CINXE.COM

(PDF) The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes | Konstantinos Antoniadis - Academia.edu

<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="VbXeFiT5Af7wznX6nwpD7yOKpIf1G52gguQBE70tANZkMzvcGDxzN0VejQ64DFQ3nC7BY1OcFjsYT3XBxzAOIg==" /> <meta name="citation_title" content="The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes" /> <meta name="citation_publication_date" content="2008/12/01" /> <meta name="citation_journal_title" content="Composites Science and Technology" /> <meta name="citation_author" content="Konstantinos Antoniadis" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/110346659/The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes" /> <meta name="twitter:title" content="The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes" /> <meta name="twitter:description" content="Carbon nanotubes are considered to be ideal candidates for matrix reinforcement in fibre-reinforced composite materials. In order these new multifunctional materials to be used at their optimum potential, precise measurements are completely" /> <meta name="twitter:image" content="http://a.academia-assets.com/images/twitter-card.jpeg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/110346659/The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes" /> <meta property="og:title" content="The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="Carbon nanotubes are considered to be ideal candidates for matrix reinforcement in fibre-reinforced composite materials. In order these new multifunctional materials to be used at their optimum potential, precise measurements are completely" /> <meta property="article:author" content="https://independent.academia.edu/KAntoniadis" /> <meta name="description" content="Carbon nanotubes are considered to be ideal candidates for matrix reinforcement in fibre-reinforced composite materials. In order these new multifunctional materials to be used at their optimum potential, precise measurements are completely" /> <title>(PDF) The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes | Konstantinos Antoniadis - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/110346659/The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '39314d9bcf4522f48eeb027cf31da0a13496d2ce'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1733920564000); window.Aedu.timeDifference = new Date().getTime() - 1733920564000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","author":[{"@context":"https://schema.org","@type":"Person","name":"Konstantinos Antoniadis"}],"contributor":[],"dateCreated":"2023-12-02","datePublished":"2008-12-01","headline":"The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes","image":"https://attachments.academia-assets.com/108191936/thumbnails/1.jpg","inLanguage":"en","keywords":["Engineering","Materials Science","Carbon Nanotube","Epoxy","Composite Material","Thermal","Thermal Conductivity","Glass Fiber"],"publication":"Composites Science and Technology","publisher":{"@context":"https://schema.org","@type":"Organization","name":"Elsevier BV"},"sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":null}],"thumbnailUrl":"https://attachments.academia-assets.com/108191936/thumbnails/1.jpg","url":"https://www.academia.edu/110346659/The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "2def8007854a4d5c2100b3fe678f183fb78143f503a6c203f9f651b2164ea98e", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="5ZT7n1DAN2Tbu3Lruwviz9YFBAZbXYwCfTksU5EIdt3UEh5VbAVFrW4rih+cDfUXaaFh4v3aB5nnkliB6xV4KQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/110346659/The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="4TkvjQ3mWt/Nr9otsYJLh0H4lerHGt+awy39gExEVRzQv8pHMSMoFng/ItmWhFxf/lzwDmGdVAFZholSNllb6A==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We&#39;re Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-85e1f6e5aefed21344b25292b138fad229d4259fa0bd3341a6b90fec2f5f6977.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 40350135; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F110346659%2FThe_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F110346659%2FThe_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":108191936,"identifier":"Attachment_108191936","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":110346659,"created_at":"2023-12-02T00:07:01.672-08:00","from_world_paper_id":244562154,"updated_at":"2024-11-25T05:55:58.327-08:00","_data":{"publisher":"Elsevier BV","grobid_abstract":"Carbon nanotubes are considered to be ideal candidates for matrix reinforcement in fibre-reinforced composite materials. In order these new multifunctional materials to be used at their optimum potential, precise measurements are completely essential. This article is focused in the accurate measurement of the enhancement of the thermal conductivity of an epoxy-resin, reinforced initially with plies of plain weave glass fabric then by carbon multi-walled nanotubes (C-MWNT), and finally with both these two macroscopic and nanoscopic reinforcements at hand. The technique employed was the transient hot-wire technique, as it was recently modified to be able to measure the thermal conductivity of solids in an absolute way, with an uncertainty of better than 1%. Following validation of the technique, the results revealed that in the case of reinforcing the epoxy with glass fibres, with volume fraction of 28%, the thermal conductivity increase was 27% compared to plain epoxy-resin. When reinforced with 2% by weight C-MWNT the enhancement was 9% and when reinforced with both the C-MWNT and glass fibres the enhancement was the highest value obtained, being 48%.","publication_date":"2008,12,1","publication_name":"Composites Science and Technology","grobid_abstract_attachment_id":"108191936"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [40350135]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "control"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;swp-splash-paper-cover&quot;,&quot;attachmentId&quot;:108191936,&quot;attachmentType&quot;:&quot;pdf&quot;}"><img alt="First page of “The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/108191936/mini_magick20231202-1-92pieg.png?1701504520" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/images/single_work_splash/adobe_icon.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="40350135" href="https://independent.academia.edu/KAntoniadis"><img alt="Profile image of Konstantinos Antoniadis" class="ds-work-card--author-avatar" src="//a.academia-assets.com/images/s65_no_pic.png" />Konstantinos Antoniadis</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2008, Composites Science and Technology</p></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">Carbon nanotubes are considered to be ideal candidates for matrix reinforcement in fibre-reinforced composite materials. In order these new multifunctional materials to be used at their optimum potential, precise measurements are completely essential. This article is focused in the accurate measurement of the enhancement of the thermal conductivity of an epoxy-resin, reinforced initially with plies of plain weave glass fabric then by carbon multi-walled nanotubes (C-MWNT), and finally with both these two macroscopic and nanoscopic reinforcements at hand. The technique employed was the transient hot-wire technique, as it was recently modified to be able to measure the thermal conductivity of solids in an absolute way, with an uncertainty of better than 1%. Following validation of the technique, the results revealed that in the case of reinforcing the epoxy with glass fibres, with volume fraction of 28%, the thermal conductivity increase was 27% compared to plain epoxy-resin. When reinforced with 2% by weight C-MWNT the enhancement was 9% and when reinforced with both the C-MWNT and glass fibres the enhancement was the highest value obtained, being 48%.</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--work-card&quot;,&quot;attachmentId&quot;:108191936,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/110346659/The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes&quot;}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--work-card&quot;,&quot;attachmentId&quot;:108191936,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/110346659/The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes&quot;}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="108191936" data-landing_url="https://www.academia.edu/110346659/The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="123752570" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/123752570/Evaluation_and_identification_of_electrical_and_thermal_conduction_mechanisms_in_carbon_nanotube_epoxy_composites">Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="61311444" href="https://independent.academia.edu/AlanWindle">Alan Windle</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Polymer, 2006</p><p class="ds-related-work--abstract ds2-5-body-sm">Nanostructured modification of polymers has opened up new perspectives for multi-functional materials. In particular, carbon nanotubes (CNTs) have the potential to realise electrically conductive polymers with improved or retaining mechanical performance. This study focuses on the evaluation of both, the electrical and thermal conductivity of nanoparticulate filled epoxy resins. We discuss the results with regard to the influence of the type of carbon nanotube (SWCNT, DWCNT and MWCNT), the relevance of surface-functionalisation (amino-functionalisation), the influence of filler content (wt% and vol%), the varying dispersibility, the aspect ratio and the specific surface area.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites&quot;,&quot;attachmentId&quot;:118111419,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/123752570/Evaluation_and_identification_of_electrical_and_thermal_conduction_mechanisms_in_carbon_nanotube_epoxy_composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/123752570/Evaluation_and_identification_of_electrical_and_thermal_conduction_mechanisms_in_carbon_nanotube_epoxy_composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="27661549" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/27661549/Thermal_and_electrical_conductivity_of_single_and_multi_walled_carbon_nanotube_epoxy_composites">Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="51882331" href="https://independent.academia.edu/AnnaMoisala">Anna Moisala</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Composites Science and Technology, 2006</p><p class="ds-related-work--abstract ds2-5-body-sm">The electrical and thermal conductivities of epoxy composites containing 0.005-0.5 wt% of single-walled (SWNTs) or multi-walled (MWNTs) carbon nanotubes have been studied. The MWNT composites had an electrical percolation threshold of &lt;0.005 wt%, whereas the thermal conductivity of the same samples increased very modestly as a function of the filler content. In the case of the SWNT composites, the electrical percolation thresholds were higher (0.05-0.23 wt%) whereas the thermal conductivity was lower than that of the pristine epoxy.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites&quot;,&quot;attachmentId&quot;:47927245,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/27661549/Thermal_and_electrical_conductivity_of_single_and_multi_walled_carbon_nanotube_epoxy_composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/27661549/Thermal_and_electrical_conductivity_of_single_and_multi_walled_carbon_nanotube_epoxy_composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="102011169" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/102011169/Study_on_the_Effective_Thermal_Conductivity_of_Fiber_Reinforced_Epoxy_Composites">Study on the Effective Thermal Conductivity of Fiber Reinforced Epoxy Composites</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="260945707" href="https://independent.academia.edu/YagyaKumarSahuPhDStudent">Yagya Kumar Sahu Ph.D Student</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2014</p><p class="ds-related-work--abstract ds2-5-body-sm">The present paper deals with the effect of volume fraction of fibers on the effective thermal conductivity (keff) for polymer composites. This work sees an opportunity of enhancement on insulation capability of a typical fiber reinforced polymer composite. A mathematical correlation for the effective thermal conductivity of polymer composites reinforced with fiber is developed using the law of minimal thermal resistance and equal law of the specific equivalent thermal conductivity. To validate this mathematical model, two sets of epoxy based composites, with fiber content ranging from 0 to 15.7 vol % have been prepared by simple hand lay-up technique. For one set of composite, natural fiber i.e. banana fibers are incorporated in epoxy matrix and for another set a well-known synthetic fiber i.e. glass fiber is taken as a filler material whereas matrix material remains the same. Thermal conductivities of these composite samples are measured as per ASTM standard E-1530 by using the Uni...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Study on the Effective Thermal Conductivity of Fiber Reinforced Epoxy Composites&quot;,&quot;attachmentId&quot;:102391478,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/102011169/Study_on_the_Effective_Thermal_Conductivity_of_Fiber_Reinforced_Epoxy_Composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/102011169/Study_on_the_Effective_Thermal_Conductivity_of_Fiber_Reinforced_Epoxy_Composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="48790824" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/48790824/Thermal_Conductivity_of_Carbon_Nanoreinforced_Epoxy_Composites">Thermal Conductivity of Carbon Nanoreinforced Epoxy Composites</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="42798948" href="https://upatras.academia.edu/GSotiriadis">G. Sotiriadis</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Nanomaterials, 2016</p><p class="ds-related-work--abstract ds2-5-body-sm">The present study attempts to investigate the influence of multiwalled carbon nanotubes (MWCNTs) and graphite nanoplatelets (GNPs) on thermal conductivity (TC) of nanoreinforced polymers and nanomodified carbon fiber epoxy composites (CFRPs). Loading levels from 1 to 3% wt. of MWCNTs and from 1 to 15% wt. of GNPs were used. The results indicate that TC of nanofilled epoxy composites increased with the increase of GNP content. Quantitatively, 176% and 48% increase of TC were achieved in nanoreinforced polymers and nanomodified CFRPs, respectively, with the addition of 15% wt. GNPs into the epoxy matrix. Finally, micromechanical models were applied in order to predict analytically the TC of polymers and CFRPs. Lewis-Nielsen model with optimized parameters provides results very close to the experimental ones in the case of polymers. As far as the composites are concerned, the Hashin and Clayton models proved to be sufficiently accurate for the prediction at lower filler contents.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Thermal Conductivity of Carbon Nanoreinforced Epoxy Composites&quot;,&quot;attachmentId&quot;:67225706,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/48790824/Thermal_Conductivity_of_Carbon_Nanoreinforced_Epoxy_Composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/48790824/Thermal_Conductivity_of_Carbon_Nanoreinforced_Epoxy_Composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="26014313" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/26014313/Transverse_thermal_conductivity_of_fiber_reinforced_polymer_composites">Transverse thermal conductivity of fiber reinforced polymer composites</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="49751630" href="https://deu.academia.edu/IsmailTavman">Ismail Tavman</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Communications in Heat and Mass Transfer, 2000</p><p class="ds-related-work--abstract ds2-5-body-sm">Communicated by J.P. Hartnett and W.J. Minkowycz)</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Transverse thermal conductivity of fiber reinforced polymer composites&quot;,&quot;attachmentId&quot;:46362314,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/26014313/Transverse_thermal_conductivity_of_fiber_reinforced_polymer_composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/26014313/Transverse_thermal_conductivity_of_fiber_reinforced_polymer_composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="54785406" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/54785406/Study_of_Thermal_and_Mechanical_Properties_of_Fiber_Glass_Multi_Wall_Carbon_Nanotube_Epoxy">Study of Thermal and Mechanical Properties of Fiber-Glass Multi-Wall Carbon Nanotube/Epoxy</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="58748370" href="https://independent.academia.edu/BallaHyder">Hyder Balla</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Frontiers in Heat and Mass Transfer</p><p class="ds-related-work--abstract ds2-5-body-sm">This project aims at determining both numerical and experimental to some thermal properties and its thermal expansion coefficient, thermal conductivity and mechanical properties of reinforcement of fiber glass woven with matrix of multi wall carbon nanotube MWCNT / epoxy composite. First, this powder is known to have a very good thermal properties. So, the nanopartical combined with resin has poor thermal properties. Secondly, the development a complete solution for the manufacturing of multi wall carbon nanotube /epoxy composites different volume fraction from 1% to 10% with increment of 2% to compare the result of finite element method by using ANSYS program with experimental results to determine the mechanical and thermal properties for nanocomposite materials. The finite element by using ANSYS is good agreement with experimental data for different volume fraction. The thermal conductivity of the nanocomposite materials increases with increasing in the volume fraction concentration thermal expansion coefficient reduces with increasing in the volume fraction concentrations. The increment nano particle concentration effect on the mechanical properties is accomplished the best results.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Study of Thermal and Mechanical Properties of Fiber-Glass Multi-Wall Carbon Nanotube/Epoxy&quot;,&quot;attachmentId&quot;:70981257,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/54785406/Study_of_Thermal_and_Mechanical_Properties_of_Fiber_Glass_Multi_Wall_Carbon_Nanotube_Epoxy&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/54785406/Study_of_Thermal_and_Mechanical_Properties_of_Fiber_Glass_Multi_Wall_Carbon_Nanotube_Epoxy"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="25948894" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/25948894/Epoxy_and_polyester_based_composites_reinforced_with_glass_carbon_and_aramid_fabrics_Measurement_of_heat_capacity_and_thermal_conductivity_of_composites_by_differential_scanning_calorimetry">Epoxy- and polyester-based composites reinforced with glass, carbon and aramid fabrics: Measurement of heat capacity and thermal conductivity of composites by differential scanning calorimetry</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="49751630" href="https://deu.academia.edu/IsmailTavman">Ismail Tavman</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Polymer Composites, 2009</p><p class="ds-related-work--abstract ds2-5-body-sm">The primary purpose of the study is to investigate the temperature dependence of heat capacity and thermal conductivity of composites having different fiber/matrix combinations by means of heat-flux differential scanning calorimetry (DSC). The materials used as samples in this study were epoxy-and polyester-based composites. Noncrimp stitched glass, carbon, and aramid fabric were used as reinforcements for making unidirectional composites. For the heat capacity measurements the composite sample and a standard material are separately subjected to same linear temperature program. By recording the heat flow rate into the composite sample as a function of temperature, and comparing it with the heat flow rate into a standard material under the same conditions, the temperature dependence of heat capacity of the composite sample is determined. Measurements were carried out over a wide range of temperatures from about 20 to 2508C. The differential scanning calorimeter was adapted to perform the thermal conductivity measurements in the direction perpendicular to the fiber axis over the temperature range of 45-2358C. The method used in this study utilizes the measurement of rate of heat flow into a sensor material during its first-order phase transition to obtain the thermal resistance of a composite material placed between the sensor material and the heater in the DSC.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Epoxy- and polyester-based composites reinforced with glass, carbon and aramid fabrics: Measurement of heat capacity and thermal conductivity of composites by differential scanning calorimetry&quot;,&quot;attachmentId&quot;:46303614,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/25948894/Epoxy_and_polyester_based_composites_reinforced_with_glass_carbon_and_aramid_fabrics_Measurement_of_heat_capacity_and_thermal_conductivity_of_composites_by_differential_scanning_calorimetry&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/25948894/Epoxy_and_polyester_based_composites_reinforced_with_glass_carbon_and_aramid_fabrics_Measurement_of_heat_capacity_and_thermal_conductivity_of_composites_by_differential_scanning_calorimetry"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="30164705" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/30164705/On_the_effective_thermal_conductivity_of_carbon_nanotube_reinforced_polymer_composites">On the effective thermal conductivity of carbon nanotube reinforced polymer composites</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="57416805" href="https://spanalumni.academia.edu/AniruddhaBagchi">Aniruddha Bagchi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Composites Science and Technology, 2006</p><p class="ds-related-work--abstract ds2-5-body-sm">In this paper, a theoretical model has been developed for predicting the effective thermal conductivity of an aligned multi-walled nanotube polymer composite. This model is based on an effective medium theory that has been developed for composites containing aligned spheroidal inclusions with imperfect interfaces. To incorporate the nanotube structure into this theory, a continuum model of the nanotube geometry is developed by considering its structure and the mechanism of heat conduction through it. Results show that the overall conductivity will be much lower than expected due to the fact that in the composite, the outer nanotube layer carries the bulk of the heat flowing through the nanotube. It is also seen that the high nanotube-matrix boundary resistance does not significantly affect the overall conductivity. The effective conductivity was also found to be highly sensitive to the nanotube diameter.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;On the effective thermal conductivity of carbon nanotube reinforced polymer composites&quot;,&quot;attachmentId&quot;:50620959,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/30164705/On_the_effective_thermal_conductivity_of_carbon_nanotube_reinforced_polymer_composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/30164705/On_the_effective_thermal_conductivity_of_carbon_nanotube_reinforced_polymer_composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="73079689" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/73079689/Effect_of_incorporation_of_conductive_fillers_on_mechanical_properties_and_thermal_conductivity_of_epoxy_resin_composite">Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="7483009" href="https://independent.academia.edu/TesleemAsafa">Tesleem Asafa</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Applied Physics A</p><p class="ds-related-work--abstract ds2-5-body-sm">Applications of polymer-based nanocomposites continue to rise because of their special properties such as lightweight, low cost, and durability. Among the most important applications is the thermal management of high density electronics which requires effective dissipation of internally generated heat. This paper presents our experimental results on the influence of graphene, multi-walled carbon nanotubes (MWCNTs) and chopped carbon fibers on wear resistance, hardness, impact strength and thermal conductivity of epoxy resin composites. We observed that, within the range of the experimental data (epoxy resin + 1, 3, 5 wt% of graphene or 1, 3, 5 wt% MWCNT or 10, 30, 50 wt% carbon fibers), graphene-enhanced wear resistance of the nanocomposites by 75% compared to 50% and 38% obtained for MWCNT and carbon fiber composite, respectively. The impact resistance of graphene nanocomposite rose by 26% (from 7.3 to 9.2 J/m 2) while that of MWCNT nanocomposite was improved by 14% (from 7.3 to 8.2 J/m 2). The thermal conductivity increased 3.6-fold for the graphene nanocomposite compared to threefold for MWCNT nanocomposite and a meager 0.63-fold for carbon fiber composite. These enhancements in mechanical and thermal properties are generally linear within the experimental limits. The huge increase in thermal conductivity, especially for the graphene and MWCNT nanocomposites makes the composites readily applicable as high conductive materials for use as heat spreaders and thermal pads.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite&quot;,&quot;attachmentId&quot;:81743364,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/73079689/Effect_of_incorporation_of_conductive_fillers_on_mechanical_properties_and_thermal_conductivity_of_epoxy_resin_composite&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/73079689/Effect_of_incorporation_of_conductive_fillers_on_mechanical_properties_and_thermal_conductivity_of_epoxy_resin_composite"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="117540411" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/117540411/Thermal_conductivity_and_interfacial_resistance_in_single_wall_carbon_nanotube_epoxy_composites">Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="297028268" href="https://independent.academia.edu/MohammadWajidulislamWajidulislam">Mohammad Wajidul islam Wajidul islam</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Applied Physics Letters, 2005</p><p class="ds-related-work--abstract ds2-5-body-sm">We report thermal conductivity measurements of purified single-wall carbon nanotube (SWNT) epoxy composites prepared using suspensions of SWNTs in N-N-Dimethylformamide (DMF) and surfactant stabilized aqueous SWNT suspensions. Thermal conductivity enhancement is observed in both types of composites. DMF-processed composites show an advantage at SWNT volume fractions between ϕ∼0.001 to 0.005. Surfactant processed samples, however, permit greater SWNT loading and exhibit larger overall enhancement (64±9)% at ϕ∼0.1. The enhancement differences are attributed to a ten-fold larger SWNT/solid-composite interfacial thermal resistance in the surfactant-processed composites compared to DMF-processed composites. The interfacial resistance is extracted from the volume fraction dependence of the thermal conductivity data using effective medium theory. [C. W. Nan, G. Liu, Y. Lin, and M. Li, Appl. Phys. Lett. 85, 3549 (2004)].</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites&quot;,&quot;attachmentId&quot;:113370970,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/117540411/Thermal_conductivity_and_interfacial_resistance_in_single_wall_carbon_nanotube_epoxy_composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/117540411/Thermal_conductivity_and_interfacial_resistance_in_single_wall_carbon_nanotube_epoxy_composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--sticky-ctas&quot;,&quot;attachmentId&quot;:108191936,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--sticky-ctas&quot;,&quot;attachmentId&quot;:108191936,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_108191936" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="4468021" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/4468021/Morphology_thermal_expansion_and_electrical_conductivity_of_multiwalled_carbon_nanotube_epoxy_composites">Morphology, thermal expansion, and electrical conductivity of multiwalled carbon nanotube/epoxy composites</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5518390" href="https://independent.academia.edu/ThiagoLeite1">Thiago Leite</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Applied Polymer Science, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Morphology, thermal expansion, and electrical conductivity of multiwalled carbon nanotube/epoxy composites&quot;,&quot;attachmentId&quot;:49846413,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/4468021/Morphology_thermal_expansion_and_electrical_conductivity_of_multiwalled_carbon_nanotube_epoxy_composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/4468021/Morphology_thermal_expansion_and_electrical_conductivity_of_multiwalled_carbon_nanotube_epoxy_composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="108921140" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/108921140/Thermal_Conductivity_of_Carbon_Basal_Fiber_Reinforced_Epoxy_Hybrid_Composites_and_x0D">Thermal Conductivity of Carbon/Basal Fiber Reinforced Epoxy Hybrid Composites&amp;#x0D</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="8802226" href="https://unud.academia.edu/IDGArySubagia">I.D.G Ary Subagia</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Technology: IJ Tech, 2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Thermal Conductivity of Carbon/Basal Fiber Reinforced Epoxy Hybrid Composites\u0026#x0D&quot;,&quot;attachmentId&quot;:107185071,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/108921140/Thermal_Conductivity_of_Carbon_Basal_Fiber_Reinforced_Epoxy_Hybrid_Composites_and_x0D&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/108921140/Thermal_Conductivity_of_Carbon_Basal_Fiber_Reinforced_Epoxy_Hybrid_Composites_and_x0D"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="83300332" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/83300332/Multi_walled_carbon_nanotubes_coated_by_multi_layer_silica_for_improving_thermal_conductivity_of_polymer_composites">Multi-walled carbon nanotubes coated by multi-layer silica for improving thermal conductivity of polymer composites</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="52000480" href="https://independent.academia.edu/BrianGrady1">Brian Grady</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Thermal Analysis and Calorimetry, 2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Multi-walled carbon nanotubes coated by multi-layer silica for improving thermal conductivity of polymer composites&quot;,&quot;attachmentId&quot;:88691849,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/83300332/Multi_walled_carbon_nanotubes_coated_by_multi_layer_silica_for_improving_thermal_conductivity_of_polymer_composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/83300332/Multi_walled_carbon_nanotubes_coated_by_multi_layer_silica_for_improving_thermal_conductivity_of_polymer_composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="6425305" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/6425305/Predicting_Measuring_and_Tailoring_the_Transverse_Thermal_Conductivity_of_Composites_from_Polymer_Matrix_and_Metal_Filler">Predicting, Measuring, and Tailoring the Transverse Thermal Conductivity of Composites from Polymer Matrix and Metal Filler</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="10124491" href="https://independent.academia.edu/FlorinDanes">Florin Danes</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Thermophysics, 2003</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Predicting, Measuring, and Tailoring the Transverse Thermal Conductivity of Composites from Polymer Matrix and Metal Filler&quot;,&quot;attachmentId&quot;:48872848,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/6425305/Predicting_Measuring_and_Tailoring_the_Transverse_Thermal_Conductivity_of_Composites_from_Polymer_Matrix_and_Metal_Filler&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/6425305/Predicting_Measuring_and_Tailoring_the_Transverse_Thermal_Conductivity_of_Composites_from_Polymer_Matrix_and_Metal_Filler"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="90909374" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/90909374/A_new_device_for_measuring_the_thermal_conductivity_of_heterogeneous_multicomponent_thin_samples_Development_and_application_to_polymer_composites">A new device for measuring the thermal conductivity of heterogeneous multicomponent thin samples: Development and application to polymer composites</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="96527916" href="https://independent.academia.edu/CHRISTIANGARNIER3">CHRISTIAN GARNIER</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Heat and Mass Transfer, 2018</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A new device for measuring the thermal conductivity of heterogeneous multicomponent thin samples: Development and application to polymer composites&quot;,&quot;attachmentId&quot;:94342179,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/90909374/A_new_device_for_measuring_the_thermal_conductivity_of_heterogeneous_multicomponent_thin_samples_Development_and_application_to_polymer_composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/90909374/A_new_device_for_measuring_the_thermal_conductivity_of_heterogeneous_multicomponent_thin_samples_Development_and_application_to_polymer_composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="57438279" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/57438279/Determination_of_Thermal_Conductivity_of_Polymer_Composites_Filled_with_Solid_Glass_Beads">Determination of Thermal Conductivity of Polymer Composites Filled with Solid Glass Beads</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="48103045" href="https://independent.academia.edu/DebasmitaMishra1">Debasmita Mishra</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Determination of Thermal Conductivity of Polymer Composites Filled with Solid Glass Beads&quot;,&quot;attachmentId&quot;:72343023,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/57438279/Determination_of_Thermal_Conductivity_of_Polymer_Composites_Filled_with_Solid_Glass_Beads&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/57438279/Determination_of_Thermal_Conductivity_of_Polymer_Composites_Filled_with_Solid_Glass_Beads"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="25294579" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/25294579/The_identification_of_effective_thermal_conductivity_for_fibrous_reinforcement_composite_by_inverse_method">The identification of effective thermal conductivity for fibrous reinforcement composite by inverse method</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="48565471" href="https://fsjesk.academia.edu/AEchchelh">A. Echchelh</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Reinforced Plastics and Composites, 2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;The identification of effective thermal conductivity for fibrous reinforcement composite by inverse method&quot;,&quot;attachmentId&quot;:45594639,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/25294579/The_identification_of_effective_thermal_conductivity_for_fibrous_reinforcement_composite_by_inverse_method&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/25294579/The_identification_of_effective_thermal_conductivity_for_fibrous_reinforcement_composite_by_inverse_method"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="25948455" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/25948455/Thermal_conductivity_of_epoxy_resins_filled_with_MWCNT_and_hydrotalcite_clay_Experimental_data_and_theoretical_predictive_modeling">Thermal conductivity of epoxy resins filled with MWCNT and hydrotalcite clay: Experimental data and theoretical predictive modeling</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="6309795" href="https://salerno.academia.edu/CarloNaddeo">Carlo Naddeo</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Polymer Composites, 2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Thermal conductivity of epoxy resins filled with MWCNT and hydrotalcite clay: Experimental data and theoretical predictive modeling&quot;,&quot;attachmentId&quot;:46303379,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/25948455/Thermal_conductivity_of_epoxy_resins_filled_with_MWCNT_and_hydrotalcite_clay_Experimental_data_and_theoretical_predictive_modeling&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/25948455/Thermal_conductivity_of_epoxy_resins_filled_with_MWCNT_and_hydrotalcite_clay_Experimental_data_and_theoretical_predictive_modeling"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="10525594" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/10525594/A_computational_and_experimental_investigation_on_thermal_conductivity_of_particle_reinforced_epoxy_composites">A computational and experimental investigation on thermal conductivity of particle reinforced epoxy composites</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="25797160" href="https://independent.academia.edu/AlokSatapathy">Alok Satapathy</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A computational and experimental investigation on thermal conductivity of particle reinforced epoxy composites&quot;,&quot;attachmentId&quot;:36521058,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/10525594/A_computational_and_experimental_investigation_on_thermal_conductivity_of_particle_reinforced_epoxy_composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/10525594/A_computational_and_experimental_investigation_on_thermal_conductivity_of_particle_reinforced_epoxy_composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="7129722" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/7129722/Thermal_conductivity_Characterization_of_Bamboo_fiber_reinforced_in_Epoxy_Resin">Thermal conductivity Characterization of Bamboo fiber reinforced in Epoxy Resin</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="2594470" href="https://independent.academia.edu/iosrjournals">IOSR Journals</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Thermal conductivity Characterization of Bamboo fiber reinforced in Epoxy Resin&quot;,&quot;attachmentId&quot;:33768321,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/7129722/Thermal_conductivity_Characterization_of_Bamboo_fiber_reinforced_in_Epoxy_Resin&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/7129722/Thermal_conductivity_Characterization_of_Bamboo_fiber_reinforced_in_Epoxy_Resin"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="114028726" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/114028726/Effects_of_Carbon_Nanotubes_on_Thermal_Behavior_of_Epoxy_Resin_Composites">Effects of Carbon Nanotubes on Thermal Behavior of Epoxy Resin Composites</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="239761342" href="https://independent.academia.edu/lidanajmi">lida najmi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Composites Science</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Effects of Carbon Nanotubes on Thermal Behavior of Epoxy Resin Composites&quot;,&quot;attachmentId&quot;:110834778,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/114028726/Effects_of_Carbon_Nanotubes_on_Thermal_Behavior_of_Epoxy_Resin_Composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/114028726/Effects_of_Carbon_Nanotubes_on_Thermal_Behavior_of_Epoxy_Resin_Composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="106980254" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/106980254/Experimental_study_on_the_thermal_and_mechanical_properties_of_multi_walled_carbon_nanotube_reinforced_epoxy">Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="149395862" href="https://independent.academia.edu/ZhouYuanxin">Yuanxin Zhou</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Materials Science and Engineering: A, 2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy&quot;,&quot;attachmentId&quot;:105864484,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/106980254/Experimental_study_on_the_thermal_and_mechanical_properties_of_multi_walled_carbon_nanotube_reinforced_epoxy&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/106980254/Experimental_study_on_the_thermal_and_mechanical_properties_of_multi_walled_carbon_nanotube_reinforced_epoxy"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="21587519" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/21587519/Enhancement_in_the_thermomechanical_properties_of_carbon_fibre_carbon_nanotubes_epoxy_hybrid_composites">Enhancement in the thermomechanical properties of carbon fibre-carbon nanotubes-epoxy hybrid composites</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="42596805" href="https://iitd.academia.edu/VeenaChoudhary">Veena Choudhary</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Nanotechnology, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Enhancement in the thermomechanical properties of carbon fibre-carbon nanotubes-epoxy hybrid composites&quot;,&quot;attachmentId&quot;:42138701,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/21587519/Enhancement_in_the_thermomechanical_properties_of_carbon_fibre_carbon_nanotubes_epoxy_hybrid_composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/21587519/Enhancement_in_the_thermomechanical_properties_of_carbon_fibre_carbon_nanotubes_epoxy_hybrid_composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="97621717" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/97621717/Carbon_epoxy_composites_thermal_conductivity_at_77_K_and_300_K">Carbon epoxy composites thermal conductivity at 77 K and 300 K</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="252314374" href="https://independent.academia.edu/KusiakAndrzej">Andrzej Kusiak</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Applied Physics, 2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Carbon epoxy composites thermal conductivity at 77 K and 300 K&quot;,&quot;attachmentId&quot;:99193659,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/97621717/Carbon_epoxy_composites_thermal_conductivity_at_77_K_and_300_K&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/97621717/Carbon_epoxy_composites_thermal_conductivity_at_77_K_and_300_K"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="79692427" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/79692427/Thermal_analysis_of_carbon_fiber_polymer_matrix_composites_by_electrical_resistance_measurement">Thermal analysis of carbon fiber polymer-matrix composites by electrical resistance measurement</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="118053011" href="https://sunybuffalo.academia.edu/DeborahChung">Deborah Chung</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Thermochimica Acta, 2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Thermal analysis of carbon fiber polymer-matrix composites by electrical resistance measurement&quot;,&quot;attachmentId&quot;:86320211,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/79692427/Thermal_analysis_of_carbon_fiber_polymer_matrix_composites_by_electrical_resistance_measurement&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/79692427/Thermal_analysis_of_carbon_fiber_polymer_matrix_composites_by_electrical_resistance_measurement"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="64387653" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/64387653/Thermal_and_electrical_conductivities_of_epoxy_resin_based_composites_incorporated_with_carbon_nanotubes_and_TiO2_for_a_thermoelectric_application">Thermal and electrical conductivities of epoxy resin-based composites incorporated with carbon nanotubes and TiO2 for a thermoelectric application</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="57924218" href="https://independent.academia.edu/CongliangHuang">Congliang Huang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Applied Physics A</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Thermal and electrical conductivities of epoxy resin-based composites incorporated with carbon nanotubes and TiO2 for a thermoelectric application&quot;,&quot;attachmentId&quot;:76447548,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/64387653/Thermal_and_electrical_conductivities_of_epoxy_resin_based_composites_incorporated_with_carbon_nanotubes_and_TiO2_for_a_thermoelectric_application&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/64387653/Thermal_and_electrical_conductivities_of_epoxy_resin_based_composites_incorporated_with_carbon_nanotubes_and_TiO2_for_a_thermoelectric_application"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="108871842" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/108871842/Measurement_of_the_anisotropic_thermal_conductivity_of_carbon_fiber_epoxy_composites_based_on_laser_induced_temperature_field_Experimental_investigation_and_numerical_analysis">Measurement of the anisotropic thermal conductivity of carbon-fiber/epoxy composites based on laser-induced temperature field: Experimental investigation and numerical analysis</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="228870168" href="https://independent.academia.edu/HelcioOrlande">Helcio Orlande</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Communications in Heat and Mass Transfer, 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Measurement of the anisotropic thermal conductivity of carbon-fiber/epoxy composites based on laser-induced temperature field: Experimental investigation and numerical analysis&quot;,&quot;attachmentId&quot;:107148566,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/108871842/Measurement_of_the_anisotropic_thermal_conductivity_of_carbon_fiber_epoxy_composites_based_on_laser_induced_temperature_field_Experimental_investigation_and_numerical_analysis&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/108871842/Measurement_of_the_anisotropic_thermal_conductivity_of_carbon_fiber_epoxy_composites_based_on_laser_induced_temperature_field_Experimental_investigation_and_numerical_analysis"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="997567" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/997567/Measurement_modeling_and_variability_of_thermal_conductivity_for_structural_polymer_composites">Measurement, modeling, and variability of thermal conductivity for structural polymer composites</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="290804" href="https://uottawa.academia.edu/FrancoisRobitaille">Francois Robitaille</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Polymer Composites, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Measurement, modeling, and variability of thermal conductivity for structural polymer composites&quot;,&quot;attachmentId&quot;:51137055,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/997567/Measurement_modeling_and_variability_of_thermal_conductivity_for_structural_polymer_composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/997567/Measurement_modeling_and_variability_of_thermal_conductivity_for_structural_polymer_composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="37684008" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/37684008/Enhancing_the_thermal_conductivity_of_polymer_composites">Enhancing the thermal conductivity of polymer composites</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="96967038" href="https://independent.academia.edu/TPadmavathi1">T. Padmavathi</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="97167333" href="https://independent.academia.edu/BNSarada">B. N. Sarada</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="57198527" href="https://independent.academia.edu/IjariitJournal">Ijariit Journal</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Enhancing the thermal conductivity of polymer composites&quot;,&quot;attachmentId&quot;:57674267,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/37684008/Enhancing_the_thermal_conductivity_of_polymer_composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/37684008/Enhancing_the_thermal_conductivity_of_polymer_composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="19" data-entity-id="87936730" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/87936730/Thermal_Conductivity_of_Polymer_Composites_Filled_with_Nanofillers">Thermal Conductivity of Polymer Composites Filled with Nanofillers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="43964887" href="https://independent.academia.edu/RajKiran54">Raj Kiran</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Sciprints, 2016</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Thermal Conductivity of Polymer Composites Filled with Nanofillers&quot;,&quot;attachmentId&quot;:92024820,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/87936730/Thermal_Conductivity_of_Polymer_Composites_Filled_with_Nanofillers&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/87936730/Thermal_Conductivity_of_Polymer_Composites_Filled_with_Nanofillers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="20" data-entity-id="106458202" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/106458202/Studying_the_Effect_of_Different_Additives_on_the_Thermal_Conductivity_and_Mechanical_Characteristics_of_Epoxy_Based_Composite_Materials">Studying the Effect of Different Additives on the Thermal Conductivity and Mechanical Characteristics of Epoxy-Based Composite Materials</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="54305454" href="https://independent.academia.edu/RaadFenjan">Raad Fenjan</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Engineering and Sustainable Development, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Studying the Effect of Different Additives on the Thermal Conductivity and Mechanical Characteristics of Epoxy-Based Composite Materials&quot;,&quot;attachmentId&quot;:105650499,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/106458202/Studying_the_Effect_of_Different_Additives_on_the_Thermal_Conductivity_and_Mechanical_Characteristics_of_Epoxy_Based_Composite_Materials&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/106458202/Studying_the_Effect_of_Different_Additives_on_the_Thermal_Conductivity_and_Mechanical_Characteristics_of_Epoxy_Based_Composite_Materials"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="21" data-entity-id="104881552" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/104881552/Thermal_conductivity_of_textile_reinforcements_for_composites">Thermal conductivity of textile reinforcements for composites</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="290804" href="https://uottawa.academia.edu/FrancoisRobitaille">Francois Robitaille</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Textiles and Fibrous Materials, 2018</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Thermal conductivity of textile reinforcements for composites&quot;,&quot;attachmentId&quot;:104491000,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/104881552/Thermal_conductivity_of_textile_reinforcements_for_composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/104881552/Thermal_conductivity_of_textile_reinforcements_for_composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="22" data-entity-id="62137883" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/62137883/Thermal_conductivity_enhancement_of_carbon_fiber_composites">Thermal conductivity enhancement of carbon fiber composites</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="42279095" href="https://independent.academia.edu/QinjunKang">Qinjun Kang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Applied Thermal Engineering, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Thermal conductivity enhancement of carbon fiber composites&quot;,&quot;attachmentId&quot;:74979474,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/62137883/Thermal_conductivity_enhancement_of_carbon_fiber_composites&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/62137883/Thermal_conductivity_enhancement_of_carbon_fiber_composites"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="23" data-entity-id="20242667" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/20242667/Thermal_conductivity_of_nano_filled_epoxy_systems">Thermal conductivity of nano-filled epoxy systems</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="41453987" href="https://independent.academia.edu/PMorshuis">Peter Morshuis</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Thermal conductivity of nano-filled epoxy systems&quot;,&quot;attachmentId&quot;:41222687,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/20242667/Thermal_conductivity_of_nano_filled_epoxy_systems&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/20242667/Thermal_conductivity_of_nano_filled_epoxy_systems"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="48" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="511" href="https://www.academia.edu/Documents/in/Materials_Science">Materials Science</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="12842" href="https://www.academia.edu/Documents/in/Carbon_Nanotube">Carbon Nanotube</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="159672" href="https://www.academia.edu/Documents/in/Epoxy">Epoxy</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="169323" href="https://www.academia.edu/Documents/in/Composite_Material">Composite Material</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="174347" href="https://www.academia.edu/Documents/in/Thermal">Thermal</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="246758" href="https://www.academia.edu/Documents/in/Thermal_Conductivity">Thermal Conductivity</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="443788" href="https://www.academia.edu/Documents/in/Glass_Fiber">Glass Fiber</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We&#39;re Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10