CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 103 results for author: <span class="mathjax">Morlino, G</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Morlino%2C+G">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Morlino, G"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Morlino%2C+G&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Morlino, G"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Morlino%2C+G&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Morlino%2C+G&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Morlino%2C+G&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Morlino%2C+G&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11439">arXiv:2411.11439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11439">pdf</a>, <a href="https://arxiv.org/format/2411.11439">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Interpreting the LHAASO Galactic diffuse emission data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Vecchiotti%2C+V">Vittoria Vecchiotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peron%2C+G">Giada Peron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">Elena Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Menchiari%2C+S">Stefano Menchiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pagliaroli%2C+G">Giulia Pagliaroli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Villante%2C+F+L">Francesco L. Villante</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11439v1-abstract-short" style="display: inline;"> Recently, the Large High-Altitude Air Shower Observatory (LHAASO) collaboration has obtained a measurement of the gamma-ray diffuse emission in the ultra-high energy range, $10-10^3$ TeV after masking the contribution of known sources. The measurement appears to be 2-3 times higher than the gamma-ray signal expected from the hadronic interactions of diffuse cosmic rays with the interstellar medium&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11439v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11439v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11439v1-abstract-full" style="display: none;"> Recently, the Large High-Altitude Air Shower Observatory (LHAASO) collaboration has obtained a measurement of the gamma-ray diffuse emission in the ultra-high energy range, $10-10^3$ TeV after masking the contribution of known sources. The measurement appears to be 2-3 times higher than the gamma-ray signal expected from the hadronic interactions of diffuse cosmic rays with the interstellar medium, potentially suggesting a contribution from unresolved sources. However, estimates of the diffuse emission are affected by large uncertainties that must be accounted for. In this work, we calculate the hadronic gamma-ray diffuse emission including uncertainties in the gas content of the Galactic disk, in the energy and spatial distribution of cosmic rays as well as in the hadronic interaction cross-section. We show that the LHAASO data above $\sim 30$ TeV are consistent with the gamma-ray diffuse emission model when all these uncertainties are taken into account. This implies that, with the current data in this energy range, there is no need to invoke a cosmic ray spectral variation toward the Galactic center, nor a dominant contribution from unresolved sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11439v1-abstract-full').style.display = 'none'; document.getElementById('2411.11439v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04973">arXiv:2408.04973</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04973">pdf</a>, <a href="https://arxiv.org/format/2408.04973">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> On the correlation between young massive star clusters and gamma-ray unassociated sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Peron%2C+G">Giada Peron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gabici%2C+S">Stefano Gabici</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">Elena Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Purushothaman%2C+A">Archana Purushothaman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brusa%2C+M">Marcella Brusa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04973v1-abstract-short" style="display: inline;"> Star clusters (SCs) are potential cosmic-ray (CR) accelerators and therefore are expected to emit high-energy radiation. However, a clear detection of gamma-ray emission from this source class has only been possible for a handful of cases. This could in principle result from two different reasons: either detectable SCs are limited to a small fraction of the total number of Galactic SCs, or gamma-r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04973v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04973v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04973v1-abstract-full" style="display: none;"> Star clusters (SCs) are potential cosmic-ray (CR) accelerators and therefore are expected to emit high-energy radiation. However, a clear detection of gamma-ray emission from this source class has only been possible for a handful of cases. This could in principle result from two different reasons: either detectable SCs are limited to a small fraction of the total number of Galactic SCs, or gamma-ray-emitting SCs are not recognized as such and therefore are listed in the ensemble of unidentified sources. In this Letter we investigate this latter scenario, by comparing available catalogs of SCs and HII regions, obtained from Gaia and WISE observations, to the gamma-ray GeV and TeV catalogs built from Fermi-LAT, H.E.S.S. and LHAASO data. The significance of the correlation between catalogs is evaluated by comparing the results with simulations of synthetic populations. A strong correlation emerges between Fermi-LAT unidentified sources and HII regions which trace massive SCs in the earliest (&lt; 1-2 Myr) phase of their life, where no supernova explosions have happened yet, confirming that winds of massive stars can alone accelerate particles and produce gamma-ray emission at least up to GeV energies. The association with TeV-energies sources is less evident. Similarly, no significant association is found between Gaia SCs and GeV nor TeV sources. We ascribe this fact to the larger extension of these objects, but also to an intrinsic bias in the Gaia selection towards SCs surrounded by a lower target gas density, that would otherwise hinder the detection in the optical waveband. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04973v1-abstract-full').style.display = 'none'; document.getElementById('2408.04973v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04087">arXiv:2406.04087</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04087">pdf</a>, <a href="https://arxiv.org/format/2406.04087">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Contribution of young massive star clusters to Galactic diffuse $纬$-ray emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Menchiari%2C+S">Stefano Menchiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">Elena Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bucciantini%2C+N">Niccol貌 Bucciantini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peron%2C+G">Giada Peron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sacco%2C+G">Germano Sacco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04087v1-abstract-short" style="display: inline;"> Context: Young massive stellar clusters (YMSCs) have emerged as potential $纬$-ray sources, after the recent association of a dozen YMSCs with extended $纬$-ray emission. The large size of the detected halos, comparable to that of the wind-blown bubble expected around YMSCs, makes the $纬$-ray detection of individual YMSCs rather challenging. As a result, the emission from most of the Galactic YMSCs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04087v1-abstract-full').style.display = 'inline'; document.getElementById('2406.04087v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04087v1-abstract-full" style="display: none;"> Context: Young massive stellar clusters (YMSCs) have emerged as potential $纬$-ray sources, after the recent association of a dozen YMSCs with extended $纬$-ray emission. The large size of the detected halos, comparable to that of the wind-blown bubble expected around YMSCs, makes the $纬$-ray detection of individual YMSCs rather challenging. As a result, the emission from most of the Galactic YMSCs could be unresolved, thus contributing to the diffuse $纬$-ray radiation observed along the Galactic Plane. Aims: In this study, we estimate the possible contribution to the Galactic diffuse $纬$-ray emission from a synthetic population of YMSCs, and we compare it with observations obtained with different experiments, from 1 GeV to hundreds of TeV, in two regions of the Galactic Plane. Methods: As the population of galactic YMSCs is only known locally, we evaluate the contribution of $纬$-ray emission relying on the simulation of synthetic populations of YMSCs based on the observed properties of local clusters. We compute the $纬$-ray emission from each cluster assuming that the radiation is purely hadronic in nature and produced by cosmic rays accelerated at the cluster&#39;s collective wind termination shock. Results: We find that the $纬$-ray emission from unresolved YMSCs can significantly contribute to the observed Galactic diffuse flux, especially in the inner part of the Galaxy. The result is independent of the assumed particle transport, but an important role is played by Wolf-Rayet stars. The predicted $纬$-ray flux should be considered as a lower limit, given that our calculation neglects the contribution of supernovae exploding in YMSCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04087v1-abstract-full').style.display = 'none'; document.getElementById('2406.04087v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to A&amp;A letter on 06/05/24</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16650">arXiv:2403.16650</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.16650">pdf</a>, <a href="https://arxiv.org/format/2403.16650">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Probing Stellar Clusters from Gaia DR2 as Galactic PeVatrons: I -- Expected Gamma-ray and Neutrino Emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mitchell%2C+A+M+W">Alison M. W. Mitchell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Celli%2C+S">Silvia Celli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Menchiari%2C+S">Stefano Menchiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Specovius%2C+A">Andreas Specovius</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16650v1-abstract-short" style="display: inline;"> Young &amp; massive stellar clusters (SCs) are a potential source of galactic cosmic rays up to very high energies as a result of two possible acceleration scenarios. Collective stellar winds from massive member stars form a wind-blown bubble with a termination shock (TS) at which particle acceleration to PeV energies may occur. Furthermore, shock acceleration may occur at SNRs expanding inside the bu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16650v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16650v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16650v1-abstract-full" style="display: none;"> Young &amp; massive stellar clusters (SCs) are a potential source of galactic cosmic rays up to very high energies as a result of two possible acceleration scenarios. Collective stellar winds from massive member stars form a wind-blown bubble with a termination shock (TS) at which particle acceleration to PeV energies may occur. Furthermore, shock acceleration may occur at SNRs expanding inside the bubble. By applying a model of CR acceleration at both the wind TS and SNR shocks to catalogues of known SCs derived from Gaia DR2, we identify the most promising targets to search for evidence of PeVatron activity. Predictions for the secondary fluxes of gamma-ray and neutrino emission are derived based on particle acceleration at the collective wind TS and the subsequent hadronic interactions with the surrounding medium. Predictions from our modelling under baseline and optimistic scenarios are compared to data, finding consistent results. We estimate the detection prospects for future gamma-ray and neutrino experiments. We find that degree-scale angular sizes of the wind-blown bubbles are typical, that may pose a challenge for experimental detection. A shortlist of the most promising candidates is provided, with an anticipated flux range. Of order 10 SCs may be detectable with future facilities, and 1-5 could be currently operating as PeVatrons. Of these, three gamma-ray detected SCs have data within our predicted range. Our model can consistently describe gamma-ray measurements of SC emission. Several further as-yet-undetected SCs offer promising targets for future observations, although the flux range allowed by our model can be large (&gt; factor 10). The large angular size of the wind-blown bubble may lead to low surface brightness emission, worsening the problem of source confusion. Nevertheless, we discuss how further work will help to constrain SCs as PeVatron candidates. (abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16650v1-abstract-full').style.display = 'none'; document.getElementById('2403.16650v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Astronomy and Astrophysics. 19 pages, 10 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.07784">arXiv:2402.07784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.07784">pdf</a>, <a href="https://arxiv.org/format/2402.07784">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Cygnus OB2 as a test case for particle acceleration in young massive star clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Menchiari%2C+S">Stefano Menchiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">Elena Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bucciantini%2C+N">Niccol貌 Bucciantini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beltr%C3%A1n%2C+M+T">Maria Teresa Beltr谩n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.07784v1-abstract-short" style="display: inline;"> In this paper, we focus on the scientific case of Cygnus OB2, a northern sky young massive stellar cluster (YMSC) located towards the Cygnus X star-forming complex. We consider a model that assumes cosmic ray acceleration occurring only at the termination shock of the collective wind of the YMSC and address the question of whether, and under what hypotheses, hadronic emission by the accelerated pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07784v1-abstract-full').style.display = 'inline'; document.getElementById('2402.07784v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.07784v1-abstract-full" style="display: none;"> In this paper, we focus on the scientific case of Cygnus OB2, a northern sky young massive stellar cluster (YMSC) located towards the Cygnus X star-forming complex. We consider a model that assumes cosmic ray acceleration occurring only at the termination shock of the collective wind of the YMSC and address the question of whether, and under what hypotheses, hadronic emission by the accelerated particles can account for the observations of Cygnus OB2 obtained by Fermi-LAT, HAWC and LHAASO. In order to do so, we carefully review the available information on this source, also confronting different estimates of the relevant parameters with ad hoc developed simulations. Once other model parameters are fixed, the spectral and spatial properties of the emission are found to be very sensitive to the unknown properties of the turbulent magnetic field. Comparison with the data shows that our suggested scenario is incompatible with Kolmogorov turbulence. Assuming Kraichnan or Bohm type turbulence spectra, the model accounts well for the Very High Energy (VHE) data, but fails to reproduce the centrally peaked morphology observed by Fermi-LAT, suggesting that additional effects might be important for lower energy $纬$-ray emission. We discuss how additional progress can be made with a more detailed and extended knowledge of the spectral and morphological properties of the emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07784v1-abstract-full').style.display = 'none'; document.getElementById('2402.07784v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to A&amp;A. 15 pages, 8 figures plus appendices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09089">arXiv:2311.09089</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.09089">pdf</a>, <a href="https://arxiv.org/format/2311.09089">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348541">10.1051/0004-6361/202348541 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mass and wind luminosity of young Galactic open clusters in Gaia DR2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Celli%2C+S">Silvia Celli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Specovius%2C+A">Andreas Specovius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Menchiari%2C+S">Stefano Menchiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mitchell%2C+A">Alison Mitchell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09089v2-abstract-short" style="display: inline;"> Context. Star clusters constitute a significant part of the stellar population in our Galaxy. The feedback processes they exert on the interstellar medium impact multiple physical processes from the chemical to the dynamical evolution of the Galaxy. In addition, young and massive stellar clusters might act as efficient particle accelerators and contribute to the production of cosmic rays. Aims. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09089v2-abstract-full').style.display = 'inline'; document.getElementById('2311.09089v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09089v2-abstract-full" style="display: none;"> Context. Star clusters constitute a significant part of the stellar population in our Galaxy. The feedback processes they exert on the interstellar medium impact multiple physical processes from the chemical to the dynamical evolution of the Galaxy. In addition, young and massive stellar clusters might act as efficient particle accelerators and contribute to the production of cosmic rays. Aims. We aim at evaluating the wind luminosity driven by the young (&lt; 30 Myr) Galactic open stellar clusters observed by the Gaia space mission. This is crucial for determining the energy channeled into accelerated particles. Methods. To do this, we developed a method relying on the number, magnitude, and line-of-sight extinction of the stars observed per cluster. Assuming that the stellar mass function follows a Kroupa mass distribution and accounting for the maximum stellar mass allowed by the age and mass of the parent cluster, we conservatively estimated the mass and wind luminosity of 387 local clusters within the second data release of Gaia. Results. We compared the results of our computation with recent estimates of young cluster masses. With respect to these, our sample is three times more abundant, particularly above a few thousand solar masses. This is of the utmost relevance for predicting the gamma-ray emission resulting from the interaction of accelerated particles. The cluster wind luminosity distribution we obtained extends up to 3x10^38 erg/s. This is a promising feature in terms of potential particle acceleration scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09089v2-abstract-full').style.display = 'none'; document.getElementById('2311.09089v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 686, A118 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15640">arXiv:2310.15640</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15640">pdf</a>, <a href="https://arxiv.org/format/2310.15640">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Contribution to Galactic cosmic rays from young stellar clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">G. Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Menchiari%2C+S">S. Menchiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bucciantini%2C+N">N. Bucciantini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15640v1-abstract-short" style="display: inline;"> The origin of Galactic cosmic rays (CR) is still a matter of debate. Diffusive shock acceleration (DSA) applied to supernova remnant (SNR) shocks provides the most reliable explanation. However, within the current understanding of DSA several issues remain unsolved, like the CR maximum energy, the chemical composition and the transition region between Galactic and extra-Galactic CRs. These issues&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15640v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15640v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15640v1-abstract-full" style="display: none;"> The origin of Galactic cosmic rays (CR) is still a matter of debate. Diffusive shock acceleration (DSA) applied to supernova remnant (SNR) shocks provides the most reliable explanation. However, within the current understanding of DSA several issues remain unsolved, like the CR maximum energy, the chemical composition and the transition region between Galactic and extra-Galactic CRs. These issues motivate the search for other possible Galactic sources. Recently, several young stellar clusters (YSC) have been detected in gamma rays, suggesting that such objects could be powerful sources of Galactic CRs. The energy input could come from winds of massive stars hosted in the clusters which is a function of the cluster total mass and initial mass function of stars. In this work we evaluate the total CR flux produced by a synthetic population of YSCs assuming that the CR acceleration occurs at the termination shock of the collective wind resulting from the sum of cluster&#39;s stellar winds. We show that the spectrum produced by YSC can significantly contribute to energies $\gtrsim 100$ TeV if the diffusion inside the wind-blown bubble is Bohm-like and the spectral slope is harder than the one produced by SNRs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15640v1-abstract-full').style.display = 'none'; document.getElementById('2310.15640v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceeding to the International Cosmic Ray Conference, ICRC 2023, Nagoya, Japan</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.03712">arXiv:2309.03712</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.03712">pdf</a>, <a href="https://arxiv.org/format/2309.03712">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2024/10/004">10.1088/1475-7516/2024/10/004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prospects for $纬$-ray observations of the Perseus galaxy cluster with the Cherenkov Telescope Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Consortium%2C+T+C+T+A">The Cherenkov Telescope Array Consortium</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+S">S. Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acero%2C+F">F. Acero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acharyya%2C+A">A. Acharyya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adam%2C+R">R. Adam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguasca-Cabot%2C+A">A. Aguasca-Cabot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre-Santaella%2C+A">A. Aguirre-Santaella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+J">J. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+R">R. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez-Crespo%2C+N">N. Alvarez-Crespo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amans%2C+J+-">J. -P. Amans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ang%C3%BCner%2C+E+O">E. O. Ang眉ner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Araya%2C+M">M. Araya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arcaro%2C+C">C. Arcaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arrabito%2C+L">L. Arrabito</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asano%2C+K">K. Asano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ascas%C3%ADbar%2C+Y">Y. Ascas铆bar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aschersleben%2C+J">J. Aschersleben</a> , et al. (542 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.03712v1-abstract-short" style="display: inline;"> Galaxy clusters are expected to be dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster&#39;s formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay at gamma-ray energies and are predicted to be sources of large-scale gamma-ray emission due to hadronic interactions in the intracluster med&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03712v1-abstract-full').style.display = 'inline'; document.getElementById('2309.03712v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.03712v1-abstract-full" style="display: none;"> Galaxy clusters are expected to be dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster&#39;s formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay at gamma-ray energies and are predicted to be sources of large-scale gamma-ray emission due to hadronic interactions in the intracluster medium. We estimate the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse gamma-ray emission from the Perseus galaxy cluster. We perform a detailed spatial and spectral modelling of the expected signal for the DM and the CRp components. For each, we compute the expected CTA sensitivity. The observing strategy of Perseus is also discussed. In the absence of a diffuse signal (non-detection), CTA should constrain the CRp to thermal energy ratio within the radius $R_{500}$ down to about $X_{500}&lt;3\times 10^{-3}$, for a spatial CRp distribution that follows the thermal gas and a CRp spectral index $伪_{\rm CRp}=2.3$. Under the optimistic assumption of a pure hadronic origin of the Perseus radio mini-halo and depending on the assumed magnetic field profile, CTA should measure $伪_{\rm CRp}$ down to about $螖伪_{\rm CRp}\simeq 0.1$ and the CRp spatial distribution with 10% precision. Regarding DM, CTA should improve the current ground-based gamma-ray DM limits from clusters observations on the velocity-averaged annihilation cross-section by a factor of up to $\sim 5$, depending on the modelling of DM halo substructure. In the case of decay of DM particles, CTA will explore a new region of the parameter space, reaching models with $蟿_蠂&gt;10^{27}$s for DM masses above 1 TeV. These constraints will provide unprecedented sensitivity to the physics of both CRp acceleration and transport at cluster scale and to TeV DM particle models, especially in the decay scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03712v1-abstract-full').style.display = 'none'; document.getElementById('2309.03712v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">93 pages (including author list, appendix and references), 143 figures. Submitted to JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP10(2024)004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11663">arXiv:2307.11663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.11663">pdf</a>, <a href="https://arxiv.org/format/2307.11663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Different spectra of cosmic ray H, He and heavier nuclei escaping compact star clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Blasi%2C+P">Pasquale Blasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11663v2-abstract-short" style="display: inline;"> Cosmic ray acceleration at the termination shock of compact star clusters has recently received much attention, mainly because of the detection of gamma ray emission from some of such astrophysical sources. Here we focus on the acceleration of nuclei at the termination shock and we investigate the role played by proton energy losses and spallation reactions of nuclei, especially downstream of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11663v2-abstract-full').style.display = 'inline'; document.getElementById('2307.11663v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11663v2-abstract-full" style="display: none;"> Cosmic ray acceleration at the termination shock of compact star clusters has recently received much attention, mainly because of the detection of gamma ray emission from some of such astrophysical sources. Here we focus on the acceleration of nuclei at the termination shock and we investigate the role played by proton energy losses and spallation reactions of nuclei, especially downstream of the shock. We show that for a reasonable choice of the mean gas density in the cavity excavated by the cluster wind, dominated by the presence of dense clouds, the spectrum of He nuclei escaping the bubble is systematically harder than the spectrum of hydrogen, in a manner that appears to be qualitatively consistent with the observed and yet unexplained phenomenon of discrepant hardening. We also find that, in this scenario, the spallation reactions of heavier nuclei are likely to be so severe that their spectra become very hard and with a low normalization, meaning that it is unlikely that heavy nuclei escaping star clusters can provide a sizeable contribution to the spectrum of cosmic rays at the Earth. Limitations and implications of this scenario are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11663v2-abstract-full').style.display = 'none'; document.getElementById('2307.11663v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.03762">arXiv:2306.03762</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.03762">pdf</a>, <a href="https://arxiv.org/format/2306.03762">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1662">10.1093/mnras/stad1662 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High energy cosmic rays and gamma rays from star clusters: the case of Cygnus OB2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Blasi%2C+P">Pasquale Blasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.03762v1-abstract-short" style="display: inline;"> We investigate the acceleration of cosmic rays at the termination shock that results from the interaction of the collective wind of star clusters with the surrounding interstellar medium. The solution of the transport equation of accelerated particles in the wind-excavated cavity, including energy losses due to CR interactions with neutral gas in the bubble, shows several interesting properties th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03762v1-abstract-full').style.display = 'inline'; document.getElementById('2306.03762v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.03762v1-abstract-full" style="display: none;"> We investigate the acceleration of cosmic rays at the termination shock that results from the interaction of the collective wind of star clusters with the surrounding interstellar medium. The solution of the transport equation of accelerated particles in the wind-excavated cavity, including energy losses due to CR interactions with neutral gas in the bubble, shows several interesting properties that are discussed in detail. The issue of the maximum energy of the accelerated particles is discussed with special care, because of its implications for the origin of Galactic cosmic rays. Gamma ray emission is produced in the cavity due to inelastic pp scattering, while accelerated particles are advected downstream of the termination shock and diffuse at the same time. Both the spectrum and the morphology of such emission are discussed, with a comparison of our results with the observations of gamma ray emission from the Cygnus OB2 region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03762v1-abstract-full').style.display = 'none'; document.getElementById('2306.03762v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15007">arXiv:2303.15007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.15007">pdf</a>, <a href="https://arxiv.org/format/2303.15007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2023.102850">10.1016/j.astropartphys.2023.102850 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Consortium%2C+T+C+T+A">The Cherenkov Telescope Array Consortium</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acero%2C+F">F. Acero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acharyya%2C+A">A. Acharyya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adam%2C+R">R. Adam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguasca-Cabot%2C+A">A. Aguasca-Cabot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre-Santaella%2C+A">A. Aguirre-Santaella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+J">J. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aloisio%2C+R">R. Aloisio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crespo%2C+N+%C3%81">N. 脕lvarez Crespo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amati%2C+L">L. Amati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ang%C3%BCner%2C+E+O">E. O. Ang眉ner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arcaro%2C+C">C. Arcaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Armstrong%2C+T">T. Armstrong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asano%2C+K">K. Asano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ascasibar%2C+Y">Y. Ascasibar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aschersleben%2C+J">J. Aschersleben</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Backes%2C+M">M. Backes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baktash%2C+A">A. Baktash</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balazs%2C+C">C. Balazs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balbo%2C+M">M. Balbo</a> , et al. (334 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15007v1-abstract-short" style="display: inline;"> The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The pote&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15007v1-abstract-full').style.display = 'inline'; document.getElementById('2303.15007v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15007v1-abstract-full" style="display: none;"> The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy $纬$-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs which can be identified as PeVatrons with CTA is estimated within a model for the evolution of SNRs. Additionally, the potential of a follow-up observation strategy under moonlight conditions for PeVatron searches is investigated. Statistical methods for the identification of PeVatrons are introduced, and realistic Monte--Carlo simulations of the response of the CTA observatory to the emission spectra from hadronic PeVatrons are performed. Based on simulations of a simplified model for the evolution for SNRs, the detection of a $纬$-ray signal from in average 9 Galactic PeVatron SNRs is expected to result from the scan of the Galactic plane with CTA after 10 hours of exposure. CTA is also shown to have excellent potential to confirm these sources as PeVatrons in deep observations with $\mathcal{O}(100)$ hours of exposure per source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15007v1-abstract-full').style.display = 'none'; document.getElementById('2303.15007v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 16 figures, Accepted for publication in Astroparticle Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.13689">arXiv:2301.13689</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.13689">pdf</a>, <a href="https://arxiv.org/format/2301.13689">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Diffusive shock acceleration at EeV and associated multimessenger flux from ultra-fast outflows driven by Active Galactic Nuclei </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Peretti%2C+E">Enrico Peretti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamastra%2C+A">Alessandra Lamastra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saturni%2C+F+G">Francesco Gabriele Saturni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahlers%2C+M">Markus Ahlers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blasi%2C+P">Pasquale Blasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cristofari%2C+P">Pierre Cristofari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.13689v2-abstract-short" style="display: inline;"> Active galactic nuclei (AGN) can launch and sustain powerful winds featuring mildly relativistic velocity and wide opening angle. Such winds, known as ultra-fast outflows (UFOs), can develop a bubble structure characterized by a forward shock expanding in the host galaxy and a wind termination shock separating the fast cool wind from the hot shocked wind. In this work we explore whether diffusive&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13689v2-abstract-full').style.display = 'inline'; document.getElementById('2301.13689v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.13689v2-abstract-full" style="display: none;"> Active galactic nuclei (AGN) can launch and sustain powerful winds featuring mildly relativistic velocity and wide opening angle. Such winds, known as ultra-fast outflows (UFOs), can develop a bubble structure characterized by a forward shock expanding in the host galaxy and a wind termination shock separating the fast cool wind from the hot shocked wind. In this work we explore whether diffusive shock acceleration can take place efficiently at the wind termination shock of UFOs. We calculate the spectrum of accelerated particles and find that protons can be energized up to the EeV range promoting UFOs to promising candidates for accelerating ultra-high energy cosmic rays (UHECRs). We also compute the associated gamma-ray and neutrino fluxes and compare them with available data in the literature. We observe that high-energy (HE) neutrinos are efficiently produced up to hundreds of PeV while the associated gamma rays could be efficiently absorbed beyond a few tens of GeV by the optical-ultraviolet AGN photon field. By assuming a typical source density of non-jetted AGN we expect that UFOs could play a dominant role as diffuse sources of UHECRs and HE neutrinos. We finally apply our model to the recently observed NGC1068 and we find out that under specific parametric conditions an obscured UFO could provide a sizeable contribution to the observed gamma-ray flux while only contributing up to ~10 per cent to the associated neutrino flux. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13689v2-abstract-full').style.display = 'none'; document.getElementById('2301.13689v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, 2 tables; submitted to MNRAS; matching version published in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03181">arXiv:2208.03181</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.03181">pdf</a>, <a href="https://arxiv.org/format/2208.03181">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jheap.2022.06.006">10.1016/j.jheap.2022.06.006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galactic Observatory Science with the ASTRI Mini-Array at the Observatorio del Teide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=D%27A%C3%AC%2C+A">A. D&#39;A矛</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burtovoi%2C+A">A. Burtovoi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Compagnino%2C+A+A">A. A. Compagnino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fiori%2C+M">M. Fiori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=La+Palombara%2C+N">N. La Palombara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paizis%2C+A">A. Paizis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Piano%2C+G">G. Piano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saturni%2C+F+G">F. G. Saturni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tutone%2C+A">A. Tutone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Belfiore%2C+A">A. Belfiore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cardillo%2C+M">M. Cardillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crestan%2C+S">S. Crestan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cusumano%2C+G">G. Cusumano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Della+Valle%2C+M">M. Della Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Del+Santo%2C+M">M. Del Santo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=La+Barbera%2C+A">A. La Barbera</a>, <a href="/search/astro-ph?searchtype=author&amp;query=La+Parola%2C+V">V. La Parola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lombardi%2C+S">S. Lombardi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mereghetti%2C+S">S. Mereghetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">G. Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pintore%2C+F">F. Pintore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romano%2C+P">P. Romano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vercellone%2C+S">S. Vercellone</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03181v1-abstract-short" style="display: inline;"> The ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Mini-Array will be composed of nine imaging atmospheric Cherenkov telescopes at the Observatorio del Teide site. The array will be best suited for astrophysical observations in the 0.3-200 TeV range with an angular resolution of few arc-minutes and an energy resolution of 10-15\%. A core-science programme in the first four years&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03181v1-abstract-full').style.display = 'inline'; document.getElementById('2208.03181v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03181v1-abstract-full" style="display: none;"> The ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Mini-Array will be composed of nine imaging atmospheric Cherenkov telescopes at the Observatorio del Teide site. The array will be best suited for astrophysical observations in the 0.3-200 TeV range with an angular resolution of few arc-minutes and an energy resolution of 10-15\%. A core-science programme in the first four years will be devoted to a limited number of key targets, addressing the most important open scientific questions in the very-high energy domain. At the same time, thanks to a wide field of view of about 10 degrees, ASTRI Mini-Array will observe many additional field sources, which will constitute the basis for the long-term observatory programme that will eventually cover all the accessible sky. In this paper, we review different astrophysical Galactic environments, e.g. pulsar wind nebulae, supernova remnants, and gamma-ray binaries, and show the results from a set of ASTRI Mini-Array simulations of some of these field sources made to highlight the expected performance of the array (even at large offset angles) and the important additional observatory science that will complement the core-science program. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03181v1-abstract-full').style.display = 'none'; document.getElementById('2208.03181v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Journal of High-Energy Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEAP, Volume 35, August 2022, Pages 139-175 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03177">arXiv:2208.03177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.03177">pdf</a>, <a href="https://arxiv.org/format/2208.03177">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jheap.2022.05.005">10.1016/j.jheap.2022.05.005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ASTRI Mini-Array Core Science at the Observatorio del Teide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Vercellone%2C+S">S. Vercellone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigongiari%2C+C">C. Bigongiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burtovoi%2C+A">A. Burtovoi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cardillo%2C+M">M. Cardillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Catalano%2C+O">O. Catalano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Franceschini%2C+A">A. Franceschini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lombardi%2C+S">S. Lombardi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nava%2C+L">L. Nava</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pintore%2C+F">F. Pintore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stamerra%2C+A">A. Stamerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tavecchio%2C+F">F. Tavecchio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zampieri%2C+L">L. Zampieri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arcaro%2C+C">C. Arcaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonzalez%2C+J+B">J. Becerra Gonzalez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonnoli%2C+G">G. Bonnoli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bottcher%2C+M">M. Bottcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunetti%2C+G">G. Brunetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Compagnino%2C+A+A">A. A. Compagnino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crestan%2C+S">S. Crestan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ai%2C+A+D">A. D Ai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fiori%2C+M">M. Fiori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galanti%2C+G">G. Galanti</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03177v1-abstract-short" style="display: inline;"> The ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Project led by the Italian National Institute for Astrophysics (INAF) is developing and will deploy at the Observatorio del Teide a mini-array (ASTRI Mini-Array) composed of nine telescopes similar to the small-size dual-mirror Schwarzschild-Couder telescope (ASTRI-Horn) currently operating on the slopes of Mt. Etna in Sicily.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03177v1-abstract-full').style.display = 'inline'; document.getElementById('2208.03177v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03177v1-abstract-full" style="display: none;"> The ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Project led by the Italian National Institute for Astrophysics (INAF) is developing and will deploy at the Observatorio del Teide a mini-array (ASTRI Mini-Array) composed of nine telescopes similar to the small-size dual-mirror Schwarzschild-Couder telescope (ASTRI-Horn) currently operating on the slopes of Mt. Etna in Sicily. The ASTRI Mini-Array will surpass the current Cherenkov telescope array differential sensitivity above a few tera-electronvolt (TeV), extending the energy band well above hundreds of TeV. This will allow us to explore a new window of the electromagnetic spectrum, by convolving the sensitivity performance with excellent angular and energy resolution figures. In this paper we describe the Core Science that we will address during the first four years of operation, providing examples of the breakthrough results that we will obtain when dealing with current open questions, such as the acceleration of cosmic rays, cosmology and fundamental physics and the new window, for the TeV energy band, of the time-domain astrophysics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03177v1-abstract-full').style.display = 'none'; document.getElementById('2208.03177v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Journal of High Energy Astrophysics. 46 Figures, 7 Tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of High Energy Astrophysics, Volume 35, August 2022, Pages 1-42 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03176">arXiv:2208.03176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.03176">pdf</a>, <a href="https://arxiv.org/format/2208.03176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jheap.2022.06.004">10.1016/j.jheap.2022.06.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extragalactic Observatory Science with the ASTRI Mini-Array at the Observatorio del Teide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Saturni%2C+F+G">F. G. Saturni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arcaro%2C+C+H+E">C. H. E. Arcaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balmaverde%2C+B">B. Balmaverde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonz%C3%A1lez%2C+J+B">J. Becerra Gonz谩lez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caccianiga%2C+A">A. Caccianiga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Capalbi%2C+M">M. Capalbi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamastra%2C+A">A. Lamastra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lombardi%2C+S">S. Lombardi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lucarelli%2C+F">F. Lucarelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pino%2C+E+M+d+G+D">E. M. de Gouveia Dal Pino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Della+Ceca%2C+R">R. Della Ceca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+J+G">J. G. Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pagliaro%2C+A">A. Pagliaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Righi%2C+C">C. Righi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tavecchio%2C+F">F. Tavecchio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vercellone%2C+S">S. Vercellone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wolter%2C+A">A. Wolter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigongiari%2C+C">C. Bigongiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=B%C3%B6ttcher%2C+M">M. B枚ttcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunetti%2C+G">G. Brunetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+P">P. Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bulgarelli%2C+A">A. Bulgarelli</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03176v1-abstract-short" style="display: inline;"> The ASTRI Mini-Array is a next-generation system of nine imaging atmospheric Cherenkov telescopes that is going to be built at the Observatorio del Teide site. After a first phase, in which the instrument will be operated as an experiment prioritizing a schedule of primary science cases, an observatory phase is foreseen in which other significant targets will be pointed. We focus on the observatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03176v1-abstract-full').style.display = 'inline'; document.getElementById('2208.03176v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03176v1-abstract-full" style="display: none;"> The ASTRI Mini-Array is a next-generation system of nine imaging atmospheric Cherenkov telescopes that is going to be built at the Observatorio del Teide site. After a first phase, in which the instrument will be operated as an experiment prioritizing a schedule of primary science cases, an observatory phase is foreseen in which other significant targets will be pointed. We focus on the observational feasibility of extragalactic sources and on astrophysical processes that best complement and expand the ASTRI Mini-Array core science, presenting the most relevant examples that are at reach of detection over long-term time scales and whose observation can provide breakthrough achievements in the very-high energy extragalactic science. Such examples cover a wide range of $纬$-ray emitters, including the study of AGN low states in the multi-TeV energy range, the possible detection of Seyfert galaxies with long exposures and the searches of dark matter lines above 10 TeV. Simulations of the presented objects show that the instrument performance will be competitive at multi-TeV energies with respect to current arrays of Cherenkov telescopes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03176v1-abstract-full').style.display = 'none'; document.getElementById('2208.03176v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 10 figures, 7 tables, published on JHEAp</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of High Energy Astrophysics 35 (2022), 91-111 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.09250">arXiv:2110.09250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.09250">pdf</a>, <a href="https://arxiv.org/format/2110.09250">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac2c04">10.3847/1538-4357/ac2c04 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Forbidden Line Emission from Type Ia Supernova Remnants Containing Balmer-Dominated Shells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+C">Chuan-Jui Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chu%2C+Y">You-Hua Chu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raymond%2C+J+C">John C. Raymond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leibundgut%2C+B">Bruno Leibundgut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Seitenzahl%2C+I+R">Ivo R. Seitenzahl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.09250v2-abstract-short" style="display: inline;"> Balmer-dominated shells in supernova remnants (SNRs) are produced by collisionless shocks advancing into a partially neutral medium, and are most frequently associated with Type Ia supernovae. We have analyzed Hubble Space Telescope (HST) images and VLT/MUSE or AAT/WiFeS observations of five Type Ia SNRs containing Balmer-dominated shells in the LMC: 0509-67.5, 0519-69.0, N103B, DEM L71, and 0548-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09250v2-abstract-full').style.display = 'inline'; document.getElementById('2110.09250v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.09250v2-abstract-full" style="display: none;"> Balmer-dominated shells in supernova remnants (SNRs) are produced by collisionless shocks advancing into a partially neutral medium, and are most frequently associated with Type Ia supernovae. We have analyzed Hubble Space Telescope (HST) images and VLT/MUSE or AAT/WiFeS observations of five Type Ia SNRs containing Balmer-dominated shells in the LMC: 0509-67.5, 0519-69.0, N103B, DEM L71, and 0548-70.4. Contrary to expectations, we find bright forbidden line emission from small dense knots embedded in four of these SNRs. The electron densities in some knots are higher than 10$^4$ cm$^{-3}$. The size and density of these knots are not characteristic for interstellar medium (ISM) -- they most likely originate from a circumstellar medium (CSM) ejected by the SN progenitor. Physical property variations of dense knots in the SNRs appear to reflect an evolutionary effect. The recombination timescales for high densities are short, and HST images of N103B taken 3.5 yr apart already show brightness changes in some knots. VLT/MUSE observations detect [Fe XIV] line emission from reverse shocks into SN ejecta as well as forward shocks into the dense knots. Faint [O III] line emission is also detected from the Balmer shell in 0519-69.0, N103B, and DEM L71. We exclude the postshock origin because the [O III] line is narrow. For the preshock origin, we considered three possibilities: photoionization precursor, cosmic ray precursor, and neutral precursor. We conclude that the [O III] emission arises from oxygen that has been photoionized by [He II] $位$304 photons and is then collisionally excited in a shock precursor heated mainly by cosmic rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09250v2-abstract-full').style.display = 'none'; document.getElementById('2110.09250v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 2 tables, 14 figures, accepted for publication in The Astrophysical Journal (ApJ)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01870">arXiv:2108.01870</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.01870">pdf</a>, <a href="https://arxiv.org/format/2108.01870">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.395.0444">10.22323/1.395.0444 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Particle acceleration at the termination shock of stellar clusters&#39; wind </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01870v1-abstract-short" style="display: inline;"> We investigate the process of particle acceleration at the termination shock that develops in the bubble excavated by winds of star clusters in the interstellar medium. We develop a theory of diffusive shock acceleration at such shock and we find that the maximum energy may reach the PeV region for very powerful clusters. We show how the maximum energy is limited by two different processes: the pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01870v1-abstract-full').style.display = 'inline'; document.getElementById('2108.01870v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01870v1-abstract-full" style="display: none;"> We investigate the process of particle acceleration at the termination shock that develops in the bubble excavated by winds of star clusters in the interstellar medium. We develop a theory of diffusive shock acceleration at such shock and we find that the maximum energy may reach the PeV region for very powerful clusters. We show how the maximum energy is limited by two different processes: the particle escape from the bubble boundary and the drop of energy gain for particles able to diffuse up to the center of the cluster. A crucial role in this problem is played by the dissipation of kinetic energy of the wind to magnetic perturbations which determines the diffusion regime of particles: in case the diffusion is close to Bohm than PeV energies can be reached. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01870v1-abstract-full').style.display = 'none'; document.getElementById('2108.01870v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceeding of the 37th International Cosmic Ray Conference (ICRC2021)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> https://pos.sissa.it/395/444 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.08952">arXiv:2106.08952</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Feedback on the ASTRONET Science Vision and Infrastructure Roadmap from the CTA Consortium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Araudo%2C+A">A. Araudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carosi%2C+A">A. Carosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hofmann%2C+W">W. Hofmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iocco%2C+F">F. Iocco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lenain%2C+J+-">J. -P. Lenain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lindfors%2C+E">E. Lindfors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lopez%2C+A">A. Lopez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meyer%2C+M">M. Meyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">G. Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Olmi%2C+B">B. Olmi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romano%2C+P">P. Romano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Santander%2C+M">M. Santander</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tibaldo%2C+L">L. Tibaldo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zanin%2C+R">R. Zanin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.08952v1-abstract-short" style="display: inline;"> Feedback on the ASTRONET Science Vision and Infrastructure Roadmap from the CTA Consortium. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.08952v1-abstract-full" style="display: none;"> Feedback on the ASTRONET Science Vision and Infrastructure Roadmap from the CTA Consortium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08952v1-abstract-full').style.display = 'none'; document.getElementById('2106.08952v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted as input to the ASTRONET Science Vision and Infrastructure roadmap on behalf of the CTA consortium</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.06488">arXiv:2106.06488</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.06488">pdf</a>, <a href="https://arxiv.org/format/2106.06488">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2972">10.1093/mnras/stab2972 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmic-ray electrons released by supernova remnants </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Celli%2C+S">Silvia Celli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.06488v2-abstract-short" style="display: inline;"> The process that allows cosmic rays to escape from their sources and be released into the Galaxy is still largely unknown. The comparison between cosmic-ray electron and proton spectra measured at Earth suggests that electrons are released with a spectrum steeper than protons by $螖s_{\rm ep} \sim 0.3$ for energies above $\sim 10$ GeV and by $螖s_{\rm ep} \sim 1.2$ above $\sim 1$ TeV. Assuming that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06488v2-abstract-full').style.display = 'inline'; document.getElementById('2106.06488v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.06488v2-abstract-full" style="display: none;"> The process that allows cosmic rays to escape from their sources and be released into the Galaxy is still largely unknown. The comparison between cosmic-ray electron and proton spectra measured at Earth suggests that electrons are released with a spectrum steeper than protons by $螖s_{\rm ep} \sim 0.3$ for energies above $\sim 10$ GeV and by $螖s_{\rm ep} \sim 1.2$ above $\sim 1$ TeV. Assuming that both species are accelerated at supernova remnant shocks, we here explore two possible scenarios that can in principle justify steeper electron spectra: (i) energy losses due to synchrotron radiation in an amplified magnetic field, and (ii) time dependent acceleration efficiency. We account for magnetic field amplification produced by either cosmic-ray induced instabilities or by magneto-hydrodynamics instabilities my means of a parametric description. We show that both mechanisms are required to explain the electron spectrum. In particular synchrotron losses can only produce a significant electron steepening above $\sim 1$~TeV, while a time dependent acceleration can explain the spectrum at lower energies if the electron injection into diffusive shock acceleration is inversely proportional to the shock speed. We discuss observational and theoretical evidences supporting such a behaviour. Furthermore, we predict two additional spectral features: a spectral break below $\sim$ few GeV (as required by existing observations) due to the acceleration efficiency drop during the adiabatic phase, and a spectral hardening above $\sim 20$ TeV (where no data are available yet) resulting from electrons escaping from the shock precursor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06488v2-abstract-full').style.display = 'none'; document.getElementById('2106.06488v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05971">arXiv:2106.05971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.05971">pdf</a>, <a href="https://arxiv.org/format/2106.05971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Probing extreme environments with the Cherenkov Telescope Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Boisson%2C+C">C. Boisson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burtovoi%2C+A">A. Burtovoi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cerruti%2C+M">M. Cerruti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chernyakova%2C+M">M. Chernyakova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hassan%2C+T">T. Hassan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lenain%2C+J+-">J. -P. Lenain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manganaro%2C+M">M. Manganaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romano%2C+P">P. Romano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sol%2C+H">H. Sol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tavecchio%2C+F">F. Tavecchio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vercellone%2C+S">S. Vercellone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zampieri%2C+L">L. Zampieri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zanin%2C+R">R. Zanin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zech%2C+A">A. Zech</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anguner%2C+E+O">E. O. Anguner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Backes%2C+M">M. Backes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balazs%2C+C">C. Balazs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonz%C3%A1lez%2C+J+B">J. Becerra Gonz谩lez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigongiari%2C+C">C. Bigongiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolmont%2C+J">J. Bolmont</a> , et al. (105 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05971v1-abstract-short" style="display: inline;"> The physics of the non-thermal Universe provides information on the acceleration mechanisms in extreme environments, such as black holes and relativistic jets, neutron stars, supernovae or clusters of galaxies. In the presence of magnetic fields, particles can be accelerated towards relativistic energies. As a consequence, radiation along the entire electromagnetic spectrum can be observed, and ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05971v1-abstract-full').style.display = 'inline'; document.getElementById('2106.05971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05971v1-abstract-full" style="display: none;"> The physics of the non-thermal Universe provides information on the acceleration mechanisms in extreme environments, such as black holes and relativistic jets, neutron stars, supernovae or clusters of galaxies. In the presence of magnetic fields, particles can be accelerated towards relativistic energies. As a consequence, radiation along the entire electromagnetic spectrum can be observed, and extreme environments are also the most likely sources of multi-messenger emission. The most energetic part of the electromagnetic spectrum corresponds to the very-high-energy (VHE, E&gt;100 GeV) gamma-ray regime, which can be extensively studied with ground based Imaging Atmospheric Cherenkov Telescopes (IACTs). The results obtained by the current generation of IACTs, such as H.E.S.S., MAGIC, and VERITAS, demonstrate the crucial importance of the VHE band in understanding the non-thermal emission of extreme environments in our Universe. In some objects, the energy output in gamma rays can even outshine the rest of the broadband spectrum. The Cherenkov Telescope Array (CTA) is the next generation of IACTs, which, with cutting edge technology and a strategic configuration of ~100 telescopes distributed in two observing sites, in the northern and southern hemispheres, will reach better sensitivity, angular and energy resolution, and broader energy coverage than currently operational IACTs. With CTA we can probe the most extreme environments and considerably boost our knowledge of the non-thermal Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05971v1-abstract-full').style.display = 'none'; document.getElementById('2106.05971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted as input to ASTRONET Science Vision and Infrastructure roadmap on behalf of the CTA consortium</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.04948">arXiv:2106.04948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.04948">pdf</a>, <a href="https://arxiv.org/format/2106.04948">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202142558">10.1051/0004-6361/202142558 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Grammage of cosmic rays in the proximity of supernova remnants embedded in a partially ionized medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Recchia%2C+S">S. Recchia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galli%2C+D">D. Galli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nava%2C+L">L. Nava</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padovani%2C+M">M. Padovani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gabici%2C+S">S. Gabici</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marcowith%2C+A">A. Marcowith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ptuskin%2C+V">V. Ptuskin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">G. Morlino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.04948v1-abstract-short" style="display: inline;"> We investigate the damping of Alfv茅n waves generated by the cosmic ray resonant streaming instability in the context of the cosmic ray escape and propagation in the proximity of supernova remnants. We consider ion-neutral damping, turbulent damping and non linear Landau damping in the warm ionized and warm neutral phases of the interstellar medium. For the ion-neutral damping, up-to-date damping c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04948v1-abstract-full').style.display = 'inline'; document.getElementById('2106.04948v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.04948v1-abstract-full" style="display: none;"> We investigate the damping of Alfv茅n waves generated by the cosmic ray resonant streaming instability in the context of the cosmic ray escape and propagation in the proximity of supernova remnants. We consider ion-neutral damping, turbulent damping and non linear Landau damping in the warm ionized and warm neutral phases of the interstellar medium. For the ion-neutral damping, up-to-date damping coefficients are used. We investigate in particular whether the self-confinement of cosmic rays nearby sources can appreciably affect the grammage. We show that the ion-neutral damping and the turbulent damping effectively limit the residence time of cosmic rays in the source proximity, so that the grammage accumulated near sources is found to be negligible. Contrary to previous results, this also happens in the most extreme scenario where ion-neutral damping is less effective, namely in a medium with only neutral helium and fully ionized hydrogen. Therefore, the standard picture, in which CR secondaries are produced during the whole time spent by cosmic rays throughout the Galactic disk, need not to be deeply revisited. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04948v1-abstract-full').style.display = 'none'; document.getElementById('2106.04948v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures, submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.03621">arXiv:2106.03621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.03621">pdf</a>, <a href="https://arxiv.org/format/2106.03621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Multi-messenger and transient astrophysics with the Cherenkov Telescope Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bo%C5%A1njak%2C+%C5%BD">沤. Bo拧njak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carosi%2C+A">A. Carosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chernyakova%2C+M">M. Chernyakova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cristofari%2C+P">P. Cristofari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Longo%2C+F">F. Longo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=L%C3%B3pez-Oramas%2C+A">A. L贸pez-Oramas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Santander%2C+M">M. Santander</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Satalecka%2C+K">K. Satalecka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sch%C3%BCssler%2C+F">F. Sch眉ssler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sergijenko%2C+O">O. Sergijenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stamerra%2C+A">A. Stamerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anguner%2C+E+O">E. O. Anguner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Backes%2C+M">M. Backes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balazs%2C+C">Csaba Balazs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baroncelli%2C+L">L. Baroncelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tjus%2C+J+B">J. Becker Tjus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigongiari%2C+C">C. Bigongiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boisson%2C+C">C. Boisson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolmont%2C+J">J. Bolmont</a> , et al. (120 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.03621v1-abstract-short" style="display: inline;"> The discovery of gravitational waves, high-energy neutrinos or the very-high-energy counterpart of gamma-ray bursts has revolutionized the high-energy and transient astrophysics community. The development of new instruments and analysis techniques will allow the discovery and/or follow-up of new transient sources. We describe the prospects for the Cherenkov Telescope Array (CTA), the next-generati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03621v1-abstract-full').style.display = 'inline'; document.getElementById('2106.03621v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.03621v1-abstract-full" style="display: none;"> The discovery of gravitational waves, high-energy neutrinos or the very-high-energy counterpart of gamma-ray bursts has revolutionized the high-energy and transient astrophysics community. The development of new instruments and analysis techniques will allow the discovery and/or follow-up of new transient sources. We describe the prospects for the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory, for multi-messenger and transient astrophysics in the decade ahead. CTA will explore the most extreme environments via very-high-energy observations of compact objects, stellar collapse events, mergers and cosmic-ray accelerators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03621v1-abstract-full').style.display = 'none'; document.getElementById('2106.03621v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ASTRONET roadmap on behalf of the CTA consortium</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.03599">arXiv:2106.03599</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.03599">pdf</a>, <a href="https://arxiv.org/format/2106.03599">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Origin and role of relativistic cosmic particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Araudo%2C+A">A. Araudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">G. Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Olmi%2C+B">B. Olmi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acero%2C+F">F. Acero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adam%2C+R">R. Adam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anguner%2C+E+O">E. O. Anguner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ascasibar%2C+Y">Y. Ascasibar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balazs%2C+C">C. Balazs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tjus%2C+J+B">J. Becker Tjus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigongiari%2C+C">C. Bigongiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolmont%2C+J">J. Bolmont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boisson%2C+C">C. Boisson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bordas%2C+P">P. Bordas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bo%C5%A1njak%2C+%C5%BD">沤. Bo拧njak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+M">A. M. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burton%2C+M">M. Burton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bucciantini%2C+N">N. Bucciantini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cangemi%2C+F">F. Cangemi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caraveo%2C+P">P. Caraveo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cardillo%2C+M">M. Cardillo</a> , et al. (99 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.03599v2-abstract-short" style="display: inline;"> This white paper briefly summarizes the importance of the study of relativistic cosmic rays, both as a constituent of our Universe, and through their impact on stellar and galactic evolution. The focus is on what can be learned over the coming decade through ground-based gamma-ray observations over the 20 GeV to 300 TeV range. The majority of the material is drawn directly from &#34;Science with the C&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03599v2-abstract-full').style.display = 'inline'; document.getElementById('2106.03599v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.03599v2-abstract-full" style="display: none;"> This white paper briefly summarizes the importance of the study of relativistic cosmic rays, both as a constituent of our Universe, and through their impact on stellar and galactic evolution. The focus is on what can be learned over the coming decade through ground-based gamma-ray observations over the 20 GeV to 300 TeV range. The majority of the material is drawn directly from &#34;Science with the Cherenkov Telescope Array&#34;, which describes the overall science case for CTA. We request that authors wishing to cite results contained in this white paper cite the original work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03599v2-abstract-full').style.display = 'none'; document.getElementById('2106.03599v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted as input to ASTRONET Science Vision and Infrastructure roadmap on behalf of the CTA consortium. arXiv admin note: text overlap with arXiv:1709.07997</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10978">arXiv:2104.10978</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.10978">pdf</a>, <a href="https://arxiv.org/format/2104.10978">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac084">10.1093/mnras/stac084 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Particle acceleration and multimessenger emission from starburst-driven galactic winds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Peretti%2C+E">Enrico Peretti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blasi%2C+P">Pasquale Blasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cristofari%2C+P">Pierre Cristofari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10978v2-abstract-short" style="display: inline;"> The enhanced star forming activity, typical of starburst galaxies, powers strong galactic winds expanding on kiloparsec (kpc) scales and characterized by bubble structures. Here we discuss the possibility that particle acceleration may take place at the termination shock of such winds. We calculate the spectrum of accelerated particles and their maximum energy, that turns out to range up to a few&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10978v2-abstract-full').style.display = 'inline'; document.getElementById('2104.10978v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10978v2-abstract-full" style="display: none;"> The enhanced star forming activity, typical of starburst galaxies, powers strong galactic winds expanding on kiloparsec (kpc) scales and characterized by bubble structures. Here we discuss the possibility that particle acceleration may take place at the termination shock of such winds. We calculate the spectrum of accelerated particles and their maximum energy, that turns out to range up to a few hundred petaelectronvolt (PeV) for typical values of the parameters. Cosmic rays accelerated at the termination shock are advected towards the edge of the bubble excavated by the wind and eventually escape into extragalactic space. We also calculate the flux of gamma rays and neutrinos produced by hadronic interactions in the bubble as well as the diffuse flux resulting from the superposition of the contribution of starburst galaxies on cosmological scales. Finally, we compute the diffuse flux of cosmic rays from starburst bubbles and compare it with existing data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10978v2-abstract-full').style.display = 'none'; document.getElementById('2104.10978v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, 2 tables. Accepted for publication on MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.09217">arXiv:2102.09217</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.09217">pdf</a>, <a href="https://arxiv.org/format/2102.09217">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab690">10.1093/mnras/stab690 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Particle acceleration in winds of star clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blasi%2C+P">Pasquale Blasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peretti%2C+E">Enrico Peretti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cristofari%2C+P">Pierre Cristofari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.09217v1-abstract-short" style="display: inline;"> The origin of cosmic rays in our Galaxy remains a subject of active debate. While supernova remnant shocks are often invoked as the sites of acceleration, it is now widely accepted that the difficulties of such sources in reaching PeV energies are daunting and it seems likely that only a subclass of rare remnants can satisfy the necessary conditions. Moreover the spectra of cosmic rays escaping th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.09217v1-abstract-full').style.display = 'inline'; document.getElementById('2102.09217v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.09217v1-abstract-full" style="display: none;"> The origin of cosmic rays in our Galaxy remains a subject of active debate. While supernova remnant shocks are often invoked as the sites of acceleration, it is now widely accepted that the difficulties of such sources in reaching PeV energies are daunting and it seems likely that only a subclass of rare remnants can satisfy the necessary conditions. Moreover the spectra of cosmic rays escaping the remnants have a complex shape that is not obviously the same as the spectra observed at the Earth. Here we investigate the process of particle acceleration at the termination shock that develops in the bubble excavated by star clusters&#39; winds in the interstellar medium. While the main limitation to the maximum energy in supernova remnants comes from the need for effective wave excitation upstream so as to confine particles in the near-shock region and speed up the acceleration process, at the termination shock of star clusters the confinement of particles upstream in guaranteed by the geometry of the problem. We develop a theory of diffusive shock acceleration at such shock and we find that the maximum energy may reach the PeV region for powerful clusters in the high end of the luminosity tail for these sources. A crucial role in this problem is played by the dissipation of energy in the wind to magnetic perturbations. Under reasonable conditions the spectrum of the accelerated particles has a power law shape with a slope $4梅4.3$, in agreement with what is required based upon standard models of cosmic ray transport in the Galaxy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.09217v1-abstract-full').style.display = 'none'; document.getElementById('2102.09217v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, submitted to MNRAS, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.15854">arXiv:2010.15854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.15854">pdf</a>, <a href="https://arxiv.org/format/2010.15854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202038748">10.1051/0004-6361/202038748 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the GeV to TeV morphology of the $纬$-Cygni SNR (G78.2+2.1) with MAGIC and Fermi-LAT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=MAGIC+Collaboration"> MAGIC Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acciari%2C+V+A">V. A. Acciari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ansoldi%2C+S">S. Ansoldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Engels%2C+A+A">A. Arbet Engels</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baack%2C+D">D. Baack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Babi%C4%87%2C+A">A. Babi膰</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerjee%2C+B">B. Banerjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Almeida%2C+U+B">U. Barres de Almeida</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrio%2C+J+A">J. A. Barrio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonz%C3%A1lez%2C+J+B">J. Becerra Gonz谩lez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bednarek%2C+W">W. Bednarek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellizzi%2C+L">L. Bellizzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardini%2C+E">E. Bernardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berti%2C+A">A. Berti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Besenrieder%2C+J">J. Besenrieder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhattacharyya%2C+W">W. Bhattacharyya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigongiari%2C+C">C. Bigongiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biland%2C+A">A. Biland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanch%2C+O">O. Blanch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonnoli%2C+G">G. Bonnoli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bo%C5%A1njak%2C+%C5%BD">沤. Bo拧njak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Busetto%2C+G">G. Busetto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carosi%2C+R">R. Carosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ceribella%2C+G">G. Ceribella</a> , et al. (161 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.15854v1-abstract-short" style="display: inline;"> Context. Diffusive shock acceleration (DSA) is the most promising mechanism to accelerate Galactic cosmic rays (CRs) in the shocks of supernova remnants (SNRs). The turbulence upstream is supposedly generated by the CRs, but this process is not well understood. The dominant mechanism may depend on the evolutionary state of the shock and can be studied via the CRs escaping upstream into the interst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.15854v1-abstract-full').style.display = 'inline'; document.getElementById('2010.15854v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.15854v1-abstract-full" style="display: none;"> Context. Diffusive shock acceleration (DSA) is the most promising mechanism to accelerate Galactic cosmic rays (CRs) in the shocks of supernova remnants (SNRs). The turbulence upstream is supposedly generated by the CRs, but this process is not well understood. The dominant mechanism may depend on the evolutionary state of the shock and can be studied via the CRs escaping upstream into the interstellar medium (ISM). Aims. Previous observations of the $纬$-Cygni SNR showed a difference in morphology between GeV and TeV energies. Since this SNR has the right age and is at the evolutionary stage for a significant fraction of CRs to escape, we aim to understand $纬$-ray emission in the vicinity of the $纬$-Cygni SNR. Methods. We observed the region of the $纬$-Cygni SNR with the MAGIC Imaging Atmospheric Cherenkov telescopes between May 2015 and September 2017 recording 87 h of good-quality data. Additionally we analysed Fermi-LAT data to study the energy dependence of the morphology as well as the energy spectrum in the GeV to TeV range. The energy spectra and morphology were compared against theoretical predictions, which include a detailed derivation of the CR escape process and their $纬$-ray generation. Results. The MAGIC and Fermi-LAT data allowed us to identify three emission regions, which can be associated with the SNR and dominate at different energies. Our hadronic emission model accounts well for the morphology and energy spectrum of all source components. It constrains the time-dependence of the maximum energy of the CRs at the shock, the time-dependence of the level of turbulence, and the diffusion coefficient immediately outside the SNR shock. While in agreement with the standard picture of DSA, the time-dependence of the maximum energy was found to be steeper than predicted and the level of turbulence was found to change over the lifetime of the SNR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.15854v1-abstract-full').style.display = 'none'; document.getElementById('2010.15854v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures. Accepted for publication in A&amp;A. Corresponding authors: M. Strzys, G. Morlino, S. Masuda, and I. Vovk</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 670, A8 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.09948">arXiv:2009.09948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.09948">pdf</a>, <a href="https://arxiv.org/format/2009.09948">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa2868">10.1093/mnras/staa2868 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New high-frequency radio observations of the Cygnus Loop supernova remnant with the Italian radio telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Loru%2C+S">S. Loru</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pellizzoni%2C+A">A. Pellizzoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Egron%2C+E">E. Egron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ingallinera%2C+A">A. Ingallinera</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">G. Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Celli%2C+S">S. Celli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Umana%2C+G">G. Umana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trigilio%2C+C">C. Trigilio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leto%2C+P">P. Leto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iacolina%2C+M+N">M. N. Iacolina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Righini%2C+S">S. Righini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reich%2C+P">P. Reich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mulas%2C+S">S. Mulas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marongiu%2C+M">M. Marongiu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pilia%2C+M">M. Pilia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melis%2C+A">A. Melis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Concu%2C+R">R. Concu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bufano%2C+M">M. Bufano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buemi%2C+C">C. Buemi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cavallaro%2C+F">F. Cavallaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riggi%2C+S">S. Riggi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schillir%C3%B2%2C+F">F. Schillir貌</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.09948v1-abstract-short" style="display: inline;"> Supernova remnants (SNRs) represent a powerful laboratory to study the Cosmic-Ray acceleration processes at the shocks, and their relation to the properties of the circumstellar medium. With the aim of studying the high-frequency radio emission and investigating the energy distribution of accelerated electrons and the magnetic field conditions, we performed single-dish observations of the large an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.09948v1-abstract-full').style.display = 'inline'; document.getElementById('2009.09948v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.09948v1-abstract-full" style="display: none;"> Supernova remnants (SNRs) represent a powerful laboratory to study the Cosmic-Ray acceleration processes at the shocks, and their relation to the properties of the circumstellar medium. With the aim of studying the high-frequency radio emission and investigating the energy distribution of accelerated electrons and the magnetic field conditions, we performed single-dish observations of the large and complex Cygnus Loop SNR from 7.0 to 24.8 GHz with the Medicina and the Sardinia Radio Telescope, focusing on the northern filament (NGC 6992) and the southern shell. Both regions show a spectrum well fitted by a power-law function ($S\propto谓^{-伪}$), with spectral index $伪=0.45\pm0.05$ for NGC 6992 and $伪=0.49\pm0.01$ for the southern shell and without any indication of a spectral break. The spectra are significantly flatter than the whole Cygnus Loop spectrum ($伪=0.54\pm0.01$), suggesting a departure from the plain shock acceleration mechanisms, which for NGC 6992 could be related to the ongoing transition towards a radiative shock. We model the integrated spectrum of the whole SNR considering the evolution of the maximum energy and magnetic field amplification. Through the radio spectral parameters, we infer a magnetic field at the shock of 10 $渭$G. This value is compatible with a pure adiabatic compression of the interstellar magnetic field, suggesting that the amplification process is currently inefficient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.09948v1-abstract-full').style.display = 'none'; document.getElementById('2009.09948v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.04700">arXiv:2003.04700</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.04700">pdf</a>, <a href="https://arxiv.org/format/2003.04700">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.083017">10.1103/PhysRevD.101.083017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of transport modelling on the $^{60}$Fe abundance inside Galactic cosmic ray sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">Elena Amato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.04700v1-abstract-short" style="display: inline;"> The ACE-CRIS collaboration has recently released the measurement of radioactive $^{60}$Fe nuclei abundance in Galactic Cosmic Rays, in the energy range $\sim 195-500$ MeV per nucleon. We model Cosmic Ray propagation and derive from this measurement the $^{60}$Fe/$^{56}$Fe ratio that is expected in the sources of Galactic Cosmic Rays. We describe Cosmic Ray origin and transport within the framework&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.04700v1-abstract-full').style.display = 'inline'; document.getElementById('2003.04700v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.04700v1-abstract-full" style="display: none;"> The ACE-CRIS collaboration has recently released the measurement of radioactive $^{60}$Fe nuclei abundance in Galactic Cosmic Rays, in the energy range $\sim 195-500$ MeV per nucleon. We model Cosmic Ray propagation and derive from this measurement the $^{60}$Fe/$^{56}$Fe ratio that is expected in the sources of Galactic Cosmic Rays. We describe Cosmic Ray origin and transport within the framework of the disk/halo diffusion model, namely a scenario in which the matter and the Cosmic Ray sources in our Galaxy are confined to a thin disk, while Cosmic Ray propagation occurs in a much larger halo with negligible matter density. We solve the Cosmic Ray transport equation accounting for spallation reactions, decay and ionization losses as well as advection. We find that the $^{60}$Fe/$^{56}$Fe ratio at the source must be very close to the value detected in the local Cosmic Ray spectrum at Earth, due to the fact that spallation reactions are more effective for $^{56}$Fe than for $^{60}$Fe. Such a result could help identify the sources of Galactic Cosmic Rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.04700v1-abstract-full').style.display = 'none'; document.getElementById('2003.04700v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures. Accepted for publication in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.06172">arXiv:2002.06172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.06172">pdf</a>, <a href="https://arxiv.org/format/2002.06172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab7236">10.3847/1538-4357/ab7236 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmic-ray anisotropies in right ascension measured by the Pierre Auger Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+Pierre+Auger+Collaboration"> The Pierre Auger Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aab%2C+A">A. Aab</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abreu%2C+P">P. Abreu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aglietta%2C+M">M. Aglietta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albury%2C+J+M">J. M. Albury</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allekotte%2C+I">I. Allekotte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Almela%2C+A">A. Almela</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Castillo%2C+J+A">J. Alvarez Castillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez-Mu%C3%B1iz%2C+J">J. Alvarez-Mu帽iz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anastasi%2C+G+A">G. A. Anastasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anchordoqui%2C+L">L. Anchordoqui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrada%2C+B">B. Andrada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferreira%2C+P+R+A">P. R. Ara煤jo Ferreira</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asorey%2C+H">H. Asorey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Assis%2C+P">P. Assis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+G">G. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Badescu%2C+A+M">A. M. Badescu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bakalova%2C+A">A. Bakalova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balaceanu%2C+A">A. Balaceanu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbato%2C+F">F. Barbato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luz%2C+R+J+B">R. J. Barreira Luz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+K+H">K. H. Becker</a> , et al. (351 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.06172v1-abstract-short" style="display: inline;"> We present measurements of the large-scale cosmic-ray anisotropies in right ascension, using data collected by the surface detector array of the Pierre Auger Observatory over more than 14 years. We determine the equatorial dipole component, $\vec{d}_\perp$, through a Fourier analysis in right ascension that includes weights for each event so as to account for the main detector-induced systematic e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.06172v1-abstract-full').style.display = 'inline'; document.getElementById('2002.06172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.06172v1-abstract-full" style="display: none;"> We present measurements of the large-scale cosmic-ray anisotropies in right ascension, using data collected by the surface detector array of the Pierre Auger Observatory over more than 14 years. We determine the equatorial dipole component, $\vec{d}_\perp$, through a Fourier analysis in right ascension that includes weights for each event so as to account for the main detector-induced systematic effects. For the energies at which the trigger efficiency of the array is small, the ``East-West&#39;&#39; method is employed. Besides using the data from the array with detectors separated by 1500 m, we also include data from the smaller but denser sub-array of detectors with 750 m separation, which allows us to extend the analysis down to $\sim 0.03$ EeV. The most significant equatorial dipole amplitude obtained is that in the cumulative bin above 8~EeV, $d_\perp=6.0^{+1.0}_{-0.9}$%, which is inconsistent with isotropy at the 6$蟽$ level. In the bins below 8 EeV, we obtain 99% CL upper-bounds on $d_\perp$ at the level of 1 to 3 percent. At energies below 1 EeV, even though the amplitudes are not significant, the phases determined in most of the bins are not far from the right ascension of the Galactic center, at $伪_{\rm GC}=-94^\circ$, suggesting a predominantly Galactic origin for anisotropies at these energies. The reconstructed dipole phases in the energy bins above 4 EeV point instead to right ascensions that are almost opposite to the Galactic center one, indicative of an extragalactic cosmic ray origin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.06172v1-abstract-full').style.display = 'none'; document.getElementById('2002.06172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-076 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Published in Astrophys. J 891 (2020)142 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.06163">arXiv:1911.06163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.06163">pdf</a>, <a href="https://arxiv.org/format/1911.06163">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa698">10.1093/mnras/staa698 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Contribution of starburst nuclei to the diffuse gamma-ray and neutrino flux </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Peretti%2C+E">Enrico Peretti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blasi%2C+P">Pasquale Blasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aharonian%2C+F">Felix Aharonian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cristofari%2C+P">Pierre Cristofari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.06163v2-abstract-short" style="display: inline;"> In nuclei of starburst galaxies, the combination of an enhanced rate of supernova explosions and a high gas density suggests that cosmic rays can be efficiently produced, and that most of them lose their energy before escaping these regions, resulting in a large flux of secondary products, including neutrinos. Although the flux inferred from an individual starburst region is expected to be well be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06163v2-abstract-full').style.display = 'inline'; document.getElementById('1911.06163v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.06163v2-abstract-full" style="display: none;"> In nuclei of starburst galaxies, the combination of an enhanced rate of supernova explosions and a high gas density suggests that cosmic rays can be efficiently produced, and that most of them lose their energy before escaping these regions, resulting in a large flux of secondary products, including neutrinos. Although the flux inferred from an individual starburst region is expected to be well below the sensitivity of current neutrino telescopes, such sources may provide a substantial contribution to the diffuse neutrino flux measured by IceCube. Here we compute the gamma-ray and neutrino flux due to starburst galaxies based on a physical model of cosmic ray transport in a starburst nucleus, and accounting for the redshift evolution of the number density of starburst sources as inferred from recent measurements of the star formation rate. The model accounts for gamma-ray absorption both inside the sources and in the intergalactic medium. The latter process is responsible for electromagnetic cascades, which also contribute to the diffuse gamma-ray background at lower energies. The conditions for acceleration of cosmic ray protons up to energies exceeding $ \sim 10 \, \rm PeV$ in starburst regions, necessary for the production of PeV neutrinos, are investigated in a critical way. We show that starburst nuclei can account for the diffuse neutrino flux above $\sim 200 \, \rm TeV$, thereby producing $\lesssim 40 \%$ of the extragalactic diffuse gamma-ray background. Below $\sim 200 \, \rm TeV$, the flux from starburst appears to be somewhat lower than the observed one, where both the Galactic contribution and the flux of atmospheric neutrinos may account for the difference. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06163v2-abstract-full').style.display = 'none'; document.getElementById('1911.06163v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted for publication in MNRAS, 13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.09987">arXiv:1910.09987</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.09987">pdf</a>, <a href="https://arxiv.org/ps/1910.09987">ps</a>, <a href="https://arxiv.org/format/1910.09987">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201936927">10.1051/0004-6361/201936927 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining the cosmic ray spectrum in the vicinity of the supernova remnant W28: from sub-GeV to multi-TeV energies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Phan%2C+V+H+M">V. H. M. Phan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gabici%2C+S">S. Gabici</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">G. Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Terrier%2C+R">R. Terrier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vink%2C+J">J. Vink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krause%2C+J">J. Krause</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Menu%2C+M">M. Menu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.09987v1-abstract-short" style="display: inline;"> Supernova remnants interacting with molecular clouds are ideal laboratories to study the acceleration of particles at shock waves and their transport and interactions in the surrounding interstellar medium. In this paper, we focus on the supernova remnant W28, which over the years has been observed in all energy domains from radio waves to very-high-energy gamma rays. The bright gamma-ray emission&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09987v1-abstract-full').style.display = 'inline'; document.getElementById('1910.09987v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.09987v1-abstract-full" style="display: none;"> Supernova remnants interacting with molecular clouds are ideal laboratories to study the acceleration of particles at shock waves and their transport and interactions in the surrounding interstellar medium. In this paper, we focus on the supernova remnant W28, which over the years has been observed in all energy domains from radio waves to very-high-energy gamma rays. The bright gamma-ray emission detected from molecular clouds located in its vicinity revealed the presence of accelerated GeV and TeV particles in the region. An enhanced ionization rate has also been measured by means of millimetre observations, but such observations alone cannot tell us whether the enhancement is due to low energy (MeV) cosmic rays (either protons or electrons) or the X-ray photons emitted by the shocked gas. The goal of this study is to determine the origin of the enhanced ionization rate and to infer from multiwavelength observations the spectrum of cosmic rays accelerated at the supernova remnant shock in the unprecedented range spanning from MeV to multi-TeV particle energies. We developed a model to describe the transport of X-ray photons into the molecular cloud, and we fitted the radio, millimeter, and gamma-ray data to derive the spectrum of the radiating particles. The contribution from X-ray photons to the enhanced ionization rate is negligible, and therefore the ionization must be due to cosmic rays. Even though we cannot exclude a contribution to the ionization rate coming from cosmic ray electrons, we show that a scenario where cosmic ray protons explain both the gamma-ray flux and the enhanced ionization rate provides the most natural fit to multiwavelength data. This strongly suggests that the intensity of CR protons is enhanced in the region for particle energies in a very broad range covering almost 6 orders of magnitude: from $\lesssim 100$ MeV up to several tens of TeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09987v1-abstract-full').style.display = 'none'; document.getElementById('1910.09987v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, submitted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 635, A40 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.04113">arXiv:1910.04113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.04113">pdf</a>, <a href="https://arxiv.org/format/1910.04113">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.023013">10.1103/PhysRevD.101.023013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> AMS-02 beryllium data and its implication for cosmic ray transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Evoli%2C+C">Carmelo Evoli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blasi%2C+P">Pasquale Blasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aloisio%2C+R">Roberto Aloisio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.04113v2-abstract-short" style="display: inline;"> The flux of unstable secondary cosmic ray nuclei, produced by spallation processes in the interstellar medium, can be used to constrain the residence time of cosmic rays inside the Galaxy. Among them, $^{10}$Be is especially useful because of its relatively long half-life of 1.39 Myr. In the framework of the diffusive halo model we describe cosmic ray transport taking into account all relevant int&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.04113v2-abstract-full').style.display = 'inline'; document.getElementById('1910.04113v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.04113v2-abstract-full" style="display: none;"> The flux of unstable secondary cosmic ray nuclei, produced by spallation processes in the interstellar medium, can be used to constrain the residence time of cosmic rays inside the Galaxy. Among them, $^{10}$Be is especially useful because of its relatively long half-life of 1.39 Myr. In the framework of the diffusive halo model we describe cosmic ray transport taking into account all relevant interaction channels and accounting for the decay of unstable secondary nuclei. We then compare our results with the data collected by the Alpha Magnetic Spectrometer (AMS-02) on board the International Space Station for the flux ratios Be/C, B/C, Be/O, B/O, C/O and Be/B as well as C, N and O absolute fluxes. These measurements, and especially the Be/B ratio, allow us to single out the flux of $^{10}$Be and infer a best fit propagation time of CRs in the Galaxy. Our results show that, if the cross sections for the production of secondary elements through spallation are taken at face value, AMS-02 measurements are compatible with the standard picture based on CR diffusion in a halo of size $H \gtrsim 5$ kpc. Taking into account the uncertainties in the cross sections, this conclusion becomes less reliable, although still compatible with the standard picture. Implications of our findings for alternative models of CR transport are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.04113v2-abstract-full').style.display = 'none'; document.getElementById('1910.04113v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures. Accepted for publication on Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 023013 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.09073">arXiv:1909.09073</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.09073">pdf</a>, <a href="https://arxiv.org/format/1909.09073">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The Pierre Auger Observatory: Contributions to the 36th International Cosmic Ray Conference (ICRC 2019) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+Pierre+Auger+Collaboration"> The Pierre Auger Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aab%2C+A">A. Aab</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abreu%2C+P">P. Abreu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aglietta%2C+M">M. Aglietta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albury%2C+J+M">J. M. Albury</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allekotte%2C+I">I. Allekotte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Almela%2C+A">A. Almela</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Castillo%2C+J+A">J. Alvarez Castillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez-Mu%C3%B1iz%2C+J">J. Alvarez-Mu帽iz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anastasi%2C+G+A">G. A. Anastasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anchordoqui%2C+L">L. Anchordoqui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrada%2C+B">B. Andrada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asorey%2C+H">H. Asorey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Assis%2C+P">P. Assis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+G">G. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Badescu%2C+A+M">A. M. Badescu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bakalova%2C+A">A. Bakalova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balaceanu%2C+A">A. Balaceanu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbato%2C+F">F. Barbato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luz%2C+R+J+B">R. J. Barreira Luz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baur%2C+S">S. Baur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+K+H">K. H. Becker</a> , et al. (361 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.09073v1-abstract-short" style="display: inline;"> Contributions of the Pierre Auger Collaboration to the 36th International Cosmic Ray Conference (ICRC 2019), 24 July - 1 August 2019, Madison, Wisconsin, USA. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.09073v1-abstract-full" style="display: none;"> Contributions of the Pierre Auger Collaboration to the 36th International Cosmic Ray Conference (ICRC 2019), 24 July - 1 August 2019, Madison, Wisconsin, USA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09073v1-abstract-full').style.display = 'none'; document.getElementById('1909.09073v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">compendium of 29 proceedings for the ICRC 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.09454">arXiv:1906.09454</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.09454">pdf</a>, <a href="https://arxiv.org/format/1906.09454">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz2897">10.1093/mnras/stz2897 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring particle escape in supernova remnants through gamma rays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Celli%2C+S">Silvia Celli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gabici%2C+S">Stefano Gabici</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aharonian%2C+F">Felix Aharonian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.09454v2-abstract-short" style="display: inline;"> The escape process of particles accelerated at supernova remnant (SNR) shocks is one of the poorly understood aspects of the shock acceleration theory. Here we adopt a phenomenological approach to study the particle escape and its impact on the gamma-ray spectrum resulting from hadronic collisions both inside and outside of a middle-aged SNR. Under the assumption that in the spatial region immedia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09454v2-abstract-full').style.display = 'inline'; document.getElementById('1906.09454v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.09454v2-abstract-full" style="display: none;"> The escape process of particles accelerated at supernova remnant (SNR) shocks is one of the poorly understood aspects of the shock acceleration theory. Here we adopt a phenomenological approach to study the particle escape and its impact on the gamma-ray spectrum resulting from hadronic collisions both inside and outside of a middle-aged SNR. Under the assumption that in the spatial region immediately outside of the remnant the diffusion coefficient is suppressed with respect to the average Galactic one, we show that a significant fraction of particles are still located inside the SNR long time after their nominal release from the acceleration region. This fact results into a gamma-ray spectrum that resembles a broken power law, similar to those observed in several middle-aged SNRs. Above the break, the spectral steepening is determined by the diffusion coefficient outside of the SNR and by the time dependence of maximum energy. Consequently, the comparison between the model prediction and actual data will contribute to determining these two quantities, the former being particularly relevant within the predictions of the gamma-ray emission from the halo of escaping particles around SNRs which could be detected with future Cherenkov telescope facilities. We also calculate the spectrum of run-away particles injected into the Galaxy by an individual remnant. Assuming that the acceleration stops before the SNR enters the snowplow phase, we show that the released spectrum can be a featureless power law only if the accelerated spectrum has a slope alpha &gt; 4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09454v2-abstract-full').style.display = 'none'; document.getElementById('1906.09454v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.07422">arXiv:1906.07422</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.07422">pdf</a>, <a href="https://arxiv.org/format/1906.07422">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2019/10/022">10.1088/1475-7516/2019/10/022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+Pierre+Auger+Collaboration"> The Pierre Auger Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aab%2C+A">A. Aab</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abreu%2C+P">P. Abreu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aglietta%2C+M">M. Aglietta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albury%2C+J+M">J. M. Albury</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allekotte%2C+I">I. Allekotte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Almela%2C+A">A. Almela</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Castillo%2C+J+A">J. Alvarez Castillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez-Mu%C3%B1iz%2C+J">J. Alvarez-Mu帽iz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anastasi%2C+G+A">G. A. Anastasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anchordoqui%2C+L">L. Anchordoqui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrada%2C+B">B. Andrada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asorey%2C+H">H. Asorey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Assis%2C+P">P. Assis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+G">G. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Badescu%2C+A+M">A. M. Badescu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bakalova%2C+A">A. Bakalova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balaceanu%2C+A">A. Balaceanu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbato%2C+F">F. Barbato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luz%2C+R+J+B">R. J. Barreira Luz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baur%2C+S">S. Baur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+K+H">K. H. Becker</a> , et al. (367 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.07422v2-abstract-short" style="display: inline;"> Neutrinos with energies above $10^{17}$ eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming $蟿$ neutrinos with nearly tangential trajectories relative to the earth. No neutrino candidates were found in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.07422v2-abstract-full').style.display = 'inline'; document.getElementById('1906.07422v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.07422v2-abstract-full" style="display: none;"> Neutrinos with energies above $10^{17}$ eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming $蟿$ neutrinos with nearly tangential trajectories relative to the earth. No neutrino candidates were found in $\sim\,14.7$ years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The $90\%$ C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an $E_谓^{-2}$ spectrum in the energy range $1.0 \times 10^{17}~{\rm eV} - 2.5 \times 10^{19}~{\rm eV}$ is $E^2 {\rm d}N_谓/{\rm d}E_谓&lt; 4.4 \times 10^{-9}~{\rm GeV~cm^{-2}~s^{-1}~sr^{-1}}$, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.07422v2-abstract-full').style.display = 'none'; document.getElementById('1906.07422v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version, 27 pages, 7 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-19-280 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 10 (2019) 022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.07419">arXiv:1906.07419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.07419">pdf</a>, <a href="https://arxiv.org/format/1906.07419">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2019/11/004">10.1088/1475-7516/2019/11/004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Limits on point-like sources of ultra-high-energy neutrinos with the Pierre Auger Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+Pierre+Auger+Collaboration"> The Pierre Auger Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aab%2C+A">A. Aab</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abreu%2C+P">P. Abreu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aglietta%2C+M">M. Aglietta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albury%2C+J+M">J. M. Albury</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allekotte%2C+I">I. Allekotte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Almela%2C+A">A. Almela</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Castillo%2C+J+A">J. Alvarez Castillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez-Mu%C3%B1iz%2C+J">J. Alvarez-Mu帽iz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anastasi%2C+G+A">G. A. Anastasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anchordoqui%2C+L">L. Anchordoqui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrada%2C+B">B. Andrada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asorey%2C+H">H. Asorey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Assis%2C+P">P. Assis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+G">G. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Badescu%2C+A+M">A. M. Badescu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bakalova%2C+A">A. Bakalova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balaceanu%2C+A">A. Balaceanu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbato%2C+F">F. Barbato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luz%2C+R+J+B">R. J. Barreira Luz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baur%2C+S">S. Baur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+K+H">K. H. Becker</a> , et al. (367 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.07419v2-abstract-short" style="display: inline;"> With the Surface Detector array (SD) of the Pierre Auger Observatory we can detect neutrinos with energy between $10^{17}\,$eV and $10^{20}\,$eV from point-like sources across the sky, from close to the Southern Celestial Pole up to $60^\circ$ in declination, with peak sensitivities at declinations around $\sim -53^\circ$ and $\sim+55^\circ$, and an unmatched sensitivity for arrival directions in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.07419v2-abstract-full').style.display = 'inline'; document.getElementById('1906.07419v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.07419v2-abstract-full" style="display: none;"> With the Surface Detector array (SD) of the Pierre Auger Observatory we can detect neutrinos with energy between $10^{17}\,$eV and $10^{20}\,$eV from point-like sources across the sky, from close to the Southern Celestial Pole up to $60^\circ$ in declination, with peak sensitivities at declinations around $\sim -53^\circ$ and $\sim+55^\circ$, and an unmatched sensitivity for arrival directions in the Northern hemisphere. A search has been performed for highly-inclined air showers induced by neutrinos of all flavours with no candidate events found in data taken between 1 Jan 2004 and 31 Aug 2018. Upper limits on the neutrino flux from point-like steady sources have been derived as a function of source declination. An unrivaled sensitivity is achieved in searches for transient sources with emission lasting over an hour or less, if they occur within the field of view corresponding to the zenith angle range between $60^\circ$ and $~95^\circ$ where the SD of the Pierre Auger Observatory is most sensitive to neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.07419v2-abstract-full').style.display = 'none'; document.getElementById('1906.07419v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-19-279 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 11 (2019) 004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.11918">arXiv:1904.11918</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.11918">pdf</a>, <a href="https://arxiv.org/format/1904.11918">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fspas.2019.00024">10.3389/fspas.2019.00024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-Messenger Physics with the Pierre Auger Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+Pierre+Auger+Collaboration"> The Pierre Auger Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aab%2C+A">A. Aab</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abreu%2C+P">P. Abreu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aglietta%2C+M">M. Aglietta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albury%2C+J+M">J. M. Albury</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allekotte%2C+I">I. Allekotte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Almela%2C+A">A. Almela</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Castillo%2C+J+A">J. Alvarez Castillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez-Mu%C3%B1iz%2C+J">J. Alvarez-Mu帽iz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anastasi%2C+G+A">G. A. Anastasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anchordoqui%2C+L">L. Anchordoqui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrada%2C+B">B. Andrada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asorey%2C+H">H. Asorey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Assis%2C+P">P. Assis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+G">G. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Badescu%2C+A+M">A. M. Badescu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bakalova%2C+A">A. Bakalova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balaceanu%2C+A">A. Balaceanu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbato%2C+F">F. Barbato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luz%2C+R+J+B">R. J. Barreira Luz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baur%2C+S">S. Baur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+K+H">K. H. Becker</a> , et al. (368 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.11918v1-abstract-short" style="display: inline;"> An overview of the multi-messenger capabilities of the Pierre Auger Observatory is presented. The techniques and performance of searching for Ultra-High Energy neutrinos, photons and neutrons are described. Some of the most relevant results are reviewed, such as stringent upper bounds that were placed to a flux of diffuse cosmogenic neutrinos and photons, bounds placed on neutrinos emitted from co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11918v1-abstract-full').style.display = 'inline'; document.getElementById('1904.11918v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.11918v1-abstract-full" style="display: none;"> An overview of the multi-messenger capabilities of the Pierre Auger Observatory is presented. The techniques and performance of searching for Ultra-High Energy neutrinos, photons and neutrons are described. Some of the most relevant results are reviewed, such as stringent upper bounds that were placed to a flux of diffuse cosmogenic neutrinos and photons, bounds placed on neutrinos emitted from compact binary mergers that were detected by LIGO and Virgo during their first and second observing runs, as well as searches for high energy photons and neutrons from the Galactic center that constrain the properties of the putative Galactic PeVatron, observed by the H.E.S.S.\ collaboration. The observation of directional correlations between ultra-high energy cosmic rays and either high energy astrophysical neutrinos or specific source populations, weighted by their electromagnetic radiation, are also discussed. They constitute additional multi-messenger approaches aimed at identifying the sources of high energy cosmic rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11918v1-abstract-full').style.display = 'none'; document.getElementById('1904.11918v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 7 figures, Review published in Frontiers in Astronomy and Space Sciences</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-19-135 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> April 2019 | Volume 6 | Article 24 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.10282">arXiv:1904.10282</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.10282">pdf</a>, <a href="https://arxiv.org/format/1904.10282">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz1806">10.1093/mnras/stz1806 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of reacceleration and source grammage on secondary cosmic rays spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bresci%2C+V">Virginia Bresci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">Elena Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blasi%2C+P">Pasquale Blasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.10282v1-abstract-short" style="display: inline;"> The ratio between secondary and primary cosmic ray particles is the main source of information about cosmic ray propagation in the Galaxy. Primary cosmic rays are thought to be accelerated mainly in Supernova Remnant (SNR) shocks and then released in the interstellar medium (ISM). Here they produce secondary particles by occasional collisions with interstellar matter. As a result, the ratio betwee&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10282v1-abstract-full').style.display = 'inline'; document.getElementById('1904.10282v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.10282v1-abstract-full" style="display: none;"> The ratio between secondary and primary cosmic ray particles is the main source of information about cosmic ray propagation in the Galaxy. Primary cosmic rays are thought to be accelerated mainly in Supernova Remnant (SNR) shocks and then released in the interstellar medium (ISM). Here they produce secondary particles by occasional collisions with interstellar matter. As a result, the ratio between the fluxes of secondary and primary particles carries information about the amount of matter cosmic rays have encountered during their journey from their sources to Earth. Recent measurements by AMS-02 revealed an unexpected behaviour of two main secondary-to-primary ratios, the Boron-to-Carbon ratio and the anti-proton-to-proton ratio. In this work we discuss how such anomalies may reflect the action of two phenomena that are usually overlooked, namely the fact that some fraction of secondary particles can be produced within the acceleration region, and the non-negligible probability that secondary particles encounter an accelerator (and are reaccelerated) during propagation. Both effects must be taken into account in order to correctly extract information about CR transport from secondary-to-primary ratios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10282v1-abstract-full').style.display = 'none'; document.getElementById('1904.10282v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures, submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.01426">arXiv:1904.01426</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.01426">pdf</a>, <a href="https://arxiv.org/format/1904.01426">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2019.04.001">10.1016/j.astropartphys.2019.04.001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Acharyya%2C+A">A. Acharyya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ang%C3%BCner%2C+E+O">E. O. Ang眉ner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+R">R. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaro%2C+J">J. Alfaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alispach%2C+C">C. Alispach</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aloisio%2C+R">R. Aloisio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+R+A">R. Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amans%2C+J+-">J. -P. Amans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amati%2C+L">L. Amati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amato%2C+E">E. Amato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Armstrong%2C+T">T. Armstrong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arqueros%2C+F">F. Arqueros</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arrabito%2C+L">L. Arrabito</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asano%2C+K">K. Asano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashkar%2C+H">H. Ashkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balazs%2C+C">C. Balazs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balbo%2C+M">M. Balbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balmaverde%2C+B">B. Balmaverde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barai%2C+P">P. Barai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbano%2C+A">A. Barbano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barkov%2C+M">M. Barkov</a> , et al. (445 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.01426v1-abstract-short" style="display: inline;"> The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based very-high-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01426v1-abstract-full').style.display = 'inline'; document.getElementById('1904.01426v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.01426v1-abstract-full" style="display: none;"> The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based very-high-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01426v1-abstract-full').style.display = 'none'; document.getElementById('1904.01426v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 pages, 16 figures, accepted for publication in Astroparticle Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.08040">arXiv:1901.08040</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.08040">pdf</a>, <a href="https://arxiv.org/format/1901.08040">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.082003">10.1103/PhysRevD.100.082003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Data-driven estimation of the invisible energy of cosmic ray showers with the Pierre Auger Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+Pierre+Auger+Collaboration"> The Pierre Auger Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aab%2C+A">A. Aab</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abreu%2C+P">P. Abreu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aglietta%2C+M">M. Aglietta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albury%2C+J+M">J. M. Albury</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allekotte%2C+I">I. Allekotte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Almela%2C+A">A. Almela</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Castillo%2C+J+A">J. Alvarez Castillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez-Mu%C3%B1iz%2C+J">J. Alvarez-Mu帽iz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anastasi%2C+G+A">G. A. Anastasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anchordoqui%2C+L">L. Anchordoqui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrada%2C+B">B. Andrada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asorey%2C+H">H. Asorey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Assis%2C+P">P. Assis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+G">G. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Badescu%2C+A+M">A. M. Badescu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bakalova%2C+A">A. Bakalova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balaceanu%2C+A">A. Balaceanu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbato%2C+F">F. Barbato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luz%2C+R+J+B">R. J. Barreira Luz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baur%2C+S">S. Baur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+K+H">K. H. Becker</a> , et al. (367 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.08040v3-abstract-short" style="display: inline;"> The determination of the primary energy of extensive air showers using the fluorescence detection technique requires an estimation of the energy carried away by particles that do not deposit all their energy in the atmosphere. This estimation is typically made using Monte Carlo simulations and thus depends on the assumed primary particle mass and on model predictions for neutrino and muon producti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08040v3-abstract-full').style.display = 'inline'; document.getElementById('1901.08040v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.08040v3-abstract-full" style="display: none;"> The determination of the primary energy of extensive air showers using the fluorescence detection technique requires an estimation of the energy carried away by particles that do not deposit all their energy in the atmosphere. This estimation is typically made using Monte Carlo simulations and thus depends on the assumed primary particle mass and on model predictions for neutrino and muon production. In this work we present a new method to obtain the invisible energy from events detected by the Pierre Auger Observatory. The method uses measurements of the muon number at ground level, and it allows us to reduce significantly the systematic uncertainties related to the mass composition and the high energy hadronic interaction models, and consequently to improve the estimation of the energy scale of the Observatory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08040v3-abstract-full').style.display = 'none'; document.getElementById('1901.08040v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version, 18 pages, 10 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-19-040 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 082003 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.01996">arXiv:1812.01996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.01996">pdf</a>, <a href="https://arxiv.org/format/1812.01996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz1161">10.1093/mnras/stz1161 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmic ray transport and radiative processes in nuclei of starburst galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Peretti%2C+E">Enrico Peretti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blasi%2C+P">Pasquale Blasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aharonian%2C+F">Felix Aharonian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.01996v2-abstract-short" style="display: inline;"> The high rate of star formation and supernova explosions of starburst galaxies make them interesting sources of high energy radiation. Depending upon the level of turbulence present in their interstellar medium, the bulk of cosmic rays produced inside starburst galaxies may lose most of their energy before escaping, thereby making these sources behave as calorimeters, at least up to some maximum e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.01996v2-abstract-full').style.display = 'inline'; document.getElementById('1812.01996v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.01996v2-abstract-full" style="display: none;"> The high rate of star formation and supernova explosions of starburst galaxies make them interesting sources of high energy radiation. Depending upon the level of turbulence present in their interstellar medium, the bulk of cosmic rays produced inside starburst galaxies may lose most of their energy before escaping, thereby making these sources behave as calorimeters, at least up to some maximum energy. Contrary to previous studies, here we investigate in detail the conditions under which cosmic ray confinement may be effective for electrons and nuclei and we study the implications of cosmic ray confinement in terms of multifrequency emission from starburst nuclei and production of high energy neutrinos. The general predictions are then specialized to three cases of active starbursts, namely M82, NGC253 and Arp220. Both primary and secondary electrons, as well as electron-positron pairs produced by gamma ray absorption inside starburst galaxies are taken into account. Electrons and positrons produced as secondary products of hadronic interactions are found to be responsible for most of the emission of leptonic origin. In particular, synchrotron emission of very high energy secondary electrons produces an extended emission of hard X-rays that represent a very interesting signature of hadronic process in starburst galaxies, potentially accessible to current and future observations in the X-ray band. A careful understanding of both the production and absorption of gamma rays in starburst galaxies is instrumental to the assessment of the role of these astrophysical sources as sources of high energy astrophysical neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.01996v2-abstract-full').style.display = 'none'; document.getElementById('1812.01996v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.11551">arXiv:1811.11551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.11551">pdf</a>, <a href="https://arxiv.org/ps/1811.11551">ps</a>, <a href="https://arxiv.org/format/1811.11551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty3254">10.1093/mnras/sty3254 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interplay between Physics and Geometry in Balmer filaments: the Case of SN 1006 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bandiera%2C+R">Rino Bandiera</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kne%C5%BEevi%C4%87%2C+S">Sladjana Kne啪evi膰</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raymond%2C+J+C">John C. Raymond</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.11551v1-abstract-short" style="display: inline;"> The analysis of Balmer-dominated emission in supernova remnants is potentially a very powerful way to derive information on the shock structure, on the physical conditions of the ambient medium and on the cosmic-ray acceleration efficiency. However, the outcome of models developed in plane-parallel geometry is usually not easily comparable with the data, since they often come from regions with rat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11551v1-abstract-full').style.display = 'inline'; document.getElementById('1811.11551v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.11551v1-abstract-full" style="display: none;"> The analysis of Balmer-dominated emission in supernova remnants is potentially a very powerful way to derive information on the shock structure, on the physical conditions of the ambient medium and on the cosmic-ray acceleration efficiency. However, the outcome of models developed in plane-parallel geometry is usually not easily comparable with the data, since they often come from regions with rather a complex geometry. We present here a general scheme to disentangle physical and geometrical effects in the data interpretation, which is especially powerful when the transition zone of the shock is spatially resolved and the spectral resolution is high enough to allow a detailed investigation of spatial changes of the line profile. We then apply this technique to re-analyze very high quality data of a region along the northwestern limb of the remnant of SN~1006. We show how some observed features, previously interpreted only in terms of spatial variations of physical quantities, naturally arise from geometrical effects. With these effects under control, we derive new constraints on physical quantities in the analyzed region, like the ambient density (in the range 0.03-$0.1{\,\rm cm^{-3}}$), the upstream neutral fraction (more likely in the range 0.01-0.1), the level of face-on surface brightness variations (with factors up to $\sim 3$) and the typical scale lengths related to such variations ($\ge 0.1{\,\rm pc}$, corresponding to angular scales $\ge 10{\,\rm arcsec}$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11551v1-abstract-full').style.display = 'none'; document.getElementById('1811.11551v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 24 figures, 3 tables, accepted on 2018 November 21 for publication on MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.04660">arXiv:1811.04660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.04660">pdf</a>, <a href="https://arxiv.org/format/1811.04660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2019/03/018">10.1088/1475-7516/2019/03/018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the average shape of longitudinal profiles of cosmic-ray air showers at the Pierre Auger Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+Pierre+Auger+Collaboration"> The Pierre Auger Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aab%2C+A">A. Aab</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abreu%2C+P">P. Abreu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aglietta%2C+M">M. Aglietta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albury%2C+J+M">J. M. Albury</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allekotte%2C+I">I. Allekotte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Almela%2C+A">A. Almela</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Castillo%2C+J+A">J. Alvarez Castillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=ez-Mu%C3%B1iz%2C+J+A">J. Alvar ez-Mu帽iz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anastasi%2C+G+A">G. A. Anastasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anchordoqui%2C+L">L. Anchordoqui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrada%2C+B">B. Andrada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asorey%2C+H">H. Asorey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Assis%2C+P">P. Assis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+G">G. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Badescu%2C+A+M">A. M. Badescu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bakalova%2C+A">A. Bakalova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balaceanu%2C+A">A. Balaceanu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbato%2C+F">F. Barbato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luz%2C+R+J+B">R. J. Barreira Luz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baur%2C+S">S. Baur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+K+H">K. H. Becker</a> , et al. (363 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.04660v2-abstract-short" style="display: inline;"> The profile of the longitudinal development of showers produced by ultra-high energy cosmic rays carries information related to the interaction properties of the primary particles with atmospheric nuclei. In this work, we present the first measurement of the average shower profile in traversed atmospheric depth at the Pierre Auger Observatory. The shapes of profiles are well reproduced by the Gais&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.04660v2-abstract-full').style.display = 'inline'; document.getElementById('1811.04660v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.04660v2-abstract-full" style="display: none;"> The profile of the longitudinal development of showers produced by ultra-high energy cosmic rays carries information related to the interaction properties of the primary particles with atmospheric nuclei. In this work, we present the first measurement of the average shower profile in traversed atmospheric depth at the Pierre Auger Observatory. The shapes of profiles are well reproduced by the Gaisser-Hillas parametrization within the range studied, for E &gt; 10^{17.8} eV. A detailed analysis of the systematic uncertainties is performed using 10 years of data and a full detector simulation. The average shape is quantified using two variables related to the width and asymmetry of the profile, and the results are compared with predictions of hadronic interaction models for different primary particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.04660v2-abstract-full').style.display = 'none'; document.getElementById('1811.04660v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version, 20 pages, 6 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-18-633 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP03(2019)018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.03807">arXiv:1809.03807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.03807">pdf</a>, <a href="https://arxiv.org/format/1809.03807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty2525">10.1093/mnras/sty2525 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Numerical simulations of mass loading in the tails of Bow Shock Pulsar Wind Nebulae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Olmi%2C+B">Barbara Olmi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bucciantini%2C+N">Niccol貌 Bucciantini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.03807v1-abstract-short" style="display: inline;"> When a pulsar is moving through a partially ionized medium, a fraction of neutral Hydrogen atoms penetrate inside the pulsar wind and can be photo-ionized by the nebula UV radiation. The resulting protons remains attached to the magnetic field of the light leptonic pulsar wind enhancing its inertia and changing the flow dynamics of the wind. We present here the first numerical simulations of such&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.03807v1-abstract-full').style.display = 'inline'; document.getElementById('1809.03807v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.03807v1-abstract-full" style="display: none;"> When a pulsar is moving through a partially ionized medium, a fraction of neutral Hydrogen atoms penetrate inside the pulsar wind and can be photo-ionized by the nebula UV radiation. The resulting protons remains attached to the magnetic field of the light leptonic pulsar wind enhancing its inertia and changing the flow dynamics of the wind. We present here the first numerical simulations of such effect in the tails of bow shock nebulae. We produce a set of different models representative of pulsars moving in the interstellar medium with different velocities, from highly subsonic to supersonic, by means of 2D hydrodynamic relativistic simulations. We compare the different tail morphologies with results from theoretical models of mass loading in bow shocks. As predicted by analytical models we observe a fast sideways expansion of the tail with the formation of secondary shocks in the ISM. This effect could be at the origin of the head-and-shoulder morphology observed in many BSPWNe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.03807v1-abstract-full').style.display = 'none'; document.getElementById('1809.03807v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.03579">arXiv:1808.03579</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.03579">pdf</a>, <a href="https://arxiv.org/ps/1808.03579">ps</a>, <a href="https://arxiv.org/format/1808.03579">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aae689">10.3847/1538-4357/aae689 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large-scale cosmic-ray anisotropies above 4 EeV measured by the Pierre Auger Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+Pierre+Auger+Collaboration"> The Pierre Auger Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aab%2C+A">A. Aab</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abreu%2C+P">P. Abreu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aglietta%2C+M">M. Aglietta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albury%2C+J+M">J. M. Albury</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allekotte%2C+I">I. Allekotte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Almela%2C+A">A. Almela</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Castillo%2C+J+A">J. Alvarez Castillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez-Mu%C3%B1iz%2C+J">J. Alvarez-Mu帽iz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anastasi%2C+G+A">G. A. Anastasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anchordoqui%2C+L">L. Anchordoqui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrada%2C+B">B. Andrada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asorey%2C+H">H. Asorey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Assis%2C+P">P. Assis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+G">G. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Badescu%2C+A+M">A. M. Badescu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balaceanu%2C+A">A. Balaceanu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbato%2C+F">F. Barbato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luz%2C+R+J+B">R. J. Barreira Luz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baur%2C+S">S. Baur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+K+H">K. H. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellido%2C+J+A">J. A. Bellido</a> , et al. (352 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.03579v2-abstract-short" style="display: inline;"> We present a detailed study of the large-scale anisotropies of cosmic rays with energies above 4 EeV measured using the Pierre Auger Observatory. For the energy bins [4,8] EeV and $E\geq 8$ EeV, the most significant signal is a dipolar modulation in right ascension at energies above 8 EeV, as previously reported. In this paper we further scrutinize the highest-energy bin by splitting it into three&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03579v2-abstract-full').style.display = 'inline'; document.getElementById('1808.03579v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.03579v2-abstract-full" style="display: none;"> We present a detailed study of the large-scale anisotropies of cosmic rays with energies above 4 EeV measured using the Pierre Auger Observatory. For the energy bins [4,8] EeV and $E\geq 8$ EeV, the most significant signal is a dipolar modulation in right ascension at energies above 8 EeV, as previously reported. In this paper we further scrutinize the highest-energy bin by splitting it into three energy ranges. We find that the amplitude of the dipole increases with energy above 4 EeV. The growth can be fitted with a power law with index $尾=0.79\pm 0.19$. The directions of the dipoles are consistent with an extragalactic origin of these anisotropies at all the energies considered. Additionally we have estimated the quadrupolar components of the anisotropy: they are not statistically significant. We discuss the results in the context of the predictions from different models for the distribution of ultrahigh-energy sources and cosmic magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03579v2-abstract-full').style.display = 'none'; document.getElementById('1808.03579v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version, 16 pages, 7 figures, 8 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-18-393 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 868 (2018) 4 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.09263">arXiv:1807.09263</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.09263">pdf</a>, <a href="https://arxiv.org/format/1807.09263">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.063017">10.1103/PhysRevD.98.063017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-Generated Cosmic-Ray Confinement in TeV Halos: Implications for TeV Gamma-Ray Emission and the Positron Excess </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Evoli%2C+C">Carmelo Evoli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linden%2C+T">Tim Linden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.09263v2-abstract-short" style="display: inline;"> Recent observations have detected extended TeV gamma-ray emission surrounding young and middle-aged pulsars. The morphology of these &#34;TeV halos&#34; requires cosmic-ray diffusion to be locally suppressed by a factor of ~100-1000 compared to the typical interstellar medium. No model currently explains this suppression. We show that cosmic-ray self-confinement can significantly inhibit diffusion near pu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09263v2-abstract-full').style.display = 'inline'; document.getElementById('1807.09263v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.09263v2-abstract-full" style="display: none;"> Recent observations have detected extended TeV gamma-ray emission surrounding young and middle-aged pulsars. The morphology of these &#34;TeV halos&#34; requires cosmic-ray diffusion to be locally suppressed by a factor of ~100-1000 compared to the typical interstellar medium. No model currently explains this suppression. We show that cosmic-ray self-confinement can significantly inhibit diffusion near pulsars. The steep cosmic-ray gradient generates Alfven waves that resonantly scatter the same cosmic-ray population, suppressing diffusion within ~20 pc of pulsars younger than ~100 kyr. In this model, TeV halos evolve through two phases, a growth phase where Alfven waves are resonantly generated and cosmic-ray diffusion becomes increasingly suppressed, and a subsequent relaxation phase where the diffusion coefficient returns to the standard interstellar value. Intriguingly, cosmic-rays are not strongly confined early in the TeV halo evolution, allowing a significant fraction of injected e+e- to escape. If these e+e- also escape from the surrounding supernova remnant, they would provide a natural explanation for the positron excess observed by PAMELA and AMS-02. Recently created TeV cosmic-rays are confined in the TeV halo, matching observations by HAWC and H.E.S.S. While our default model relaxes too rapidly to explain the confinement of TeV cosmic rays around mature pulsars, such as Geminga, models utilizing a Kraichnan turbulence spectrum experience much slower relaxation. Thus, observations of TeV halos around mature pulsars may provide a probe into our understanding of interstellar turbulence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09263v2-abstract-full').style.display = 'none'; document.getElementById('1807.09263v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, published on PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 063017 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.05386">arXiv:1806.05386</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.05386">pdf</a>, <a href="https://arxiv.org/format/1806.05386">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2018/10/026">10.1088/1475-7516/2018/10/026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+Pierre+Auger+Collaboration"> The Pierre Auger Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aab%2C+A">A. Aab</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abreu%2C+P">P. Abreu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aglietta%2C+M">M. Aglietta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albury%2C+J+M">J. M. Albury</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allekotte%2C+I">I. Allekotte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Almela%2C+A">A. Almela</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Castillo%2C+J+A">J. Alvarez Castillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez-Mu%C3%B1iz%2C+J">J. Alvarez-Mu帽iz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anastasi%2C+G+A">G. A. Anastasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anchordoqui%2C+L">L. Anchordoqui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrada%2C+B">B. Andrada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aramo%2C+C">C. Aramo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arsene%2C+N">N. Arsene</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asorey%2C+H">H. Asorey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Assis%2C+P">P. Assis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+G">G. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Badescu%2C+A+M">A. M. Badescu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balaceanu%2C+A">A. Balaceanu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbato%2C+F">F. Barbato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luz%2C+R+J+B">R. J. Barreira Luz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baur%2C+S">S. Baur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+K+H">K. H. Becker</a> , et al. (370 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.05386v2-abstract-short" style="display: inline;"> With the Auger Engineering Radio Array (AERA) of the Pierre Auger Observatory, we have observed the radio emission from 561 extensive air showers with zenith angles between 60$^\circ$ and 84$^\circ$. In contrast to air showers with more vertical incidence, these inclined air showers illuminate large ground areas of several km$^2$ with radio signals detectable in the 30 to 80\,MHz band. A compariso&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.05386v2-abstract-full').style.display = 'inline'; document.getElementById('1806.05386v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.05386v2-abstract-full" style="display: none;"> With the Auger Engineering Radio Array (AERA) of the Pierre Auger Observatory, we have observed the radio emission from 561 extensive air showers with zenith angles between 60$^\circ$ and 84$^\circ$. In contrast to air showers with more vertical incidence, these inclined air showers illuminate large ground areas of several km$^2$ with radio signals detectable in the 30 to 80\,MHz band. A comparison of the measured radio-signal amplitudes with Monte Carlo simulations of a subset of 50 events for which we reconstruct the energy using the Auger surface detector shows agreement within the uncertainties of the current analysis. As expected for forward-beamed radio emission undergoing no significant absorption or scattering in the atmosphere, the area illuminated by radio signals grows with the zenith angle of the air shower. Inclined air showers with EeV energies are thus measurable with sparse radio-antenna arrays with grid sizes of a km or more. This is particularly attractive as radio detection provides direct access to the energy in the electromagnetic cascade of an air shower, which in case of inclined air showers is not accessible by arrays of particle detectors on the ground. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.05386v2-abstract-full').style.display = 'none'; document.getElementById('1806.05386v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version, 14 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-18-259 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP10(2018)026 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.04153">arXiv:1806.04153</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.04153">pdf</a>, <a href="https://arxiv.org/format/1806.04153">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.021102">10.1103/PhysRevLett.121.021102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of the Cosmic Ray Galactic Halo Driven by Advected Turbulence and Self-Generated Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Evoli%2C+C">Carmelo Evoli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blasi%2C+P">Pasquale Blasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aloisio%2C+R">Roberto Aloisio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.04153v2-abstract-short" style="display: inline;"> The diffusive paradigm for the transport of Galactic cosmic rays is central to our understanding of the origin of these high energy particles. However, it is worth recalling that the normalization, energy dependence, and spatial extent of the diffusion coefficient in the interstellar medium are fitted to the data and typically are not derived from more basic principles. Here, we discuss a scenario&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.04153v2-abstract-full').style.display = 'inline'; document.getElementById('1806.04153v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.04153v2-abstract-full" style="display: none;"> The diffusive paradigm for the transport of Galactic cosmic rays is central to our understanding of the origin of these high energy particles. However, it is worth recalling that the normalization, energy dependence, and spatial extent of the diffusion coefficient in the interstellar medium are fitted to the data and typically are not derived from more basic principles. Here, we discuss a scenario in which the diffusion properties of cosmic rays are derived from a combination of wave self-generation and advection from the Galactic disc, where the sources of cosmic rays are assumed to be located. We show for the first time that a halo naturally arises from these phenomena, with a size of a few kiloparsecs, compatible with the value that typically best fits observations in simple parametric approaches to cosmic ray diffusion. We also show that transport in such a halo results in a hardening in the spectra of primary cosmic rays at ~300 GV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.04153v2-abstract-full').style.display = 'none'; document.getElementById('1806.04153v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures, accepted for publication in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. (2018) 121, 021102 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.10579">arXiv:1804.10579</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.10579">pdf</a>, <a href="https://arxiv.org/format/1804.10579">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz1425">10.1093/mnras/stz1425 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supernova remnants in clumpy media: particle propagation and gamma-ray emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Celli%2C+S">Silvia Celli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">Giovanni Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gabici%2C+S">Stefano Gabici</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aharonian%2C+F">Felix Aharonian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.10579v2-abstract-short" style="display: inline;"> Observations from the radio to the gamma-ray wavelengths indicate that supernova remnant (SNR) shocks are sites of effective particle acceleration. It has been proposed that the presence of dense clumps in the environment where supernovae explode might have a strong impact in shaping the hadronic gamma-ray spectrum. Here we present a detailed numerical study about the penetration of relativistic p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.10579v2-abstract-full').style.display = 'inline'; document.getElementById('1804.10579v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.10579v2-abstract-full" style="display: none;"> Observations from the radio to the gamma-ray wavelengths indicate that supernova remnant (SNR) shocks are sites of effective particle acceleration. It has been proposed that the presence of dense clumps in the environment where supernovae explode might have a strong impact in shaping the hadronic gamma-ray spectrum. Here we present a detailed numerical study about the penetration of relativistic protons into clumps which are engulfed by a SNR shock, taking into account the magneto-hydrodynamical properties of the background plasma. We show that the spectrum of protons inside clumps is much harder than that in the diffuse inter-clump medium and we discuss the implications for the formation of the spectrum of hadronic gamma rays, which does not reflect anymore the acceleration spectrum of protons, resulting substantially modified inside the clumps due to propagation effects. For the Galactic SNR RX J1713.7-3946, we show that a hadronic scenario including dense clumps inside the remnant shell is able to reproduce the broadband gamma-ray spectrum from GeV to TeV energies. Moreover, we argue that small clumps crossed by the shock could provide a natural explanation to the non-thermal X-ray variability observed in some hot spots of RX J1713.7-3946. Finally we discuss the detectability of gamma-ray emission from clumps with the upcoming Cherenkov Telescope Array and the possible detection of the clumps themselves through molecular lines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.10579v2-abstract-full').style.display = 'none'; document.getElementById('1804.10579v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.10106">arXiv:1804.10106</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.10106">pdf</a>, <a href="https://arxiv.org/ps/1804.10106">ps</a>, <a href="https://arxiv.org/format/1804.10106">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty2235">10.1093/mnras/sty2235 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> What causes the ionization rates observed in molecular clouds? The role of cosmic ray protons and electrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Phan%2C+V+H+M">V. H. M. Phan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morlino%2C+G">G. Morlino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gabici%2C+S">S. Gabici</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.10106v1-abstract-short" style="display: inline;"> Cosmic rays are usually assumed to be the main ionization agent for the interior of molecular clouds where UV and X-ray photons cannot penetrate. Here we test this hypothesis by limiting ourselves to the case of diffuse clouds and assuming that the average cosmic ray spectrum inside the Galaxy is equal to the one at the position of the Sun as measured by Voyager 1 and AMS-02. To calculate the cosm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.10106v1-abstract-full').style.display = 'inline'; document.getElementById('1804.10106v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.10106v1-abstract-full" style="display: none;"> Cosmic rays are usually assumed to be the main ionization agent for the interior of molecular clouds where UV and X-ray photons cannot penetrate. Here we test this hypothesis by limiting ourselves to the case of diffuse clouds and assuming that the average cosmic ray spectrum inside the Galaxy is equal to the one at the position of the Sun as measured by Voyager 1 and AMS-02. To calculate the cosmic ray spectrum inside the clouds, we solve the one-dimensional transport equation taking into account advection, diffusion and energy losses. While outside the cloud particles diffuse, in its interior they are assumed to gyrate along magnetic field lines because ion-neutral friction is effective in damping all the magnetic turbulence. We show that ionization losses effectively reduce the CR flux in the cloud interior for energies below $\approx 100$ MeV, especially for electrons, in such a way that the ionization rate decreases by roughly 2 order of magnitude with respect to the case where losses are neglected. As a consequence, the predicted ionization rate is more than 10 times smaller than the one inferred from the detection of molecular lines. We discuss the implication of our finding in terms of spatial fluctuation of the Galactic cosmic ray spectra and possible additional sources of low energy cosmic rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.10106v1-abstract-full').style.display = 'none'; document.getElementById('1804.10106v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures, submitted</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Morlino%2C+G&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Morlino%2C+G&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Morlino%2C+G&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Morlino%2C+G&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10