CINXE.COM
Konvergenz (Stochastik) – Wikipedia
<!DOCTYPE html> <html class="client-nojs" lang="de" dir="ltr"> <head> <meta charset="UTF-8"> <title>Konvergenz (Stochastik) – Wikipedia</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )dewikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","Januar","Februar","März","April","Mai","Juni","Juli","August","September","Oktober","November","Dezember"],"wgRequestId":"2fafd803-0442-4068-bc45-aab07a78fcd7","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Konvergenz_(Stochastik)","wgTitle":"Konvergenz (Stochastik)","wgCurRevisionId":237729528,"wgRevisionId":237729528,"wgArticleId":1938192,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":[ "*"],"wgCategories":["Stochastik","Konvergenzbegriff"],"wgPageViewLanguage":"de","wgPageContentLanguage":"de","wgPageContentModel":"wikitext","wgRelevantPageName":"Konvergenz_(Stochastik)","wgRelevantArticleId":1938192,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}},"wgStableRevisionId":237729528,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"de","pageLanguageDir":"ltr","pageVariantFallbacks":"de"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":true,"wgVector2022LanguageInHeader":false ,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q578985","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.citeRef":"ready","ext.gadget.defaultPlainlinks":"ready","ext.gadget.dewikiCommonHide":"ready","ext.gadget.dewikiCommonLayout":"ready","ext.gadget.dewikiCommonStyle":"ready","ext.gadget.NavFrame":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.styles.legacy":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles": "ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.createNewSection","ext.gadget.WikiMiniAtlas","ext.gadget.OpenStreetMap","ext.gadget.CommonsDirekt","ext.gadget.donateLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=de&modules=codex-search-styles%7Cext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&only=styles&skin=vector"> <script async="" src="/w/load.php?lang=de&modules=startup&only=scripts&raw=1&skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=de&modules=ext.gadget.NavFrame%2CciteRef%2CdefaultPlainlinks%2CdewikiCommonHide%2CdewikiCommonLayout%2CdewikiCommonStyle&only=styles&skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=de&modules=site.styles&only=styles&skin=vector"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Konvergenz (Stochastik) – Wikipedia"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//de.m.wikipedia.org/wiki/Konvergenz_(Stochastik)"> <link rel="alternate" type="application/x-wiki" title="Seite bearbeiten" href="/w/index.php?title=Konvergenz_(Stochastik)&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (de)"> <link rel="EditURI" type="application/rsd+xml" href="//de.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://de.wikipedia.org/wiki/Konvergenz_(Stochastik)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de"> <link rel="alternate" type="application/atom+xml" title="Atom-Feed für „Wikipedia“" href="/w/index.php?title=Spezial:Letzte_%C3%84nderungen&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Konvergenz_Stochastik rootpage-Konvergenz_Stochastik skin-vector action-view"><div id="mw-page-base" class="noprint"></div> <div id="mw-head-base" class="noprint"></div> <div id="content" class="mw-body" role="main"> <a id="top"></a> <div id="siteNotice"><!-- CentralNotice --></div> <div class="mw-indicators"> </div> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Konvergenz (Stochastik)</span></h1> <div id="bodyContent" class="vector-body"> <div id="siteSub" class="noprint">aus Wikipedia, der freien Enzyklopädie</div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="contentSub2"></div> <div id="jump-to-nav"></div> <a class="mw-jump-link" href="#mw-head">Zur Navigation springen</a> <a class="mw-jump-link" href="#searchInput">Zur Suche springen</a> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="de" dir="ltr"><p>In der <a href="/wiki/Stochastik" title="Stochastik">Stochastik</a> existieren verschiedene Konzepte eines <a href="/wiki/Grenzwert_(Folge)" title="Grenzwert (Folge)">Grenzwertbegriffs</a> für <a href="/wiki/Zufallsvariable" title="Zufallsvariable">Zufallsvariablen</a>. Anders als im Fall reeller <a href="/wiki/Zahlenfolge" class="mw-redirect" title="Zahlenfolge">Zahlenfolgen</a> gibt es keine natürliche Definition für das Grenzverhalten von Zufallsvariablen bei wachsendem <a href="/wiki/Stichprobenumfang" class="mw-redirect" title="Stichprobenumfang">Stichprobenumfang</a>, weil das asymptotische Verhalten der Experimente immer von den einzelnen <a href="/wiki/Realisierung_(Stochastik)" title="Realisierung (Stochastik)">Realisierungen</a> abhängt und wir es also formal mit der <a href="/wiki/Funktionenfolge" title="Funktionenfolge">Konvergenz von Funktionen</a> zu tun haben. Daher haben sich im Laufe der Zeit unterschiedlich starke Konzepte herausgebildet, die wichtigsten dieser <b>Konvergenzarten</b> werden im Folgenden kurz vorgestellt. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="de" dir="ltr"><h2 id="mw-toc-heading">Inhaltsverzeichnis</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Voraussetzungen"><span class="tocnumber">1</span> <span class="toctext">Voraussetzungen</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Fast_sichere_Konvergenz"><span class="tocnumber">2</span> <span class="toctext">Fast sichere Konvergenz</span></a></li> <li class="toclevel-1 tocsection-3"><a href="#Konvergenz_im_p-ten_Mittel"><span class="tocnumber">3</span> <span class="toctext">Konvergenz im <i>p</i>-ten Mittel</span></a></li> <li class="toclevel-1 tocsection-4"><a href="#Konvergenz_in_Wahrscheinlichkeit"><span class="tocnumber">4</span> <span class="toctext">Konvergenz in Wahrscheinlichkeit</span></a></li> <li class="toclevel-1 tocsection-5"><a href="#Schwache_Konvergenz"><span class="tocnumber">5</span> <span class="toctext">Schwache Konvergenz</span></a></li> <li class="toclevel-1 tocsection-6"><a href="#Zusammenhang_zwischen_den_einzelnen_Konvergenzarten"><span class="tocnumber">6</span> <span class="toctext">Zusammenhang zwischen den einzelnen Konvergenzarten</span></a></li> <li class="toclevel-1 tocsection-7"><a href="#Beispiel"><span class="tocnumber">7</span> <span class="toctext">Beispiel</span></a></li> <li class="toclevel-1 tocsection-8"><a href="#Siehe_auch"><span class="tocnumber">8</span> <span class="toctext">Siehe auch</span></a></li> <li class="toclevel-1 tocsection-9"><a href="#Literatur"><span class="tocnumber">9</span> <span class="toctext">Literatur</span></a></li> <li class="toclevel-1 tocsection-10"><a href="#Einzelnachweise"><span class="tocnumber">10</span> <span class="toctext">Einzelnachweise</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="Voraussetzungen">Voraussetzungen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konvergenz_(Stochastik)&veaction=edit&section=1" title="Abschnitt bearbeiten: Voraussetzungen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konvergenz_(Stochastik)&action=edit&section=1" title="Quellcode des Abschnitts bearbeiten: Voraussetzungen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Wir werden die klassischen Konvergenzbegriffe immer im folgenden Modell formulieren: Gegeben sei eine Folge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X_{n})_{(n\in \mathbb {N} )}\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </msub> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X_{n})_{(n\in \mathbb {N} )}\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/014978c9d332c7436fec7a8efbfa2dc09f5cff18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.378ex; height:3.176ex;" alt="{\displaystyle (X_{n})_{(n\in \mathbb {N} )}\;}"></span> von Zufallsvariablen, die auf einem <a href="/wiki/Wahrscheinlichkeitsraum" title="Wahrscheinlichkeitsraum">Wahrscheinlichkeitsraum</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,\Sigma ,P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mo>,</mo> <mi mathvariant="normal">Σ<!-- Σ --></mi> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,\Sigma ,P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c3ca06586219fdcc0bb6f1fbb52fe2df0a86d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.979ex; height:2.843ex;" alt="{\displaystyle (\Omega ,\Sigma ,P)}"></span> definiert sind und in denselben <a href="/wiki/Normierter_Raum" title="Normierter Raum">normierten Raum</a> abbilden. Dieser Bildraum wird mit seiner <a href="/wiki/Borelsche_%CF%83-Algebra" title="Borelsche σ-Algebra">Borel-Algebra</a> in natürlicher Weise zu einem <a href="/wiki/Messraum_(Mathematik)" title="Messraum (Mathematik)">Messraum</a>. Um die Kernaussagen zu verstehen, genügt es, sich stets <a href="/wiki/Zufallsvariable#Reelle_Zufallsvariable" title="Zufallsvariable">reelle Zufallsvariablen</a> vorzustellen. Andererseits können die folgenden Definitionen in naheliegender Weise auf den Fall <a href="/wiki/Metrischer_Raum" title="Metrischer Raum">metrischer Räume</a> als Bildraum verallgemeinert werden. </p><p>Eine <a href="/wiki/Stochastischer_Prozess#Pfade" title="Stochastischer Prozess">Realisierung</a> dieser Folge wird üblicherweise mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}(\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}(\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52753fb1ae064177fe35ded2359ab1331a0f76ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.398ex; height:2.843ex;" alt="{\displaystyle X_{n}(\omega )}"></span> bezeichnet. </p> <div class="mw-heading mw-heading2"><h2 id="Fast_sichere_Konvergenz">Fast sichere Konvergenz</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konvergenz_(Stochastik)&veaction=edit&section=2" title="Abschnitt bearbeiten: Fast sichere Konvergenz" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konvergenz_(Stochastik)&action=edit&section=2" title="Quellcode des Abschnitts bearbeiten: Fast sichere Konvergenz"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→ </span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Fast_sichere_Konvergenz" title="Fast sichere Konvergenz">Fast sichere Konvergenz</a></i></div> <p>Der Begriff der <i>fast sicheren Konvergenz</i> ist am ehesten mit der Formulierung für Zahlenfolgen vergleichbar. Er wird vor allem bei der Formulierung von <a href="/wiki/Starkes_Gesetz_der_gro%C3%9Fen_Zahlen" title="Starkes Gesetz der großen Zahlen">starken Gesetzen der großen Zahlen</a> verwendet. </p><p>Man sagt, dass die Folge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72a8564cedc659cf2f95ae68bc5de2f5207a3285" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.143ex; height:2.509ex;" alt="{\displaystyle X_{n}}"></span> <i>fast sicher</i> gegen eine Zufallsvariable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> konvergiert, falls </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\left(\lim _{n\to \infty }X_{n}=X\right)=P\left(\left\{\omega \in \Omega \,\left|\,\lim _{n\to \infty }X_{n}(\omega )=X(\omega )\right.\right\}\right)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>X</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <mo>{</mo> <mrow> <mi>ω<!-- ω --></mi> <mo>∈<!-- ∈ --></mo> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mspace width="thinmathspace" /> <mrow> <mo>|</mo> <mrow> <mspace width="thinmathspace" /> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> <mo>}</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\left(\lim _{n\to \infty }X_{n}=X\right)=P\left(\left\{\omega \in \Omega \,\left|\,\lim _{n\to \infty }X_{n}(\omega )=X(\omega )\right.\right\}\right)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b95557a52511909fb5d1efc5cea0511330be5483" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:60.321ex; height:4.843ex;" alt="{\displaystyle P\left(\lim _{n\to \infty }X_{n}=X\right)=P\left(\left\{\omega \in \Omega \,\left|\,\lim _{n\to \infty }X_{n}(\omega )=X(\omega )\right.\right\}\right)=1}"></span></dd></dl> <p>gilt und schreibt dann <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}{\xrightarrow {\text{ f. s. }}}X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>→</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mtext> f. s. </mtext> </mpadded> </mover> </mrow> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}{\xrightarrow {\text{ f. s. }}}X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be308b3a4c8c6cbb55ce602e2ad56f62d04ea11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-top: -0.293ex; width:10.254ex; height:4.009ex;" alt="{\displaystyle X_{n}{\xrightarrow {\text{ f. s. }}}X}"></span>. Übersetzt bedeutet dies, dass für <a href="/wiki/Fast_%C3%BCberall" title="Fast überall">fast alle</a> Realisierungen der Folge der klassische Konvergenzbegriff bezüglich der Norm gilt. Die <i>fast sichere Konvergenz</i> entspricht damit der <i><a href="/wiki/Punktweise_Konvergenz_%CE%BC-fast_%C3%BCberall" title="Punktweise Konvergenz μ-fast überall">punktweisen Konvergenz μ-fast überall</a></i> aus der <a href="/wiki/Ma%C3%9Ftheorie" title="Maßtheorie">Maßtheorie</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Konvergenz_im_p-ten_Mittel">Konvergenz im <i>p</i>-ten Mittel</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konvergenz_(Stochastik)&veaction=edit&section=3" title="Abschnitt bearbeiten: Konvergenz im p-ten Mittel" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konvergenz_(Stochastik)&action=edit&section=3" title="Quellcode des Abschnitts bearbeiten: Konvergenz im p-ten Mittel"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→ </span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Konvergenz_im_p-ten_Mittel" title="Konvergenz im p-ten Mittel">Konvergenz im p-ten Mittel</a></i></div> <p>Ein <a href="/wiki/Integralrechnung" title="Integralrechnung">integrationstheoretischer</a> Ansatz wird mit dem Begriff der <i>Konvergenz im <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-ten Mittel</i> verfolgt. Es werden dabei nicht einzelne Realisierungen betrachtet, sondern <a href="/wiki/Erwartungswert" title="Erwartungswert">Erwartungswerte</a> der Zufallsvariablen. </p><p>Formal konvergiert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1089e6920092950d1b661bc07ff62626b169b4dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.788ex; height:2.509ex;" alt="{\displaystyle X_{n}\;}"></span> im <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-ten Mittel gegen eine Zufallsvariable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, falls </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\rightarrow \infty }E[|X_{n}-X|^{p}]=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <mi>E</mi> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>X</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\rightarrow \infty }E[|X_{n}-X|^{p}]=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8989497c5160d9d559c8f80e1ad5ce91ae62626" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:22.306ex; height:4.009ex;" alt="{\displaystyle \lim _{n\rightarrow \infty }E[|X_{n}-X|^{p}]=0}"></span></dd></dl> <p>gilt. Dabei wird <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\geq 1\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>≥<!-- ≥ --></mo> <mn>1</mn> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\geq 1\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a112be990df9e7cf0dd47f30e414f597cc2709ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.165ex; height:2.509ex;" alt="{\displaystyle p\geq 1\;}"></span> vorausgesetzt. Dies bedeutet, dass die Differenz <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}-X\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>X</mi> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}-X\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0267c80abc8401e5a35d3aa46560d2f76717173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.608ex; height:2.509ex;" alt="{\displaystyle X_{n}-X\;}"></span> im <a href="/wiki/Lp-Raum" title="Lp-Raum"><i>L<sup>p</sup></i>-Raum</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}^{p}(P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}^{p}(P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f5b05631122deff04c17c07d69dc94341f3a7a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.218ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}^{p}(P)}"></span> gegen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> konvergiert. Man bezeichnet diese Konvergenz daher auch als <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74656e06707b0d5ba1cd9fbe51155b561d082e23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.663ex; height:2.343ex;" alt="{\displaystyle {\mathcal {L}}^{p}}"></span>-Konvergenz. </p><p>Wegen der <a href="/wiki/Ungleichung_vom_arithmetischen_und_geometrischen_Mittel" title="Ungleichung vom arithmetischen und geometrischen Mittel">Ungleichung der verallgemeinerten Mittelwerte</a> folgt für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q>p\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>></mo> <mi>p</mi> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q>p\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4538adb30d8652de7fde7af7e8a72acfd02fe43f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.983ex; height:2.176ex;" alt="{\displaystyle q>p\;}"></span> aus der Konvergenz im <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span>-ten Mittel die Konvergenz im <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-ten Mittel. </p> <div class="mw-heading mw-heading2"><h2 id="Konvergenz_in_Wahrscheinlichkeit">Konvergenz in Wahrscheinlichkeit</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konvergenz_(Stochastik)&veaction=edit&section=4" title="Abschnitt bearbeiten: Konvergenz in Wahrscheinlichkeit" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konvergenz_(Stochastik)&action=edit&section=4" title="Quellcode des Abschnitts bearbeiten: Konvergenz in Wahrscheinlichkeit"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→ </span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Konvergenz_in_Wahrscheinlichkeit" title="Konvergenz in Wahrscheinlichkeit">Konvergenz in Wahrscheinlichkeit</a></i></div> <p>Ein etwas schwächerer Konvergenzbegriff ist die <i>stochastische Konvergenz</i> oder <i>Konvergenz in Wahrscheinlichkeit</i>. Wie der Name bereits suggeriert, werden nicht spezielle Realisierungen der Zufallsvariablen betrachtet, sondern <a href="/wiki/Wahrscheinlichkeit" title="Wahrscheinlichkeit">Wahrscheinlichkeiten</a> für bestimmte Ereignisse. Eine klassische Anwendung der stochastischen Konvergenz sind <a href="/wiki/Schwaches_Gesetz_der_gro%C3%9Fen_Zahlen" title="Schwaches Gesetz der großen Zahlen">schwache Gesetze der großen Zahlen</a>. </p><p>Die mathematische Formulierung für <a href="/wiki/Zufallsvariable#Reelle_Zufallsvariable" title="Zufallsvariable">reelle Zufallsvariablen</a> lautet: Eine Folge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X_{n})_{n\in \mathbb {N} }\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X_{n})_{n\in \mathbb {N} }\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961fcff08ff58ea2e534f17c386a1ca78aa07116" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.098ex; height:2.843ex;" alt="{\displaystyle (X_{n})_{n\in \mathbb {N} }\;}"></span> von reellen Zufallsvariablen konvergiert stochastisch gegen eine Zufallsvariable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, falls </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall \varepsilon >0\colon \lim _{n\to \infty }P(\vert X_{n}-X\vert >\varepsilon )=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>ε<!-- ε --></mi> <mo>></mo> <mn>0</mn> <mo>:<!-- : --></mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <mi>P</mi> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">|</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>X</mi> <mo fence="false" stretchy="false">|</mo> <mo>></mo> <mi>ε<!-- ε --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall \varepsilon >0\colon \lim _{n\to \infty }P(\vert X_{n}-X\vert >\varepsilon )=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc66c332965fc430067a9dafbd2431b02350d3d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:33.585ex; height:3.843ex;" alt="{\displaystyle \forall \varepsilon >0\colon \lim _{n\to \infty }P(\vert X_{n}-X\vert >\varepsilon )=0}"></span></dd></dl> <p>gilt. Für die Konvergenz in Wahrscheinlichkeit werden meist folgende Schreibweisen verwendet: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {P-lim} _{n\rightarrow \infty }\,X_{n}=X\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">P</mi> <mtext>-</mtext> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>X</mi> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {P-lim} _{n\rightarrow \infty }\,X_{n}=X\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/836ba10951f6e35a2c255c7a2fd0fad44e030959" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.345ex; height:2.509ex;" alt="{\displaystyle \operatorname {P-lim} _{n\rightarrow \infty }\,X_{n}=X\;}"></span> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {plim} (X_{n})=X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>plim</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {plim} (X_{n})=X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/777ee8e390ef36416847c069cf803911c34ba2b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.553ex; height:2.843ex;" alt="{\displaystyle \operatorname {plim} (X_{n})=X}"></span> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}{\stackrel {P}{\rightarrow }}X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">→<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </mover> </mrow> </mrow> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}{\stackrel {P}{\rightarrow }}X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32717055ec7538300a75ff95bc7e43a812b7a32a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.446ex; height:4.009ex;" alt="{\displaystyle X_{n}{\stackrel {P}{\rightarrow }}X}"></span>. </p><p>Die <i>stochastische Konvergenz</i> entspricht der <i><a href="/wiki/Konvergenz_dem_Ma%C3%9Fe_nach" class="mw-redirect" title="Konvergenz dem Maße nach">Konvergenz dem Maße nach</a></i> aus der Maßtheorie. </p> <div class="mw-heading mw-heading2"><h2 id="Schwache_Konvergenz">Schwache Konvergenz</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konvergenz_(Stochastik)&veaction=edit&section=5" title="Abschnitt bearbeiten: Schwache Konvergenz" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konvergenz_(Stochastik)&action=edit&section=5" title="Quellcode des Abschnitts bearbeiten: Schwache Konvergenz"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→ </span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Konvergenz_in_Verteilung" title="Konvergenz in Verteilung">Konvergenz in Verteilung</a></i></div> <p>Der vierte prominente Konvergenzbegriff ist der der <i>Konvergenz in Verteilung</i>, manchmal auch schwache Konvergenz (für Zufallsvariablen) genannt. Er entspricht der <i><a href="/wiki/Schwache_Konvergenz_(Ma%C3%9Ftheorie)" title="Schwache Konvergenz (Maßtheorie)">schwachen Konvergenz für Maße</a></i> der Maßtheorie. </p><p>Eine Folge von Zufallsvariablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1089e6920092950d1b661bc07ff62626b169b4dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.788ex; height:2.509ex;" alt="{\displaystyle X_{n}\;}"></span> konvergiert in Verteilung gegen die Zufallsvariable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, wenn die Folge der induzierten Bildmaße <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{n}(A):=P(X_{n}\in A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{n}(A):=P(X_{n}\in A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14f04381e14208daa7ba23a1ebb7757d3176ca9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.199ex; height:2.843ex;" alt="{\displaystyle \mu _{n}(A):=P(X_{n}\in A)}"></span> schwach gegen das Bildmaß <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu (A):=P(X\in A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu (A):=P(X\in A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d13caed8838b3c70a3af512fb18609d8c0f2af7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.818ex; height:2.843ex;" alt="{\displaystyle \mu (A):=P(X\in A)}"></span> konvergiert. Das heißt, für alle stetigen beschränkten Funktionen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> gilt </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }E(f\circ X_{n})=E(f\circ X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <mi>E</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>E</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }E(f\circ X_{n})=E(f\circ X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/958fae8008d50b58034ae14715cb880fb281397a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:26.997ex; height:3.843ex;" alt="{\displaystyle \lim _{n\to \infty }E(f\circ X_{n})=E(f\circ X)}"></span>.</dd></dl> <p>Für reelle Zufallsvariable ist nach dem <a href="/wiki/Satz_von_Helly-Bray" title="Satz von Helly-Bray">Satz von Helly-Bray</a> die folgende Charakterisierung äquivalent dazu: Für die <a href="/wiki/Verteilungsfunktion" title="Verteilungsfunktion">Verteilungsfunktionen</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76cdf519c21deec43f984815e57e15d2dd3575d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.713ex; height:2.509ex;" alt="{\displaystyle F_{n}}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72a8564cedc659cf2f95ae68bc5de2f5207a3285" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.143ex; height:2.509ex;" alt="{\displaystyle X_{n}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> gilt </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }F_{n}(x)=F(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }F_{n}(x)=F(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/732e5a10862bfd7c3d470e681f53f4cd11070a15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.49ex; height:3.843ex;" alt="{\displaystyle \lim _{n\to \infty }F_{n}(x)=F(x)}"></span></dd></dl> <p>an allen Stellen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9c6d458566aec47a7259762034790c8981aefab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.848ex; height:2.176ex;" alt="{\displaystyle x\in \mathbb {R} }"></span>, an denen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> stetig ist.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Die wohl bekanntesten Anwendungen der Konvergenz in Verteilung sind <a href="/wiki/Zentraler_Grenzwertsatz" title="Zentraler Grenzwertsatz">zentrale Grenzwertsätze</a>. </p><p>Da die Konvergenz in Verteilung ausschließlich durch die Bildmaße bzw. durch die Verteilungsfunktion der Zufallsvariablen definiert sind, ist es nicht notwendig, dass die Zufallsvariablen auf demselben Wahrscheinlichkeitsraum definiert sind. </p><p>Als Notation verwendet man in der Regel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}{\stackrel {w}{\rightarrow }}X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">→<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </mover> </mrow> </mrow> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}{\stackrel {w}{\rightarrow }}X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44d170c56e6d0a18c923386bbd2c94c76f813da2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.446ex; height:3.509ex;" alt="{\displaystyle X_{n}{\stackrel {w}{\rightarrow }}X}"></span> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}{\stackrel {\mathcal {D}}{\rightarrow }}X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">→<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}{\stackrel {\mathcal {D}}{\rightarrow }}X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e927c2b61902d9bbca38d7d8159fcb1b8aad42e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.446ex; height:4.009ex;" alt="{\displaystyle X_{n}{\stackrel {\mathcal {D}}{\rightarrow }}X}"></span>, manchmal aber auch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}\implies X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mspace width="thickmathspace" /> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}\implies X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/865d4ae6a15524b3effcea6e9e3a4d55c36de394" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.509ex; height:2.509ex;" alt="{\displaystyle X_{n}\implies X}"></span>. Die Buchstaben „W“ bzw. „D“ stehen dabei für die entsprechenden Begriffe im Englischen, also <i>weak convergence</i> bzw. <i>convergence in distribution</i>. </p> <div class="mw-heading mw-heading2"><h2 id="Zusammenhang_zwischen_den_einzelnen_Konvergenzarten">Zusammenhang zwischen den einzelnen Konvergenzarten</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konvergenz_(Stochastik)&veaction=edit&section=6" title="Abschnitt bearbeiten: Zusammenhang zwischen den einzelnen Konvergenzarten" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konvergenz_(Stochastik)&action=edit&section=6" title="Quellcode des Abschnitts bearbeiten: Zusammenhang zwischen den einzelnen Konvergenzarten"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In der Reihe der wichtigsten Konvergenzbegriffe in der Stochastik stellen die beiden zuerst vorgestellten Begriffe die stärksten Konvergenzarten dar. Sowohl aus <i>fast sicherer Konvergenz</i><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> als auch aus <i>Konvergenz im p-ten Mittel</i><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> lässt sich immer die <i>stochastische Konvergenz</i> einer Folge von Zufallsvariablen ableiten. Ferner folgt aus <i>stochastischer Konvergenz</i> automatisch auch die <i>Konvergenz in Verteilung</i>, die die schwächste der hier vorgestellten Konvergenzarten ist.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> Kompakt gilt also </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\text{Fast sichere}}\\{\text{Konvergenz}}\end{matrix}}\implies {\begin{matrix}{\text{Konvergenz in}}\\{\text{Wahrscheinlichkeit}}\end{matrix}}\implies {\begin{matrix}{\text{Konvergenz in}}\\{\text{Verteilung}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Fast sichere</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Konvergenz</mtext> </mrow> </mtd> </mtr> </mtable> </mrow> <mspace width="thickmathspace" /> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Konvergenz in</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Wahrscheinlichkeit</mtext> </mrow> </mtd> </mtr> </mtable> </mrow> <mspace width="thickmathspace" /> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Konvergenz in</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Verteilung</mtext> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\text{Fast sichere}}\\{\text{Konvergenz}}\end{matrix}}\implies {\begin{matrix}{\text{Konvergenz in}}\\{\text{Wahrscheinlichkeit}}\end{matrix}}\implies {\begin{matrix}{\text{Konvergenz in}}\\{\text{Verteilung}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82a82335653f31c8931ba4796edc1a820bae5e81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:60.854ex; height:6.176ex;" alt="{\displaystyle {\begin{matrix}{\text{Fast sichere}}\\{\text{Konvergenz}}\end{matrix}}\implies {\begin{matrix}{\text{Konvergenz in}}\\{\text{Wahrscheinlichkeit}}\end{matrix}}\implies {\begin{matrix}{\text{Konvergenz in}}\\{\text{Verteilung}}\end{matrix}}}"></span></dd></dl> <p>und </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\text{Konvergenz im}}\\{\text{p-ten Mittel}}\end{matrix}}\implies {\begin{matrix}{\text{Konvergenz in}}\\{\text{Wahrscheinlichkeit}}\end{matrix}}\implies {\begin{matrix}{\text{Konvergenz in}}\\{\text{Verteilung}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Konvergenz im</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>p-ten Mittel</mtext> </mrow> </mtd> </mtr> </mtable> </mrow> <mspace width="thickmathspace" /> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Konvergenz in</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Wahrscheinlichkeit</mtext> </mrow> </mtd> </mtr> </mtable> </mrow> <mspace width="thickmathspace" /> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Konvergenz in</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Verteilung</mtext> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\text{Konvergenz im}}\\{\text{p-ten Mittel}}\end{matrix}}\implies {\begin{matrix}{\text{Konvergenz in}}\\{\text{Wahrscheinlichkeit}}\end{matrix}}\implies {\begin{matrix}{\text{Konvergenz in}}\\{\text{Verteilung}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bd940702496ee9a01638568b02eff756a617394" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:64.017ex; height:6.176ex;" alt="{\displaystyle {\begin{matrix}{\text{Konvergenz im}}\\{\text{p-ten Mittel}}\end{matrix}}\implies {\begin{matrix}{\text{Konvergenz in}}\\{\text{Wahrscheinlichkeit}}\end{matrix}}\implies {\begin{matrix}{\text{Konvergenz in}}\\{\text{Verteilung}}\end{matrix}}}"></span>.</dd></dl> <p>In Ausnahmefällen gelten auch noch andere Implikationen: Wenn eine Folge von Zufallsvariablen in Verteilung gegen eine Zufallsvariable X konvergiert und X fast sicher konstant ist, dann konvergiert diese Folge auch stochastisch. </p><p>Aus der Konvergenz im p-ten Mittel folgt im Allgemeinen nicht die fast sichere Konvergenz. Umgekehrt lässt sich aus fast sicherer Konvergenz im Allgemeinen auch keine Konvergenz im p-ten Mittel schließen. Allerdings ist dieser Schluss erlaubt, wenn es eine gemeinsame Majorante in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf2317aaca1ecee4b8ccf667bc1001059eae5850" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.642ex; height:2.343ex;" alt="{\displaystyle L^{p}}"></span> gibt (siehe <a href="/wiki/Satz_von_der_majorisierten_Konvergenz" title="Satz von der majorisierten Konvergenz">Satz von der majorisierten Konvergenz</a>). Eine Folge von Zufallsvariablen konvergiert genau dann in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74c288d1089f1ec85b01b4de25c441fc792bd2d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.676ex;" alt="{\displaystyle L^{1}}"></span>, wenn sie stochastisch konvergiert und <a href="/wiki/Gleichgradige_Integrierbarkeit" title="Gleichgradige Integrierbarkeit">gleichgradig integrierbar</a> ist. </p> <div class="mw-heading mw-heading2"><h2 id="Beispiel">Beispiel</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konvergenz_(Stochastik)&veaction=edit&section=7" title="Abschnitt bearbeiten: Beispiel" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konvergenz_(Stochastik)&action=edit&section=7" title="Quellcode des Abschnitts bearbeiten: Beispiel"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Auf dem Wahrscheinlichkeitsraum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,\Sigma ,P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mo>,</mo> <mi mathvariant="normal">Σ<!-- Σ --></mi> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,\Sigma ,P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c3ca06586219fdcc0bb6f1fbb52fe2df0a86d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.979ex; height:2.843ex;" alt="{\displaystyle (\Omega ,\Sigma ,P)}"></span> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =[0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mo>=</mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =[0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a16b39940ed262a459907035d290bf78c18134b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.429ex; height:2.843ex;" alt="{\displaystyle \Omega =[0,1]}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Σ<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> den <a href="/wiki/Borelsche_%CF%83-Algebra" title="Borelsche σ-Algebra">Borelmengen</a> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> dem <a href="/wiki/Borel-Lebesgue-Ma%C3%9F" class="mw-redirect" title="Borel-Lebesgue-Maß">Borel-Lebesgue-Maß</a> betrachte man die Zufallsvariable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(\omega )=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(\omega )=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1f5905512524bc3b10f3571f49dc9684f5b292b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.496ex; height:2.843ex;" alt="{\displaystyle X(\omega )=0}"></span> sowie die Folge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}(\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}(\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52753fb1ae064177fe35ded2359ab1331a0f76ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.398ex; height:2.843ex;" alt="{\displaystyle X_{n}(\omega )}"></span> der Zufallsvariablen, die für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2^{k}+m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>+</mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2^{k}+m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca80f8601a9a36a3881d839a885cf45d4bdda536" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.625ex; height:2.843ex;" alt="{\displaystyle n=2^{k}+m}"></span> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq m<2^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>≤<!-- ≤ --></mo> <mi>m</mi> <mo><</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq m<2^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c78f13c64cc3565353975140dd1b271484be2849" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.651ex; height:2.843ex;" alt="{\displaystyle 0\leq m<2^{k}}"></span> (jedes natürliche <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> besitzt eine eindeutige Zerlegung dieser Art) folgendermaßen definiert ist<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}(\omega )={\begin{cases}1&{\text{falls }}{\frac {m}{2^{k}}}\leq \omega \leq {\frac {m+1}{2^{k}}}\\0&{\text{sonst.}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>falls </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mfrac> </mrow> <mo>≤<!-- ≤ --></mo> <mi>ω<!-- ω --></mi> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>sonst.</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}(\omega )={\begin{cases}1&{\text{falls }}{\frac {m}{2^{k}}}\leq \omega \leq {\frac {m+1}{2^{k}}}\\0&{\text{sonst.}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fd5d8026bdb819a17505789b4c5c61cc8fcd95c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:34.811ex; height:7.509ex;" alt="{\displaystyle X_{n}(\omega )={\begin{cases}1&{\text{falls }}{\frac {m}{2^{k}}}\leq \omega \leq {\frac {m+1}{2^{k}}}\\0&{\text{sonst.}}\end{cases}}}"></span></dd></dl> <p>Die Funktionen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72a8564cedc659cf2f95ae68bc5de2f5207a3285" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.143ex; height:2.509ex;" alt="{\displaystyle X_{n}}"></span> sind sozusagen immer dünner werdende Zacken, die über das Intervall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738f7d23bb2d9642bab520020873cccbef49768d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.653ex; height:2.843ex;" alt="{\displaystyle [0,1]}"></span> laufen. </p><p>Wegen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E[|X_{n}-X|^{p}]=\int _{0}^{1}|X_{n}(\omega )-0|^{p}d\omega ={\frac {1}{2^{k}}}\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>X</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>0</mn> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>ω<!-- ω --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mfrac> </mrow> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E[|X_{n}-X|^{p}]=\int _{0}^{1}|X_{n}(\omega )-0|^{p}d\omega ={\frac {1}{2^{k}}}\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eff61ad651fb2cfc80095a0137bd87a5b114b655" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:46.767ex; height:6.176ex;" alt="{\displaystyle E[|X_{n}-X|^{p}]=\int _{0}^{1}|X_{n}(\omega )-0|^{p}d\omega ={\frac {1}{2^{k}}}\to 0}"></span></dd></dl> <p>konvergiert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72a8564cedc659cf2f95ae68bc5de2f5207a3285" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.143ex; height:2.509ex;" alt="{\displaystyle X_{n}}"></span> im p-ten Mittel gegen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>. Aus dem oben beschriebenen Zusammenhang zwischen den einzelnen Konvergenzarten folgt, dass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72a8564cedc659cf2f95ae68bc5de2f5207a3285" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.143ex; height:2.509ex;" alt="{\displaystyle X_{n}}"></span> ebenso stochastisch gegen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> konvergiert, wie sich auch aus </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(|X_{n}-X|>\varepsilon )={\begin{cases}{\frac {1}{2^{k}}}\;&{\text{für}}\;0<\varepsilon \leq 1\\0\;&{\text{für}}\;\varepsilon >1\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>></mo> <mi>ε<!-- ε --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mfrac> </mrow> <mspace width="thickmathspace" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>für</mtext> </mrow> <mspace width="thickmathspace" /> <mn>0</mn> <mo><</mo> <mi>ε<!-- ε --></mi> <mo>≤<!-- ≤ --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mspace width="thickmathspace" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>für</mtext> </mrow> <mspace width="thickmathspace" /> <mi>ε<!-- ε --></mi> <mo>></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(|X_{n}-X|>\varepsilon )={\begin{cases}{\frac {1}{2^{k}}}\;&{\text{für}}\;0<\varepsilon \leq 1\\0\;&{\text{für}}\;\varepsilon >1\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdcd4922560e6066a762d7f633193d2c2bb9e53e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:41.493ex; height:7.509ex;" alt="{\displaystyle P(|X_{n}-X|>\varepsilon )={\begin{cases}{\frac {1}{2^{k}}}\;&{\text{für}}\;0<\varepsilon \leq 1\\0\;&{\text{für}}\;\varepsilon >1\end{cases}}}"></span></dd></dl> <p>und wegen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\rightarrow \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\rightarrow \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/612a3ec99f1c9f12de1cfab011e306ae799858ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.149ex; height:2.176ex;" alt="{\displaystyle k\rightarrow \infty }"></span> für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\rightarrow \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\rightarrow \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9702f04f2d0e5b887b99faeeffb0c4cfd8263eee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.333ex; height:1.843ex;" alt="{\displaystyle n\rightarrow \infty }"></span>, also </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(|X_{n}-X|>\varepsilon )\leq {\frac {1}{2^{k}}}\to 0\;{\text{für jedes}}\;\varepsilon >0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>></mo> <mi>ε<!-- ε --></mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mfrac> </mrow> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>für jedes</mtext> </mrow> <mspace width="thickmathspace" /> <mi>ε<!-- ε --></mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(|X_{n}-X|>\varepsilon )\leq {\frac {1}{2^{k}}}\to 0\;{\text{für jedes}}\;\varepsilon >0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f047ed620f5c0f3d156df6cb405bc4b7d03e9938" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:43.197ex; height:5.676ex;" alt="{\displaystyle P(|X_{n}-X|>\varepsilon )\leq {\frac {1}{2^{k}}}\to 0\;{\text{für jedes}}\;\varepsilon >0}"></span></dd></dl> <p>erkennen lässt. </p><p>Für jedes fixe <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \in [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \in [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32b70a2d779c8b8d1ea321e7eb870979b88b0e26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.939ex; height:2.843ex;" alt="{\displaystyle \omega \in [0,1]}"></span> gilt aber <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}(\omega )=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}(\omega )=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52c0981dfa9bba8af9236221cf61e6db3e2d8430" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.659ex; height:2.843ex;" alt="{\displaystyle X_{n}(\omega )=1}"></span> für unendliche viele <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, ebenso ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}(\omega )=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}(\omega )=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecc3a7929c9bb9350f660ccae64fd938bb1d61ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.659ex; height:2.843ex;" alt="{\displaystyle X_{n}(\omega )=0}"></span> für unendlich viele <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, sodass also keine fast sichere Konvergenz von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72a8564cedc659cf2f95ae68bc5de2f5207a3285" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.143ex; height:2.509ex;" alt="{\displaystyle X_{n}}"></span> vorliegt. Zu jeder Teilfolge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n_{i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n_{i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/265e80874e182e6c2acbe8b5435083026c23286b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.768ex; height:2.843ex;" alt="{\displaystyle X_{n_{i}}}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72a8564cedc659cf2f95ae68bc5de2f5207a3285" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.143ex; height:2.509ex;" alt="{\displaystyle X_{n}}"></span> lässt sich allerdings eine Teilteilfolge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n_{i_{j}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n_{i_{j}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdcbc30ca4135d9d6a2f919388e988e437d00eb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:4.451ex; height:3.509ex;" alt="{\displaystyle X_{n_{i_{j}}}}"></span> finden, die fast sicher gegen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> konvergiert. Gäbe es eine <a href="/wiki/Topologie_(Mathematik)" title="Topologie (Mathematik)">Topologie</a> der fast sicheren Konvergenz, so würde aus dieser Eigenschaft folgen, dass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72a8564cedc659cf2f95ae68bc5de2f5207a3285" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.143ex; height:2.509ex;" alt="{\displaystyle X_{n}}"></span> fast sicher gegen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> konvergiert. Dieses Beispiel zeigt also auch, dass es keine Topologie der fast sicheren Konvergenz geben kann.<sup id="cite_ref-Cigler/Reichel_7-0" class="reference"><a href="#cite_note-Cigler/Reichel-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Siehe_auch">Siehe auch</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konvergenz_(Stochastik)&veaction=edit&section=8" title="Abschnitt bearbeiten: Siehe auch" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konvergenz_(Stochastik)&action=edit&section=8" title="Quellcode des Abschnitts bearbeiten: Siehe auch"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Funktionenfolge#Maßtheoretische_Konvergenzbegriffe" title="Funktionenfolge">Maßtheoretische Konvergenzbegriffe</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Literatur">Literatur</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konvergenz_(Stochastik)&veaction=edit&section=9" title="Abschnitt bearbeiten: Literatur" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konvergenz_(Stochastik)&action=edit&section=9" title="Quellcode des Abschnitts bearbeiten: Literatur"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Heinz_Bauer_(Mathematiker)" title="Heinz Bauer (Mathematiker)">Heinz Bauer</a>: <cite style="font-style:italic">Wahrscheinlichkeitstheorie</cite>. 4. Auflage. De Gruyter, Berlin 1991, <a href="/wiki/Spezial:ISBN-Suche/3110121905" class="internal mw-magiclink-isbn">ISBN 3-11-012190-5</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em"> </span>34</span> (Konvergenz von Zufallsvariablen und Verteilungen).<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Konvergenz+%28Stochastik%29&rft.au=Heinz+Bauer&rft.btitle=Wahrscheinlichkeitstheorie&rft.date=1991&rft.edition=4.&rft.genre=book&rft.isbn=3110121905&rft.pages=34&rft.place=Berlin&rft.pub=De+Gruyter" style="display:none"> </span></li> <li>Heinz Bauer: <cite style="font-style:italic">Maß- und Integrationstheorie</cite>. 2. Auflage. De Gruyter, Berlin 1992, <a href="/wiki/Spezial:ISBN-Suche/3110136252" class="internal mw-magiclink-isbn">ISBN 3-11-013625-2</a>, §15 Konvergenzsätze und §20 Stochastische Konvergenz, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em"> </span>91<span style="display:inline-block;width:.2em"> </span>ff. und 128<span style="display:inline-block;width:.2em"> </span>ff</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abookitem&rfr_id=info:sid/de.wikipedia.org:Konvergenz+%28Stochastik%29&rft.atitle=%C2%A715+Konvergenzs%C3%A4tze+und+%C2%A720+Stochastische+Konvergenz&rft.au=Heinz+Bauer&rft.btitle=Ma%C3%9F-+und+Integrationstheorie&rft.date=1992&rft.edition=2.&rft.genre=bookitem&rft.isbn=3110136252&rft.pages=91+ff.+und+128+ff.&rft.place=Berlin&rft.pub=De+Gruyter" style="display:none"> </span></li> <li><a href="/wiki/J%C3%BCrgen_Elstrodt" title="Jürgen Elstrodt">Jürgen Elstrodt</a>: <cite style="font-style:italic">Maß- und Integrationstheorie</cite>. 7. Auflage. Springer, Berlin 2011, <a href="/wiki/Spezial:ISBN-Suche/9783642179044" class="internal mw-magiclink-isbn">ISBN 978-3-642-17904-4</a>, Kapitel VI. Konvergenzbegriffe der Maß- und Integrationstheorie, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em"> </span>219–268</span> (beschreibt ausführlich die Zusammenhänge zwischen den verschiedenen Konvergenzarten).<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abookitem&rfr_id=info:sid/de.wikipedia.org:Konvergenz+%28Stochastik%29&rft.atitle=Kapitel+VI.+Konvergenzbegriffe+der+Ma%C3%9F-+und+Integrationstheorie&rft.au=J%C3%BCrgen+Elstrodt&rft.btitle=Ma%C3%9F-+und+Integrationstheorie&rft.date=2011&rft.edition=7.&rft.genre=bookitem&rft.isbn=9783642179044&rft.pages=219-268&rft.place=Berlin&rft.pub=Springer" style="display:none"> </span></li> <li><a href="/wiki/Christian_Hesse_(Mathematiker)" title="Christian Hesse (Mathematiker)">Christian Hesse</a>: <cite style="font-style:italic">Angewandte Wahrscheinlichkeitstheorie</cite>. 1. Auflage. Vieweg, Wiesbaden 2003, <a href="/wiki/Spezial:ISBN-Suche/3528031832" class="internal mw-magiclink-isbn">ISBN 3-528-03183-2</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em"> </span>216–238</span>, <a href="/wiki/Digital_Object_Identifier" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://doi.org/10.1007/978-3-663-01244-3">10.1007/978-3-663-01244-3</a></span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Konvergenz+%28Stochastik%29&rft.au=Christian+Hesse&rft.btitle=Angewandte+Wahrscheinlichkeitstheorie&rft.date=2003&rft.doi=10.1007%2F978-3-663-01244-3&rft.edition=1.&rft.genre=book&rft.isbn=3528031832&rft.pages=216-238&rft.place=Wiesbaden&rft.pub=Vieweg" style="display:none"> </span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Einzelnachweise">Einzelnachweise</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konvergenz_(Stochastik)&veaction=edit&section=10" title="Abschnitt bearbeiten: Einzelnachweise" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konvergenz_(Stochastik)&action=edit&section=10" title="Quellcode des Abschnitts bearbeiten: Einzelnachweise"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text">Robert B. Ash: <cite style="font-style:italic">Real Analysis and Probability</cite>. Academic Press, New York 1972, <a href="/wiki/Spezial:ISBN-Suche/0120652013" class="internal mw-magiclink-isbn">ISBN 0-12-065201-3</a>, Theorem 4.5.4.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abookitem&rfr_id=info:sid/de.wikipedia.org:Konvergenz+%28Stochastik%29&rft.atitle=Theorem+4.5.4&rft.au=Robert+B.+Ash&rft.btitle=Real+Analysis+and+Probability&rft.date=1972&rft.genre=bookitem&rft.isbn=0120652013&rft.place=New+York&rft.pub=Academic+Press" style="display:none"> </span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text">Robert B. Ash: <cite style="font-style:italic">Real Analysis and Probability</cite>. Academic Press, New York 1972, <a href="/wiki/Spezial:ISBN-Suche/0120652013" class="internal mw-magiclink-isbn">ISBN 0-12-065201-3</a>, Theorem 2.5.5.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abookitem&rfr_id=info:sid/de.wikipedia.org:Konvergenz+%28Stochastik%29&rft.atitle=Theorem+2.5.5&rft.au=Robert+B.+Ash&rft.btitle=Real+Analysis+and+Probability&rft.date=1972&rft.genre=bookitem&rft.isbn=0120652013&rft.place=New+York&rft.pub=Academic+Press" style="display:none"> </span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text">Robert B. Ash: <cite style="font-style:italic">Real Analysis and Probability</cite>. Academic Press, New York 1972, <a href="/wiki/Spezial:ISBN-Suche/0120652013" class="internal mw-magiclink-isbn">ISBN 0-12-065201-3</a>, Theorem 2.5.1.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abookitem&rfr_id=info:sid/de.wikipedia.org:Konvergenz+%28Stochastik%29&rft.atitle=Theorem+2.5.1&rft.au=Robert+B.+Ash&rft.btitle=Real+Analysis+and+Probability&rft.date=1972&rft.genre=bookitem&rft.isbn=0120652013&rft.place=New+York&rft.pub=Academic+Press" style="display:none"> </span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.math.uah.edu/stat/dist/Convergence.html">Virtual Laboratories in Probability and Statistics, Excercise 2.8.3</a></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text">Robert B. Ash: <cite style="font-style:italic">Real Analysis and Probability</cite>. Academic Press, New York 1972, <a href="/wiki/Spezial:ISBN-Suche/0120652013" class="internal mw-magiclink-isbn">ISBN 0-12-065201-3</a>, Examples 2.5.6.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abookitem&rfr_id=info:sid/de.wikipedia.org:Konvergenz+%28Stochastik%29&rft.atitle=Examples+2.5.6&rft.au=Robert+B.+Ash&rft.btitle=Real+Analysis+and+Probability&rft.date=1972&rft.genre=bookitem&rft.isbn=0120652013&rft.place=New+York&rft.pub=Academic+Press" style="display:none"> </span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text">Bernard R. Gelbaum, John M.H. Olmsted: <cite style="font-style:italic">Counterexamples in Analysis</cite>. Dover Publications, Mineola, New York 2003, <a href="/wiki/Spezial:ISBN-Suche/0486428753" class="internal mw-magiclink-isbn">ISBN 0-486-42875-3</a>, Abschnitt 8.40, Sequences of functions converging in different senses, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em"> </span>109–111</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abookitem&rfr_id=info:sid/de.wikipedia.org:Konvergenz+%28Stochastik%29&rft.atitle=Abschnitt+8.40%2C+Sequences+of+functions+converging+in+different+senses&rft.au=Bernard+R.+Gelbaum%2C+John+M.H.+Olmsted&rft.btitle=Counterexamples+in+Analysis&rft.date=2003&rft.genre=bookitem&rft.isbn=0486428753&rft.pages=109-111&rft.place=Mineola%2C+New+York&rft.pub=Dover+Publications" style="display:none"> </span></span> </li> <li id="cite_note-Cigler/Reichel-7"><span class="mw-cite-backlink"><a href="#cite_ref-Cigler/Reichel_7-0">↑</a></span> <span class="reference-text">J. Cigler, H.-C. Reichel: <cite style="font-style:italic">Topologie. Eine Grundvorlesung</cite>. 6. Auflage. Bibliographisches Institut, Mannheim 1978, <a href="/wiki/Spezial:ISBN-Suche/3411001216" class="internal mw-magiclink-isbn">ISBN 3-411-00121-6</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em"> </span>88</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Konvergenz+%28Stochastik%29&rft.au=J.+Cigler%2C+H.-C.+Reichel&rft.btitle=Topologie.+Eine+Grundvorlesung&rft.date=1978&rft.edition=6&rft.genre=book&rft.isbn=3411001216&rft.pages=88&rft.place=Mannheim&rft.pub=Bibliographisches+Institut" style="display:none"> </span></span> </li> </ol></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Abgerufen von „<a dir="ltr" href="https://de.wikipedia.org/w/index.php?title=Konvergenz_(Stochastik)&oldid=237729528">https://de.wikipedia.org/w/index.php?title=Konvergenz_(Stochastik)&oldid=237729528</a>“</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Wikipedia:Kategorien" title="Wikipedia:Kategorien">Kategorien</a>: <ul><li><a href="/wiki/Kategorie:Stochastik" title="Kategorie:Stochastik">Stochastik</a></li><li><a href="/wiki/Kategorie:Konvergenzbegriff" title="Kategorie:Konvergenzbegriff">Konvergenzbegriff</a></li></ul></div></div> </div> </div> <div id="mw-navigation"> <h2>Navigationsmenü</h2> <div id="mw-head"> <nav id="p-personal" class="mw-portlet mw-portlet-personal vector-user-menu-legacy vector-menu" aria-labelledby="p-personal-label" > <h3 id="p-personal-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Meine Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anonuserpage" class="mw-list-item"><span title="Benutzerseite der IP-Adresse, von der aus du Änderungen durchführst">Nicht angemeldet</span></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Spezial:Meine_Diskussionsseite" title="Diskussion über Änderungen von dieser IP-Adresse [n]" accesskey="n"><span>Diskussionsseite</span></a></li><li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Spezial:Meine_Beitr%C3%A4ge" title="Eine Liste der Bearbeitungen, die von dieser IP-Adresse gemacht wurden [y]" accesskey="y"><span>Beiträge</span></a></li><li id="pt-createaccount" class="mw-list-item"><a href="/w/index.php?title=Spezial:Benutzerkonto_anlegen&returnto=Konvergenz+%28Stochastik%29" title="Wir ermutigen dich dazu, ein Benutzerkonto zu erstellen und dich anzumelden. Es ist jedoch nicht zwingend erforderlich."><span>Benutzerkonto erstellen</span></a></li><li id="pt-login" class="mw-list-item"><a href="/w/index.php?title=Spezial:Anmelden&returnto=Konvergenz+%28Stochastik%29" title="Anmelden ist zwar keine Pflicht, wird aber gerne gesehen. [o]" accesskey="o"><span>Anmelden</span></a></li> </ul> </div> </nav> <div id="left-navigation"> <nav id="p-namespaces" class="mw-portlet mw-portlet-namespaces vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-namespaces-label" > <h3 id="p-namespaces-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Namensräume</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected mw-list-item"><a href="/wiki/Konvergenz_(Stochastik)" title="Seiteninhalt anzeigen [c]" accesskey="c"><span>Artikel</span></a></li><li id="ca-talk" class="mw-list-item"><a href="/wiki/Diskussion:Konvergenz_(Stochastik)" rel="discussion" title="Diskussion zum Seiteninhalt [t]" accesskey="t"><span>Diskussion</span></a></li> </ul> </div> </nav> <nav id="p-variants" class="mw-portlet mw-portlet-variants emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-variants-label" > <input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-menu-checkbox" aria-labelledby="p-variants-label" > <label id="p-variants-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Deutsch</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> </div> <div id="right-navigation"> <nav id="p-views" class="mw-portlet mw-portlet-views vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-views-label" > <h3 id="p-views-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Ansichten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected mw-list-item"><a href="/wiki/Konvergenz_(Stochastik)"><span>Lesen</span></a></li><li id="ca-ve-edit" class="mw-list-item"><a href="/w/index.php?title=Konvergenz_(Stochastik)&veaction=edit" title="Diese Seite mit dem VisualEditor bearbeiten [v]" accesskey="v"><span>Bearbeiten</span></a></li><li id="ca-edit" class="collapsible mw-list-item"><a href="/w/index.php?title=Konvergenz_(Stochastik)&action=edit" title="Den Quelltext dieser Seite bearbeiten [e]" accesskey="e"><span>Quelltext bearbeiten</span></a></li><li id="ca-history" class="mw-list-item"><a href="/w/index.php?title=Konvergenz_(Stochastik)&action=history" title="Frühere Versionen dieser Seite [h]" accesskey="h"><span>Versionsgeschichte</span></a></li> </ul> </div> </nav> <nav id="p-cactions" class="mw-portlet mw-portlet-cactions emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-cactions-label" title="Weitere Optionen" > <input type="checkbox" id="p-cactions-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-cactions" class="vector-menu-checkbox" aria-labelledby="p-cactions-label" > <label id="p-cactions-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Weitere</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <h3 >Suche</h3> <form action="/w/index.php" id="searchform" class="vector-search-box-form"> <div id="simpleSearch" class="vector-search-box-inner" data-search-loc="header-navigation"> <input class="vector-search-box-input" type="search" name="search" placeholder="Wikipedia durchsuchen" aria-label="Wikipedia durchsuchen" autocapitalize="sentences" title="Durchsuche die Wikipedia [f]" accesskey="f" id="searchInput" > <input type="hidden" name="title" value="Spezial:Suche"> <input id="mw-searchButton" class="searchButton mw-fallbackSearchButton" type="submit" name="fulltext" title="Suche nach Seiten, die diesen Text enthalten" value="Suchen"> <input id="searchButton" class="searchButton" type="submit" name="go" title="Gehe direkt zu der Seite mit genau diesem Namen, falls sie vorhanden ist." value="Artikel"> </div> </form> </div> </div> </div> <div id="mw-panel" class="vector-legacy-sidebar"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/Wikipedia:Hauptseite" title="Hauptseite"></a> </div> <nav id="p-navigation" class="mw-portlet mw-portlet-navigation vector-menu-portal portal vector-menu" aria-labelledby="p-navigation-label" > <h3 id="p-navigation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Navigation</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Hauptseite" title="Hauptseite besuchen [z]" accesskey="z"><span>Hauptseite</span></a></li><li id="n-topics" class="mw-list-item"><a href="/wiki/Portal:Wikipedia_nach_Themen"><span>Themenportale</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Spezial:Zuf%C3%A4llige_Seite" title="Zufällige Seite aufrufen [x]" accesskey="x"><span>Zufälliger Artikel</span></a></li> </ul> </div> </nav> <nav id="p-Mitmachen" class="mw-portlet mw-portlet-Mitmachen vector-menu-portal portal vector-menu" aria-labelledby="p-Mitmachen-label" > <h3 id="p-Mitmachen-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Mitmachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Artikel-verbessern" class="mw-list-item"><a href="/wiki/Wikipedia:Beteiligen"><span>Artikel verbessern</span></a></li><li id="n-Neuerartikel" class="mw-list-item"><a href="/wiki/Hilfe:Neuen_Artikel_anlegen"><span>Neuen Artikel anlegen</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Autorenportal" title="Info-Zentrum über Beteiligungsmöglichkeiten"><span>Autorenportal</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Hilfe:%C3%9Cbersicht" title="Übersicht über Hilfeseiten"><span>Hilfe</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Spezial:Letzte_%C3%84nderungen" title="Liste der letzten Änderungen in Wikipedia [r]" accesskey="r"><span>Letzte Änderungen</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:Kontakt" title="Kontaktmöglichkeiten"><span>Kontakt</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_de.wikipedia.org&uselang=de" title="Unterstütze uns"><span>Spenden</span></a></li> </ul> </div> </nav> <nav id="p-tb" class="mw-portlet mw-portlet-tb vector-menu-portal portal vector-menu" aria-labelledby="p-tb-label" > <h3 id="p-tb-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Spezial:Linkliste/Konvergenz_(Stochastik)" title="Liste aller Seiten, die hierher verlinken [j]" accesskey="j"><span>Links auf diese Seite</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Spezial:%C3%84nderungen_an_verlinkten_Seiten/Konvergenz_(Stochastik)" rel="nofollow" title="Letzte Änderungen an Seiten, die von hier verlinkt sind [k]" accesskey="k"><span>Änderungen an verlinkten Seiten</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Spezial:Spezialseiten" title="Liste aller Spezialseiten [q]" accesskey="q"><span>Spezialseiten</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Konvergenz_(Stochastik)&oldid=237729528" title="Dauerhafter Link zu dieser Seitenversion"><span>Permanenter Link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Konvergenz_(Stochastik)&action=info" title="Weitere Informationen über diese Seite"><span>Seiteninformationen</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Spezial:Zitierhilfe&page=Konvergenz_%28Stochastik%29&id=237729528&wpFormIdentifier=titleform" title="Hinweise, wie diese Seite zitiert werden kann"><span>Artikel zitieren</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Spezial:URL-K%C3%BCrzung&url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FKonvergenz_%28Stochastik%29"><span>Kurzlink</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Spezial:QrCode&url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FKonvergenz_%28Stochastik%29"><span>QR-Code herunterladen</span></a></li> </ul> </div> </nav> <nav id="p-coll-print_export" class="mw-portlet mw-portlet-coll-print_export vector-menu-portal portal vector-menu" aria-labelledby="p-coll-print_export-label" > <h3 id="p-coll-print_export-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Drucken/exportieren</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Spezial:DownloadAsPdf&page=Konvergenz_%28Stochastik%29&action=show-download-screen"><span>Als PDF herunterladen</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Konvergenz_(Stochastik)&printable=yes" title="Druckansicht dieser Seite [p]" accesskey="p"><span>Druckversion</span></a></li> </ul> </div> </nav> <nav id="p-wikibase-otherprojects" class="mw-portlet mw-portlet-wikibase-otherprojects vector-menu-portal portal vector-menu" aria-labelledby="p-wikibase-otherprojects-label" > <h3 id="p-wikibase-otherprojects-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Projekten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q578985" title="Link zum verbundenen Objekt im Datenrepositorium [g]" accesskey="g"><span>Wikidata-Datenobjekt</span></a></li> </ul> </div> </nav> <nav id="p-lang" class="mw-portlet mw-portlet-lang vector-menu-portal portal vector-menu" aria-labelledby="p-lang-label" > <h3 id="p-lang-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Sprachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%82%D8%A7%D8%B1%D8%A8_%D8%A7%D9%84%D9%85%D8%AA%D8%BA%D9%8A%D8%B1%D8%A7%D8%AA_%D8%A7%D9%84%D8%B9%D8%B4%D9%88%D8%A7%D8%A6%D9%8A%D8%A9" title="تقارب المتغيرات العشوائية – Arabisch" lang="ar" hreflang="ar" data-title="تقارب المتغيرات العشوائية" data-language-autonym="العربية" data-language-local-name="Arabisch" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Converg%C3%A8ncia_de_variables_aleat%C3%B2ries" title="Convergència de variables aleatòries – Katalanisch" lang="ca" hreflang="ca" data-title="Convergència de variables aleatòries" data-language-autonym="Català" data-language-local-name="Katalanisch" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Konvergence_n%C3%A1hodn%C3%BDch_prom%C4%9Bnn%C3%BDch" title="Konvergence náhodných proměnných – Tschechisch" lang="cs" hreflang="cs" data-title="Konvergence náhodných proměnných" data-language-autonym="Čeština" data-language-local-name="Tschechisch" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%8D%CE%B3%CE%BA%CE%BB%CE%B9%CF%83%CE%B7_%CF%84%CF%85%CF%87%CE%B1%CE%AF%CF%89%CE%BD_%CE%BC%CE%B5%CF%84%CE%B1%CE%B2%CE%BB%CE%B7%CF%84%CF%8E%CE%BD" title="Σύγκλιση τυχαίων μεταβλητών – Griechisch" lang="el" hreflang="el" data-title="Σύγκλιση τυχαίων μεταβλητών" data-language-autonym="Ελληνικά" data-language-local-name="Griechisch" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Convergence_of_random_variables" title="Convergence of random variables – Englisch" lang="en" hreflang="en" data-title="Convergence of random variables" data-language-autonym="English" data-language-local-name="Englisch" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Convergencia_de_variables_aleatorias" title="Convergencia de variables aleatorias – Spanisch" lang="es" hreflang="es" data-title="Convergencia de variables aleatorias" data-language-autonym="Español" data-language-local-name="Spanisch" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Konbergentzia_estokastiko" title="Konbergentzia estokastiko – Baskisch" lang="eu" hreflang="eu" data-title="Konbergentzia estokastiko" data-language-autonym="Euskara" data-language-local-name="Baskisch" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%87%D9%85%DA%AF%D8%B1%D8%A7%DB%8C%DB%8C_%D9%85%D8%AA%D8%BA%DB%8C%D8%B1%D9%87%D8%A7%DB%8C_%D8%AA%D8%B5%D8%A7%D8%AF%D9%81%DB%8C" title="همگرایی متغیرهای تصادفی – Persisch" lang="fa" hreflang="fa" data-title="همگرایی متغیرهای تصادفی" data-language-autonym="فارسی" data-language-local-name="Persisch" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Convergence_de_variables_al%C3%A9atoires" title="Convergence de variables aléatoires – Französisch" lang="fr" hreflang="fr" data-title="Convergence de variables aléatoires" data-language-autonym="Français" data-language-local-name="Französisch" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%AA%D7%9B%D7%A0%D7%A1%D7%95%D7%AA_(%D7%94%D7%A1%D7%AA%D7%91%D7%A8%D7%95%D7%AA)" title="התכנסות (הסתברות) – Hebräisch" lang="he" hreflang="he" data-title="התכנסות (הסתברות)" data-language-autonym="עברית" data-language-local-name="Hebräisch" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Convergenza_di_variabili_casuali" title="Convergenza di variabili casuali – Italienisch" lang="it" hreflang="it" data-title="Convergenza di variabili casuali" data-language-autonym="Italiano" data-language-local-name="Italienisch" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E5%A4%89%E6%95%B0%E3%81%AE%E5%8F%8E%E6%9D%9F" title="確率変数の収束 – Japanisch" lang="ja" hreflang="ja" data-title="確率変数の収束" data-language-autonym="日本語" data-language-local-name="Japanisch" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%99%95%EB%A5%A0_%EB%B3%80%EC%88%98%EC%9D%98_%EC%88%98%EB%A0%B4" title="확률 변수의 수렴 – Koreanisch" lang="ko" hreflang="ko" data-title="확률 변수의 수렴" data-language-autonym="한국어" data-language-local-name="Koreanisch" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Convergentie_(kansrekening)" title="Convergentie (kansrekening) – Niederländisch" lang="nl" hreflang="nl" data-title="Convergentie (kansrekening)" data-language-autonym="Nederlands" data-language-local-name="Niederländisch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Zbie%C5%BCno%C5%9B%C4%87_wed%C5%82ug_rozk%C5%82adu" title="Zbieżność według rozkładu – Polnisch" lang="pl" hreflang="pl" data-title="Zbieżność według rozkładu" data-language-autonym="Polski" data-language-local-name="Polnisch" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Converg%C3%AAncia_de_vari%C3%A1veis_aleat%C3%B3rias" title="Convergência de variáveis aleatórias – Portugiesisch" lang="pt" hreflang="pt" data-title="Convergência de variáveis aleatórias" data-language-autonym="Português" data-language-local-name="Portugiesisch" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D1%85%D0%BE%D0%B4%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D1%8C_%D0%BF%D0%BE_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8E" title="Сходимость по распределению – Russisch" lang="ru" hreflang="ru" data-title="Сходимость по распределению" data-language-autonym="Русский" data-language-local-name="Russisch" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%97%D0%B1%D1%96%D0%B6%D0%BD%D1%96%D1%81%D1%82%D1%8C_%D0%B2%D0%B8%D0%BF%D0%B0%D0%B4%D0%BA%D0%BE%D0%B2%D0%B8%D1%85_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD" title="Збіжність випадкових величин – Ukrainisch" lang="uk" hreflang="uk" data-title="Збіжність випадкових величин" data-language-autonym="Українська" data-language-local-name="Ukrainisch" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/S%E1%BB%B1_h%E1%BB%99i_t%E1%BB%A5_c%E1%BB%A7a_c%C3%A1c_bi%E1%BA%BFn_ng%E1%BA%ABu_nhi%C3%AAn" title="Sự hội tụ của các biến ngẫu nhiên – Vietnamesisch" lang="vi" hreflang="vi" data-title="Sự hội tụ của các biến ngẫu nhiên" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamesisch" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%9A%8F%E6%9C%BA%E5%8F%98%E9%87%8F%E7%9A%84%E6%94%B6%E6%95%9B" title="随机变量的收敛 – Chinesisch" lang="zh" hreflang="zh" data-title="随机变量的收敛" data-language-autonym="中文" data-language-local-name="Chinesisch" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%9A%A8%E6%A9%9F%E8%AE%8A%E6%95%B8%E5%8C%AF%E5%90%88" title="隨機變數匯合 – Kantonesisch" lang="yue" hreflang="yue" data-title="隨機變數匯合" data-language-autonym="粵語" data-language-local-name="Kantonesisch" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q578985#sitelinks-wikipedia" title="Links auf Artikel in anderen Sprachen bearbeiten" class="wbc-editpage">Links bearbeiten</a></span></div> </div> </nav> </div> </div> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Diese Seite wurde zuletzt am 29. September 2023 um 13:05 Uhr bearbeitet.</li> <li id="footer-info-copyright"><div id="footer-info-copyright-stats" class="noprint"><a rel="nofollow" class="external text" href="https://pageviews.wmcloud.org/?pages=Konvergenz_(Stochastik)&project=de.wikipedia.org">Abrufstatistik</a> · <a rel="nofollow" class="external text" href="https://xtools.wmcloud.org/authorship/de.wikipedia.org/Konvergenz_(Stochastik)?uselang=de">Autoren</a> </div><div id="footer-info-copyright-separator"><br /></div><div id="footer-info-copyright-info"> <p>Der Text ist unter der Lizenz <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de">„Creative-Commons Namensnennung – Weitergabe unter gleichen Bedingungen“</a> verfügbar; Informationen zu den Urhebern und zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können im Regelfall durch Anklicken dieser abgerufen werden. Möglicherweise unterliegen die Inhalte jeweils zusätzlichen Bedingungen. Durch die Nutzung dieser Website erklären Sie sich mit den <span class="plainlinks"><a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/de">Nutzungsbedingungen</a> und der <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Privacy_policy/de">Datenschutzrichtlinie</a></span> einverstanden.<br /> </p> Wikipedia® ist eine eingetragene Marke der Wikimedia Foundation Inc.</div></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/de">Datenschutz</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%C3%9Cber_Wikipedia">Über Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Impressum">Impressum</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Verhaltenskodex</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Entwickler</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/de.wikipedia.org">Statistiken</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Stellungnahme zu Cookies</a></li> <li id="footer-places-mobileview"><a href="//de.m.wikipedia.org/w/index.php?title=Konvergenz_(Stochastik)&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile Ansicht</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> <script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-jbnw5","wgBackendResponseTime":170,"wgPageParseReport":{"limitreport":{"cputime":"0.156","walltime":"0.313","ppvisitednodes":{"value":888,"limit":1000000},"postexpandincludesize":{"value":17015,"limit":2097152},"templateargumentsize":{"value":420,"limit":2097152},"expansiondepth":{"value":7,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":9512,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 94.769 1 -total"," 82.29% 77.988 10 Vorlage:Literatur"," 6.84% 6.480 4 Vorlage:Hauptartikel"]},"scribunto":{"limitreport-timeusage":{"value":"0.048","limit":"10.000"},"limitreport-memusage":{"value":2911376,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5c7bc58d8b-lk6kr","timestamp":"20241126210639","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Konvergenz (Stochastik)","url":"https:\/\/de.wikipedia.org\/wiki\/Konvergenz_(Stochastik)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q578985","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q578985","author":{"@type":"Organization","name":"Autoren der Wikimedia-Projekte"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-11-09T19:45:06Z","headline":"mathematisches Konzept"}</script> </body> </html>