CINXE.COM

Search results for: biomedical data

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: biomedical data</title> <meta name="description" content="Search results for: biomedical data"> <meta name="keywords" content="biomedical data"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="biomedical data" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="biomedical data"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 25567</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: biomedical data</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25567</span> Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamila%20Benhaddouche">Djamila Benhaddouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Benyettou"> Abdelkader Benyettou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20data" title="biomedical data">biomedical data</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classifier" title=" classifier"> classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithms%20decision%20tree" title=" algorithms decision tree"> algorithms decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20extraction" title=" knowledge extraction"> knowledge extraction</a> </p> <a href="https://publications.waset.org/abstracts/15138/data-mining-in-medicine-domain-using-decision-trees-and-vector-support-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25566</span> Estimation of Biomedical Waste Generated in a Tertiary Care Hospital in New Delhi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Sharma">Priyanka Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Jais"> Manoj Jais</a>, <a href="https://publications.waset.org/abstracts/search?q=Poonam%20Gupta"> Poonam Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Suraiya%20K.%20Ansari"> Suraiya K. Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravinder%20Kaur"> Ravinder Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: As much as the Health Care is necessary for the population, so is the management of the Biomedical waste produced. Biomedical waste is a wide terminology used for the waste material produced during the diagnosis, treatment or immunization of human beings and animals, in research or in the production or testing of biological products. Biomedical waste management is a chain of processes from the point of generation of Biomedical waste to its final disposal in the correct and proper way, assigned for that particular type of waste. Any deviation from the said processes leads to improper disposal of Biomedical waste which itself is a major health hazard. Proper segregation of Biomedical waste is the key for Biomedical Waste management. Improper disposal of BMW can cause sharp injuries which may lead to HIV, Hepatitis-B virus, Hepatitis-C virus infections. Therefore, proper disposal of BMW is of upmost importance. Health care establishments segregate the Biomedical waste and dispose it as per the Biomedical waste management rules in India. Objectives: This study was done to observe the current trends of Biomedical waste generated in a tertiary care Hospital in Delhi. Methodology: Biomedical waste management rounds were conducted in the hospital wards. Relevant details were collected and analysed and sites with maximum Biomedical waste generation were identified. All the data was cross checked with the commons collection site. Results: The total amount of waste generated in the hospital during January 2014 till December 2014 was 6,39,547 kg, of which 70.5% was General (non-hazardous) waste and the rest 29.5% was BMW which consisted highly infectious waste (12.2%), disposable plastic waste (16.3%) and sharps (1%). The maximum quantity of Biomedical waste producing sites were Obstetrics and Gynaecology wards with a total Biomedical waste production of 45.8%, followed by Paediatrics, Surgery and Medicine wards with 21.2 %, 4.6% and 4.3% respectively. The maximum average Biomedical waste generated was by Obstetrics and Gynaecology ward with 0.7 kg/bed/day, followed by Paediatrics, Surgery and Medicine wards with 0.29, 0.28 and 0.18 kg/bed/day respectively. Conclusions: Hospitals should pay attention to the sites which produce a large amount of BMW to avoid improper segregation of Biomedical waste. Also, induction and refresher training Program of Biomedical waste management should be conducted to avoid improper management of Biomedical waste. Healthcare workers should be made aware of risks of poor Biomedical waste management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20waste" title="biomedical waste">biomedical waste</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20waste%20management" title=" biomedical waste management"> biomedical waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital-tertiary%20care" title=" hospital-tertiary care"> hospital-tertiary care</a>, <a href="https://publications.waset.org/abstracts/search?q=New%20Delhi" title=" New Delhi"> New Delhi</a> </p> <a href="https://publications.waset.org/abstracts/56048/estimation-of-biomedical-waste-generated-in-a-tertiary-care-hospital-in-new-delhi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25565</span> Biomedical Waste Management an Unsung Hero</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Madan">Preeti Madan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shalini%20Malhotra"> Shalini Malhotra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirmaljit%20Kaur"> Nirmaljit Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Charoo%20Hans"> Charoo Hans</a>, <a href="https://publications.waset.org/abstracts/search?q=VK%20Sabarwal"> VK Sabarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hospital is one of the most diverse and complex institutions frequented by people from every walk of life without any distinction between age, sex, gender, religion or intellect. This is over and above the normal inhabitant of hospital i.e. doctors, patients, and paramedical staff. The hospital waste generated 85% is non hazardous, 10% infectious and around 5% are non-infectious but hazardous waste. The management of biomedical waste is still in its infancy. There is a lot of confusion with the problems among the generators, operators, decision makers, and general community about the safe management of biomedical waste prompt action initiated to seek new scientific, safe, and cost-effective management of waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20waste" title="biomedical waste">biomedical waste</a>, <a href="https://publications.waset.org/abstracts/search?q=nosocomial%20infection" title=" nosocomial infection"> nosocomial infection</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=hospitals" title=" hospitals"> hospitals</a> </p> <a href="https://publications.waset.org/abstracts/22522/biomedical-waste-management-an-unsung-hero" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25564</span> A Survey of Semantic Integration Approaches in Bioinformatics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaimaa%20Messaoudi">Chaimaa Messaoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachida%20Fissoune"> Rachida Fissoune</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Badir"> Hassan Badir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technological advances of computer science and data analysis are helping to provide continuously huge volumes of biological data, which are available on the web. Such advances involve and require powerful techniques for data integration to extract pertinent knowledge and information for a specific question. Biomedical exploration of these big data often requires the use of complex queries across multiple autonomous, heterogeneous and distributed data sources. Semantic integration is an active area of research in several disciplines, such as databases, information-integration, and ontology. We provide a survey of some approaches and techniques for integrating biological data, we focus on those developed in the ontology community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20ontology" title="biological ontology">biological ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=linked%20data" title=" linked data"> linked data</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20data%20integration" title=" semantic data integration"> semantic data integration</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20web" title=" semantic web"> semantic web</a> </p> <a href="https://publications.waset.org/abstracts/60697/a-survey-of-semantic-integration-approaches-in-bioinformatics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25563</span> Structuring and Visualizing Healthcare Claims Data Using Systems Architecture Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inas%20S.%20Khayal">Inas S. Khayal</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiping%20Zhou"> Weiping Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Skinner"> Jonathan Skinner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Healthcare delivery systems around the world are in crisis. The need to improve health outcomes while decreasing healthcare costs have led to an imminent call to action to transform the healthcare delivery system. While Bioinformatics and Biomedical Engineering have primarily focused on biological level data and biomedical technology, there is clear evidence of the importance of the delivery of care on patient outcomes. Classic singular decomposition approaches from reductionist science are not capable of explaining complex systems. Approaches and methods from systems science and systems engineering are utilized to structure healthcare delivery system data. Specifically, systems architecture is used to develop a multi-scale and multi-dimensional characterization of the healthcare delivery system, defined here as the Healthcare Delivery System Knowledge Base. This paper is the first to contribute a new method of structuring and visualizing a multi-dimensional and multi-scale healthcare delivery system using systems architecture in order to better understand healthcare delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health%20informatics" title="health informatics">health informatics</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20thinking" title=" systems thinking"> systems thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20architecture" title=" systems architecture"> systems architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20delivery%20system" title=" healthcare delivery system"> healthcare delivery system</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20analytics" title=" data analytics"> data analytics</a> </p> <a href="https://publications.waset.org/abstracts/69032/structuring-and-visualizing-healthcare-claims-data-using-systems-architecture-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25562</span> Study and Analyze of Metallic Glasses for Biomedical Applications: From Soft to Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Monfared">A. Monfared</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Faghihi"> S. Faghihi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metallic glasses (MGs) are newcomers in the field of metals that show great potential for soft and bone tissue engineering due to the amorphous structure that endows unique properties. Up to now, various MGs based on Ti, Zr, Mg, Zn, Fe, Ca, and Sr in the form of a ribbon, bulk, thin-film, and powder have been investigated for biomedical purposes. This article reviews the compositions and biomedical properties of MGs as well as analyzes results in order to guide new approaches and future development of MGs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metallic%20glasses" title="metallic glasses">metallic glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title=" biocompatibility"> biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=biocorrosion" title=" biocorrosion"> biocorrosion</a> </p> <a href="https://publications.waset.org/abstracts/142754/study-and-analyze-of-metallic-glasses-for-biomedical-applications-from-soft-to-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25561</span> Design of Bacterial Pathogens Identification System Based on Scattering of Laser Beam Light and Classification of Binned Plots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mubashir%20Hussain">Mubashir Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu%20Lv"> Mu Lv</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohan%20Dong"> Xiaohan Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiyang%20Li"> Zhiyang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Liu"> Bin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nongyue%20He"> Nongyue He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detection and classification of microbes have a vast range of applications in biomedical engineering especially in detection, characterization, and quantification of bacterial contaminants. For identification of pathogens, different techniques are emerging in the field of biomedical engineering. Latest technology uses light scattering, capable of identifying different pathogens without any need for biochemical processing. Bacterial Pathogens Identification System (BPIS) which uses a laser beam, passes through the sample and light scatters off. An assembly of photodetectors surrounded by the sample at different angles to detect the scattering of light. The algorithm of the system consists of two parts: (a) Library files, and (b) Comparator. Library files contain data of known species of bacterial microbes in the form of binned plots, while comparator compares data of unknown sample with library files. Using collected data of unknown bacterial species, highest voltage values stored in the form of peaks and arranged in 3D histograms to find the frequency of occurrence. Resulting data compared with library files of known bacterial species. If sample data matching with any library file of known bacterial species, sample identified as a matched microbe. An experiment performed to identify three different bacteria particles: Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. By applying algorithm using library files of given samples, results were compromising. This system is potentially applicable to several biomedical areas, especially those related to cell morphology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20identification" title="microbial identification">microbial identification</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20scattering" title=" laser scattering"> laser scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20identification" title=" peak identification"> peak identification</a>, <a href="https://publications.waset.org/abstracts/search?q=binned%20plots%20classification" title=" binned plots classification"> binned plots classification</a> </p> <a href="https://publications.waset.org/abstracts/95711/design-of-bacterial-pathogens-identification-system-based-on-scattering-of-laser-beam-light-and-classification-of-binned-plots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25560</span> A SiGe Low Power RF Front-End Receiver for 5.8GHz Wireless Biomedical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyunwon%20Moon">Hyunwon Moon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is necessary to realize new biomedical wireless communication systems which send the signals collected from various bio sensors located at human body in order to monitor our health. Also, it should seamlessly connect to the existing wireless communication systems. A 5.8 GHz ISM band low power RF front-end receiver for a biomedical wireless communication system is implemented using a 0.5 &micro;m SiGe BiCMOS process. To achieve low power RF front-end, the current optimization technique for selecting device size is utilized. The implemented low noise amplifier (LNA) shows a power gain of 9.8 dB, a noise figure (NF) of below 1.75 dB, and an IIP3 of higher than 7.5 dBm while current consumption is only 6 mA at supply voltage of 2.5 V. Also, the performance of a down-conversion mixer is measured as a conversion gain of 11 dB and SSB NF of 10 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical" title="biomedical">biomedical</a>, <a href="https://publications.waset.org/abstracts/search?q=LNA" title=" LNA"> LNA</a>, <a href="https://publications.waset.org/abstracts/search?q=mixer" title=" mixer"> mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver" title=" receiver"> receiver</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20front-end" title=" RF front-end"> RF front-end</a>, <a href="https://publications.waset.org/abstracts/search?q=SiGe" title=" SiGe"> SiGe</a> </p> <a href="https://publications.waset.org/abstracts/53327/a-sige-low-power-rf-front-end-receiver-for-58ghz-wireless-biomedical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25559</span> The Use of Gelatin in Biomedical Engineering: Halal Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syazwani%20Ramli">Syazwani Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhidayu%20Muhamad%20Zain"> Norhidayu Muhamad Zain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the use of gelatin as biomaterials in tissue engineering are evolving especially in skin graft and wound dressing applications. Towards year 2018, Malaysia is in the way of planning to get the halal certification for biomedical device in order to cater the needs of Muslims and non-Muslims in Malaysia. However, the use of gelatins in tissue engineering are mostly derived from non-halal sources. Currently, gelatin production mostly comes from mammalian gelatin sources. Moreover, within these past years, just a few studies of the uses of gelatin in tissue engineering from halal perspective has been studied. Thus, this paper aims to give overview of the use of gelatin from different sources from halal perspectives. This review also discussing the current status of halal for the emerging biomedical devices. In addition, the different sources of gelatin used in tissue engineering are being identified and provides better alternatives for halal gelatin. Cold- water fish skin gelatin could be an effective alternative to substitute the mammalian sources. Therefore, this review is important because the information about the halal biomedical devices will delighted Muslim consumers and give better insight of halal gelatin in tissue engineering application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20device" title="biomedical device">biomedical device</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatin" title=" gelatin"> gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=halal" title=" halal"> halal</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20graft" title=" skin graft"> skin graft</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/85056/the-use-of-gelatin-in-biomedical-engineering-halal-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25558</span> Preparation and Characterizations of Hydroxyapatite-Sodium Alginate Nanocomposites for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Friday%20Godwin%20Okibe">Friday Godwin Okibe</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Chinweuba%20Onoyima"> Christian Chinweuba Onoyima</a>, <a href="https://publications.waset.org/abstracts/search?q=Edith%20Bolanle%20Agbaji"> Edith Bolanle Agbaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Olatunji%20Ajibola"> Victor Olatunji Ajibola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer-inorganic nanocomposites are presently impacting diverse areas, specifically in biomedical sciences. In this research, hydroxyapatite-sodium alginate has been prepared, and characterized, with emphasis on the influence of sodium alginate on its characteristics. In situ wet chemical precipitation method was used in the preparation. The prepared nanocomposite was characterized with Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), with image analysis, and X-Ray Diffraction (XRD). The FTIR study shows peaks characteristics of hydroxyapatite and confirmed formation of the nanocomposite via chemical interaction between sodium alginate and hydroxyapatite. Image analysis shows the nanocomposites to be of irregular morphologies which did not show significant change with increasing sodium alginate addition, while particle size decreased with increase in sodium alginate addition (359.46 nm to 109.98 nm). From the XRD data, both the crystallite size and degree of crystallinity also decreased with increasing sodium alginate composition (32.36 nm to 9.47 nm and 72.87% to 1.82% respectively), while the specific surface area and microstrain increased with increasing sodium alginate composition (0.0041 to 0.0139 and 58.99 m²/g to 201.58 m²/g respectively). The results show that the formulation with 50%wt of sodium alginate (HASA-50%wt), possess exceptional characteristics for biomedical applications such as drug delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20alginate" title=" sodium alginate"> sodium alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical" title=" biomedical"> biomedical</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/66789/preparation-and-characterizations-of-hydroxyapatite-sodium-alginate-nanocomposites-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25557</span> Application of Nanoparticles in Biomedical and MRI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raziyeh%20Mohammadi">Raziyeh Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. The performance of nanoparticles for biomedical applications is often assessed by their narrow size distribution, suitable magnetic saturation, and low toxicity effects. Superparamagnetic iron oxide nanoparticles have received great attention due to their applications as contrast agents for magnetic resonance imaging (MRI. (Processes in the tissue where the blood brain barrier is intact in this way shielded from the contact to this conventional contrast agent and will only reveal changes in the tissue if it involves an alteration in the vasculature. This technique is very useful for detecting tumors and can even be used for detecting metabolic functional alterations in the brain, such as epileptic activity.SPIONs have found application in Magnetic Resonance Imaging (MRI) and magnetic hyperthermia. Unlike bulk iron, SPIONs do not have remnant magnetization in the absence of the external magnetic field; therefore, a precise remote control over their action is possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical" title=" biomedical"> biomedical</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide" title=" iron oxide"> iron oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=spions" title=" spions"> spions</a> </p> <a href="https://publications.waset.org/abstracts/145609/application-of-nanoparticles-in-biomedical-and-mri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25556</span> Biomedical Definition Extraction Using Machine Learning with Synonymous Feature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Qu">Jian Qu</a>, <a href="https://publications.waset.org/abstracts/search?q=Akira%20Shimazu"> Akira Shimazu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> OOV (Out Of Vocabulary) terms are terms that cannot be found in many dictionaries. Although it is possible to translate such OOV terms, the translations do not provide any real information for a user. We present an OOV term definition extraction method by using information available from the Internet. We use features such as occurrence of the synonyms and location distances. We apply machine learning method to find the correct definitions for OOV terms. We tested our method on both biomedical type and name type OOV terms, our work outperforms existing work with an accuracy of 86.5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title="information retrieval">information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=definition%20retrieval" title=" definition retrieval"> definition retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=OOV%20%28out%20of%20vocabulary%29" title=" OOV (out of vocabulary)"> OOV (out of vocabulary)</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20information%20retrieval" title=" biomedical information retrieval"> biomedical information retrieval</a> </p> <a href="https://publications.waset.org/abstracts/39665/biomedical-definition-extraction-using-machine-learning-with-synonymous-feature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25555</span> Bridging Biomedical Engineering Bachelor&#039;s Degree Programs in Saudi Arabia: A Study Case of Riyadh College of Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamad%20Albadr">Hamad Albadr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With a rapid influence to sustain the needs for global trends that had arisen for the increasing complexities in health-care provision, the increasing number of health professionals at different levels, and the need to assure more equitable access to health care, the great variation in the levels of initial education for health care professional around the world had been assign bachelor's degree as the minimum point of entry to the health professions. This intent had affected all the health care professions including biomedical engineering. In Saudi Arabia, these challenges add more pressure to retain the global trends for associate degree graduates to upgrade their education to the bachelor's degree or called birding. This paper is to review the reality of biomedical technology programs that offered in Saudi Arabia by Technical Colleges or Community Colleges nationwide and the challenges that face these colleges to run such bridging program to achieve the Bachelor's degree in biomedical engineering and the official requirements by the Ministry of Higher Education and to maintain the international standards. The author will use strategic planning methodology for designing the biomedical engineering bridging of bachelor's program by reviewing the responsibilities of the biomedical engineers in hospitals through their job descriptions to determine the job assessment needs in advance to Developing a Curriculum (DACUM) through Instructional System Design (ISD) approach via five steps: Analysis, Design, Development, Implement, Evaluate (ADDIE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bachelor%27s%20degree%20bridging" title="bachelor&#039;s degree bridging">bachelor&#039;s degree bridging</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20engineering%20program" title=" biomedical engineering program"> biomedical engineering program</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a>, <a href="https://publications.waset.org/abstracts/search?q=Riyadh%20College%20of%20Technology" title=" Riyadh College of Technology"> Riyadh College of Technology</a> </p> <a href="https://publications.waset.org/abstracts/27861/bridging-biomedical-engineering-bachelors-degree-programs-in-saudi-arabia-a-study-case-of-riyadh-college-of-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25554</span> Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Talib%20Mohammed">Mohsin Talib Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20A.%20Khan"> Zahid A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20N.%20Siddiquee"> Arshad N. Siddiquee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biometallic materials are the most important materials for use in biomedical applications especially in manufacturing a variety of biological artificial replacements in a modern worlds, e.g. hip, knee or shoulder joints, due to their advanced characteristics. Titanium (Ti) and its alloys are used extensively in biomedical applications based on their high specific strength and excellent corrosion resistance. Beta-Ti alloys containing completely biocompatible elements are exceptionally prospective materials for manufacturing of bioimplants. They have superior mechanical, chemical and electrochemical properties for use as biomaterials. These biomaterials have the ability to introduce the most important property of biochemical compatibility which is low elastic modulus. This review examines current information on the recent developments in alloying elements leading to improvements of beta Ti alloys for use as biomaterials. Moreover, this paper focuses mainly on the evolution, evaluation and development of the modulus of elasticity as an effective factor on the performance of beta alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta%20alloys" title="beta alloys">beta alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%27s%20modulus" title=" Young&#039;s modulus"> Young&#039;s modulus</a> </p> <a href="https://publications.waset.org/abstracts/6030/beta-titanium-alloys-the-lowest-elastic-modulus-for-biomedical-applications-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25553</span> The Impact of Intelligent Control Systems on Biomedical Engineering and Research</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melkamu%20Tadesse%20Getachew">Melkamu Tadesse Getachew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intelligent control systems have revolutionized biomedical engineering, advancing research and enhancing medical practice. This review paper examines the impact of intelligent control on various aspects of biomedical engineering. It analyzes how these systems enhance precision and accuracy in biomedical instrumentation, improving diagnostics, monitoring, and treatment. Integration challenges are addressed, and potential solutions are proposed. The paper also investigates the optimization of drug delivery systems through intelligent control. It explores how intelligent systems contribute to precise dosing, targeted drug release, and personalized medicine. Challenges related to controlled drug release and patient variability are discussed, along with potential avenues for overcoming them. The comparison of algorithms used in intelligent control systems in biomedical control is also reviewed. The implications of intelligent control in computational and systems biology are explored, showcasing how these systems enable enhanced analysis and prediction of complex biological processes. Challenges such as interpretability, human-machine interaction, and machine reliability are examined, along with potential solutions. Intelligent control in biomedical engineering also plays a crucial role in risk management during surgical operations. This section demonstrates how intelligent systems improve patient safety and surgical outcomes when integrated into surgical robots, augmented reality, and preoperative planning. The challenges associated with these implementations and potential solutions are discussed in detail. In summary, this review paper comprehensively explores the widespread impact of intelligent control on biomedical engineering, showing the future of human health issues promising. It discusses application areas, challenges, and potential solutions, highlighting the transformative potential of these systems in advancing research and improving medical practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Intelligent%20control%20systems" title="Intelligent control systems">Intelligent control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20instrumentation" title=" biomedical instrumentation"> biomedical instrumentation</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery%20systems" title=" drug delivery systems"> drug delivery systems</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20surgical%20instruments" title=" robotic surgical instruments"> robotic surgical instruments</a>, <a href="https://publications.waset.org/abstracts/search?q=Computational%20monitoring%20and%20modeling" title=" Computational monitoring and modeling"> Computational monitoring and modeling</a> </p> <a href="https://publications.waset.org/abstracts/186076/the-impact-of-intelligent-control-systems-on-biomedical-engineering-and-research" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25552</span> Mechanical Properties of ECAP-Biomedical Titanium Materials: A Review </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Talib%20Mohammed">Mohsin Talib Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20A.%20Khan"> Zahid A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20N.%20Siddiquee"> Arshad N. Siddiquee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wide use of titanium (Ti) materials in medicine gives impetus to a search for development new techniques with elevated properties such as strength, corrosion resistance and Young's modulus close to that of bone tissue. This article presents the most recent state of the art on the use of equal channel angular pressing (ECAP) technique in evolving mechanical characteristics of the ultrafine-grained bio-grade Ti materials. Over past few decades, research activities in this area have grown enormously and have produced interesting results, including achieving the combination of conflicting properties that are desirable for biomedical applications by severe plastic deformation (SPD) processing. A comprehensive review of the most recent work in this area is systematically presented. The challenges in processing ultrafine-grained Ti materials are identified and discussed. An overview of the biomedical Ti alloys processed with ECAP technique is given in this review, along with a summary of their effect on the important mechanical properties that can be achieved by SPD processing. The paper also offers insights in the mechanisms underlying SPD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title="mechanical properties">mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=ECAP" title=" ECAP"> ECAP</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications "> biomedical applications </a> </p> <a href="https://publications.waset.org/abstracts/27848/mechanical-properties-of-ecap-biomedical-titanium-materials-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25551</span> A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Siva%20Rama%20Krishna">L. Siva Rama Krishna</a>, <a href="https://publications.waset.org/abstracts/search?q=Sriram%20Venkatesh"> Sriram Venkatesh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sastish%20Kumar"> M. Sastish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Uma%20Maheswara%20Chary"> M. Uma Maheswara Chary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyse the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title="rapid prototyping">rapid prototyping</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20sintering" title=" selective laser sintering"> selective laser sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=cranial%20defect" title=" cranial defect"> cranial defect</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20error" title=" dimensional error"> dimensional error</a> </p> <a href="https://publications.waset.org/abstracts/3068/a-comparative-study-on-the-dimensional-error-of-3d-cad-model-and-sls-rp-model-for-reconstruction-of-cranial-defect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25550</span> Secure Bio Semantic Computing Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Yamaguchi">Hiroshi Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Phillip%20C.%20Y.%20Sheu"> Phillip C. Y. Sheu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryo%20Fujita"> Ryo Fujita</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Tsujii"> Shigeo Tsujii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the secure BioSemantic Scheme is presented to bridge biological/biomedical research problems and computational solutions via semantic computing. Due to the diversity of problems in various research fields, the semantic capability description language (SCDL) plays and important role as a common language and generic form for problem formalization. SCDL is expected the essential for future semantic and logical computing in Biosemantic field. We show several example to Biomedical problems in this paper. Moreover, in the coming age of cloud computing, the security problem is considered to be crucial issue and we presented a practical scheme to cope with this problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title="biomedical applications">biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20information%20retrieval%20%28PIR%29" title=" private information retrieval (PIR)"> private information retrieval (PIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20capability%20description%20language%20%28SCDL%29" title=" semantic capability description language (SCDL)"> semantic capability description language (SCDL)</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20computing" title=" semantic computing"> semantic computing</a> </p> <a href="https://publications.waset.org/abstracts/27808/secure-bio-semantic-computing-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25549</span> Organ Transplantation in Pakistan from an Anthropological Perspectives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qurratulain%20Faheem">Qurratulain Faheem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human body often serves as a reference point to analyse the notions of self and society. Situating on Merleau-Ponty and Bourdieu theories of embodiments, this research explores the notions around the human body and its influence on the ethical considerations in regards to organ transplantation among the Muslim communities in Pakistan. The context of Pakistan makes an intriguing case study as cadaveric organ transplantation is not in practise. Whereas living organ transplantation is commonly is practised between family membersonly. These contradictory practices apparently rests on the ideologies around the human body and religious beliefs as well the personal judgements and authority of healthcare professionals. This research is a year-long ethnographic study carried out as part of doctoral studies. An anthropological approach towards organ transplantation in Pakistan brought forward various socio-cultural notions around the human body and selfhood that serve as a framework around biomedical ethical issues in various societies. Further, it surface the contradictions and issues associated with organ transplantation that makes it a dilemma situated in a nexus of various socio-cultural and political factors rather seeing it as an isolated health concern. This research is a novel study on the subject of organ transplantation in the context of Pakistan but also put forward ethnographic data that could serve as a reference in other religious societies. Further, the ethnographic data bring forward experiences and stories of organ receivers, organ donors, religious leaders, healthcare professionals, and the general public, which aspire to encourage biomedical ethicists and social-scientists to consider ethnography as a research methodology and rely upon people’s lived experiences while establishing policies and practices around biomedical ethical issues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organ%20transplantation" title="organ transplantation">organ transplantation</a>, <a href="https://publications.waset.org/abstracts/search?q=ethics" title=" ethics"> ethics</a>, <a href="https://publications.waset.org/abstracts/search?q=pakistan" title=" pakistan"> pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=islam" title=" islam"> islam</a>, <a href="https://publications.waset.org/abstracts/search?q=muslims" title=" muslims"> muslims</a>, <a href="https://publications.waset.org/abstracts/search?q=living%20organ%20donation" title=" living organ donation"> living organ donation</a> </p> <a href="https://publications.waset.org/abstracts/157870/organ-transplantation-in-pakistan-from-an-anthropological-perspectives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25548</span> An Efficient Digital Baseband ASIC for Wireless Biomedical Signals Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kah-Hyong%20Chang">Kah-Hyong Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Liu"> Xin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Hao%20Cheong"> Jia Hao Cheong</a>, <a href="https://publications.waset.org/abstracts/search?q=Saisundar%20Sankaranarayanan"> Saisundar Sankaranarayanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dexing%20Pang"> Dexing Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongzhao%20Zheng"> Hongzhao Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A digital baseband Application-Specific Integrated Circuit (ASIC) is developed for a microchip transponder to transmit signals and temperature levels from biomedical monitoring devices. The transmission protocol is adapted from the ISO/IEC 11784/85 standard. The module has a decimation filter that employs only a single adder-subtractor in its datapath. The filtered output is coded with cyclic redundancy check and transmitted through backscattering Load Shift Keying (LSK) modulation to a reader. Fabricated using the 0.18-μm CMOS technology, the module occupies 0.116 mm² in chip area (digital baseband: 0.060 mm², decimation filter: 0.056 mm²), and consumes a total of less than 0.9 μW of power (digital baseband: 0.75 μW, decimation filter: 0.14 μW). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20sensor" title="biomedical sensor">biomedical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=decimation%20filter" title=" decimation filter"> decimation filter</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20integrated%20circuit%20%28RFIC%29%20baseband" title=" radio frequency integrated circuit (RFIC) baseband"> radio frequency integrated circuit (RFIC) baseband</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20sensor" title=" temperature sensor"> temperature sensor</a> </p> <a href="https://publications.waset.org/abstracts/37886/an-efficient-digital-baseband-asic-for-wireless-biomedical-signals-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25547</span> Exploring the Concerns and Practices Associated with Organ Transplantation in the Context of Muslims in Pakistan from an Anthropological Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qurratulain%20Faheem">Qurratulain Faheem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human body often serves as a reference point to analyse the notions of self and society. Situating on Merleau-Ponty and Bourdieu theories of embodiments, this research explores the notions around the human body and its influence on the ethical considerations in regards to organ transplantation among the Muslim communities in Pakistan. The context of Pakistan makes an intriguing case study as cadaveric organ transplantation is not in practise. Whereas living organ transplantation is commonly is practised between family members only. These contradictory practices apparently rests on the ideologies around the human body and religious beliefs as well the personal judgements and authority of healthcare professionals. This research is a year-long ethnographic study carried out as part of doctoral studies. An anthropological approach towards organ transplantation in Pakistan brought forward various socio-cultural notions around the human body and selfhood that serve as a framework around biomedical ethical issues in various societies. Further, it surface the contradictions and issues associated with organ transplantation that makes it a dilemma situated in a nexus of various socio-cultural and political factors rather seeing it as an isolated health concern. This research is a novel study on the subject of organ transplantation in the context of Pakistan but also put forward ethnographic data that could serve as a reference in other religious societies. Further, the ethnographic data bring forward experiences and stories of organ receivers, organ donors, religious leaders, healthcare professionals, and the general public, which aspire to encourage biomedical ethicists and social-scientists to consider ethnography as a research methodology and rely upon people’s lived experiences while establishing policies and practices around biomedical ethical issues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gender" title="Gender">Gender</a>, <a href="https://publications.waset.org/abstracts/search?q=organ%20transplantation" title=" organ transplantation"> organ transplantation</a>, <a href="https://publications.waset.org/abstracts/search?q=muslims" title=" muslims"> muslims</a>, <a href="https://publications.waset.org/abstracts/search?q=pakistan" title=" pakistan"> pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=organ%20donation" title=" organ donation"> organ donation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethics" title=" bioethics"> bioethics</a>, <a href="https://publications.waset.org/abstracts/search?q=culture%20and%20religion" title=" culture and religion"> culture and religion</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a> </p> <a href="https://publications.waset.org/abstracts/157873/exploring-the-concerns-and-practices-associated-with-organ-transplantation-in-the-context-of-muslims-in-pakistan-from-an-anthropological-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25546</span> Remote Wireless Patient Monitoring System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sagar%20R.%20Patil">Sagar R. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20R.%20Gawade"> Dinesh R. Gawade</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhir%20N.%20Divekar"> Sudhir N. Divekar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the medical devices we found when we visit a hospital care unit such device is ‘patient monitoring system’. This device (patient monitoring system) informs doctors and nurses about the patient’s physiological signals. However, this device (patient monitoring system) does not have a remote monitoring capability, which is necessitates constant onsite attendance by support personnel (doctors and nurses). Thus, we have developed a Remote Wireless Patient Monitoring System using some biomedical sensors and Android OS, which is a portable patient monitoring. This device(Remote Wireless Patient Monitoring System) monitors the biomedical signals of patients in real time and sends them to remote stations (doctors and nurse’s android Smartphone and web) for display and with alerts when necessary. Wireless Patient Monitoring System different from conventional device (Patient Monitoring system) in two aspects: First its wireless communication capability allows physiological signals to be monitored remotely and second, it is portable so patients can move while there biomedical signals are being monitor. Wireless Patient Monitoring is also notable because of its implementation. We are integrated four sensors such as pulse oximeter (SPO2), thermometer, respiration, blood pressure (BP), heart rate and electrocardiogram (ECG) in this device (Wireless Patient Monitoring System) and Monitoring and communication applications are implemented on the Android OS using threads, which facilitate the stable and timely manipulation of signals and the appropriate sharing of resources. The biomedical data will be display on android smart phone as well as on web Using web server and database system we can share these physiological signals with remote place medical personnel’s or with any where in the world medical personnel’s. We verified that the multitasking implementation used in the system was suitable for patient monitoring and for other Healthcare applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patient%20monitoring" title="patient monitoring">patient monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20patient%20monitoring" title=" wireless patient monitoring"> wireless patient monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-medical%20signals" title=" bio-medical signals"> bio-medical signals</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20signals" title=" physiological signals"> physiological signals</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20system" title=" embedded system"> embedded system</a>, <a href="https://publications.waset.org/abstracts/search?q=Android%20OS" title=" Android OS"> Android OS</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20oximeter%20%28SPO2%29" title=" pulse oximeter (SPO2)"> pulse oximeter (SPO2)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermometer" title=" thermometer"> thermometer</a>, <a href="https://publications.waset.org/abstracts/search?q=respiration" title=" respiration"> respiration</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure%20%28BP%29" title=" blood pressure (BP)"> blood pressure (BP)</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title=" heart rate"> heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram%20%28ECG%29" title=" electrocardiogram (ECG)"> electrocardiogram (ECG)</a> </p> <a href="https://publications.waset.org/abstracts/26470/remote-wireless-patient-monitoring-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25545</span> Data Transformations in Data Envelopment Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Mohammadpour">Mansour Mohammadpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20transformation" title="data transformation">data transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title=" data envelopment analysis"> data envelopment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=undesirable%20data" title=" undesirable data"> undesirable data</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20data" title=" negative data"> negative data</a> </p> <a href="https://publications.waset.org/abstracts/192236/data-transformations-in-data-envelopment-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25544</span> Synthesis and Characterization of Carboxymethyl Cellulose-Chitosan Based Composite Hydrogels for Biomedical and Non-Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Uyanga">K. Uyanga</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Daoud"> W. Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogels have attracted much academic and industrial attention due to their unique properties and potential biomedical and non-biomedical applications. Limitations on extending their applications have resulted from the synthesis of hydrogels using toxic materials and complex irreproducible processing techniques. In order to promote environmental sustainability, hydrogel efficiency, and wider application, this study focused on the synthesis of composite hydrogels matrices from an edible non-toxic crosslinker-citric acid (CA) using a simple low energy processing method based on carboxymethyl cellulose (CMC) and chitosan (CSN) natural polymers. Composite hydrogels were developed by chemical crosslinking. The results demonstrated that CMC:2CSN:CA exhibited good performance properties and super-absorbency 21× its original weight. This makes it promising for biomedical applications such as chronic wound healing and regeneration, next generation skin substitute, in situ bone regeneration and cell delivery. On the other hand, CMC:CSN:CA exhibited durable well-structured internal network with minimum swelling degrees, water absorbency, excellent gel fraction, and infra-red reflectance. These properties make it a suitable composite hydrogel matrix for warming effect and controlled and efficient release of loaded materials. CMC:2CSN:CA and CMC:CSN:CA composite hydrogels developed also exhibited excellent chemical, morphological, and thermal properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=citric%20acid" title="citric acid">citric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=fumaric%20acid" title=" fumaric acid"> fumaric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=tartaric%20acid" title=" tartaric acid"> tartaric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20nitrate%20hexahydrate" title=" zinc nitrate hexahydrate"> zinc nitrate hexahydrate</a> </p> <a href="https://publications.waset.org/abstracts/110048/synthesis-and-characterization-of-carboxymethyl-cellulose-chitosan-based-composite-hydrogels-for-biomedical-and-non-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25543</span> System Dietadhoc® - A Fusion of Human-Centred Design and Agile Development for the Explainability of AI Techniques Based on Nutritional and Clinical Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelangelo%20Sofo">Michelangelo Sofo</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Labianca"> Giuseppe Labianca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the scientific community's interest in the exploratory analysis of biomedical data has increased exponentially. Considering the field of research of nutritional biologists, the curative process, based on the analysis of clinical data, is a very delicate operation due to the fact that there are multiple solutions for the management of pathologies in the food sector (for example can recall intolerances and allergies, management of cholesterol metabolism, diabetic pathologies, arterial hypertension, up to obesity and breathing and sleep problems). In this regard, in this research work a system was created capable of evaluating various dietary regimes for specific patient pathologies. The system is founded on a mathematical-numerical model and has been created tailored for the real working needs of an expert in human nutrition using the human-centered design (ISO 9241-210), therefore it is in step with continuous scientific progress in the field and evolves through the experience of managed clinical cases (machine learning process). DietAdhoc® is a decision support system nutrition specialists for patients of both sexes (from 18 years of age) developed with an agile methodology. Its task consists in drawing up the biomedical and clinical profile of the specific patient by applying two algorithmic optimization approaches on nutritional data and a symbolic solution, obtained by transforming the relational database underlying the system into a deductive database. For all three solution approaches, particular emphasis has been given to the explainability of the suggested clinical decisions through flexible and customizable user interfaces. Furthermore, the system has multiple software modules based on time series and visual analytics techniques that allow to evaluate the complete picture of the situation and the evolution of the diet assigned for specific pathologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20decision%20support" title="medical decision support">medical decision support</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20data%20extraction" title=" physiological data extraction"> physiological data extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20driven%20diagnosis" title=" data driven diagnosis"> data driven diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20centered%20AI" title=" human centered AI"> human centered AI</a>, <a href="https://publications.waset.org/abstracts/search?q=symbiotic%20AI%20paradigm" title=" symbiotic AI paradigm"> symbiotic AI paradigm</a> </p> <a href="https://publications.waset.org/abstracts/190221/system-dietadhoc-a-fusion-of-human-centred-design-and-agile-development-for-the-explainability-of-ai-techniques-based-on-nutritional-and-clinical-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25542</span> X-Ray Fluorescence Molecular Imaging with Improved Sensitivity for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guohua%20Cao">Guohua Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Dong"> Xu Dong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X-ray Fluorescence Molecular Imaging (XFMI) holds great promise as a low-cost molecular imaging modality for biomedical applications with high chemical sensitivity. However, for in vivo biomedical applications, a key technical bottleneck is the relatively low chemical sensitivity of XFMI, especially at a reasonably low radiation dose. In laboratory x-ray source based XFMI, one of the main factors that limits the chemical sensitivity of XFMI is the scattered x-rays. We will present our latest findings on improving the chemical sensitivity of XFMI using excitation beam spectrum optimization. XFMI imaging experiments on two mouse-sized phantoms were conducted at three different excitation beam spectra. Our results show that the minimum detectable concentration (MDC) of iodine can be readily increased by five times via excitation spectrum optimization. Findings from this investigation could find use for in vivo pre-clinical small-animal XFMI in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20imaging" title="molecular imaging">molecular imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20fluorescence" title=" X-ray fluorescence"> X-ray fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20sensitivity" title=" chemical sensitivity"> chemical sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20scattering" title=" X-ray scattering"> X-ray scattering</a> </p> <a href="https://publications.waset.org/abstracts/94803/x-ray-fluorescence-molecular-imaging-with-improved-sensitivity-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25541</span> Functionalized Nanoparticles for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Geremew">Temesgen Geremew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Functionalized nanoparticles have emerged as a revolutionary class of materials with immense potential in various biomedical applications. These engineered nanoparticles possess unique properties tailored to interact with biological systems, offering unprecedented opportunities in drug delivery, imaging, diagnostics, and therapy. This research delves into the design, synthesis, and characterization of functionalized nanoparticles for targeted biomedical applications. The primary focus lies on developing nanoparticles with precisely controlled size, surface chemistry, and biocompatibility for specific medical purposes. The research will also explore the crucial interaction of these nanoparticles with biological systems, encompassing cellular uptake, biodistribution, and potential toxicity evaluation. The successful development of functionalized nanoparticles holds the promise to revolutionize various aspects of healthcare. This research aspires to contribute significantly to this advancement by providing valuable insights into the design and application of these versatile materials within the ever-evolving field of biomedicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedicals" title=" biomedicals"> biomedicals</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title=" biocompatibility"> biocompatibility</a> </p> <a href="https://publications.waset.org/abstracts/183266/functionalized-nanoparticles-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25540</span> SPARK: An Open-Source Knowledge Discovery Platform That Leverages Non-Relational Databases and Massively Parallel Computational Power for Heterogeneous Genomic Datasets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thilina%20Ranaweera">Thilina Ranaweera</a>, <a href="https://publications.waset.org/abstracts/search?q=Enes%20Makalic"> Enes Makalic</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20L.%20Hopper"> John L. Hopper</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Bickerstaffe"> Adrian Bickerstaffe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data are the primary asset of biomedical researchers, and the engine for both discovery and research translation. As the volume and complexity of research datasets increase, especially with new technologies such as large single nucleotide polymorphism (SNP) chips, so too does the requirement for software to manage, process and analyze the data. Researchers often need to execute complicated queries and conduct complex analyzes of large-scale datasets. Existing tools to analyze such data, and other types of high-dimensional data, unfortunately suffer from one or more major problems. They typically require a high level of computing expertise, are too simplistic (i.e., do not fit realistic models that allow for complex interactions), are limited by computing power, do not exploit the computing power of large-scale parallel architectures (e.g. supercomputers, GPU clusters etc.), or are limited in the types of analysis available, compounded by the fact that integrating new analysis methods is not straightforward. Solutions to these problems, such as those developed and implemented on parallel architectures, are currently available to only a relatively small portion of medical researchers with access and know-how. The past decade has seen a rapid expansion of data management systems for the medical domain. Much attention has been given to systems that manage phenotype datasets generated by medical studies. The introduction of heterogeneous genomic data for research subjects that reside in these systems has highlighted the need for substantial improvements in software architecture. To address this problem, we have developed SPARK, an enabling and translational system for medical research, leveraging existing high performance computing resources, and analysis techniques currently available or being developed. It builds these into The Ark, an open-source web-based system designed to manage medical data. SPARK provides a next-generation biomedical data management solution that is based upon a novel Micro-Service architecture and Big Data technologies. The system serves to demonstrate the applicability of Micro-Service architectures for the development of high performance computing applications. When applied to high-dimensional medical datasets such as genomic data, relational data management approaches with normalized data structures suffer from unfeasibly high execution times for basic operations such as insert (i.e. importing a GWAS dataset) and the queries that are typical of the genomics research domain. SPARK resolves these problems by incorporating non-relational NoSQL databases that have been driven by the emergence of Big Data. SPARK provides researchers across the world with user-friendly access to state-of-the-art data management and analysis tools while eliminating the need for high-level informatics and programming skills. The system will benefit health and medical research by eliminating the burden of large-scale data management, querying, cleaning, and analysis. SPARK represents a major advancement in genome research technologies, vastly reducing the burden of working with genomic datasets, and enabling cutting edge analysis approaches that have previously been out of reach for many medical researchers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20research" title="biomedical research">biomedical research</a>, <a href="https://publications.waset.org/abstracts/search?q=genomics" title=" genomics"> genomics</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20systems" title=" information systems"> information systems</a>, <a href="https://publications.waset.org/abstracts/search?q=software" title=" software"> software</a> </p> <a href="https://publications.waset.org/abstracts/50883/spark-an-open-source-knowledge-discovery-platform-that-leverages-non-relational-databases-and-massively-parallel-computational-power-for-heterogeneous-genomic-datasets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25539</span> Genetic Data of Deceased People: Solving the Gordian Knot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inigo%20de%20Miguel%20Beriain">Inigo de Miguel Beriain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genetic data of deceased persons are of great interest for both biomedical research and clinical use. This is due to several reasons. On the one hand, many of our diseases have a genetic component; on the other hand, we share genes with a good part of our biological family. Therefore, it would be possible to improve our response considerably to these pathologies if we could use these data. Unfortunately, at the present moment, the status of data on the deceased is far from being satisfactorily resolved by the EU data protection regulation. Indeed, the General Data Protection Regulation has explicitly excluded these data from the category of personal data. This decision has given rise to a fragmented legal framework on this issue. Consequently, each EU member state offers very different solutions. For instance, Denmark considers the data as personal data of the deceased person for a set period of time while some others, such as Spain, do not consider this data as such, but have introduced some specifically focused regulations on this type of data and their access by relatives. This is an extremely dysfunctional scenario from multiple angles, not least of which is scientific cooperation at the EU level. This contribution attempts to outline a solution to this dilemma through an alternative proposal. Its main hypothesis is that, in reality, health data are, in a sense, a rara avis within data in general because they do not refer to one person but to several. Hence, it is possible to think that all of them can be considered data subjects (although not all of them can exercise the corresponding rights in the same way). When the person from whom the data were obtained dies, the data remain as personal data of his or her biological relatives. Hence, the general regime provided for in the GDPR may apply to them. As these are personal data, we could go back to thinking in terms of a general prohibition of data processing, with the exceptions provided for in Article 9.2 and on the legal bases included in Article 6. This may be complicated in practice, given that, since we are dealing with data that refer to several data subjects, it may be complex to refer to some of these bases, such as consent. Furthermore, there are theoretical arguments that may oppose this hypothesis. In this contribution, it is shown, however, that none of these objections is of sufficient substance to delegitimize the argument exposed. Therefore, the conclusion of this contribution is that we can indeed build a general framework on the processing of personal data of deceased persons in the context of the GDPR. This would constitute a considerable improvement over the current regulatory framework, although it is true that some clarifications will be necessary for its practical application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collective%20data%20conceptual%20issues" title="collective data conceptual issues">collective data conceptual issues</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20from%20deceased%20people" title=" data from deceased people"> data from deceased people</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20data%20protection%20issues" title=" genetic data protection issues"> genetic data protection issues</a>, <a href="https://publications.waset.org/abstracts/search?q=GDPR%20and%20deceased%20people" title=" GDPR and deceased people"> GDPR and deceased people</a> </p> <a href="https://publications.waset.org/abstracts/137900/genetic-data-of-deceased-people-solving-the-gordian-knot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25538</span> Learning Example of a Biomedical Project from a Real Problem of Muscle Fatigue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rezki">M. Rezki</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belaidi"> A. Belaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a method of learning to solve a real problem in biomedical engineering from a technical study of muscle fatigue. Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles (viewpoint: anatomical and physiological). EMG is used as a diagnostics tool for identifying neuromuscular diseases, assessing low-back pain and muscle fatigue in general. In order to study the EMG signal for detecting fatigue in a muscle, we have taken a real problem which touches the tramway conductor the handle bar. For the study, we have used a typical autonomous platform in order to get signals at real time. In our case study, we were confronted with complex problem to do our experiments in a tram. This type of problem is recurring among students. To teach our students the method to solve this kind of problem, we built a similar system. Through this study, we realized a lot of objectives such as making the equipment for simulation, the study of detection of muscle fatigue and especially how to manage a study of biomedical looking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMG" title="EMG">EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20platform" title=" health platform"> health platform</a>, <a href="https://publications.waset.org/abstracts/search?q=conductor%E2%80%99s%20tram" title=" conductor’s tram"> conductor’s tram</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20fatigue" title=" muscle fatigue"> muscle fatigue</a> </p> <a href="https://publications.waset.org/abstracts/48636/learning-example-of-a-biomedical-project-from-a-real-problem-of-muscle-fatigue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20data&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20data&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20data&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20data&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20data&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20data&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20data&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20data&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20data&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20data&amp;page=852">852</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20data&amp;page=853">853</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomedical%20data&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10