CINXE.COM

Search results for: Sharma-Mittal entropy rate

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Sharma-Mittal entropy rate</title> <meta name="description" content="Search results for: Sharma-Mittal entropy rate"> <meta name="keywords" content="Sharma-Mittal entropy rate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Sharma-Mittal entropy rate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Sharma-Mittal entropy rate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8319</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Sharma-Mittal entropy rate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8319</span> Closed-Form Sharma-Mittal Entropy Rate for Gaussian Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Septimia%20Sarbu">Septimia Sarbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The entropy rate of a stochastic process is a fundamental concept in information theory. It provides a limit to the amount of information that can be transmitted reliably over a communication channel, as stated by Shannon's coding theorems. Recently, researchers have focused on developing new measures of information that generalize Shannon's classical theory. The aim is to design more efficient information encoding and transmission schemes. This paper continues the study of generalized entropy rates, by deriving a closed-form solution to the Sharma-Mittal entropy rate for Gaussian processes. Using the squeeze theorem, we solve the limit in the definition of the entropy rate, for different values of alpha and beta, which are the parameters of the Sharma-Mittal entropy. In the end, we compare it with Shannon and Rényi's entropy rates for Gaussian processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20entropies" title="generalized entropies">generalized entropies</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate" title=" Sharma-Mittal entropy rate"> Sharma-Mittal entropy rate</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes" title=" Gaussian processes"> Gaussian processes</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues%20of%20the%20covariance%20matrix" title=" eigenvalues of the covariance matrix"> eigenvalues of the covariance matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=squeeze%20theorem" title=" squeeze theorem "> squeeze theorem </a> </p> <a href="https://publications.waset.org/abstracts/32177/closed-form-sharma-mittal-entropy-rate-for-gaussian-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8318</span> Entropy Risk Factor Model of Exchange Rate Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darrol%20Stanley">Darrol Stanley</a>, <a href="https://publications.waset.org/abstracts/search?q=Levan%20Efremidze"> Levan Efremidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Jannie%20Rossouw"> Jannie Rossouw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the predictability of the USD/ZAR (South African Rand) exchange rate with sample entropy analytics for the period of 2004-2015. We calculate sample entropy based on the daily data of the exchange rate and conduct empirical implementation of several market timing rules based on these entropy signals. The dynamic investment portfolio based on entropy signals produces better risk adjusted performance than a buy and hold strategy. The returns are estimated on the portfolio values in U.S. dollars. These results are preliminary and do not yet account for reasonable transactions costs, although these are very small in currency markets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=currency%20trading" title="currency trading">currency trading</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20timing" title=" market timing"> market timing</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factor%20model" title=" risk factor model"> risk factor model</a> </p> <a href="https://publications.waset.org/abstracts/53853/entropy-risk-factor-model-of-exchange-rate-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8317</span> Entropy Analysis of a Thermo-Acoustic Stack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmadali%20Shirazytabar">Ahmadali Shirazytabar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Namazi"> Hamidreza Namazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inherent irreversibility of thermo-acoustics primarily in the stack region causes poor efficiency of thermo-acoustic engines which is the major weakness of these devices. In view of the above, this study examines entropy generation in the stack of a thermo-acoustic system. For this purpose two parallel plates representative of the stack is considered. A general equation for entropy generation is derived based on the Second Law of thermodynamics. Assumptions such as Rott’s linear thermo-acoustic approximation, boundary layer type flow, etc. are made to simplify the governing continuity, momentum and energy equations to achieve analytical solutions for velocity and temperature. The entropy generation equation is also simplified based on the same assumptions and then is converted to dimensionless form by using characteristic entropy generation. A time averaged entropy generation rate followed by a global entropy generation rate are calculated and graphically represented for further analysis and inspecting the effect of different parameters on the entropy generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermo-acoustics" title="thermo-acoustics">thermo-acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20law%20of%20thermodynamics" title=" second law of thermodynamics"> second law of thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Rott%E2%80%99s%20linear%20thermo-acoustic%20approximation" title=" Rott’s linear thermo-acoustic approximation"> Rott’s linear thermo-acoustic approximation</a> </p> <a href="https://publications.waset.org/abstracts/32388/entropy-analysis-of-a-thermo-acoustic-stack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8316</span> Optimal ECG Sampling Frequency for Multiscale Entropy-Based HRV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjit%20Singh">Manjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiscale entropy (MSE) is an extensively used index to provide a general understanding of multiple complexity of physiologic mechanism of heart rate variability (HRV) that operates on a wide range of time scales. Accurate selection of electrocardiogram (ECG) sampling frequency is an essential concern for clinically significant HRV quantification; high ECG sampling rate increase memory requirements and processing time, whereas low sampling rate degrade signal quality and results in clinically misinterpreted HRV. In this work, the impact of ECG sampling frequency on MSE based HRV have been quantified. MSE measures are found to be sensitive to ECG sampling frequency and effect of sampling frequency will be a function of time scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECG%20%28electrocardiogram%29" title="ECG (electrocardiogram)">ECG (electrocardiogram)</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability%20%28HRV%29" title=" heart rate variability (HRV)"> heart rate variability (HRV)</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20entropy" title=" multiscale entropy"> multiscale entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20frequency" title=" sampling frequency"> sampling frequency</a> </p> <a href="https://publications.waset.org/abstracts/78603/optimal-ecg-sampling-frequency-for-multiscale-entropy-based-hrv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8315</span> Rényi Entropy Correction to Expanding Universe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Fazlollahi">Hamidreza Fazlollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Re ́nyi entropy comprises a group of data estimates that sums up the well-known Shannon entropy, acquiring a considerable lot of its properties. It appears as unqualified and restrictive entropy, relative entropy, or common data, and has found numerous applications in information theory. In the Re ́nyi’s argument, the area law of the black hole entropy plays a significant role. However, the total entropy can be modified by some quantum effects, motivated by the randomness of a system. In this note, by employing this modified entropy relation, we have derived corrections to Friedmann equations. Taking this entropy associated with the apparent horizon of the Friedmann-Robertson-Walker Universe and assuming the first law of thermodynamics, dE=T_A (dS)_A+WdV, satisfies the apparent horizon, we have reconsidered expanding Universe. Also, the second thermodynamics law has been examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Friedmann%20equations" title="Friedmann equations">Friedmann equations</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title=" dark energy"> dark energy</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20law%20of%20thermodynamics" title=" first law of thermodynamics"> first law of thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Reyni%20entropy" title=" Reyni entropy"> Reyni entropy</a> </p> <a href="https://publications.waset.org/abstracts/164326/renyi-entropy-correction-to-expanding-universe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8314</span> Numerical and Analytical Approach for Film Condensation on Different Forms of Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kazemi%20Jouybari">A. Kazemi Jouybari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mirabdolah%20Lavasani"> A. Mirabdolah Lavasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper seeks to the solution of condensation around of a flat plate, circular and elliptical tube in way of numerical and analytical methods. Also, it calculates the entropy production rates. The first, problem was solved by using mesh dynamic and rational assumptions, next it was compared with the numerical solution that the result had acceptable errors. An additional supporting relation was applied based on a characteristic of condensation phenomenon for condensing elements. As it has been shown here, due to higher rates of heat transfer for elliptical tubes, they have more entropy production rates, in comparison to circular ones. Findings showed that two methods were efficient. Furthermore, analytical methods can be used to optimize the problem and reduce the entropy production rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation" title="condensation">condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title=" analytical solution"> analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20rate" title=" entropy rate"> entropy rate</a> </p> <a href="https://publications.waset.org/abstracts/94520/numerical-and-analytical-approach-for-film-condensation-on-different-forms-of-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8313</span> On q-Non-extensive Statistics with Non-Tsallisian Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petr%20Jizba">Petr Jizba</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Korbel"> Jan Korbel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We combine an axiomatics of Rényi with the q-deformed version of Khinchin axioms to obtain a measure of information (i.e., entropy) which accounts both for systems with embedded self-similarity and non-extensivity. We show that the entropy thus obtained is uniquely solved in terms of a one-parameter family of information measures. The ensuing maximal-entropy distribution is phrased in terms of a special function known as the Lambert W-function. We analyze the corresponding ‘high’ and ‘low-temperature’ asymptotics and reveal a non-trivial structure of the parameter space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multifractals" title="multifractals">multifractals</a>, <a href="https://publications.waset.org/abstracts/search?q=R%C3%A9nyi%20information%20entropy" title=" Rényi information entropy"> Rényi information entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=THC%20entropy" title=" THC entropy"> THC entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=MaxEnt" title=" MaxEnt"> MaxEnt</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy-tailed%20distributions" title=" heavy-tailed distributions"> heavy-tailed distributions</a> </p> <a href="https://publications.waset.org/abstracts/36758/on-q-non-extensive-statistics-with-non-tsallisian-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8312</span> Entropy Measures on Neutrosophic Soft Sets and Its Application in Multi Attribute Decision Making</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Arockiarani">I. Arockiarani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The focus of the paper is to furnish the entropy measure for a neutrosophic set and neutrosophic soft set which is a measure of uncertainty and it permeates discourse and system. Various characterization of entropy measures are derived. Further we exemplify this concept by applying entropy in various real time decision making problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy%20measure" title="entropy measure">entropy measure</a>, <a href="https://publications.waset.org/abstracts/search?q=Hausdorff%20distance" title=" Hausdorff distance"> Hausdorff distance</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrosophic%20set" title=" neutrosophic set"> neutrosophic set</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20set" title=" soft set"> soft set</a> </p> <a href="https://publications.waset.org/abstracts/58101/entropy-measures-on-neutrosophic-soft-sets-and-its-application-in-multi-attribute-decision-making" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8311</span> Minimization Entropic Applied to Rotary Dryers to Reduce the Energy Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20O.%20Nascimento">I. O. Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20T.%20Manzi"> J. T. Manzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drying process is an important operation in the chemical industry and it is widely used in the food, grain industry and fertilizer industry. However, for demanding a considerable consumption of energy, such a process requires a deep energetic analysis in order to reduce operating costs. This paper deals with thermodynamic optimization applied to rotary dryers based on the entropy production minimization, aiming at to reduce the energy consumption. To do this, the mass, energy and entropy balance was used for developing a relationship that represents the rate of entropy production. The use of the Second Law of Thermodynamics is essential because it takes into account constraints of nature. Since the entropy production rate is minimized, optimals conditions of operations can be established and the process can obtain a substantial gain in energy saving. The minimization strategy had been led using classical methods such as Lagrange multipliers and implemented in the MATLAB platform. As expected, the preliminary results reveal a significant energy saving by the application of the optimal parameters found by the procedure of the entropy minimization It is important to say that this method has shown easy implementation and low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20optimization" title="thermodynamic optimization">thermodynamic optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20minimization" title=" entropy minimization"> entropy minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20dryers" title=" modeling dryers"> modeling dryers</a> </p> <a href="https://publications.waset.org/abstracts/45815/minimization-entropic-applied-to-rotary-dryers-to-reduce-the-energy-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8310</span> On the Topological Entropy of Nonlinear Dynamical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Graziano%20Chesi">Graziano Chesi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The topological entropy plays a key role in linear dynamical systems, allowing one to establish the existence of stabilizing feedback controllers for linear systems in the presence of communications constraints. This paper addresses the determination of a robust value of the topological entropy in nonlinear dynamical systems, specifically the largest value of the topological entropy over all linearized models in a region of interest of the state space. It is shown that a sufficient condition for establishing upper bounds of the sought robust value of the topological entropy can be given in terms of a semidefinite program (SDP), which belongs to the class of convex optimization problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-linear%20system" title="non-linear system">non-linear system</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20constraint" title=" communication constraint"> communication constraint</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20entropy" title=" topological entropy"> topological entropy</a> </p> <a href="https://publications.waset.org/abstracts/45742/on-the-topological-entropy-of-nonlinear-dynamical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8309</span> Entropy Production in Mixed Convection in a Horizontal Porous Channel Using Darcy-Brinkman Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amel%20Tayari">Amel Tayari</a>, <a href="https://publications.waset.org/abstracts/search?q=Atef%20Eljerry"> Atef Eljerry</a>, <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Magherbi"> Mourad Magherbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper reports a numerical investigation of the entropy generation analysis due to mixed convection in laminar flow through a channel filled with porous media. The second law of thermodynamics is applied to investigate the entropy generation rate. The Darcy-Brinkman Model is employed. The entropy generation due to heat transfer and friction dissipations has been determined in mixed convection by solving numerically the continuity, momentum and energy equations, using a control volume finite element method. The effects of Darcy number, modified Brinkman number and the Rayleigh number on averaged entropy generation and averaged Nusselt number are investigated. The Rayleigh number varied between 103 ≤ Ra ≤ 105 and the modified Brinkman number ranges between 10-5 ≤ Br≤ 10-1 with fixed values of porosity and Reynolds number at 0.5 and 10 respectively. The Darcy number varied between 10-6 ≤ Da ≤10. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy%20generation" title="entropy generation">entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=darcy" title=" darcy"> darcy</a>, <a href="https://publications.waset.org/abstracts/search?q=brinkman" title=" brinkman"> brinkman</a> </p> <a href="https://publications.waset.org/abstracts/3819/entropy-production-in-mixed-convection-in-a-horizontal-porous-channel-using-darcy-brinkman-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8308</span> Linear Study of Electrostatic Ion Temperature Gradient Mode with Entropy Gradient Drift and Sheared Ion Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yaqub%20Khan">M. Yaqub Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Shabbir"> Usman Shabbir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> History of plasma reveals that continuous struggle of experimentalists and theorists are not fruitful for confinement up to now. It needs a change to bring the research through entropy. Approximately, all the quantities like number density, temperature, electrostatic potential, etc. are connected to entropy. Therefore, it is better to change the way of research. In ion temperature gradient mode with the help of Braginskii model, Boltzmannian electrons, effect of velocity shear is studied inculcating entropy in the magnetoplasma. New dispersion relation is derived for ion temperature gradient mode, and dependence on entropy gradient drift is seen. It is also seen velocity shear enhances the instability but in anomalous transport, its role is not seen significantly but entropy. This work will be helpful to the next step of tokamak and space plasmas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20shear" title=" velocity shear"> velocity shear</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20temperature%20gradient%20mode" title=" ion temperature gradient mode"> ion temperature gradient mode</a>, <a href="https://publications.waset.org/abstracts/search?q=drift" title=" drift"> drift</a> </p> <a href="https://publications.waset.org/abstracts/70221/linear-study-of-electrostatic-ion-temperature-gradient-mode-with-entropy-gradient-drift-and-sheared-ion-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8307</span> Reasons for Non-Applicability of Software Entropy Metrics for Bug Prediction in Android </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvinder%20Kaur">Arvinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepti%20Chopra"> Deepti Chopra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software Entropy Metrics for bug prediction have been validated on various software systems by different researchers. In our previous research, we have validated that Software Entropy Metrics calculated for Mozilla subsystem&rsquo;s predict the future bugs reasonably well. In this study, the Software Entropy metrics are calculated for a subsystem of Android and it is noticed that these metrics are not suitable for bug prediction. The results are compared with a subsystem of Mozilla and a comparison is made between the two software systems to determine the reasons why Software Entropy metrics are not applicable for Android. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=android" title="android">android</a>, <a href="https://publications.waset.org/abstracts/search?q=bug%20prediction" title=" bug prediction"> bug prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=mining%20software%20repositories" title=" mining software repositories"> mining software repositories</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20entropy" title=" software entropy"> software entropy</a> </p> <a href="https://publications.waset.org/abstracts/49619/reasons-for-non-applicability-of-software-entropy-metrics-for-bug-prediction-in-android" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8306</span> Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subha%20D.%20Puthankattil">Subha D. Puthankattil</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20K.%20Joseph"> Paul K. Joseph</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EEG" title="EEG">EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20entropy" title=" wavelet entropy"> wavelet entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=approximate%20entropy" title=" approximate entropy"> approximate entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20wavelet%20energy" title=" relative wavelet energy"> relative wavelet energy</a>, <a href="https://publications.waset.org/abstracts/search?q=multiresolution%20decomposition" title=" multiresolution decomposition"> multiresolution decomposition</a> </p> <a href="https://publications.waset.org/abstracts/11836/analysis-of-eeg-signals-using-wavelet-entropy-and-approximate-entropy-a-case-study-on-depression-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8305</span> Econophysics: The Use of Entropy Measures in Finance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sheraz">Muhammad Sheraz</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasile%20Preda"> Vasile Preda</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Dedu"> Silvia Dedu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concepts of econophysics are usually used to solve problems related to uncertainty and nonlinear dynamics. In the theory of option pricing the risk neutral probabilities play very important role. The application of entropy in finance can be regarded as the extension of both information entropy and the probability entropy. It can be an important tool in various financial methods such as measure of risk, portfolio selection, option pricing and asset pricing. Gulko applied Entropy Pricing Theory (EPT) for pricing stock options and introduced an alternative framework of Black-Scholes model for pricing European stock option. In this article, we present solutions to maximum entropy problems based on Tsallis, Weighted-Tsallis, Kaniadakis, Weighted-Kaniadakies entropies, to obtain risk-neutral densities. We have also obtained the value of European call and put in this framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=option%20pricing" title="option pricing">option pricing</a>, <a href="https://publications.waset.org/abstracts/search?q=Black-Scholes%20model" title=" Black-Scholes model"> Black-Scholes model</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsallis%20entropy" title=" Tsallis entropy"> Tsallis entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaniadakis%20entropy" title=" Kaniadakis entropy"> Kaniadakis entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20entropy" title=" weighted entropy"> weighted entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=risk-neutral%20density" title=" risk-neutral density"> risk-neutral density</a> </p> <a href="https://publications.waset.org/abstracts/55546/econophysics-the-use-of-entropy-measures-in-finance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8304</span> Entropy Generation of Unsteady Reactive Hydromagnetic Generalized Couette Fluid Flow of a Two-Step Exothermic Chemical Reaction Through a Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasaq%20Kareem">Rasaq Kareem</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Gbadeyan"> Jacob Gbadeyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, analysis of the entropy generation of an unsteady reactive hydromagnetic generalized couette fluid flow of a two-step exothermic chemical reaction through a channel with isothermal wall temperature under the influence of different chemical kinetics namely: Sensitized, Arrhenius and Bimolecular kinetics was investigated. The modelled nonlinear dimensionless equations governing the fluid flow were simplified and solved using the combined Laplace Differential Transform Method (LDTM). The effects of fluid parameters associated with the problem on the fluid temperature, entropy generation rate and Bejan number were discussed and presented through graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=couette" title="couette">couette</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=exothermic" title=" exothermic"> exothermic</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady" title=" unsteady"> unsteady</a> </p> <a href="https://publications.waset.org/abstracts/26394/entropy-generation-of-unsteady-reactive-hydromagnetic-generalized-couette-fluid-flow-of-a-two-step-exothermic-chemical-reaction-through-a-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8303</span> Influence of Mass Flow Rate on Forced Convective Heat Transfer through a Nanofluid Filled Direct Absorption Solar Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Parvin">Salma Parvin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Alim"> M. A. Alim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The convective and radiative heat transfer performance and entropy generation on forced convection through a direct absorption solar collector (DASC) is investigated numerically. Four different fluids, including Cu-water nanofluid, Al<sub>2</sub>O<sub>3</sub>-waternanofluid, TiO<sub>2</sub>-waternanofluid, and pure water are used as the working fluid. Entropy production has been taken into account in addition to the collector efficiency and heat transfer enhancement. Penalty finite element method with Galerkin&rsquo;s weighted residual technique is used to solve the governing non-linear partial differential equations. Numerical simulations are performed for the variation of mass flow rate. The outcomes are presented in the form of isotherms, average output temperature, the average Nusselt number, collector efficiency, average entropy generation, and Bejan number. The results present that the rate of heat transfer and collector efficiency enhance significantly for raising the values of <em>m</em> up to a certain range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DASC" title="DASC">DASC</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20flow%20rate" title=" mass flow rate"> mass flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a> </p> <a href="https://publications.waset.org/abstracts/66116/influence-of-mass-flow-rate-on-forced-convective-heat-transfer-through-a-nanofluid-filled-direct-absorption-solar-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8302</span> An Alternative Proof for the Topological Entropy of the Motzkin Shift</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alsharari">Fahad Alsharari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Salmi%20Md.%20Noorani"> Mohd Salmi Md. Noorani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Motzkin shift is a mathematical model for constraints on genetic sequences. In terms of the theory of symbolic dynamics, the Motzkin shift is nonsofic, and therefore, we cannot use the Perron-Frobenius theory to calculate its topological entropy. The Motzkin shift M(M,N) which comes from language theory, is defined to be the shift system over an alphabet A that consists of N negative symbols, N positive symbols and M neutral symbols. For an x in the full shift AZ, x is in M(M,N) if and only if every finite block appearing in x has a non-zero reduced form. Therefore, the constraint for x cannot be bounded in length. K. Inoue has shown that the entropy of the Motzkin shift M(M,N) is log(M + N + 1). In this paper, we find a new method of calculating the topological entropy of the Motzkin shift M(M,N) without any measure theoretical discussion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Motzkin%20shift" title=" Motzkin shift"> Motzkin shift</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=theory" title=" theory "> theory </a> </p> <a href="https://publications.waset.org/abstracts/21271/an-alternative-proof-for-the-topological-entropy-of-the-motzkin-shift" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8301</span> SIP Flooding Attacks Detection and Prevention Using Shannon, Renyi and Tsallis Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neda%20Seyyedi">Neda Seyyedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Berangi"> Reza Berangi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Voice over IP (VOIP) network, also known as Internet telephony, is growing increasingly having occupied a large part of the communications market. With the growth of each technology, the related security issues become of particular importance. Taking advantage of this technology in different environments with numerous features put at our disposal, there arises an increasing need to address the security threats. Being IP-based and playing a signaling role in VOIP networks, Session Initiation Protocol (SIP) lets the invaders use weaknesses of the protocol to disable VOIP service. One of the most important threats is denial of service attack, a branch of which in this article we have discussed as flooding attacks. These attacks make server resources wasted and deprive it from delivering service to authorized users. Distributed denial of service attacks and attacks with a low rate can mislead many attack detection mechanisms. In this paper, we introduce a mechanism which not only detects distributed denial of service attacks and low rate attacks, but can also identify the attackers accurately. We detect and prevent flooding attacks in SIP protocol using Shannon (FDP-S), Renyi (FDP-R) and Tsallis (FDP-T) entropy. We conducted an experiment to compare the percentage of detection and rate of false alarm messages using any of the Shannon, Renyi and Tsallis entropy as a measure of disorder. Implementation results show that, according to the parametric nature of the Renyi and Tsallis entropy, by changing the parameters, different detection percentages and false alarm rates will be gained with the possibility to adjust the sensitivity of the detection mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VOIP%20networks" title="VOIP networks">VOIP networks</a>, <a href="https://publications.waset.org/abstracts/search?q=flooding%20attacks" title=" flooding attacks"> flooding attacks</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20networks" title=" computer networks"> computer networks</a> </p> <a href="https://publications.waset.org/abstracts/28214/sip-flooding-attacks-detection-and-prevention-using-shannon-renyi-and-tsallis-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8300</span> Analysis of Spectral Radiative Entropy Generation in a Non-Gray Participating Medium with Heat Source (Furnaces)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asadollah%20Bahrami">Asadollah Bahrami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, spectral radiative entropy generation is analyzed in a furnace filled with a mixture of H₂O, CO₂ and soot at radiative equilibrium. For the angular and spatial discretization of the radiative transfer equation and radiative entropy generation equations, the discrete ordinates method and the finite volume method are used, respectively. Spectral radiative properties are obtained using the correlated-k (CK) non-gray model with updated parameters based on the HITEMP2010 high-resolution database. In order to evaluate the effects of the location of the heat source, boundary condition and wall emissivity on radiative entropy generation, five cases are considered with different conditions. The spectral and total radiative entropy generation in the system are calculated for all cases and the effects of mentioned parameters on radiative entropy generation are attentively analyzed and finally, the optimum condition is especially presented. The most important results can be stated as follows: Results demonstrate that the wall emissivity has a considerable effect on the radiative entropy generation. Also, irreversible radiative transfer at the wall with lower temperatures is the main source of radiative entropy generation in the furnaces. In addition, the effect of the location of the heat source on total radiative entropy generation is less than other factors. Eventually, it can be said that characterizing the effective parameters of radiative entropy generation provides an approach to minimizing the radiative entropy generation and enhancing the furnace's performance practicality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectral%20radiative%20entropy%20generation" title="spectral radiative entropy generation">spectral radiative entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-gray%20medium" title=" non-gray medium"> non-gray medium</a>, <a href="https://publications.waset.org/abstracts/search?q=correlated%20k%28CK%29%20model" title=" correlated k(CK) model"> correlated k(CK) model</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20source" title=" heat source"> heat source</a> </p> <a href="https://publications.waset.org/abstracts/169050/analysis-of-spectral-radiative-entropy-generation-in-a-non-gray-participating-medium-with-heat-source-furnaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8299</span> Maximum Entropy Based Image Segmentation of Human Skin Lesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheema%20Shuja%20Khattak">Sheema Shuja Khattak</a>, <a href="https://publications.waset.org/abstracts/search?q=Gule%20Saman"> Gule Saman</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Khan"> Imran Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdus%20Salam"> Abdus Salam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image segmentation plays an important role in medical imaging applications. Therefore, accurate methods are needed for the successful segmentation of medical images for diagnosis and detection of various diseases. In this paper, we have used maximum entropy to achieve image segmentation. Maximum entropy has been calculated using Shannon, Renyi, and Tsallis entropies. This work has novelty based on the detection of skin lesion caused by the bite of a parasite called Sand Fly causing the disease is called Cutaneous Leishmaniasis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shannon" title="shannon">shannon</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20entropy" title=" maximum entropy"> maximum entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Renyi" title=" Renyi"> Renyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsallis%20entropy" title=" Tsallis entropy"> Tsallis entropy</a> </p> <a href="https://publications.waset.org/abstracts/19990/maximum-entropy-based-image-segmentation-of-human-skin-lesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8298</span> Entropy Generation of Natural Convection Heat Transfer in a Square Cavity Using Al2O3-Water Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Alipanah">M. Alipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ranjbar"> A. Ranjbar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Farnad"> E. Farnad</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Alipanah"> F. Alipanah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Entropy generation of an Al2O3-water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 to 107 and volume fraction between 0 to 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy%20generation" title="entropy generation">entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=bejan%20number" title=" bejan number"> bejan number</a>, <a href="https://publications.waset.org/abstracts/search?q=nuselt%20number" title=" nuselt number"> nuselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a> </p> <a href="https://publications.waset.org/abstracts/10068/entropy-generation-of-natural-convection-heat-transfer-in-a-square-cavity-using-al2o3-water-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8297</span> Religion: The Human Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abul%20Kayum%20Zarzis%20Alam">Abul Kayum Zarzis Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Death is not a terminal; it is just a junction. From Agamas to Vedas, from Buddhism to Judaism, all the major scriptures and religions of the world always do converge to this hypothesis of death. Death is the ultimate catastrophe of life and it is the genesis of every religion on this Earth. Several hundred thousand years ago, the Homo Sapiens in Paleolithic age introduced the notion of religion on this Earth in its most primitive form just to escape from death and natural catastrophes through their belief in supernatural things which created the sense of superstition among the Homo Sapiens which has only increased over time. This sense of superstition and belief in supernatural things are building blocks of religion. Religion is like entropy, a degree of disorder. Entropy for an irreversible system like our own Universe always increases. Same is happening to our human civilization where the disorder had been increasing over time. The degree of this disorder of human civilization is religion divides and conquers over the human civilization of Earth. Religion is the human entropy which had been governing and will govern us. Just like entropy, religion is also an essential intrinsic property of the system which makes the system evolved. We have to optimize this ambivalence of the human entropy to make our civilization an inclusive and sustainable one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=death" title="death">death</a>, <a href="https://publications.waset.org/abstracts/search?q=earth" title=" earth"> earth</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Homo%20sapiens" title=" Homo sapiens"> Homo sapiens</a>, <a href="https://publications.waset.org/abstracts/search?q=religion%20and%20human%20entropy" title=" religion and human entropy"> religion and human entropy</a> </p> <a href="https://publications.waset.org/abstracts/88127/religion-the-human-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8296</span> Using Maximization Entropy in Developing a Filipino Phonetically Balanced Wordlist for a Phoneme-Level Speech Recognition System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Lorenzo%20Bautista">John Lorenzo Bautista</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoon-Joong%20Kim"> Yoon-Joong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a set of Filipino Phonetically Balanced Word list consisting of 250 words (PBW250) were constructed for a phoneme-level ASR system for the Filipino language. The Entropy Maximization is used to obtain phonological balance in the list. Entropy of phonemes in a word is maximized, providing an optimal balance in each word’s phonological distribution using the Add-Delete Method (PBW algorithm) and is compared to the modified PBW algorithm implemented in a dynamic algorithm approach to obtain optimization. The gained entropy score of 4.2791 and 4.2902 for the PBW and modified algorithm respectively. The PBW250 was recorded by 40 respondents, each with 2 sets data. Recordings from 30 respondents were trained to produce an acoustic model that were tested using recordings from 10 respondents using the HMM Toolkit (HTK). The results of test gave the maximum accuracy rate of 97.77% for a speaker dependent test and 89.36% for a speaker independent test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy%20maximization" title="entropy maximization">entropy maximization</a>, <a href="https://publications.waset.org/abstracts/search?q=Filipino%20language" title=" Filipino language"> Filipino language</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidden%20Markov%20Model" title=" Hidden Markov Model"> Hidden Markov Model</a>, <a href="https://publications.waset.org/abstracts/search?q=phonetically%20balanced%20words" title=" phonetically balanced words"> phonetically balanced words</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20recognition" title=" speech recognition"> speech recognition</a> </p> <a href="https://publications.waset.org/abstracts/10241/using-maximization-entropy-in-developing-a-filipino-phonetically-balanced-wordlist-for-a-phoneme-level-speech-recognition-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8295</span> The Shannon Entropy and Multifractional Markets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Massimiliano%20Frezza">Massimiliano Frezza</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Bianchi"> Sergio Bianchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Augusto%20Pianese"> Augusto Pianese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduced by Shannon in 1948 in the field of information theory as the average rate at which information is produced by a stochastic set of data, the concept of entropy has gained much attention as a measure of uncertainty and unpredictability associated with a dynamical system, eventually depicted by a stochastic process. In particular, the Shannon entropy measures the degree of order/disorder of a given signal and provides useful information about the underlying dynamical process. It has found widespread application in a variety of fields, such as, for example, cryptography, statistical physics and finance. In this regard, many contributions have employed different measures of entropy in an attempt to characterize the financial time series in terms of market efficiency, market crashes and/or financial crises. The Shannon entropy has also been considered as a measure of the risk of a portfolio or as a tool in asset pricing. This work investigates the theoretical link between the Shannon entropy and the multifractional Brownian motion (mBm), stochastic process which recently is the focus of a renewed interest in finance as a driving model of stochastic volatility. In particular, after exploring the current state of research in this area and highlighting some of the key results and open questions that remain, we show a well-defined relationship between the Shannon (log)entropy and the memory function H(t) of the mBm. In details, we allow both the length of time series and time scale to change over analysis to study how the relation modify itself. On the one hand, applications are developed after generating surrogates of mBm trajectories based on different memory functions; on the other hand, an empirical analysis of several international stock indexes, which confirms the previous results, concludes the work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shannon%20entropy" title="Shannon entropy">Shannon entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=multifractional%20Brownian%20motion" title=" multifractional Brownian motion"> multifractional Brownian motion</a>, <a href="https://publications.waset.org/abstracts/search?q=Hurst%E2%80%93Holder%20exponent" title=" Hurst–Holder exponent"> Hurst–Holder exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20indexes" title=" stock indexes"> stock indexes</a> </p> <a href="https://publications.waset.org/abstracts/166023/the-shannon-entropy-and-multifractional-markets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8294</span> Identification of the Main Transition Velocities in a Bubble Column Based on a Modified Shannon Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stoyan%20Nedeltchev">Stoyan Nedeltchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Schubert"> Markus Schubert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gas holdup fluctuations in a bubble column (0.15 m in ID) have been recorded by means of a conductivity wire-mesh sensor in order to extract information about the main transition velocities. These parameters are very important for bubble column design, operation and scale-up. For this purpose, the classical definition of the Shannon entropy was modified and used to identify both the onset (at UG=0.034 m/s) of the transition flow regime and the beginning (at UG=0.089 m/s) of the churn-turbulent flow regime. The results were compared with the Kolmogorov entropy (KE) results. A slight discrepancy was found, namely the transition velocities identified by means of the KE were shifted to somewhat higher (0.045 and 0.101 m/s) superficial gas velocities UG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20column" title="bubble column">bubble column</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20holdup%20fluctuations" title=" gas holdup fluctuations"> gas holdup fluctuations</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Shannon%20entropy" title=" modified Shannon entropy"> modified Shannon entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolmogorov%20entropy" title=" Kolmogorov entropy"> Kolmogorov entropy</a> </p> <a href="https://publications.waset.org/abstracts/42948/identification-of-the-main-transition-velocities-in-a-bubble-column-based-on-a-modified-shannon-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8293</span> Entropy Analysis in a Bubble Column Based on Ultrafast X-Ray Tomography Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stoyan%20Nedeltchev">Stoyan Nedeltchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Schubert"> Markus Schubert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By means of the ultrafast X-ray tomography facility, data were obtained at different superficial gas velocities <em>U</em><sub>G</sub> in a bubble column (0.1 m in ID) operated with an air-deionized water system at ambient conditions. Raw reconstructed images were treated by both the information entropy (IE) and the reconstruction entropy (RE) algorithms in order to identify the main transition velocities in a bubble column. The IE values exhibited two well-pronounced minima at <em>U</em><sub>G</sub>=0.025 m/s and <em>U</em><sub>G</sub>=0.085 m/s identifying the boundaries of the homogeneous, transition and heterogeneous regimes. The RE extracted from the central region of the column&rsquo;s cross-section exhibited only one characteristic peak at <em>U</em><sub>G</sub>=0.03 m/s, which was attributed to the transition from the homogeneous to the heterogeneous flow regime. This result implies that the transition regime is non-existent in the core of the column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20column" title="bubble column">bubble column</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafast%20X-ray%20tomography" title=" ultrafast X-ray tomography"> ultrafast X-ray tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20entropy" title=" information entropy"> information entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction%20entropy" title=" reconstruction entropy"> reconstruction entropy</a> </p> <a href="https://publications.waset.org/abstracts/43128/entropy-analysis-in-a-bubble-column-based-on-ultrafast-x-ray-tomography-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8292</span> Time&#039;s Arrow and Entropy: Violations to the Second Law of Thermodynamics Disrupt Time Perception</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jason%20Clarke">Jason Clarke</a>, <a href="https://publications.waset.org/abstracts/search?q=Michaela%20Porubanova"> Michaela Porubanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Mazzoli"> Angela Mazzoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulsah%20Kut"> Gulsah Kut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> What accounts for our perception that time inexorably passes in one direction, from the past to the future, the so-called arrow of time, given that the laws of physics permit motion in one temporal direction to also happen in the reverse temporal direction? Modern physics says that the reason for time’s unidirectional physical arrow is the relationship between time and entropy, the degree of disorder in the universe, which is evolving from low entropy (high order; thermal disequilibrium) toward high entropy (high disorder; thermal equilibrium), the second law of thermodynamics. Accordingly, our perception of the direction of time, from past to future, is believed to emanate as a result of the natural evolution of entropy from low to high, with low entropy defining our notion of ‘before’ and high entropy defining our notion of ‘after’. Here we explored this proposed relationship between entropy and the perception of time’s arrow. We predicted that if the brain has some mechanism for detecting entropy, whose output feeds into processes involved in constructing our perception of the direction of time, presentation of violations to the expectation that low entropy defines ‘before’ and high entropy defines ‘after’ would alert this mechanism, leading to measurable behavioral effects, namely a disruption in duration perception. To test this hypothesis, participants were shown briefly-presented (1000 ms or 500 ms) computer-generated visual dynamic events: novel 3D shapes that were seen either to evolve from whole figures into parts (low to high entropy condition) or were seen in the reverse direction: parts that coalesced into whole figures (high to low entropy condition). On each trial, participants were instructed to reproduce the duration of their visual experience of the stimulus by pressing and releasing the space bar. To ensure that attention was being deployed to the stimuli, a secondary task was to report the direction of the visual event (forward or reverse motion). Participants completed 60 trials. As predicted, we found that duration reproduction was significantly longer for the high to low entropy condition compared to the low to high entropy condition (p=.03). This preliminary data suggests the presence of a neural mechanism that detects entropy, which is used by other processes to construct our perception of the direction of time or time’s arrow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20perception" title="time perception">time perception</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20illusions" title=" temporal illusions"> temporal illusions</a>, <a href="https://publications.waset.org/abstracts/search?q=duration%20perception" title=" duration perception"> duration perception</a> </p> <a href="https://publications.waset.org/abstracts/131449/times-arrow-and-entropy-violations-to-the-second-law-of-thermodynamics-disrupt-time-perception" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8291</span> High Temperature Deformation Behavior of Al0.2CoCrFeNiMo0.5 High Entropy alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasam%20Palguna">Yasam Palguna</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Korla"> Rajesh Korla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of thermally operated systems can be improved by increasing the operating temperature, thereby decreasing the fuel consumption and carbon footprint. Hence, there is a continuous need for replacing the existing materials with new alloys with higher temperature working capabilities. During the last decade, multi principal element alloys, commonly known as high entropy alloys are getting more attention because of their superior high temperature strength along with good high temperature corrosion and oxidation resistance, The present work focused on the microstructure and high temperature tensile behavior of Al0.2CoCrFeNiMo0.5 high entropy alloy (HEA). Wrought Al0.2CoCrFeNiMo0.5 high entropy alloy, produced by vacuum induction melting followed by thermomechanical processing, is tested in the temperature range of 200 to 900oC. It is exhibiting very good resistance to softening with increasing temperature up to 700oC, and thereafter there is a rapid decrease in the strength, especially beyond 800oC, which may be due to simultaneous occurrence of recrystallization and precipitate coarsening. Further, it is exhibiting superplastic kind of behavior with a uniform elongation of ~ 275 % at 900 oC temperature and 1 x 10-3 s-1 strain rate, which may be due to the presence of fine stable equi-axed grains. Strain rate sensitivity of 0.3 was observed, suggesting that solute drag dislocation glide might be the active mechanism during superplastic kind of deformation. Post deformation microstructure suggesting that cavitation at the sigma phase-matrix interface is the failure mechanism during high temperature deformation. Finally, high temperature properties of the present alloy will be compared with the contemporary high temperature materials such as ferritic, austenitic steels, and superalloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20entropy%20alloy" title="high entropy alloy">high entropy alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20deformation" title=" high temperature deformation"> high temperature deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20plasticity" title=" super plasticity"> super plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=post-deformation%20microstructures" title=" post-deformation microstructures"> post-deformation microstructures</a> </p> <a href="https://publications.waset.org/abstracts/145479/high-temperature-deformation-behavior-of-al02cocrfenimo05-high-entropy-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8290</span> Agent-Based Modeling Investigating Self-Organization in Open, Non-equilibrium Thermodynamic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgi%20Y.%20Georgiev">Georgi Y. Georgiev</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Brouillet"> Matthew Brouillet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research applies the power of agent-based modeling to a pivotal question at the intersection of biology, computer science, physics, and complex systems theory about the self-organization processes in open, complex, non-equilibrium thermodynamic systems. Central to this investigation is the principle of Maximum Entropy Production (MEP). This principle suggests that such systems evolve toward states that optimize entropy production, leading to the formation of structured environments. It is hypothesized that guided by the least action principle, open thermodynamic systems identify and follow the shortest paths to transmit energy and matter, resulting in maximal entropy production, internal structure formation, and a decrease in internal entropy. Concurrently, it is predicted that there will be an increase in system information as more information is required to describe the developing structure. To test this, an agent-based model is developed simulating an ant colony's formation of a path between a food source and its nest. Utilizing the Netlogo software for modeling and Python for data analysis and visualization, self-organization is quantified by calculating the decrease in system entropy based on the potential states and distribution of the ants within the simulated environment. External entropy production is also evaluated for information increase and efficiency improvements in the system's action. Simulations demonstrated that the system begins at maximal entropy, which decreases as the ants form paths over time. A range of system behaviors contingent upon the number of ants are observed. Notably, no path formation occurred with fewer than five ants, whereas clear paths were established by 200 ants, and saturation of path formation and entropy state was reached at populations exceeding 1000 ants. This analytical approach identified the inflection point marking the transition from disorder to order and computed the slope at this point. Combined with extrapolation to the final path entropy, these parameters yield important insights into the eventual entropy state of the system and the timeframe for its establishment, enabling the estimation of the self-organization rate. This study provides a novel perspective on the exploration of self-organization in thermodynamic systems, establishing a correlation between internal entropy decrease rate and external entropy production rate. Moreover, it presents a flexible framework for assessing the impact of external factors like changes in world size, path obstacles, and friction. Overall, this research offers a robust, replicable model for studying self-organization processes in any open thermodynamic system. As such, it provides a foundation for further in-depth exploration of the complex behaviors of these systems and contributes to the development of more efficient self-organizing systems across various scientific fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complexity" title="complexity">complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=self-organization" title=" self-organization"> self-organization</a>, <a href="https://publications.waset.org/abstracts/search?q=agent%20based%20modelling" title=" agent based modelling"> agent based modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/174837/agent-based-modeling-investigating-self-organization-in-open-non-equilibrium-thermodynamic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate&amp;page=277">277</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate&amp;page=278">278</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10