CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–18 of 18 results for author: <span class="mathjax">Bredas, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bredas, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bredas%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bredas, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18070">arXiv:2409.18070</a> <span> [<a href="https://arxiv.org/pdf/2409.18070">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Prediction of the Infrared Absorbance Intensities and Frequencies of Hydrocarbons:A Message Passing Neural Network Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Tameh%2C+M+S">Maliheh Shaban Tameh</a>, <a href="/search/?searchtype=author&query=Coropceanu%2C+V">Veaceslav Coropceanu</a>, <a href="/search/?searchtype=author&query=Purcell%2C+T+A+R">Thomas A. R. Purcell</a>, <a href="/search/?searchtype=author&query=Br%C3%A9das%2C+J">Jean-Luc Br茅das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18070v1-abstract-short" style="display: inline;"> Accurately and efficiently predicting the infrared (IR) spectra of a molecule can provide insights into the structure-properties relationships of molecular species, which has led to a proliferation of machine learning tools designed for this purpose. However, earlier studies have focused primarily on obtaining normalized IR spectra, which limits their potential for a comprehensive analysis of mole… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18070v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18070v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18070v1-abstract-full" style="display: none;"> Accurately and efficiently predicting the infrared (IR) spectra of a molecule can provide insights into the structure-properties relationships of molecular species, which has led to a proliferation of machine learning tools designed for this purpose. However, earlier studies have focused primarily on obtaining normalized IR spectra, which limits their potential for a comprehensive analysis of molecular behavior in the IR range. For instance, to fully understand and predict the optical properties, such as the transparency characteristics, it is necessary to predict the molar absorptivity IR spectra instead. Here, we propose a graph-based communicative message passing neural network (CMPNN) algorithm that can predict both the peak positions and absolute intensities corresponding to density functional theory (DFT) calculated molar absorptivities in the IR domain. By modifying existing spectral loss functions, we show that our method is able to predict with DFT-accuracy level the IR molar absorptivities of a series of hydrocarbons containing up to ten carbon atoms and apply the model to a set of larger molecules. We also compare the predicted spectra with those generated by the direct message passing neural network (DMPNN). The results suggest that both algorithms demonstrate similar predictive capabilities for hydrocarbons, indicating that either model could be effectively used in future research on spectral prediction for such systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18070v1-abstract-full').style.display = 'none'; document.getElementById('2409.18070v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10593">arXiv:2308.10593</a> <span> [<a href="https://arxiv.org/pdf/2308.10593">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Interplay Between Mixed and Pure Exciton States Controls Singlet Fission in Rubrene Single Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Maslennikov%2C+D+R">Dmitry R. Maslennikov</a>, <a href="/search/?searchtype=author&query=Maimaris%2C+M">Marios Maimaris</a>, <a href="/search/?searchtype=author&query=Ning%2C+H">Haoqing Ning</a>, <a href="/search/?searchtype=author&query=Zheng%2C+X">Xijia Zheng</a>, <a href="/search/?searchtype=author&query=Mondal%2C+N">Navendu Mondal</a>, <a href="/search/?searchtype=author&query=Bruevich%2C+V+V">Vladimir V. Bruevich</a>, <a href="/search/?searchtype=author&query=Pratik%2C+S+M">Saied Md Pratik</a>, <a href="/search/?searchtype=author&query=Musser%2C+A+J">Andrew J. Musser</a>, <a href="/search/?searchtype=author&query=Podzorov%2C+V">Vitaly Podzorov</a>, <a href="/search/?searchtype=author&query=Bredas%2C+J">Jean-Luc Bredas</a>, <a href="/search/?searchtype=author&query=Coropceanu%2C+V">Veaceslav Coropceanu</a>, <a href="/search/?searchtype=author&query=Bakulin%2C+A+A">Artem A. Bakulin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10593v1-abstract-short" style="display: inline;"> Singlet fission (SF) is a multielectron process in which one singlet exciton S converts into a pair of triplet excitons T+T. SF is widely studied as it may help overcome the Shockley-Queisser efficiency limit for semiconductor photovoltaic cells. To elucidate and control the SF mechanism, great attention has been given to the identification of intermediate states in SF materials, which often appea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10593v1-abstract-full').style.display = 'inline'; document.getElementById('2308.10593v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10593v1-abstract-full" style="display: none;"> Singlet fission (SF) is a multielectron process in which one singlet exciton S converts into a pair of triplet excitons T+T. SF is widely studied as it may help overcome the Shockley-Queisser efficiency limit for semiconductor photovoltaic cells. To elucidate and control the SF mechanism, great attention has been given to the identification of intermediate states in SF materials, which often appear elusive due to the complexity and fast timescales of the SF process. Here, we apply 10fs-1ms transient absorption techniques to high-purity rubrene single crystals to disentangle the intrinsic fission dynamics from the effects of defects and grain boundaries and to identify reliably the fission intermediates. We show that above-gap excitation directly generates a hybrid vibronically assisted mixture of singlet state and triplet-pair multiexciton [S:TT], which rapidly (<100fs) and coherently branches into pure singlet or triplet excitations. The relaxation of [S:TT] to S is followed by a relatively slow and temperature-activated (48 meV activation energy) incoherent fission process. The SF competing pathways and intermediates revealed here unify the observations and models presented in previous studies of SF in rubrene and propose alternative strategies for the development of SF-enhanced photovoltaic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10593v1-abstract-full').style.display = 'none'; document.getElementById('2308.10593v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.09408">arXiv:2304.09408</a> <span> [<a href="https://arxiv.org/pdf/2304.09408">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Intermolecular CT excitons enable nanosecond excited-state lifetimes in NIR-absorbing non-fullerene acceptors for efficient organic solar cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Chen%2C+X">Xian-Kai Chen</a>, <a href="/search/?searchtype=author&query=Chan%2C+C+C+S">Christopher C. S. Chan</a>, <a href="/search/?searchtype=author&query=Mahadevan%2C+S">Sudhi Mahadevan</a>, <a href="/search/?searchtype=author&query=Guo%2C+Y">Yu Guo</a>, <a href="/search/?searchtype=author&query=Zhang%2C+G">Guichuan Zhang</a>, <a href="/search/?searchtype=author&query=Yan%2C+H">He Yan</a>, <a href="/search/?searchtype=author&query=Wong%2C+K+S">Kam Sing Wong</a>, <a href="/search/?searchtype=author&query=Yip%2C+H">Hin-Lap Yip</a>, <a href="/search/?searchtype=author&query=Bredas%2C+J">Jean-Luc Bredas</a>, <a href="/search/?searchtype=author&query=Tsang%2C+S+W">Sai Wing Tsang</a>, <a href="/search/?searchtype=author&query=Chow%2C+P+C+Y">Philip C. Y. Chow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.09408v1-abstract-short" style="display: inline;"> State-of-the-art Y6-type molecular acceptors exhibit nanosecond excited-state lifetimes despite their low optical gaps (~1.4 eV), thus allowing organic solar cells (OSCs) to achieve highly efficient charge generation with extended near-infrared (NIR) absorption range (up to ~1000 nm). However, the precise molecular-level mechanism that enables low-energy excited states in Y6-type acceptors to achi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09408v1-abstract-full').style.display = 'inline'; document.getElementById('2304.09408v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.09408v1-abstract-full" style="display: none;"> State-of-the-art Y6-type molecular acceptors exhibit nanosecond excited-state lifetimes despite their low optical gaps (~1.4 eV), thus allowing organic solar cells (OSCs) to achieve highly efficient charge generation with extended near-infrared (NIR) absorption range (up to ~1000 nm). However, the precise molecular-level mechanism that enables low-energy excited states in Y6-type acceptors to achieve nanosecond lifetimes has remained elusive. Here, we demonstrate that the distinct packing of Y6 molecules in film leads to a strong intermolecular charge-transfer (iCT) character of the lowest excited state in Y6 aggregates, which is absent in other low-gap acceptors such as ITIC. Due to strong electronic couplings between the adjacent Y6 molecules, the iCT-exciton energies are greatly reduced by up to ~0.25 eV with respect to excitons formed in separated molecules. Importantly, despite their low energies, the iCT excitons have reduced non-adiabatic electron-vibration couplings with the electronic ground state, thus suppressing non-radiative recombination and allowing Y6 to overcome the well-known energy gap law. Our results reveal the fundamental relationship between molecular packing and nanosecond excited-state lifetimes in NIR-absorbing Y6-type acceptors underlying the outstanding performance of Y6-based OSCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09408v1-abstract-full').style.display = 'none'; document.getElementById('2304.09408v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06943">arXiv:2212.06943</a> <span> [<a href="https://arxiv.org/pdf/2212.06943">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Frontier Orbital Degeneracy: A new Concept for Tailoring the Magnetic State in Organic Semiconductor Adsorbates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Chakraborty%2C+A">Anubhab Chakraborty</a>, <a href="/search/?searchtype=author&query=Zahl%2C+P">Percy Zahl</a>, <a href="/search/?searchtype=author&query=Dai%2C+Q">Qingqing Dai</a>, <a href="/search/?searchtype=author&query=Li%2C+H">Hong Li</a>, <a href="/search/?searchtype=author&query=Fritz%2C+T">Torsten Fritz</a>, <a href="/search/?searchtype=author&query=Simon%2C+P">Paul Simon</a>, <a href="/search/?searchtype=author&query=Bredas%2C+J">Jean-Luc Bredas</a>, <a href="/search/?searchtype=author&query=Monti%2C+O+L+A">Oliver L. A. Monti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06943v2-abstract-short" style="display: inline;"> Kondo resonances in molecular adsorbates are an important building block for applications in the field of molecular spintronics. Here, we introduce the novel concept of using frontier orbital degeneracy for tailoring the magnetic state, which is demonstrated for the case of the organic semiconductor 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile (HATCN, C18N12) on Ag(111). Low-temperature scanni… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06943v2-abstract-full').style.display = 'inline'; document.getElementById('2212.06943v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06943v2-abstract-full" style="display: none;"> Kondo resonances in molecular adsorbates are an important building block for applications in the field of molecular spintronics. Here, we introduce the novel concept of using frontier orbital degeneracy for tailoring the magnetic state, which is demonstrated for the case of the organic semiconductor 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile (HATCN, C18N12) on Ag(111). Low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/STS) measurements reveal the existence of two types of adsorbed HATCN molecules with distinctly different appearances and magnetic states, as evident from the presence or absence of an Abrikosov-Suhl-Kondo resonance. Our DFT results show that HATCN on Ag(111) supports two almost isoenergetic states, both with one excess electron transferred from the Ag surface, but with magnetic moments of either 0 or 0.65 uB. Therefore, even though all molecules undergo charge transfer of one electron from the Ag substrate, they exist in two different molecular magnetic states that resemble a free doublet or an entangled spin state. We explain how the origin of this behavior lies in the twofold degeneracy of the lowest unoccupied molecular orbitals of gas phase HATCN, lifted upon adsorption and charge-transfer from Ag(111). Our combined STM and DFT study introduces a new pathway to tailoring the magnetic state of molecular adsorbates on surfaces, with significant potential for spintronics and quantum information science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06943v2-abstract-full').style.display = 'none'; document.getElementById('2212.06943v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.08552">arXiv:2211.08552</a> <span> [<a href="https://arxiv.org/pdf/2211.08552">pdf</a>, <a href="https://arxiv.org/format/2211.08552">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tailoring on-surface molecular reactions and assembly through hydrogen-modified synthesis: From triarylamine monomer to 2D covalent organic framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Enderson%2C+Z+A">Zachery A. Enderson</a>, <a href="/search/?searchtype=author&query=Murali%2C+H">Harshavardhan Murali</a>, <a href="/search/?searchtype=author&query=Dasari%2C+R+R">Raghunath R. Dasari</a>, <a href="/search/?searchtype=author&query=Dai%2C+Q">Qingqing Dai</a>, <a href="/search/?searchtype=author&query=Li%2C+H">Hong Li</a>, <a href="/search/?searchtype=author&query=Parker%2C+T+C">Timothy C. Parker</a>, <a href="/search/?searchtype=author&query=Br%C3%A9das%2C+J">Jean-Luc Br茅das</a>, <a href="/search/?searchtype=author&query=Marder%2C+S+R">Seth R. Marder</a>, <a href="/search/?searchtype=author&query=First%2C+P+N">Phillip N. First</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.08552v2-abstract-short" style="display: inline;"> Relative to conventional wet-chemical synthesis techniques, on-surface synthesis of organic networks in ultrahigh vacuum has few control parameters. The molecular deposition rate and substrate temperature are typically the only synthesis variables to be adjusted dynamically. Here we demonstrate that reducing conditions in the vacuum environment can be created and controlled without dedicated sourc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08552v2-abstract-full').style.display = 'inline'; document.getElementById('2211.08552v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.08552v2-abstract-full" style="display: none;"> Relative to conventional wet-chemical synthesis techniques, on-surface synthesis of organic networks in ultrahigh vacuum has few control parameters. The molecular deposition rate and substrate temperature are typically the only synthesis variables to be adjusted dynamically. Here we demonstrate that reducing conditions in the vacuum environment can be created and controlled without dedicated sources -- relying only on backfilled hydrogen gas and ion gauge filaments -- and can dramatically influence the Ullmann-like on-surface reaction used for synthesizing two-dimensional covalent organic frameworks (2D COFs). Using tribromo dimethylmethylene-bridged triphenylamine ((Br$_3$)DTPA) as monomer precursors, we find that atomic hydrogen blocks aryl-aryl bond formation. Control of the relative monomer and hydrogen fluxes is used to produce large islands of self-assembled monomers, dimers, or macrocycle hexamers. On-surface synthesis of these oligomers, from a single precursor, circumvents potential challenges with protracted wet-chemical synthesis or low precursor volatility for large molecules. Using scanning tunneling microscopy and spectroscopy (STM/STS), we show that changes in the electronic states through this oligomer sequence provide an insightful view of the 2D-COF (synthesized in the absence of atomic hydrogen) as the endpoint in an evolution of electronic structures from the monomer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08552v2-abstract-full').style.display = 'none'; document.getElementById('2211.08552v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.11919">arXiv:2112.11919</a> <span> [<a href="https://arxiv.org/pdf/2112.11919">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.carbon.2021.12.059">10.1016/j.carbon.2021.12.059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure of confined carbyne from joint wavelength-dependent resonant Raman spectroscopy and density functional theory investigations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Martinati%2C+M">Miles Martinati</a>, <a href="/search/?searchtype=author&query=Wenseleers%2C+W">Wim Wenseleers</a>, <a href="/search/?searchtype=author&query=Shi%2C+L">Lei Shi</a>, <a href="/search/?searchtype=author&query=Pratik%2C+S+M">Saied Md Pratik</a>, <a href="/search/?searchtype=author&query=Rohringer%2C+P">Philip Rohringer</a>, <a href="/search/?searchtype=author&query=Cui%2C+W">Weili Cui</a>, <a href="/search/?searchtype=author&query=Pichler%2C+T">Thomas Pichler</a>, <a href="/search/?searchtype=author&query=Coropceanu%2C+V">Veaceslav Coropceanu</a>, <a href="/search/?searchtype=author&query=Br%C3%A9das%2C+J">Jean-Luc Br茅das</a>, <a href="/search/?searchtype=author&query=Cambr%C3%A9%2C+S">Sofie Cambr茅</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.11919v1-abstract-short" style="display: inline;"> Carbyne, i.e. an infinitely long linear carbon chain (LCC), has been at the focus of a lot of research for quite a while, yet its optical, electronic, and vibrational properties have only recently started to become accessible experimentally thanks to its synthesis inside carbon nanotubes (CNTs). While the role of the host CNT in determining the optical gap of the LCCs has been studied previously,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11919v1-abstract-full').style.display = 'inline'; document.getElementById('2112.11919v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.11919v1-abstract-full" style="display: none;"> Carbyne, i.e. an infinitely long linear carbon chain (LCC), has been at the focus of a lot of research for quite a while, yet its optical, electronic, and vibrational properties have only recently started to become accessible experimentally thanks to its synthesis inside carbon nanotubes (CNTs). While the role of the host CNT in determining the optical gap of the LCCs has been studied previously, little is known about the excited states of such ultralong LCCs. In this work, we employ the selectivity of wavelength-dependent resonant Raman spectroscopy to investigate the excited states of ultralong LCCs encapsulated inside double-walled CNTs. In addition to the optical gap, the Raman resonance profile shows three additional resonances. Corroborated with DFT calculations on LCCs with up to 100 C-atoms, we assign these resonances to a vibronic series of a different electronic state. Indeed, the calculations predict the existence of two optically allowed electronic states separated by an energy of 0.14-0.22 eV in the limit of an infinite chain, in agreement with the experimental results. Furthermore, among these two states, the one with highest energy is also characterized by the largest electron-vibration couplings, which explains the corresponding vibronic series of overtones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11919v1-abstract-full').style.display = 'none'; document.getElementById('2112.11919v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.11854">arXiv:1908.11854</a> <span> [<a href="https://arxiv.org/pdf/1908.11854">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> The influence of impurities on the charge carrier mobility of small molecule organic semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Friederich%2C+P">Pascal Friederich</a>, <a href="/search/?searchtype=author&query=Fediai%2C+A">Artem Fediai</a>, <a href="/search/?searchtype=author&query=Li%2C+J">Jing Li</a>, <a href="/search/?searchtype=author&query=Mondal%2C+A">Anirban Mondal</a>, <a href="/search/?searchtype=author&query=Kotadiya%2C+N+B">Naresh B. Kotadiya</a>, <a href="/search/?searchtype=author&query=Symalla%2C+F">Franz Symalla</a>, <a href="/search/?searchtype=author&query=Wetzelaer%2C+G+A+H">Gert-Jan A. H. Wetzelaer</a>, <a href="/search/?searchtype=author&query=Andrienko%2C+D">Denis Andrienko</a>, <a href="/search/?searchtype=author&query=Blase%2C+X">Xavier Blase</a>, <a href="/search/?searchtype=author&query=Beljonne%2C+D">David Beljonne</a>, <a href="/search/?searchtype=author&query=Blom%2C+P+W+M">Paul W. M. Blom</a>, <a href="/search/?searchtype=author&query=Br%C3%A9das%2C+J">Jean-Luc Br茅das</a>, <a href="/search/?searchtype=author&query=Wenzel%2C+W">Wolfgang Wenzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.11854v2-abstract-short" style="display: inline;"> Amorphous organic semiconductors based on small molecules and polymers are used in many applications, most prominently organic light emitting diodes (OLEDs) and organic solar cells. Impurities and charge traps are omnipresent in most currently available organic semiconductors and limit charge transport and thus device efficiency. The microscopic cause as well as the chemical nature of these traps… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.11854v2-abstract-full').style.display = 'inline'; document.getElementById('1908.11854v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.11854v2-abstract-full" style="display: none;"> Amorphous organic semiconductors based on small molecules and polymers are used in many applications, most prominently organic light emitting diodes (OLEDs) and organic solar cells. Impurities and charge traps are omnipresent in most currently available organic semiconductors and limit charge transport and thus device efficiency. The microscopic cause as well as the chemical nature of these traps are presently not well understood. Using a multiscale model we characterize the influence of impurities on the density of states and charge transport in small-molecule amorphous organic semiconductors. We use the model to quantitatively describe the influence of water molecules and water-oxygen complexes on the electron and hole mobilities. These species are seen to impact the shape of the density of states and to act as explicit charge traps within the energy gap. Our results show that trap states introduced by molecular oxygen can be deep enough to limit the electron mobility in widely used materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.11854v2-abstract-full').style.display = 'none'; document.getElementById('1908.11854v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages + SI, 7 figures + TOC-graphic + 2 figures in SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.12741">arXiv:1811.12741</a> <span> [<a href="https://arxiv.org/pdf/1811.12741">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamically switching the surface electronic and electrostatic properties of indium tin oxide electrodes with photochromic monolayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Wang%2C+Q">Qiankun Wang</a>, <a href="/search/?searchtype=author&query=Diez-Cabanes%2C+V">Valentin Diez-Cabanes</a>, <a href="/search/?searchtype=author&query=Dell%27Elce%2C+S">Simone Dell'Elce</a>, <a href="/search/?searchtype=author&query=Liscio%2C+A">Andrea Liscio</a>, <a href="/search/?searchtype=author&query=Kobin%2C+B">Bj枚rn Kobin</a>, <a href="/search/?searchtype=author&query=Li%2C+H">Hong Li</a>, <a href="/search/?searchtype=author&query=Br%C3%A9das%2C+J">Jean-Luc Br茅das</a>, <a href="/search/?searchtype=author&query=Hecht%2C+S">Stefan Hecht</a>, <a href="/search/?searchtype=author&query=Palermo%2C+V">Vincenzo Palermo</a>, <a href="/search/?searchtype=author&query=List-Kratochvil%2C+E+J+W">Emil J. W. List-Kratochvil</a>, <a href="/search/?searchtype=author&query=Cornil%2C+J">J茅r么me Cornil</a>, <a href="/search/?searchtype=author&query=Koch%2C+N">Norbert Koch</a>, <a href="/search/?searchtype=author&query=Ligorio%2C+G">Giovanni Ligorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.12741v1-abstract-short" style="display: inline;"> The chemical modification of electrodes with organic materials is a common approach to tune the electronic and electrostatic landscape between interlayers in optoelectronic devices, thus facilitating charge injection at the electrode/semiconductor interfaces and improving their performance. The use of photochromic molecules for the surface modification allows dynamic control of the electronic and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.12741v1-abstract-full').style.display = 'inline'; document.getElementById('1811.12741v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.12741v1-abstract-full" style="display: none;"> The chemical modification of electrodes with organic materials is a common approach to tune the electronic and electrostatic landscape between interlayers in optoelectronic devices, thus facilitating charge injection at the electrode/semiconductor interfaces and improving their performance. The use of photochromic molecules for the surface modification allows dynamic control of the electronic and electrostatic properties of the electrode and thereby enables additional functionalities in such devices. Here, we show that the electronic properties of a transparent indium tin oxide (ITO) electrode are reversibly and dynamically modified by depositing organic photochromic switches (diarylethenes) in the form of self-assembled monolayers (SAMs). By combining a range of surface characterization and density functional theory calculations, we present a detailed picture of the SAM binding onto ITO, the packing density of molecules, their orientation, as well as the work function modification of the ITO surface due to the SAM deposition. Upon illumination with ultraviolet and green light, we observe a reversible shift of the frontier occupied levels by 0.7 eV, and concomitantly a reversible work function change of ca. 60 meV. Our results prove the viability of dynamic switching of the electronic properties of the electrode with external light stimuli, which could be used to fabricate ITO-based photo-switchable optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.12741v1-abstract-full').style.display = 'none'; document.getElementById('1811.12741v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.01284">arXiv:1603.01284</a> <span> [<a href="https://arxiv.org/pdf/1603.01284">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Polaron Self-localization in White-light Emitting Hybrid Perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cortecchia%2C+D">Daniele Cortecchia</a>, <a href="/search/?searchtype=author&query=Yin%2C+J">Jun Yin</a>, <a href="/search/?searchtype=author&query=Bruno%2C+A">Annalisa Bruno</a>, <a href="/search/?searchtype=author&query=Lo%2C+S+A">Shu-Zee Alencious Lo</a>, <a href="/search/?searchtype=author&query=Gurzadyan%2C+G+G">Gagik G. Gurzadyan</a>, <a href="/search/?searchtype=author&query=Mhaisalkar%2C+S">Subodh Mhaisalkar</a>, <a href="/search/?searchtype=author&query=Br%C3%A9das%2C+J">Jean-Luc Br茅das</a>, <a href="/search/?searchtype=author&query=Soci%2C+C">Cesare Soci</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.01284v2-abstract-short" style="display: inline;"> Two-dimensional (2D) perovskites with general formula $APbX_4$ are attracting increasing interest as solution processable, white-light emissive materials. Recent studies have shown that their broadband emission is related to the formation of intra-gap color centers; however, the nature and dynamics of the emissive species have remained elusive. Here we show that the broadband photoluminescence of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01284v2-abstract-full').style.display = 'inline'; document.getElementById('1603.01284v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.01284v2-abstract-full" style="display: none;"> Two-dimensional (2D) perovskites with general formula $APbX_4$ are attracting increasing interest as solution processable, white-light emissive materials. Recent studies have shown that their broadband emission is related to the formation of intra-gap color centers; however, the nature and dynamics of the emissive species have remained elusive. Here we show that the broadband photoluminescence of the 2D perovskites $(EDBE)PbCl_4$ and $(EDBE)PbBr_4$ stems from the localization of small polarons within the lattice distortion field. Using a combination of spectroscopic techniques and first-principles calculations, we infer the formation of ${Pb_2}^{3+}$, $Pb^{3+}$, and ${X_2}^-$ (where X=Cl or Br) species confined within the inorganic perovskite framework. Due to strong Coulombic interactions, these species retain their original excitonic character and form self-trapped polaron-excitons acting as radiative color centers. These findings are expected to be applicable to a broad class of white-light emitting perovskites with large polaron relaxation energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01284v2-abstract-full').style.display = 'none'; document.getElementById('1603.01284v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 15 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.00777">arXiv:1503.00777</a> <span> [<a href="https://arxiv.org/pdf/1503.00777">pdf</a>, <a href="https://arxiv.org/format/1503.00777">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms8880">10.1038/ncomms8880 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mode-selective vibrational control of charge transport in $蟺$-conjugated molecular materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Bakulin%2C+A+A">Artem A. Bakulin</a>, <a href="/search/?searchtype=author&query=Lovrin%C4%8Di%C4%87%2C+R">Robert Lovrin膷i膰</a>, <a href="/search/?searchtype=author&query=Xi%2C+Y">Yu Xi</a>, <a href="/search/?searchtype=author&query=Selig%2C+O">Oleg Selig</a>, <a href="/search/?searchtype=author&query=Bakker%2C+H+J">Huib J. Bakker</a>, <a href="/search/?searchtype=author&query=Rezus%2C+Y+L+A">Yves L. A. Rezus</a>, <a href="/search/?searchtype=author&query=Nayak%2C+P+K">Pabitra K. Nayak</a>, <a href="/search/?searchtype=author&query=Fonari%2C+A">Alexandr Fonari</a>, <a href="/search/?searchtype=author&query=Coropceanu%2C+V">Veaceslav Coropceanu</a>, <a href="/search/?searchtype=author&query=Br%C3%A9das%2C+J">Jean-Luc Br茅das</a>, <a href="/search/?searchtype=author&query=Cahen%2C+D">David Cahen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.00777v1-abstract-short" style="display: inline;"> The soft character of organic materials leads to strong coupling between molecular nuclear and electronic dynamics. This coupling opens the way to control charge transport in organic electronic devices by inducing molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such control has remained elusive. Here we demonstrate experimentally tha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.00777v1-abstract-full').style.display = 'inline'; document.getElementById('1503.00777v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.00777v1-abstract-full" style="display: none;"> The soft character of organic materials leads to strong coupling between molecular nuclear and electronic dynamics. This coupling opens the way to control charge transport in organic electronic devices by inducing molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such control has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be controlled by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1500-1700 cm$^{-1}$ region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. Vibrational control thus presents a new tool for studying electron-phonon coupling and charge dynamics in (bio)molecular materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.00777v1-abstract-full').style.display = 'none'; document.getElementById('1503.00777v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 6, 7880, 2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.00098">arXiv:1501.00098</a> <span> [<a href="https://arxiv.org/pdf/1501.00098">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.245112">10.1103/PhysRevB.90.245112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical conductivity and optical effective mass in a high-mobility organic semiconductor: Implications for the nature of charge transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Li%2C+Y">Yuan Li</a>, <a href="/search/?searchtype=author&query=Yi%2C+Y">Yuanping Yi</a>, <a href="/search/?searchtype=author&query=Coropceanu%2C+V">Veaceslav Coropceanu</a>, <a href="/search/?searchtype=author&query=Br%C3%A9das%2C+J">Jean-Luc Br茅das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.00098v1-abstract-short" style="display: inline;"> We present a multiscale modeling of the infrared optical properties of the rubrene crystal. The results are in very good agreement with the experimental data that point to nonmonotonic features in the optical conductivity spectrum and small optical effective masses. We find that, in the static-disorder approximation, the nonlocal electron-phonon interactions stemming from low-frequency lattice vib… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.00098v1-abstract-full').style.display = 'inline'; document.getElementById('1501.00098v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.00098v1-abstract-full" style="display: none;"> We present a multiscale modeling of the infrared optical properties of the rubrene crystal. The results are in very good agreement with the experimental data that point to nonmonotonic features in the optical conductivity spectrum and small optical effective masses. We find that, in the static-disorder approximation, the nonlocal electron-phonon interactions stemming from low-frequency lattice vibrations can decrease the optical effective masses and lead to lighter quasiparticles. On the other hand, the charge-transport and infrared optical properties of the rubrene crystal at room temperature are demonstrated to be governed by localized carriers driven by inherent thermal disorders. Our findings underline that the presence of apparently light carriers in high-mobility organic semiconductors does not necessarily imply band-like transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.00098v1-abstract-full').style.display = 'none'; document.getElementById('1501.00098v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 90, 245112 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.8086">arXiv:1210.8086</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jz301575u">10.1021/jz301575u <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal Narrowing of the Electronic Bandwidths in Organic Molecular Semiconductors: Impact of the Crystal Thermal Expansion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Li%2C+Y">Yuan Li</a>, <a href="/search/?searchtype=author&query=Coropceanu%2C+V">Veaceslav Coropceanu</a>, <a href="/search/?searchtype=author&query=Br%C3%A9das%2C+J">Jean-Luc Br茅das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.8086v2-abstract-short" style="display: inline;"> We report on electronic-structure calculations for the pentacene and rubrene crystals, based on experimental crystal geometries measured at different temperatures. The results are in very good agreement with angle-resolved photoelectron spectroscopy data that indicate that the widths of the valence and conduction bands in both materials become narrower at higher temperatures. Our findings strongly… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.8086v2-abstract-full').style.display = 'inline'; document.getElementById('1210.8086v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.8086v2-abstract-full" style="display: none;"> We report on electronic-structure calculations for the pentacene and rubrene crystals, based on experimental crystal geometries measured at different temperatures. The results are in very good agreement with angle-resolved photoelectron spectroscopy data that indicate that the widths of the valence and conduction bands in both materials become narrower at higher temperatures. Our findings strongly suggest that the thermal bandwidth narrowing in the pentacene and rubrene crystals is primarily caused by the thermal expansion of the lattice rather than by a renormalization of the transfer integrals induced by a polaron effect. The effect of thermal expansion on the charge-transport properties is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.8086v2-abstract-full').style.display = 'none'; document.getElementById('1210.8086v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper has been withdrawn by the authors to comply with the publication policy of ACS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.5088">arXiv:1112.5088</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.245201">10.1103/PhysRevB.85.245201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmetry Effects on Nonlocal Electron-Phonon Coupling in Organic Semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Li%2C+Y">Yuan Li</a>, <a href="/search/?searchtype=author&query=Yi%2C+Y">Yuanping Yi</a>, <a href="/search/?searchtype=author&query=Coropceanu%2C+V">Veaceslav Coropceanu</a>, <a href="/search/?searchtype=author&query=Br%C3%A9das%2C+J">Jean-Luc Br茅das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.5088v3-abstract-short" style="display: inline;"> The electronic and electrical properties of crystalline organic semiconductors, such as the dispersions of the electronic bands and the dependence of charge-carrier mobility on temperature, are greatly impacted by the nonlocal electron-phonon interactions associated with intermolecular lattice vibrations. Here, we present a theoretical description that underlines that these properties vary differe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5088v3-abstract-full').style.display = 'inline'; document.getElementById('1112.5088v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.5088v3-abstract-full" style="display: none;"> The electronic and electrical properties of crystalline organic semiconductors, such as the dispersions of the electronic bands and the dependence of charge-carrier mobility on temperature, are greatly impacted by the nonlocal electron-phonon interactions associated with intermolecular lattice vibrations. Here, we present a theoretical description that underlines that these properties vary differently as a function of the symmetry of the nonlocal electron-phonon coupling mechanism. The electron-phonon coupling patterns in real space are seen to have a direct and significant impact on the interactions in reciprocal space. Our findings demonstrate the importance of aspects that are usually missing in current transport models. Importantly, an adequate description of the electronic and charge-transport properties of organic semiconductors requires that the models take into account both antisymmetric and symmetric contributions to the nonlocal electron-phonon coupling mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5088v3-abstract-full').style.display = 'none'; document.getElementById('1112.5088v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Please refer to: PhysRevB.85.245201(2012)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevB.85.245201(2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0512255">arXiv:cond-mat/0512255</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0512255">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0512255">ps</a>, <a href="https://arxiv.org/format/cond-mat/0512255">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.1839574">10.1063/1.1839574 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Breakdown of the mirror image symmetry in the optical absorption/emission spectra of oligo(para-phenylene)s </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Heimel%2C+G">G. Heimel</a>, <a href="/search/?searchtype=author&query=Daghofer%2C+M">M. Daghofer</a>, <a href="/search/?searchtype=author&query=Gierschner%2C+J">J. Gierschner</a>, <a href="/search/?searchtype=author&query=List%2C+E+J+W">E. J. W. List</a>, <a href="/search/?searchtype=author&query=Grimsdale%2C+A+C">A. C. Grimsdale</a>, <a href="/search/?searchtype=author&query=M%C3%BCllen%2C+K">K. M眉llen</a>, <a href="/search/?searchtype=author&query=Beljonne%2C+D">D. Beljonne</a>, <a href="/search/?searchtype=author&query=Br%C3%A9das%2C+J+-">J. -L. Br茅das</a>, <a href="/search/?searchtype=author&query=Zojer%2C+E">E. Zojer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0512255v2-abstract-short" style="display: inline;"> The absorption and emission spectra of most luminescent, pi-conjugated, organic molecules are the mirror image of each other. In some cases, however, this symmetry is severely broken. In the present work, the asymmetry between the absorption and fluorescence spectra in molecular systems consisting of para-linked phenyl rings is studied. The vibronic structure of the emission and absorption bands i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0512255v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0512255v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0512255v2-abstract-full" style="display: none;"> The absorption and emission spectra of most luminescent, pi-conjugated, organic molecules are the mirror image of each other. In some cases, however, this symmetry is severely broken. In the present work, the asymmetry between the absorption and fluorescence spectra in molecular systems consisting of para-linked phenyl rings is studied. The vibronic structure of the emission and absorption bands is calculated from ab-initio quantum chemical methods and a subsequent, rigorous Franck-Condon treatment. Good agreement with experiment is achieved. A clear relation can be established between the strongly anharmonic double-well potential for the phenylene ring librations around the long molecular axis and the observed deviation from the mirror image symmetry. Consequences for related compounds and temperature dependent optical measurements are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0512255v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0512255v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 122, 054501 (2005) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9703142">arXiv:cond-mat/9703142</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9703142">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9703142">ps</a>, <a href="https://arxiv.org/format/cond-mat/9703142">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.56.9298">10.1103/PhysRevB.56.9298 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum confinement effects on the ordering of the lowest-lying excited states in conjugated chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Shuai%2C+Z">Z. Shuai</a>, <a href="/search/?searchtype=author&query=Bredas%2C+J+L">J. L. Bredas</a>, <a href="/search/?searchtype=author&query=Pati%2C+S+K">S. K. Pati</a>, <a href="/search/?searchtype=author&query=Ramasesha%2C+S">S. Ramasesha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9703142v1-abstract-short" style="display: inline;"> The symmetrized density matrix renormalization group approach is applied within the extended Hubbard-Peierls model (with parameters U/t, V/t, and bond alternation 未) to study the ordering of the lowest one-photon (1^{1}B^{-}_u) and two-photon (2^{1}A^{+}_g) states in one- dimensional conjugated systems with chain lengths, N, up to N=80 sites. Three different types of crossovers are studied, as a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9703142v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9703142v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9703142v1-abstract-full" style="display: none;"> The symmetrized density matrix renormalization group approach is applied within the extended Hubbard-Peierls model (with parameters U/t, V/t, and bond alternation 未) to study the ordering of the lowest one-photon (1^{1}B^{-}_u) and two-photon (2^{1}A^{+}_g) states in one- dimensional conjugated systems with chain lengths, N, up to N=80 sites. Three different types of crossovers are studied, as a function of U/t, 未, and N. The U-crossover emphasizes the larger ionic character of the 2A_g state compared to the lowest triplet excitation. The 未crossover shows strong dependence on both N and U/t. The N-crossover illustrates the more localized nature of the 2A_g excitation relative to the 1B_u excitation at intermediate correlation strengths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9703142v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9703142v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 1997; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 1997. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Latex file; figures available upon request. Submitted to PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9609164">arXiv:cond-mat/9609164</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9609164">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9609164">ps</a>, <a href="https://arxiv.org/format/cond-mat/9609164">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> </div> </div> <p class="title is-5 mathjax"> Low-Lying Electronic Excitations and Nonlinear Optic Properties of Polymers via Symmetrized Density Matrix Renormalization Group Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Ramasesha%2C+S">S. Ramasesha</a>, <a href="/search/?searchtype=author&query=Pati%2C+S+K">Swapan K. Pati</a>, <a href="/search/?searchtype=author&query=Krishnamurthy%2C+H+R">H. R. Krishnamurthy</a>, <a href="/search/?searchtype=author&query=Shuai%2C+Z">Z. Shuai</a>, <a href="/search/?searchtype=author&query=Bredas%2C+J+L">J. L. Bredas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9609164v1-abstract-short" style="display: inline;"> A symmetrized Density Matrix Renormalization Group procedure together with the correction vector approach is shown to be highly accurate for obtaining dynamic linear and third order polarizabilities of one-dimensional Hubbard and $U-V$ models. The $U-V$ model is seen to show characteristically different third harmonic generation response in the CDW and SDW phases. This can be rationalized from t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9609164v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9609164v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9609164v1-abstract-full" style="display: none;"> A symmetrized Density Matrix Renormalization Group procedure together with the correction vector approach is shown to be highly accurate for obtaining dynamic linear and third order polarizabilities of one-dimensional Hubbard and $U-V$ models. The $U-V$ model is seen to show characteristically different third harmonic generation response in the CDW and SDW phases. This can be rationalized from the excitation spectrum of the systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9609164v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9609164v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 1996; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 1996. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages Latex; 3 eps figures available upon request; Proceedings of ICSM '96, to appear in Synth. Metals, 1996</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9605098">arXiv:cond-mat/9605098</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9605098">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9605098">ps</a>, <a href="https://arxiv.org/format/cond-mat/9605098">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> </div> </div> <p class="title is-5 mathjax"> Dynamical Nonlinear Optic Coefficients from the Symmetrized Density Matrix Renormalization Group Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Pati%2C+S+K">Swapan K. Pati</a>, <a href="/search/?searchtype=author&query=Ramasesha%2C+S">S. Ramasesha</a>, <a href="/search/?searchtype=author&query=Shuai%2C+Z">Z. Shuai</a>, <a href="/search/?searchtype=author&query=Bredas%2C+J+L">J. L. Bredas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9605098v1-abstract-short" style="display: inline;"> We extend the symmetrized density matrix renormalization group (SDMRG) method to compute the dynamic nonlinear optic coefficients for long chains. By computing correction vectors in the appropriate symmetry subspace we obtain the dynamic polarizabilities, $伪_{ij}(蠅)$, and third-order polarizabilities $纬_{ijkl}(蠅,蠅,蠅)$ of the Hubbard and "$U-V$" chains in an $all-trans$ polyacetylene geometry, wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9605098v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9605098v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9605098v1-abstract-full" style="display: none;"> We extend the symmetrized density matrix renormalization group (SDMRG) method to compute the dynamic nonlinear optic coefficients for long chains. By computing correction vectors in the appropriate symmetry subspace we obtain the dynamic polarizabilities, $伪_{ij}(蠅)$, and third-order polarizabilities $纬_{ijkl}(蠅,蠅,蠅)$ of the Hubbard and "$U-V$" chains in an $all-trans$ polyacetylene geometry, with and without dimerization. We rationalize the behavior of $\bar伪$ and $\bar纬$ on the basis of the low-lying excitation gaps in the system. This is the first study of the dynamics of a fermionic system within the DMRG framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9605098v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9605098v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 1996; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 1996. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages revtex; 4 eps figures available upon request. Submitted to Phys. Rev. Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9603162">arXiv:cond-mat/9603162</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/9603162">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9603162">ps</a>, <a href="https://arxiv.org/format/cond-mat/9603162">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> </div> </div> <p class="title is-5 mathjax"> Symmetrized DMRG Method for Excited States of Hubbard Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Ramasesha%2C+S">S. Ramasesha</a>, <a href="/search/?searchtype=author&query=Pati%2C+S+K">Swapan K. Pati</a>, <a href="/search/?searchtype=author&query=Krishnamurthy%2C+H+R">H. R. Krishnamurthy</a>, <a href="/search/?searchtype=author&query=Shuai%2C+Z">Z. Shuai</a>, <a href="/search/?searchtype=author&query=Bredas%2C+J+L">J. L. Bredas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9603162v1-abstract-short" style="display: inline;"> We extend the density matrix renormalization group method to exploit Parity, $C_2$ (rotation by $蟺$) and electron-hole symmtries of model Hamiltonians. We demonstrate the power of this method by obtaining the lowest energy states in all the eight symmetry subspaces of Hubbard chains with upto 50 sites. The ground-state energy, optical gap and spin gap of regular $U=4t$ and $U=6t$ Hubbard chains… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9603162v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9603162v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9603162v1-abstract-full" style="display: none;"> We extend the density matrix renormalization group method to exploit Parity, $C_2$ (rotation by $蟺$) and electron-hole symmtries of model Hamiltonians. We demonstrate the power of this method by obtaining the lowest energy states in all the eight symmetry subspaces of Hubbard chains with upto 50 sites. The ground-state energy, optical gap and spin gap of regular $U=4t$ and $U=6t$ Hubbard chains agree very well with exact results. This development extends the scope of the DMRG method and allows future applications to study of optical properties of low-dimensional conjugated polymeric systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9603162v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9603162v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 1996; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 1996. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages in Latex, 3 Figures available on request</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>