liver%20lesion" title=" ultrasound liver lesion"> ultrasound liver lesion</a>, <a href="https://publications.waset.org/abstracts/search?q=co-occurance%20Matrix" title=" co-occurance Matrix"> co-occurance Matrix</a> </p> <a href="https://publications.waset.org/abstracts/10244/classifier-for-liver-ultrasound-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2740</span> The Effect of Endurance Training and Taxol Consumption on Cyclooxygenase-2 and Prostaglandin E2 Levels in the Liver Tissue of Mice with Cervical Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Barari">Alireza Barari</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Firozi-Niyaki"> Maryam Firozi-Niyaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Kamarlouei"> Maryam Kamarlouei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Herbs have a strong anti-cancer effect. Also, exercise is one of several lifestyle factors known to lower the risk of developing cancer. The aim of this study was to investigate the effect of endurance training and taxol on cyclooxygenase-2 and prostaglandin E2 in the liver tissue of mice with cervical cancer. Materials and Methods: In this experimental study, 35 female C57 mice were randomly divided into 5 groups (n=7 in each group): control (healthy), control (cancer), complement (cancer), training-supplementary (cancer) and training (cancer). The implantation of cancerous tumors was performed under the skin of the upper pelvis. The training group completed the endurance training protocol, which included 3 sessions per week, 50 minutes per session, at a speed of 14-18 m/s for six weeks. A dose of 60 mg/kg/day of pure taxol was injected intra peritoneally. The dependent variables of this study were measured 24 hours after the last training session by ELISA. Results: The results showed that the use of taxol and endurance training reduced the levels of cyclooxygenase-2 and prostaglandin E2 in the liver tissues of C57 mice with cervical cancer. Conclusion: Induction of the cancerous tissue in mice with cervical cancer increases the levels of cyclooxygenase-2 and prostaglandin E2 and endurance training along with taxol may reduce these levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cervical%20cancer" title="cervical cancer">cervical cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=taxol" title=" taxol"> taxol</a>, <a href="https://publications.waset.org/abstracts/search?q=endurance%20training" title=" endurance training"> endurance training</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclooxygenase-2" title=" cyclooxygenase-2"> cyclooxygenase-2</a>, <a href="https://publications.waset.org/abstracts/search?q=prostaglandin%20E2" title=" prostaglandin E2"> prostaglandin E2</a> </p> <a href="https://publications.waset.org/abstracts/114120/the-effect-of-endurance-training-and-taxol-consumption-on-cyclooxygenase-2-and-prostaglandin-e2-levels-in-the-liver-tissue-of-mice-with-cervical-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2739</span> In vitro Comparison Study of Biologically Synthesized Cupper-Disulfiram Nanoparticles with Its Free Corresponding Complex as Therapeutic Approach for Breast and Liver Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marwa%20M.%20Abu-Serie">Marwa M. Abu-Serie</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwa%20M.%20Eltarahony"> Marwa M. Eltarahony</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The search for reliable, effective, and safe nanoparticles (NPs) as a treatment for cancer is a pressing priority. In this study, Cu-NPs were fabricated by Streptomyces cyaneofuscatus through simultaneous bioreduction strategy of copper nitrate salt. The as-prepared Cu-NPs subjected to structural analysis; energy-dispersive X-ray spectroscopy, elemental mapping, X-ray diffraction, transmission electron microscopy, and ζ-potential. These biological synthesized Cu-NPs were mixed with disulfiram (DS), forming a nanocomplex of Cu-DS with a size of ~135 nm. The prepared nanocomplex (nanoCu-DS) exhibited higher anticancer activity than that of free complex of DS-Cu, Cu-NPs, and DS alone. This was illustrated by the lowest IC50 of nanoCu-DS (< 4 µM) against human breast and liver cancer cell lines comparing with DS-Cu, Cu-NPs, and DS (~8, 22.98-33.51 and 11.95-14.86, respectively). Moreover, flow cytometric analysis confirmed that higher apoptosis percentage range of nanoCu-DS-treated in MDA-MB 231, MCF-7, Huh-7, and HepG-2 cells (51.24-65.28%) than free complex of Cu-DS ( < 4.5%). Regarding inhibition potency of liver and breast cancer cell migration, no significant difference was recorded between free and nanocomplex. Furthermore, nanoCu-DS suppressed gene expression of β-catenine, Akt, and NF-κB and upregulated p53 expression (> 3, >15, > 5 and ≥ 3 folds, respectively) more efficiently than free complex (all ~ 1 fold) in MDA-MB 231 and Huh-7 cells. Our finding proved this prepared nano complex has a powerful anticancer activity relative to free complex, thereby offering a promising cancer treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biologically%20prepared%20Cu-NPs" title="biologically prepared Cu-NPs">biologically prepared Cu-NPs</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20cell%20lines" title=" breast cancer cell lines"> breast cancer cell lines</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20cancer%20cell%20lines" title=" liver cancer cell lines"> liver cancer cell lines</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoCu-%20disulfiram" title=" nanoCu- disulfiram"> nanoCu- disulfiram</a> </p> <a href="https://publications.waset.org/abstracts/130507/in-vitro-comparison-study-of-biologically-synthesized-cupper-disulfiram-nanoparticles-with-its-free-corresponding-complex-as-therapeutic-approach-for-breast-and-liver-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2738</span> Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Alahmer">Hussein Alahmer</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20Ahmed"> Amr Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAD%20system" title="CAD system">CAD system</a>, <a href="https://publications.waset.org/abstracts/search?q=difference%20of%20feature" title=" difference of feature"> difference of feature</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20c%20means" title=" fuzzy c means"> fuzzy c means</a>, <a href="https://publications.waset.org/abstracts/search?q=lesion%20detection" title=" lesion detection"> lesion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20segmentation" title=" liver segmentation"> liver segmentation</a> </p> <a href="https://publications.waset.org/abstracts/39526/computer-aided-classification-of-liver-lesions-using-contrasting-features-difference" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2737</span> Hypoxia Tolerance, Longevity and Cancer-Resistance in the Mole Rat Spalax – a Liver Transcriptomics Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanno%20Schmidt">Hanno Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Assaf%20Malik"> Assaf Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Bicker"> Anne Bicker</a>, <a href="https://publications.waset.org/abstracts/search?q=Gesa%20Poetzsch"> Gesa Poetzsch</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Avivi"> Aaron Avivi</a>, <a href="https://publications.waset.org/abstracts/search?q=Imad%20Shams"> Imad Shams</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Hankeln"> Thomas Hankeln</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The blind subterranean mole rat Spalax shows a remarkable tolerance to hypoxia, cancer-resistance and longevity. Unravelling the genomic basis of these adaptations will be important for biomedical applications. RNA-Seq gene expression data were obtained from normoxic and hypoxic Spalax and rat liver tissue. Hypoxic Spalax broadly downregulates genes from major liver function pathways. This energy-saving response is likely a crucial adaptation to low oxygen levels. In contrast, the hypoxiasensitive rat shows massive upregulation of energy metabolism genes. Candidate genes with plausible connections to the mole rat’s phenotype, such as important key genes related to hypoxia-tolerance, DNA damage repair, tumourigenesis and ageing, are substantially higher expressed in Spalax than in rat. Comparative liver transcriptomics highlights the importance of molecular adaptations at the gene regulatory level in Spalax and pinpoints a variety of starting points for subsequent functional studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=hypoxia" title=" hypoxia"> hypoxia</a>, <a href="https://publications.waset.org/abstracts/search?q=longevity" title=" longevity"> longevity</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptomics" title=" transcriptomics"> transcriptomics</a> </p> <a href="https://publications.waset.org/abstracts/129580/hypoxia-tolerance-longevity-and-cancer-resistance-in-the-mole-rat-spalax-a-liver-transcriptomics-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2736</span> Cratoxy Formosum (Jack) Dyer Leaf Extract-Induced Human Breast and Liver Cancer Cells Death</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjaporn%20Buranrat">Benjaporn Buranrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nootchanat%20Mairuae"> Nootchanat Mairuae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cratoxylum formosum (Jack) Dyer (CF) has been used for the traditional medicines in South East Asian and Thailand. Normally, northeast Thai vegetables have proven cytotoxic to many cancer cells. Therefore, the present study aims to explore the molecular mechanisms underlying CF-induced cancer cell death and apoptosis on breast and liver cancer cells. The cytotoxicity and antiproliferative effects of CF on the human breast MCF-7 and liver HepG2 cancer cell lines were evaluated using sulforhodamine B assay and colony formation assay. Cell migration assay was measured using wound healing assay. The apoptosis induction mechanisms were investigated through reactive oxygen species formation, caspase 3 activity, and JC-1 activity. Gene expression by real-time PCR and apoptosis related protein levels by Western blot analysis. CF induced MCF-7 and HepG2 cell death by time- and dose-dependent manner. Furthermore, CF had the greater cytotoxic potency on MCF-7 more than HepG2 cells with IC50 values of 85.70+4.52 μM and 219.03±9.96 μM respectively, at 24 h. Treatment with CF also caused a dose-dependent decrease in colony forming ability and cell migration, especially on MCF-7 cells. CF induced ROS formation, increased caspase 3 activities, and decreased the mitochondrial membrane potential, and causing apoptotic body production and DNA fragmentation. CF significantly decreased expression of the cell cycle regulatory protein RAC1 and downstream proteins, cdk6. Additionally, CF enhanced p21 and reduced cyclin D1 protein levels. CF leaf extract induced cell death, apoptosis, antimigration in both of MCF-7 and HepG2 cells. CF could be useful for developing to anticancer drug candidate for breast and liver cancer therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cratoxylum%20formosum%20%28jack%29%20dyer" title="cratoxylum formosum (jack) dyer">cratoxylum formosum (jack) dyer</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20cancer" title=" liver cancer"> liver cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20death" title=" cell death"> cell death</a> </p> <a href="https://publications.waset.org/abstracts/52780/cratoxy-formosum-jack-dyer-leaf-extract-induced-human-breast-and-liver-cancer-cells-death" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2735</span> Sinapic Acid Attenuation of Cyclophosphamide-Induced Liver Toxicity in Mice by Modulating Oxidative Stress, Nf-κB, and Caspase-3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiva%20Rezaei">Shiva Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Jalal%20Hosseinimehr"> Seyed Jalal Hosseinimehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbasali%20Karimpour%20Malekshah"> Abbasali Karimpour Malekshah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansooreh%20Mirzaei"> Mansooreh Mirzaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Fereshteh%20Talebpour%20Amiri"> Fereshteh Talebpour Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehryar%20Zargari"> Mehryar Zargari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective(s): Cyclophosphamide (CP), as an antineoplastic drug, is widely used in cancer patients, and liver toxicity is one of its complications. Sinapic acid (SA), as a natural phenylpropanoid, has antioxidant, anti-inflammatory, and anti-cancer properties. Materials and Methods: The purpose of the current study was to determine the protective effect of SA versus CP-induced liver toxicity. In this research, BALB/c mice were treated with SA (5 and 10 mg/kg) orally for one week, and CP (200 mg/kg) was injected on day 3 of the study. Oxidative stress markers, serum liver-specific enzymes, histopathological features, caspase-3, and nuclear factor kappa-B cells were then checked. Results: CP induced hepatotoxicity in mice and showed structural changes in liver tissue. CP significantly increased liver enzymes and lipid peroxidation and decreased glutathione. The immunoreactivity of caspase-3 and nuclear factor kappa-B cells was significantly increased. Administration of SA significantly maintained histochemical parameters and liver function enzymes in mice treated with CP. Immunohistochemical examination showed SA reduced apoptosis and inflammation. Conclusion: The data confirmed that SA with anti-apoptotic, anti-oxidative, and anti-inflammatory activities was able to preserve CP-induced liver injury in mice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclophosphamide" title=" cyclophosphamide"> cyclophosphamide</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20injury" title=" liver injury"> liver injury</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=sinapic%20acid" title=" sinapic acid"> sinapic acid</a> </p> <a href="https://publications.waset.org/abstracts/182692/sinapic-acid-attenuation-of-cyclophosphamide-induced-liver-toxicity-in-mice-by-modulating-oxidative-stress-nf-kb-and-caspase-3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2734</span> Nanotechnology-Based Treatment of Liver Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucian%20Mocan">Lucian Mocan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present method of Nanoparticle enhanced laser thermal ablation of HepG2 cells (Human hepatocellular liver carcinomacell line), using gold nanoparticles combuned with a specific growth factor and demonstrate its selective therapeutic efficacy usig ex vivo specimens. Ex vivo-perfused liver specimens were obtained from hepatocellular carcinoma patients similarly to the surgical technique of transplantation. Ab bound to GNPs was inoculated intra-arterially onto the resulting specimen and determined the specific delivery of the nano-bioconjugate into the malignant tissue by means of the capillary bed. The extent of necrosis was considerable following laser therapy and at the same time surrounding parenchyma was not seriously affected. The selective photothermal ablation of the malignant liver tissue was obtained after the selective accumulation of Ab bound to GNPs into tumor cells following ex-vivo intravascular perfusion. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HepG2%20cells" title="HepG2 cells">HepG2 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle%20functionalization" title=" nanoparticle functionalization"> nanoparticle functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20irradiation" title=" laser irradiation"> laser irradiation</a> </p> <a href="https://publications.waset.org/abstracts/66957/nanotechnology-based-treatment-of-liver-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2733</span> Numerical Simulation of Heating Characteristics in a Microwave T-Prong Antenna for Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Chaichanyut">M. Chaichanyut</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Tungjitkusolmun"> S. Tungjitkusolmun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is presented with microwave (MW) ablation by using the T-Prong monopole antennas. In the study, three-dimensional (3D) finite-element methods (FEM) were utilized to analyse: the tissue heat flux, temperature distributions (heating pattern) and volume destruction during MW ablation in liver cancer tissue. The configurations of T-Prong monopole antennas were considered: Three T-prong antenna, Expand T-Prong antenna and Arrow T-Prong antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The microwave power deliveries were 10 W; the duration of ablation in all cases was 300s. Our numerical result, heat flux and the hotspot occurred at the tip of the T-prong antenna for all cases. The temperature distribution pattern of all antennas was teardrop. The Arrow T-Prong antenna can induce the highest temperature within cancer tissue. The microwave ablation was successful when the region where the temperatures exceed 50°C (i.e. complete destruction). The Expand T-Prong antenna could complete destruction the liver cancer tissue was maximized (6.05 cm³). The ablation pattern or axial ratio (Widest/length) of Expand T-Prong antenna and Arrow T-Prong antenna was 1, but the axial ratio of Three T-prong antenna of about 1.15. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liver%20cancer" title="liver cancer">liver cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=T-Prong%20antenna" title=" T-Prong antenna"> T-Prong antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20ablation" title=" microwave ablation"> microwave ablation</a> </p> <a href="https://publications.waset.org/abstracts/43361/numerical-simulation-of-heating-characteristics-in-a-microwave-t-prong-antenna-for-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2732</span> An Investigation of Etiology of Liver Cirrhosis and Its Complications with Other Co-morbid Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tayba%20Akram">Tayba Akram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> our main objective of this study is to work on the etiology of liver cirrhosis, to find basic reasons and causes of liver damage, and to find the pattern of liver cirrhosis in hepatic patients either suffering from hepatitis B/C or simple jaundice. We can evaluate medical treatment and the latest trends in patients suffering from liver cirrhosis. We can evaluate the side effects and adverse effects induced by drug therapy used to treat liver cirrhosis. The conclusion is based on the etiology of liver cirrhosis. The most common cause of liver cirrhosis is the viral Hepatitis C virus. Other common causes of liver cirrhosis that are estimated from our research are Hepatitis B virus, Diabetes Mellitus, Ascites, and very rarely found Hepatitis D virus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=etiology" title="etiology">etiology</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=cirrhosis" title=" cirrhosis"> cirrhosis</a>, <a href="https://publications.waset.org/abstracts/search?q=co-morbid%20diseases" title=" co-morbid diseases"> co-morbid diseases</a> </p> <a href="https://publications.waset.org/abstracts/193100/an-investigation-of-etiology-of-liver-cirrhosis-and-its-complications-with-other-co-morbid-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2731</span> Role of Molecular Changes and Immunohistochemical in Early Detection of Liver Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatimah%20A.%20Alhomaid">Fatimah A. Alhomaid </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was planned to investigate the role of molecular changes and immunohistochemical in early detection of liver cancer in Saudi patients. our results were carried out on 54 patients liver cancer. We obtained our data from laboratory in King Khalid University Hospital. The specimens were taken (54) patients with liver cancer 34 male and 14 female and 2 control. The average age of varied from 37-85 years. The tumor was diagnosed as grade I in tow patients (male and female) and grade 2 in 45 patients (28 male and 17 female) while the grade 3 in 4 patients (all males). The specimens were processed for haematoxylin and eosin staining, immunohistochemical technique and flow cytometry analysis. Our study noted that most patients had adenocarcinoma which characterized by presence of signet-ring cells were very clear in advanced patients with adenocarcinoma. Our sections in adenocarcinoma in grade 2 and stage 3 had an increase in signet ring cells,an increase in the acini of glands and an increase in number of lymphocytes which spread to the muscular layer. With advancing the disease, there were haemorrhage in blood and increase in lymphocytes and increase in the number of nuclei in the tubular glands. Our study was carried on 48 patients, immunohistochemical diagnosis (CK20, PCNA, P53) and the analysis of DNA content by flow cytometry technique. Our study indicated that the presence of correlation between the immunohistochemical analysis for P53 and the grades. The reaction of P53 appeared as strong in nucleus in grades &stage 3 and appeared in other sections as dark brown pigment. Our study indicated that the absence of correlation between the immunohistochemical analysis for PCAN and the grades. In our sections there were strong reaction in the more 80% of nuclei in grade 1& stage 2. Our study indicated that the presence of correlation between the immunohistochemical analysis for CK20 and the grades. Our results indicated the presence of positive reaction in cytoplasm varied from weak to moderate in grade 3 & stage 4. Concerning the Flow cytometry technique our results indicated that the presence of correlation between the DNA and different stages of liver cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=CK20" title=" CK20"> CK20</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=cytometry%20analysis" title=" cytometry analysis"> cytometry analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=immunohistochemical" title=" immunohistochemical"> immunohistochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20changes" title=" molecular changes"> molecular changes</a>, <a href="https://publications.waset.org/abstracts/search?q=PCNA" title=" PCNA"> PCNA</a>, <a href="https://publications.waset.org/abstracts/search?q=p53" title=" p53"> p53</a> </p> <a href="https://publications.waset.org/abstracts/47592/role-of-molecular-changes-and-immunohistochemical-in-early-detection-of-liver-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2730</span> NS5ABP37 Inhibits Liver Cancer by Impeding Lipogenesis and Cholesterogenesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shenghu%20Feng">Shenghu Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Cheng"> Jun Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The molecular mechanism underlying nonalcoholic fatty liver disease (NAFLD) progression to hepatocellular carcinoma (HCC) remains unknown. In this study, immunohistochemistry staining result showed that NS5ABP37 protein expression decreased as with increasing degree of HCC malignancy. In agreement, NS5ABP37 protein overexpression significantly suppressed cell proliferation, caused G1/S cell cycle arrest, and induced apoptosis by increasing caspase-3/7 activity and cleaved caspase-3 levels. In addition, NS5ABP37 overexpression resulted in decreased intracellular TG and TC contents, with level reduction in SREBPs and downstream effectors. Furthermore, NS5ABP37 overexpression decreased SREBP1c and SREBP2 levels by inducing their respective promoters. Finally, ROS levels and ER-stress were both induced by NS5ABP37 overexpression. These findings together demonstrate that NS5ABP37 inhibits cancer cell proliferation and promotes apoptosis, by altering SREBP-dependent lipogenesis and cholesterogenesis in HepG2 cells and inducing oxidative stress and ER stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NS5ABP37" title="NS5ABP37">NS5ABP37</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20cancer" title=" liver cancer"> liver cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20metabolism" title=" lipid metabolism"> lipid metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=ER%20stress" title=" ER stress"> ER stress</a> </p> <a href="https://publications.waset.org/abstracts/58200/ns5abp37-inhibits-liver-cancer-by-impeding-lipogenesis-and-cholesterogenesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2729</span> The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasim%20Nosoudi">Nasim Nosoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Zadeh"> Amir Zadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunter%20White"> Hunter White</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Conrad"> Joshua Conrad</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon%20W.%20Shim"> Joon W. Shim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantation <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=De%20novo%20malignancy" title="De novo malignancy">De novo malignancy</a>, <a href="https://publications.waset.org/abstracts/search?q=bilirubin" title=" bilirubin"> bilirubin</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=transplantation" title=" transplantation"> transplantation</a> </p> <a href="https://publications.waset.org/abstracts/149495/the-predictive-value-of-serum-bilirubin-in-the-post-transplant-de-novo-malignancy-a-data-mining-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2728</span> The Physiological Effect of Cold Atmospheric Pressure Plasma on Cancer Cells, Cancer Stem Cells, and Adult Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeongyeon%20Park">Jeongyeon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeo%20Jun%20Yoon"> Yeo Jun Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiyoung%20Seo"> Jiyoung Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Seok%20Moon"> In Seok Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae%20Jun%20Lee"> Hae Jun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiwon%20Song"> Kiwon Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold Atmospheric Pressure Plasma (CAPP) is defined as a partially ionized gas with electrically charged particles at room temperature and atmospheric pressure. CAPP generates reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has potential as a new apoptosis-promoting cancer therapy. With an annular type dielectric barrier discharge (DBD) CAPP-generating device combined with a helium (He) gas feeding system, we showed that CAPP selectively induced apoptosis in various cancer cells while it promoted proliferation of the adipose tissue-derived stem cell (ASC). The apoptotic effect of CAPP was highly selective toward p53-mutated cancer cells. The intracellular ROS was mainly responsible for apoptotic cell death in CAPP-treated cancer cells. CAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of CAPP as a potent cancer therapy. With the same device and exposure conditions to cancer cells, CAPP stimulated proliferation of the ASC, a kind of mesenchymal stem cell that is capable of self-renewing and differentiating into adipocytes, chondrocytes, osteoblasts and neurons. CAPP-treated ASCs expressed the stem cell markers and differentiated into adipocytes as untreated ASCs. The increase of proliferation by CAPP in ASCs was offset by a NO scavenger but was not affected by ROS scavengers, suggesting that NO generated by CAPP is responsible for the activated proliferation in ASCs. Usually, cancer stem cells are reported to be resistant to known cancer therapies. When we applied CAPP of the same device and exposure conditions to cancer cells to liver cancer stem cells (CSCs) that express CD133 and epithelial cell adhesion molecule (EpCAM) cancer stem cell markers, apoptotic cell death was not examined. Apoptotic cell death of liver CSCs was induced by the CAPP generated from a device with an air-based flatten type DBD. An exposure of liver CSCs to CAPP decreased the viability of liver CSCs to a great extent, suggesting plasma be used as a promising anti-cancer treatment. To validate whether CAPP can be a promising anti-cancer treatment or an adjuvant modality to eliminate remnant tumor in cancer surgery of vestibular schwannoma, we applied CAPP to mouse schwannoma cell line SC4 Nf2 ‑/‑ and human schwannoma cell line HEI-193. A CAPP treatment leads to anti-proliferative effect in both cell lines. We are currently studying the molecular mechanisms of differential physiological effect of CAPP; the proliferation of ASCs and apoptosis of various cancer cells and CSCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20atmospheric%20pressure%20plasma" title="cold atmospheric pressure plasma">cold atmospheric pressure plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=proliferation" title=" proliferation"> proliferation</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20cells" title=" cancer cells"> cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=adult%20stem%20cells" title=" adult stem cells"> adult stem cells</a> </p> <a href="https://publications.waset.org/abstracts/55506/the-physiological-effect-of-cold-atmospheric-pressure-plasma-on-cancer-cells-cancer-stem-cells-and-adult-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2727</span> Diallyl Trisulfide Protects the Rat Liver from CCl4-Induced Injury and Fibrogenesis by Attenuating Oxidative Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiao-Jing%20Zhu">Xiao-Jing Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Zhou"> Liang Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi-Zhong%20Zheng"> Shi-Zhong Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various studies have shown that diallyl trisulfide (DATS) can protect the liver injury, and DATS has a strong antioxidant property. The aim of this study is to evaluate the in vivo role of DATS in protecting the liver against injury and fibrogenesis and further explores the underlying mechanisms. Our results demonstrated that DATS protected the liver from CCl4-caused injury by suppressing the elevation of ALT and AST activities, and by improving the histological architecture of the liver. Treatment with DATS or colchicine improved the liver fibrosis by sirius red staining and immunofluorescence. In addition, immunohistochemistry, western blot, and RT-PCR analyses indicated that DATS inhibited HSC activation. Furthermore, DATS attenuated oxidative stress by increasing glutathione and reducing lipid peroxides and malondialdehyde. These findings suggest that the protective effect of DATS on CCl4-caused liver injury and liver fibrogenesis was, at least partially, attributed to its antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liver%20fibrogenesis" title="liver fibrogenesis">liver fibrogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20injury" title=" liver injury"> liver injury</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=DATS" title=" DATS"> DATS</a> </p> <a href="https://publications.waset.org/abstracts/2858/diallyl-trisulfide-protects-the-rat-liver-from-ccl4-induced-injury-and-fibrogenesis-by-attenuating-oxidative-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2726</span> Diagnosis and Analysis of Automated Liver and Tumor Segmentation on CT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Ramsheeja">R. R. Ramsheeja</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sreeraj"> R. Sreeraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For view the internal structures of the human body such as liver, brain, kidney etc have a wide range of different modalities for medical images are provided nowadays. Computer Tomography is one of the most significant medical image modalities. In this paper use CT liver images for study the use of automatic computer aided techniques to calculate the volume of the liver tumor. Segmentation method is used for the detection of tumor from the CT scan is proposed. Gaussian filter is used for denoising the liver image and Adaptive Thresholding algorithm is used for segmentation. Multiple Region Of Interest(ROI) based method that may help to characteristic the feature different. It provides a significant impact on classification performance. Due to the characteristic of liver tumor lesion, inherent difficulties appear selective. For a better performance, a novel proposed system is introduced. Multiple ROI based feature selection and classification are performed. In order to obtain of relevant features for Support Vector Machine(SVM) classifier is important for better generalization performance. The proposed system helps to improve the better classification performance, reason in which we can see a significant reduction of features is used. The diagnosis of liver cancer from the computer tomography images is very difficult in nature. Early detection of liver tumor is very helpful to save the human life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography%20%28CT%29" title="computed tomography (CT)">computed tomography (CT)</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20region%20of%20interest%28ROI%29" title=" multiple region of interest(ROI)"> multiple region of interest(ROI)</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20values" title=" feature values"> feature values</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM%20classification" title=" SVM classification"> SVM classification</a> </p> <a href="https://publications.waset.org/abstracts/18207/diagnosis-and-analysis-of-automated-liver-and-tumor-segmentation-on-ct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2725</span> Transcriptomic Analysis of Non-Alcoholic Fatty Liver Disease in Cafeteria Diet Induced Obese Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Jamal">Mohammad Jamal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-alcoholic fatty liver disease (NAFLD) has become one of the most chronic liver diseases, prevalent among people with morbid obesity. NAFLD does not develop clinically significant liver disease, however cirrhosis and liver cancer develop in subset and currently there are no approved therapies for the treatment of NAFLD. The study is aimed to understand the various key genes involved in the mechanism of NAFLD which can be valuable for developing diagnostic and predictive biomarkers based on their histologic stage of liver. The study was conducted on 16 male Sprague Dawley rats. The animals were divided in two groups: control group (n=8) fed on ad libitum normal chow and regular water and the cafeteria group (CAF)) (n=8) fed on high fatty/ carbohydrate diet. The animals received their respective diet from 4 weeks onwards from D.O.B until 25 weeks. Liver was extracted and RT² Profiler PCR Array was used to assess the NAFLD related genes. Histological evaluation was performed using H&E stain in liver tissue sections. Our PCR array results showed that genes involved in anti-inflammatory activity (Ifng, IL10), fatty acid uptake/oxidation (Fabp5), apoptosis (Fas), lipogenesis (Gck and Srebf1), Insulin signalling (Igfbp1) and metabolic pathway (pdk4) were upregulated in the liver of cafeteria fed obese rats. Bloated hepatocytes, displaced nucleus and higher lipid content were seen in the liver of cafeteria fed obese rats. Although Liver biopsies remain the gold standard in evaluating NAFLD, however an approach towards non-invasive markers could be used in understanding the physiology, therapeutic potential, and the targets to combat NAFLD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=cafeteria%20diet" title=" cafeteria diet"> cafeteria diet</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=NAFLD" title=" NAFLD"> NAFLD</a> </p> <a href="https://publications.waset.org/abstracts/151478/transcriptomic-analysis-of-non-alcoholic-fatty-liver-disease-in-cafeteria-diet-induced-obese-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2724</span> Thermodynamic and Immunochemical Studies of Antibody Biofunctionalized Gold Nanoparticles Mediated Photothermal Ablation in Human Liver Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucian%20Mocan">Lucian Mocan</a>, <a href="https://publications.waset.org/abstracts/search?q=Flaviu%20Tabaran"> Flaviu Tabaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Teodora%20Mocan"> Teodora Mocan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Matea"> Cristian Matea</a>, <a href="https://publications.waset.org/abstracts/search?q=Cornel%20Iancu"> Cornel Iancu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present method of Gold Nanoparticle enhanced laser thermal ablation of HepG2 cells (Human hepatocellular liver carcinoma cell line), based on a simple gold nanoparticle carrier system, such as serum albumin (BSA), and demonstrate its selective therapeutic efficacy. Hyperspectral, contrast phase, and confocal microscopy combined immunochemical staining were used to demonstrate the selective internalization of HSA-GNPs via Gp60 receptors and the caveolin-mediated endocytosis inside HepG2 cells. We examined the ability of laser-activated carbon nanotubes to induce Hsp70 expression using confocal microscopy. Hep G2 cells heat-shocked (laser activated BSA-GNPs) to 42°C demonstrated an up-regulation of Hsp70 compared with control cells (BSA-GNPs treated cells without laser), which showed no detectable constitutive expression of Hsp70. We observed a time-dependent induction in Hsp70 expression in Hep G2 treated with BSA-GNPs and LASER irradiated. The post-irradiation apoptotic rate of HepG2 cells treated with HSA-GNPs ranged from 88.24% (for 50 mg/L) at 60 seconds, while at 30 minute the rate increased to 92.34% (50 mg/L). These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title="gold nanoparticles">gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20cancer" title=" liver cancer"> liver cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=albumin" title=" albumin"> albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20irradiation" title=" laser irradiation"> laser irradiation</a> </p> <a href="https://publications.waset.org/abstracts/56646/thermodynamic-and-immunochemical-studies-of-antibody-biofunctionalized-gold-nanoparticles-mediated-photothermal-ablation-in-human-liver-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2723</span> Grape Seed Extract in Prevention and Treatment of Liver Toxic Cirrhosis in Rats </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Buloyan">S. Buloyan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Mamikonyan"> V. Mamikonyan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hakobyan"> H. Hakobyan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Harutyunyan"> H. Harutyunyan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Gasparyan"> H. Gasparyan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liver is the strongest regenerating organ of the organism, and even with 2/3 surgically removed, it can regenerate completely. Hence, liver cirrhosis may only develop when the regenerating system is off. We present the results of a comparative study of structural and functional characteristics of rat liver tissue under the conditions of toxic liver cirrhosis development, induced by carbon tetrachloride, and its prevention/treatment by natural compounds with antioxidant and immune stimulating action. Studies were made on Wister rats, weighing 120~140 g. Grape seeds extracts, separately and in combination with well known anticirrhotic drug ursodeoxycholic acid (ursodiol) have demonstrated effectiveness in prevention of liver cirrhosis development and its treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20tetrachloride" title="carbon tetrachloride">carbon tetrachloride</a>, <a href="https://publications.waset.org/abstracts/search?q=GSE" title=" GSE"> GSE</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20cirrhosis" title=" liver cirrhosis"> liver cirrhosis</a>, <a href="https://publications.waset.org/abstracts/search?q=prevention" title=" prevention"> prevention</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment "> treatment </a> </p> <a href="https://publications.waset.org/abstracts/15653/grape-seed-extract-in-prevention-and-treatment-of-liver-toxic-cirrhosis-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2722</span> Coaxial Helix Antenna for Microwave Coagulation Therapy in Liver Tissue Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Chaichanyut">M. Chaichanyut</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Tungjitkusolmun"> S. Tungjitkusolmun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with microwave (MW) ablation for a liver cancer tissue by using helix antenna. The antenna structure supports the propagation of microwave energy at 2.45 GHz. A 1½ turn spiral catheter-based microwave antenna applicator has been developed. We utilize the three-dimensional finite element method (3D FEM) simulation to analyze where the tissue heat flux, lesion pattern and volume destruction during MW ablation. The configurations of helix antenna where Helix air-core antenna and Helix Dielectric-core antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The simulation protocol was power control (10 W, 300s). Our simulation result, both helix antennas have heat flux occurred around the helix antenna and that can be induced the temperature distribution similar (teardrop). The region where the temperature exceeds 50°C the microwave ablation was successful (i.e. complete destruction). The Helix air-core antenna and Helix Dielectric-core antenna, ablation zone or axial ratios (Widest/length) were respectively 0.82 and 0.85; the complete destructions were respectively 4.18 cm³ and 5.64 cm³. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liver%20cancer" title="liver cancer">liver cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=Helix%20antenna" title=" Helix antenna"> Helix antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20ablation" title=" microwave ablation"> microwave ablation</a> </p> <a href="https://publications.waset.org/abstracts/43362/coaxial-helix-antenna-for-microwave-coagulation-therapy-in-liver-tissue-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2721</span> Chip Less Microfluidic Device for High Throughput Liver Spheroid Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sourita%20Ghosh">Sourita Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Falguni%20Pati"> Falguni Pati</a>, <a href="https://publications.waset.org/abstracts/search?q=Suhanya%20Duraiswamy"> Suhanya Duraiswamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spheroid, a simple three-dimensional cellular aggregate, allows us to simulate the in-vivo complexity of cellular signaling and interactions in greater detail than traditional 2D cell culture. It can be used as an in-vitro model for drug toxicity testing, tumor modeling and many other such applications specifically for cancer. Our work is focused on the development of an affordable, user-friendly, robust, reproducible, high throughput microfluidic device for water in oil droplet production, which can, in turn, be used for spheroids manufacturing. Here, we have investigated the droplet breakup between two non-Newtonian fluids, viz. silicone oil and decellularized liver matrix, which acts as our extra cellular matrix (ECM) for spheroids formation. We performed some biochemical assays to characterize the liver ECM, as well as rheological studies on our two fluids and observed a critical dependence of capillary number (Ca) on droplet breakup and homogeneous drop formation <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chip%20less" title="chip less">chip less</a>, <a href="https://publications.waset.org/abstracts/search?q=droplets" title=" droplets"> droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20matrix" title=" extracellular matrix"> extracellular matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20spheroid" title=" liver spheroid"> liver spheroid</a> </p> <a href="https://publications.waset.org/abstracts/165251/chip-less-microfluidic-device-for-high-throughput-liver-spheroid-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2720</span> Physiochemical and Histological Study on the Effect of the Hibernation on the Liver of Uromastyx acanthinura (Bell, 1825)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youssef.%20K.%20A.%20Abdalhafid">Youssef. K. A. Abdalhafid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezaldin%20A.%20M.%20Mohammed"> Ezaldin A. M. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20M.%20M.%20Zatout"> Masoud M. M. Zatout </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study described the changes in the liver of Uromastyx acanthinura (Bell, 1825) males and females during hibernation and activity seasons. The results revealed that, hibernation causes increase fatty liver and pigment cells with abundant damage, comparing with nearly normal structure and less fatty liver after the hibernation with almost normal pattern. Genomic DNA showed apparent separation during hibernation. Also, caspase 3 and caspase 7 activity reached a high level in the liver tissue during hibernation comparing with activity season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=histological%20liver" title="histological liver">histological liver</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20fragmentation" title=" DNA fragmentation"> DNA fragmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=hibernation" title=" hibernation"> hibernation</a>, <a href="https://publications.waset.org/abstracts/search?q=caspase%203%20and%20caspase%207" title=" caspase 3 and caspase 7 "> caspase 3 and caspase 7 </a> </p> <a href="https://publications.waset.org/abstracts/14146/physiochemical-and-histological-study-on-the-effect-of-the-hibernation-on-the-liver-of-uromastyx-acanthinura-bell-1825" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2719</span> Undifferentiated Embryonal Sarcoma of Liver: A Rare Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thieu-Thi%20Tra%20My">Thieu-Thi Tra My</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Undifferentiated embryonal sarcoma of the liver (UESL), a rare malignant mesenchymal tumor, is commonly seen in children. The symptoms and imaging were not specific, so it could be mimicked with other tumors or liver abscesses. The tumor often appears as a large heterogeneous echoic solid mass with small cystic areas while showing a cyst-like appearance on CT and MRI. The histopathological manifestation of the UESL consisted of stellate-shaped and spindle cells scattered on a myxoid background with high mitotic count. Cells with multiple or bizarre nuclear were also observed. Here, we aimed to describe a 9-year-old male diagnosed with UESL focused on imaging and histopathological characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=undifferentiated%20embryonal%20sarcoma%20of%20liver" title="undifferentiated embryonal sarcoma of liver">undifferentiated embryonal sarcoma of liver</a>, <a href="https://publications.waset.org/abstracts/search?q=UESL" title=" UESL"> UESL</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20sarcoma" title=" liver sarcoma"> liver sarcoma</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20tumor" title=" liver tumor"> liver tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/170077/undifferentiated-embryonal-sarcoma-of-liver-a-rare-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2718</span> Hexane Extract of Thymus serpyllum L.: GC-MS Profile, Antioxidant Potential and Anticancer Impact on HepG2 (Liver Carcinoma) Cell Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Baig">Salma Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakrudeen%20Ali%20Ahmad"> Bakrudeen Ali Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ainnul%20Hamidah%20Syahadah%20Azizan"> Ainnul Hamidah Syahadah Azizan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hapipah%20Mohd%20Ali"> Hapipah Mohd Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Rouhollahi"> Elham Rouhollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Ameen%20Abdulla"> Mahmood Ameen Abdulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Free radical damage induced by reactive oxygen species (ROS) contributes to etiology of many chronic diseases, cancer being one of them. Recent studies have been successful in ROS targeted therapies via antioxidants using mouse models in cancer therapeutics. The present study was designed to scrutinize anticancer activity, antioxidant activity of 5 different extracts of Thymus serpyllum in MDA-MB-231, MCF-7, HepG2, HCT-116, PC3, and A549. Identification of the phytochemicals present in the most active extract of Thymus serpyllum was conducted using gas chromatography coupled with mass spectrophotometry and antioxidant activity was measured by using DPPH radical scavenging and FRAP assay. Anticancer impact of the extract in terms of IC50 was evaluated using MTT cell viability assay. Results revealed that the hexane extract showed the best anticancer activity in HepG2 (Liver Carcinoma Cell Line) with an IC50 value of 23 ± 0.14 µg/ml followed by 25 µg/ml in HCT-116 (Colon Cancer Cell Line), 30 µm/ml in MCF-7 (Breast Cancer Cell Line), 35 µg/ml in MDA-MB-231 (Breast Cancer Cell Line), 57 µg/ml in PC3 (Prostate Cancer Cell Line) and 60 µg/ml in A549 (Lung Carcinoma Cell Line). GC-MS profile of the hexane extract showed the presence of 31 compounds with carvacrol, thymol and thymoquione being the major compounds. Phenolics such as Vitamin E, terpinen-4-ol, borneol and phytol were also identified. Hence, here we present the first report on cytotoxicity of hexane extract of Thymus serpyllum extract in HepG2 cell line with a robust anticancer activity with an IC50 of 23 ± 0.14 µg/ml. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thymus%20serpyllum%20L." title="Thymus serpyllum L.">Thymus serpyllum L.</a>, <a href="https://publications.waset.org/abstracts/search?q=hexane%20extract" title=" hexane extract"> hexane extract</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS%20profile" title=" GC-MS profile"> GC-MS profile</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=anticancer%20activity" title=" anticancer activity"> anticancer activity</a>, <a href="https://publications.waset.org/abstracts/search?q=HepG2%20cell%20line" title=" HepG2 cell line"> HepG2 cell line</a> </p> <a href="https://publications.waset.org/abstracts/13474/hexane-extract-of-thymus-serpyllum-l-gc-ms-profile-antioxidant-potential-and-anticancer-impact-on-hepg2-liver-carcinoma-cell-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2717</span> Histomorphological Comparisons of Liver of Broiler Chickens and Wild Boar in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khenenou%20Tarek">Khenenou Tarek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The objective of present study was to compare the normal macro and microscopic appearance of the liver in two very different species, one is an omnivorous mammal; the wild boar and the other belongs to the family of poultry; broiler chicken from the region of Bouhmama (Khenchela). Materials and methods: Eight broilers (58 days of age) and eight wild boars were included in the experiment to obtain information about the morpho-histological appearances of liver in two species. Results: There is a big difference in the liver appearance between the two species, in the wild boar it is of firm consistency with a tiger aspect and divided into four lobes, whereas in the broiler, the liver is brown and sometimes pale during the first 10-14 days, so it was divided into two lobes. Concerning the liver parenchyma, we used the Russian LOMBO MBS-10 stereo microscope, our results showed that the liver parenchyma was well developed in wild boar than in broiler chickens whereas, in broiler chickens; an excessive development of the sinus; the latter were less developed in the wild boar. Conclusion: The macroscopic observation showed a marked difference in liver between the two species. The microscopic examination of liver showed that the parenchyma is less pronounced in broilers whereas the sinuses were highly developed in the wild boar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler%20chicken" title="broiler chicken">broiler chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20and%20microscopic%20appearances" title=" macro and microscopic appearances"> macro and microscopic appearances</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20boar" title=" wild boar"> wild boar</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/190129/histomorphological-comparisons-of-liver-of-broiler-chickens-and-wild-boar-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2716</span> Liver and Liver Lesion Segmentation From Abdominal CT Scans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belgherbi%20Aicha">Belgherbi Aicha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadjidj%20Ismahen"> Hadjidj Ismahen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bessaid%20Abdelhafid"> Bessaid Abdelhafid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interpretation of medical images benefits from anatomical and physiological priors to optimize computer- aided diagnosis applications. Segmentation of liver and liver lesion is regarded as a major primary step in computer aided diagnosis of liver diseases. Precise liver segmentation in abdominal CT images is one of the most important steps for the computer-aided diagnosis of liver pathology. In this papers, a semi- automated method for medical image data is presented for the liver and liver lesion segmentation data using mathematical morphology. Our algorithm is currency in two parts. In the first, we seek to determine the region of interest by applying the morphological filters to extract the liver. The second step consists to detect the liver lesion. In this task; we proposed a new method developed for the semi-automatic segmentation of the liver and hepatic lesions. Our proposed method is based on the anatomical information and mathematical morphology tools used in the image processing field. At first, we try to improve the quality of the original image and image gradient by applying the spatial filter followed by the morphological filters. The second step consists to calculate the internal and external markers of the liver and hepatic lesions. Thereafter we proceed to the liver and hepatic lesions segmentation by the watershed transform controlled by markers. The validation of the developed algorithm is done using several images. Obtained results show the good performances of our proposed algorithm <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20diffusion%20filter" title="anisotropic diffusion filter">anisotropic diffusion filter</a>, <a href="https://publications.waset.org/abstracts/search?q=CT%20images" title=" CT images"> CT images</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatic%20lesion%20segmentation" title=" hepatic lesion segmentation"> hepatic lesion segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Liver%20segmentation" title=" Liver segmentation"> Liver segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20filter" title=" morphological filter"> morphological filter</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20watershed%20algorithm" title=" the watershed algorithm"> the watershed algorithm</a> </p> <a href="https://publications.waset.org/abstracts/20381/liver-and-liver-lesion-segmentation-from-abdominal-ct-scans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liver%20cancer&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liver%20cancer&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liver%20cancer&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liver%20cancer&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liver%20cancer&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liver%20cancer&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liver%20cancer&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liver%20cancer&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liver%20cancer&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liver%20cancer&page=91">91</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liver%20cancer&page=92">92</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liver%20cancer&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>