CINXE.COM
Search results for: aerosol generation by laser ablation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: aerosol generation by laser ablation</title> <meta name="description" content="Search results for: aerosol generation by laser ablation"> <meta name="keywords" content="aerosol generation by laser ablation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="aerosol generation by laser ablation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="aerosol generation by laser ablation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4363</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: aerosol generation by laser ablation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4363</span> Modified Model for UV-Laser Corneal Ablation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20Hassab%20Elnaby">Salah Hassab Elnaby</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20Hamdy"> Omnia Hamdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziza%20Ahmed%20Hassan"> Aziza Ahmed Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Salwa%20Abdelkawi"> Salwa Abdelkawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Abdelhalim"> Ibrahim Abdelhalim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser corneal reshaping has been proposed as a successful treatment of many refraction disorders. However, some physical and chemical demonstrations of the laser effect upon interaction with the corneal tissue are still not fully explained. Therefore, different computational and mathematical models have been implemented to predict the depth of the ablated channel and calculate the ablation threshold and the local temperature rise. In the current paper, we present a modified model that aims to answer some of the open questions about the ablation threshold, the ablation rate, and the physical and chemical mechanisms of that action. The proposed model consists of three parts. The first part deals with possible photochemical reactions between the incident photons and various components of the cornea (collagen, water, etc.). Such photochemical reactions may end by photo-ablation or just the electronic excitation of molecules. Then a chemical reaction is responsible for the ablation threshold. Finally, another chemical reaction produces fragments that can be cleared out. The model takes into account all processes at the same time with different probabilities. Moreover, the effect of applying different laser wavelengths that have been studied before, namely the common excimer laser (193-nm) and the solid state lasers (213-nm & 266-nm), has been investigated. Despite the success and ubiquity of the ArF laser, the presented results reveal that a carefully designed 213-nm laser gives the same results with lower operational drawbacks. Moreover, the use of mode locked laser could also decrease the risk of heat generation and diffusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UV%20lasers" title="UV lasers">UV lasers</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=corneal%20ablation" title=" corneal ablation"> corneal ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=photochemical%20ablation" title=" photochemical ablation"> photochemical ablation</a> </p> <a href="https://publications.waset.org/abstracts/160661/modified-model-for-uv-laser-corneal-ablation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4362</span> Applications of Nanoparticles via Laser Ablation in Liquids: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fawaz%20%20M.%20Abdullah">Fawaz M. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20M.%20Al-Ahmari"> Abdulrahman M. Al-Ahmari</a>, <a href="https://publications.waset.org/abstracts/search?q=Madiha%20Rafaqat"> Madiha Rafaqat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser ablation of any solid target in the liquid leads to fabricate nanoparticles (NPs) with metal or different compositions of materials such as metals, alloys, oxides, carbides, hydroxides. The fabrication of NPs in liquids based on laser ablation has grown up rapidly in the last decades compared to other techniques. Nowadays, laser ablation has been improved to prepare different types of NPs with special morphologies, microstructures, phases, and sizes, which can be applied in various fields. The paper reviews and highlights the different sizes, shapes and application field of nanoparticles that are produced by laser ablation under different liquids and materials. Also, the paper provides a case study for producing a titanium NPs produced by laser ablation submerged in distilled water. The size of NPs is an important parameter, especially for their usage and applications. The size and shape have been analyzed by SEM, (EDAX) was applied to evaluate the oxidation and elements of titanium NPs and the XRD was used to evaluate the phase composition and the peaks of both titanium and some element. SEM technique showed that the synthesized NPs size ranges were between 15-35 nm which can be applied in various field such as annihilator for cancerous cell etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20ablation" title=" laser ablation"> laser ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20NPs" title=" titanium NPs"> titanium NPs</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a> </p> <a href="https://publications.waset.org/abstracts/105599/applications-of-nanoparticles-via-laser-ablation-in-liquids-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4361</span> Spectroscopic Characterization Approach to Study Ablation Time on Zinc Oxide Nanoparticles Synthesis by Laser Ablation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suha%20I.%20Al-Nassar">Suha I. Al-Nassar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Adel"> K. M. Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Zainab"> F. Zainab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work was devoted for producing ZnO nanoparticles by pulsed laser ablation (PLA) of Zn metal plate in the aqueous environment of cetyl trimethyl ammonium bromide (CTAB) using Q-Switched Nd:YAG pulsed laser with wavelength= 1064 nm, Rep. rate= 10 Hz, Pulse duration= 6 ns and laser energy 50 mJ. Solution of nanoparticles is found stable in the colloidal form for a long time. The effect of ablation time on the optical and structure of ZnO was studied is characterized by UV-visible absorption. UV-visible absorption spectrum has four peaks at 256, 259, 265, 322 nm for ablation time (5, 10, 15, and 20 sec) respectively, our results show that UV–vis spectra show a blue shift in the presence of CTAB with decrease the ablation time and blue shift indicated to get smaller size of nanoparticles. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. Also, FTIR transmittance spectra of ZnO2 nanoparticles prepared in these states show a characteristic ZnO absorption at 435–445cm^−1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide%20nanoparticles" title="zinc oxide nanoparticles">zinc oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=CTAB%20solution" title=" CTAB solution"> CTAB solution</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20ablation%20technique" title=" pulsed laser ablation technique"> pulsed laser ablation technique</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopic%20characterization" title=" spectroscopic characterization"> spectroscopic characterization</a> </p> <a href="https://publications.waset.org/abstracts/8008/spectroscopic-characterization-approach-to-study-ablation-time-on-zinc-oxide-nanoparticles-synthesis-by-laser-ablation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4360</span> Spectral Responses of the Laser Generated Coal Aerosol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tibor%20Ajtai">Tibor Ajtai</a>, <a href="https://publications.waset.org/abstracts/search?q=No%C3%A9mi%20Utry"> Noémi Utry</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A1t%C3%A9%20Pint%C3%A9r"> Máté Pintér</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomi%20Smausz"> Tomi Smausz</a>, <a href="https://publications.waset.org/abstracts/search?q=Zolt%C3%A1n%20K%C3%B3nya"> Zoltán Kónya</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9la%20Hopp"> Béla Hopp</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%A1bor%20Szab%C3%B3"> Gábor Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=Zolt%C3%A1n%20Boz%C3%B3ki"> Zoltán Bozóki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterization of spectral responses of light absorbing carbonaceous particulate matter (LAC) is of great importance in both modelling its climate effect and interpreting remote sensing measurement data. The residential or domestic combustion of coal is one of the dominant LAC constituent. According to some related assessments the residential coal burning account for roughly half of anthropogenic BC emitted from fossil fuel burning. Despite of its significance in climate the comprehensive investigation of optical properties of residential coal aerosol is really limited in the literature. There are many reason of that starting from the difficulties associated with the controlled burning conditions of the fuel, through the lack of detailed supplementary proximate and ultimate chemical analysis enforced, the interpretation of the measured optical data, ending with many analytical and methodological difficulties regarding the in-situ measurement of coal aerosol spectral responses. Since the gas matrix of ambient can significantly mask the physicochemical characteristics of the generated coal aerosol the accurate and controlled generation of residential coal particulates is one of the most actual issues in this research area. Most of the laboratory imitation of residential coal combustion is simply based on coal burning in stove with ambient air support allowing one to measure only the apparent spectral feature of the particulates. However, the recently introduced methodology based on a laser ablation of solid coal target opens up novel possibilities to model the real combustion procedure under well controlled laboratory conditions and makes the investigation of the inherent optical properties also possible. Most of the methodology for spectral characterization of LAC is based on transmission measurement made of filter accumulated aerosol or deduced indirectly from parallel measurements of scattering and extinction coefficient using free floating sampling. In the former one the accuracy while in the latter one the sensitivity are liming the applicability of this approaches. Although the scientific community are at the common platform that aerosol-phase PhotoAcoustic Spectroscopy (PAS) is the only method for precise and accurate determination of light absorption by LAC, the PAS based instrumentation for spectral characterization of absorption has only been recently introduced. In this study, the investigation of the inherent, spectral features of laser generated and chemically characterized residential coal aerosols are demonstrated. The experimental set-up and its characteristic for residential coal aerosol generation are introduced here. The optical absorption and the scattering coefficients as well as their wavelength dependency are determined by our state-of-the-art multi wavelength PAS instrument (4λ-PAS) and multi wavelength cosinus sensor (Aurora 3000). The quantified wavelength dependency (AAE and SAE) are deduced from the measured data. Finally, some correlation between the proximate and ultimate chemical as well as the measured or deduced optical parameters are also revealed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption" title="absorption">absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering" title=" scattering"> scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20coal" title=" residential coal"> residential coal</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20generation%20by%20laser%20ablation" title=" aerosol generation by laser ablation"> aerosol generation by laser ablation</a> </p> <a href="https://publications.waset.org/abstracts/40409/spectral-responses-of-the-laser-generated-coal-aerosol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4359</span> Study on Fabrication of Surface Functional Micro and Nanostructures by Femtosecond Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shengzhu%20Cao">Shengzhu Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhou"> Hui Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Gan%20Wu"> Gan Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lanxi%20Wanhg"> Lanxi Wanhg</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaifeng%20Zhang"> Kaifeng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Wang"> Rui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Wang"> Hu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The functional micro and nanostructures, which can endow material surface with unique properties such as super-absorptance, hydrophobic and drag reduction. Recently, femtosecond laser ablation has been demonstrated to be a promising technology for surface functional micro and nanostructures fabrication. In this paper, using femtosecond laser ablation processing technique, we fabricated functional micro and nanostructures on Ti and Al alloy surfaces, test results showed that processed surfaces have 82%~96% absorptance over a broad wavelength range from ultraviolet to infrared. The surface function properties, which determined by micro and nanostructures, could be modulated by variation laser parameters. These functional surfaces may find applications in such areas as photonics, plasmonics, spaceborne devices, thermal radiation sources, solar energy absorbers and biomedicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20functional" title="surface functional">surface functional</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20and%20nanostructures" title=" micro and nanostructures"> micro and nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=femtosecond%20laser" title=" femtosecond laser"> femtosecond laser</a>, <a href="https://publications.waset.org/abstracts/search?q=ablation" title=" ablation"> ablation</a> </p> <a href="https://publications.waset.org/abstracts/61480/study-on-fabrication-of-surface-functional-micro-and-nanostructures-by-femtosecond-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4358</span> Nanotechnology-Based Treatment of Klebsiella pneumoniae Infections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucian%20Mocan">Lucian Mocan</a>, <a href="https://publications.waset.org/abstracts/search?q=Teodora%20Mocan"> Teodora Mocan</a>, <a href="https://publications.waset.org/abstracts/search?q=Matea%20Cristian"> Matea Cristian</a>, <a href="https://publications.waset.org/abstracts/search?q=Cornel%20Iancu"> Cornel Iancu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present method of nanoparticle enhanced laser thermal ablation of Klebsiella pneumoniae infections, using gold nanoparticles combined with a specific growth factor and demonstrate its selective therapeutic efficacy. Ab (antibody solution) bound to GNPs (gold nanoparticles) was administered in vitro and determined the specific delivery of the nano-bioconjugate into the microorganism. The extent of necrosis was considerable following laser therapy, and at the same time, normal cells were not seriously affected. The selective photothermal ablation of the infected tissue was obtained after the selective accumulation of Ab bound to GNPs into bacteria following perfusion. These results may represent a major step in antibiotherapy treatment using nanolocalized thermal ablation by laser heating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title="gold nanoparticles">gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Klebsiella%20pneumoniae" title=" Klebsiella pneumoniae"> Klebsiella pneumoniae</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle%20functionalization" title=" nanoparticle functionalization"> nanoparticle functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20irradiation" title=" laser irradiation"> laser irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=antibody" title=" antibody"> antibody</a> </p> <a href="https://publications.waset.org/abstracts/84088/nanotechnology-based-treatment-of-klebsiella-pneumoniae-infections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4357</span> Infra Red Laser Induced Ablation of Graphene Based Polymer Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jadranka%20Blazhevska%20Gilev">Jadranka Blazhevska Gilev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> IR laser-induced ablation of poly(butylacrylate-methylmethacrylate/hydroxyl ethyl methacrylate)/reduced graphene oxide (p(BA/MMA/HEMA)/rGO) was examined with 0.5, 0.75 and 1 wt% reduced graphene oxide content in relation to polymer. The irradiation was performed with TEA (transversely excited atmosphere) CO₂ laser using incident fluence of 15-20 J/cm², repetition frequency of 1 Hz, in an evacuated (10-3 Pa) Pyrex spherical vessel. Thin deposited nanocomposites films with large specific area were obtained using different substrates. The properties of the films deposited on these substrates were evaluated by TGA, FTIR, (Thermogravimetric analysis, Fourier Transformation Infrared) Raman spectroscopy and SEM microscopy. Homogeneous distribution of graphene sheets was observed from the SEM images, making polymer/rGO deposit an ideal candidate for SERS application. SERS measurements were performed using Rhodamine 6G as probe molecule on the substrate Ag/p(BA/MMA/HEMA)/rGO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20ablation" title="laser ablation">laser ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%2FrGO%20nanocomposites" title=" polymer/rGO nanocomposites"> polymer/rGO nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20deposited%20film" title=" thin deposited film"> thin deposited film</a> </p> <a href="https://publications.waset.org/abstracts/77201/infra-red-laser-induced-ablation-of-graphene-based-polymer-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4356</span> Nanotechnology-Based Treatment of Liver Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucian%20Mocan">Lucian Mocan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present method of Nanoparticle enhanced laser thermal ablation of HepG2 cells (Human hepatocellular liver carcinomacell line), using gold nanoparticles combuned with a specific growth factor and demonstrate its selective therapeutic efficacy usig ex vivo specimens. Ex vivo-perfused liver specimens were obtained from hepatocellular carcinoma patients similarly to the surgical technique of transplantation. Ab bound to GNPs was inoculated intra-arterially onto the resulting specimen and determined the specific delivery of the nano-bioconjugate into the malignant tissue by means of the capillary bed. The extent of necrosis was considerable following laser therapy and at the same time surrounding parenchyma was not seriously affected. The selective photothermal ablation of the malignant liver tissue was obtained after the selective accumulation of Ab bound to GNPs into tumor cells following ex-vivo intravascular perfusion. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HepG2%20cells" title="HepG2 cells">HepG2 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle%20functionalization" title=" nanoparticle functionalization"> nanoparticle functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20irradiation" title=" laser irradiation"> laser irradiation</a> </p> <a href="https://publications.waset.org/abstracts/66957/nanotechnology-based-treatment-of-liver-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4355</span> Thermodynamic and Immunochemical Studies of Antibody Biofunctionalized Gold Nanoparticles Mediated Photothermal Ablation in Human Liver Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucian%20Mocan">Lucian Mocan</a>, <a href="https://publications.waset.org/abstracts/search?q=Flaviu%20Tabaran"> Flaviu Tabaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Teodora%20Mocan"> Teodora Mocan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Matea"> Cristian Matea</a>, <a href="https://publications.waset.org/abstracts/search?q=Cornel%20Iancu"> Cornel Iancu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present method of Gold Nanoparticle enhanced laser thermal ablation of HepG2 cells (Human hepatocellular liver carcinoma cell line), based on a simple gold nanoparticle carrier system, such as serum albumin (BSA), and demonstrate its selective therapeutic efficacy. Hyperspectral, contrast phase, and confocal microscopy combined immunochemical staining were used to demonstrate the selective internalization of HSA-GNPs via Gp60 receptors and the caveolin-mediated endocytosis inside HepG2 cells. We examined the ability of laser-activated carbon nanotubes to induce Hsp70 expression using confocal microscopy. Hep G2 cells heat-shocked (laser activated BSA-GNPs) to 42°C demonstrated an up-regulation of Hsp70 compared with control cells (BSA-GNPs treated cells without laser), which showed no detectable constitutive expression of Hsp70. We observed a time-dependent induction in Hsp70 expression in Hep G2 treated with BSA-GNPs and LASER irradiated. The post-irradiation apoptotic rate of HepG2 cells treated with HSA-GNPs ranged from 88.24% (for 50 mg/L) at 60 seconds, while at 30 minute the rate increased to 92.34% (50 mg/L). These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title="gold nanoparticles">gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20cancer" title=" liver cancer"> liver cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=albumin" title=" albumin"> albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20irradiation" title=" laser irradiation"> laser irradiation</a> </p> <a href="https://publications.waset.org/abstracts/56646/thermodynamic-and-immunochemical-studies-of-antibody-biofunctionalized-gold-nanoparticles-mediated-photothermal-ablation-in-human-liver-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4354</span> A Reduced Ablation Model for Laser Cutting and Laser Drilling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Torsten%20Hermanns">Torsten Hermanns</a>, <a href="https://publications.waset.org/abstracts/search?q=Thoufik%20Al%20Khawli"> Thoufik Al Khawli</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Schulz"> Wolfgang Schulz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In laser cutting as well as in long pulsed laser drilling of metals, it can be demonstrated that the ablation shape (the shape of cut faces respectively the hole shape) that is formed approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from the ultrashort pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in laser cutting and long pulse drilling of metals is identified, its underlying mechanism numerically implemented, tested and clearly confirmed by comparison with experimental data. In detail, there now is a model that allows the simulation of the temporal (pulse-resolved) evolution of the hole shape in laser drilling as well as the final (asymptotic) shape of the cut faces in laser cutting. This simulation especially requires much less in the way of resources, such that it can even run on common desktop PCs or laptops. Individual parameters can be adjusted using sliders – the simulation result appears in an adjacent window and changes in real time. This is made possible by an application-specific reduction of the underlying ablation model. Because this reduction dramatically decreases the complexity of calculation, it produces a result much more quickly. This means that the simulation can be carried out directly at the laser machine. Time-intensive experiments can be reduced and set-up processes can be completed much faster. The high speed of simulation also opens up a range of entirely different options, such as metamodeling. Suitable for complex applications with many parameters, metamodeling involves generating high-dimensional data sets with the parameters and several evaluation criteria for process and product quality. These sets can then be used to create individual process maps that show the dependency of individual parameter pairs. This advanced simulation makes it possible to find global and local extreme values through mathematical manipulation. Such simultaneous optimization of multiple parameters is scarcely possible by experimental means. This means that new methods in manufacturing such as self-optimization can be executed much faster. However, the software’s potential does not stop there; time-intensive calculations exist in many areas of industry. In laser welding or laser additive manufacturing, for example, the simulation of thermal induced residual stresses still uses up considerable computing capacity or is even not possible. Transferring the principle of reduced models promises substantial savings there, too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20ablation%20shape" title="asymptotic ablation shape">asymptotic ablation shape</a>, <a href="https://publications.waset.org/abstracts/search?q=interactive%20process%20simulation" title=" interactive process simulation"> interactive process simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20drilling" title=" laser drilling"> laser drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20cutting" title=" laser cutting"> laser cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=metamodeling" title=" metamodeling"> metamodeling</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20modeling" title=" reduced modeling"> reduced modeling</a> </p> <a href="https://publications.waset.org/abstracts/43086/a-reduced-ablation-model-for-laser-cutting-and-laser-drilling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4353</span> Generation of ZnO-Au Nanocomposite in Water Using Pulsed Laser Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmira%20Solati">Elmira Solati</a>, <a href="https://publications.waset.org/abstracts/search?q=Atousa%20Mehrani"> Atousa Mehrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Davoud%20Dorranian"> Davoud Dorranian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generation of ZnO-Au nanocomposite under laser irradiation of a mixture of the ZnO and Au colloidal suspensions are experimentally investigated. In this work, firstly ZnO and Au nanoparticles are prepared by pulsed laser ablation of the corresponding metals in water using the 1064 nm wavelength of Nd:YAG laser. In a second step, the produced ZnO and Au colloidal suspensions were mixed in different volumetric ratio and irradiated using the second harmonic of a Nd:YAG laser operating at 532 nm wavelength. The changes in the size of the nanostructure and optical properties of the ZnO-Au nanocomposite are studied as a function of the volumetric ratio of ZnO and Au colloidal suspensions. The crystalline structure of the ZnO-Au nanocomposites was analyzed by X-ray diffraction (XRD). The optical properties of the samples were examined at room temperature by a UV-Vis-NIR absorption spectrophotometer. Transmission electron microscopy (TEM) was done by placing a drop of the concentrated suspension on a carbon-coated copper grid. To further confirm the morphology of ZnO-Au nanocomposites, we performed Scanning electron microscopy (SEM) analysis. Room temperature photoluminescence (PL) of the ZnO-Au nanocomposites was measured to characterize the luminescence properties of the ZnO-Au nanocomposites. The ZnO-Au nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The X-ray diffraction pattern shows that the ZnO-Au nanocomposites had the polycrystalline structure of Au. The behavior observed by images of transmission electron microscope reveals that soldering of Au and ZnO nanoparticles include their adhesion. The plasmon peak in ZnO-Au nanocomposites was red-shifted and broadened in comparison with pure Au nanoparticles. By using the Tauc’s equation, the band gap energy for ZnO-Au nanocomposites is calculated to be 3.15–3.27 eV. In this work, the formation of ZnO-Au nanocomposites shifts the FTIR peak of metal oxide bands to higher wavenumbers. PL spectra of the ZnO-Au nanocomposites show that several weak peaks in the ultraviolet region and several relatively strong peaks in the visible region. SEM image indicates that the morphology of ZnO-Au nanocomposites produced in water was spherical. The TEM images of ZnO-Au nanocomposites demonstrate that with increasing the volumetric ratio of Au colloidal suspension the adhesion increased. According to the size distribution graphs of ZnO-Au nanocomposites with increasing the volumetric ratio of Au colloidal suspension the amount of ZnO-Au nanocomposites with the smaller size is further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Au%20nanoparticles" title="Au nanoparticles">Au nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20ablation" title=" pulsed laser ablation"> pulsed laser ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO-Au%20nanocomposites" title=" ZnO-Au nanocomposites"> ZnO-Au nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanoparticles" title=" ZnO nanoparticles"> ZnO nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/36793/generation-of-zno-au-nanocomposite-in-water-using-pulsed-laser-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4352</span> Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20F.%20Nettleton">David F. Nettleton</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Wasiak"> Christian Wasiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonas%20Dorissen"> Jonas Dorissen</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Gillen"> David Gillen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20Tretyak"> Alexandr Tretyak</a>, <a href="https://publications.waset.org/abstracts/search?q=Elodie%20Bugnicourt"> Elodie Bugnicourt</a>, <a href="https://publications.waset.org/abstracts/search?q=Alejandro%20Rosales"> Alejandro Rosales</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calibration" title="calibration">calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20modeling" title=" data modeling"> data modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20processes" title=" industrial processes"> industrial processes</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/79973/data-modeling-and-calibration-of-in-line-pultrusion-and-laser-ablation-machine-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4351</span> Study on the Process of Detumbling Space Target by Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Pinliang">Zhang Pinliang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Chuan"> Chen Chuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Guangming"> Song Guangming</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu%20Qiang"> Wu Qiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gong%20Zizheng"> Gong Zizheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Ming"> Li Ming</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The active removal of space debris and asteroid defense are important issues in human space activities. Both of them need a detumbling process, for almost all space debris and asteroid are in a rotating state, and it`s hard and dangerous to capture or remove a target with a relatively high tumbling rate. So it`s necessary to find a method to reduce the angular rate first. The laser ablation method is an efficient way to tackle this detumbling problem, for it`s a contactless technique and can work at a safe distance. In existing research, a laser rotational control strategy based on the estimation of the instantaneous angular velocity of the target has been presented. But their calculation of control torque produced by a laser, which is very important in detumbling operation, is not accurate enough, for the method they used is only suitable for the plane or regularly shaped target, and they did not consider the influence of irregular shape and the size of the spot. In this paper, based on the triangulation reconstruction of the target surface, we propose a new method to calculate the impulse of the irregularly shaped target under both the covered irradiation and spot irradiation of the laser and verify its accuracy by theoretical formula calculation and impulse measurement experiment. Then we use it to study the process of detumbling cylinder and asteroid by laser. The result shows that the new method is universally practical and has high precision; it will take more than 13.9 hours to stop the rotation of Bennu with 1E+05kJ laser pulse energy; the speed of the detumbling process depends on the distance between the spot and the centroid of the target, which can be found an optimal value in every particular case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detumbling" title="detumbling">detumbling</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20ablation%20drive" title=" laser ablation drive"> laser ablation drive</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20target" title=" space target"> space target</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20debris%20remove" title=" space debris remove"> space debris remove</a> </p> <a href="https://publications.waset.org/abstracts/161293/study-on-the-process-of-detumbling-space-target-by-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4350</span> Optimum Er: YAG Laser Parameters for Orthodontic Composite Debonding: An in vitro Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zamzam">Mohammad Zamzam</a>, <a href="https://publications.waset.org/abstracts/search?q=Wesam%20Bachir"> Wesam Bachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Imad%20Asaad"> Imad Asaad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several studies have produced estimates of Er:YAG laser parameters and specifications but there is still insufficient data for reliable selection of laser parameters. As a consequence, there is a heightened need for ideal specifications of Er:YAG laser to reduce the amount of enamel ablation. The objective of this paper is to investigate the influence of Er:YAG laser parameters, energy level and pulse duration, on orthodontic composite removal after bracket debonding. The sample consisted of 45 cuboids of orthodontic composite made by plastic moulds. The samples were divided into three groups, each was irradiated with Er:YAG laser set at different energy levels and three values for pulse durations (50 µs, 100 µs, and 300 µs). Geometrical parameters (depth and area) of cavities formed by laser irradiation were determined. ANCOVA test showed statistically significant difference (p < 0.0.5) between the groups indicating a potential effect of laser pulse duration on the geometrical parameters after controlling laser energy level. A post-hoc Bonferroni test ranked the 50µ Er:YAG laser pulse as the most influential factor for all geometrical parameters in removing remnant composite from enamel surface. Also, 300 mJ laser pulses caused the largest removal of the composite. The results of the present study demonstrated the efficacy of 50 µs and 300 mJ Er:YAG laser pulse for removal of remnant orthodontic composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enamel" title="enamel">enamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Er%3AYAG" title=" Er:YAG"> Er:YAG</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20parameters" title=" geometrical parameters"> geometrical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20composite" title=" orthodontic composite"> orthodontic composite</a>, <a href="https://publications.waset.org/abstracts/search?q=remnant%20composite" title=" remnant composite"> remnant composite</a> </p> <a href="https://publications.waset.org/abstracts/6666/optimum-er-yag-laser-parameters-for-orthodontic-composite-debonding-an-in-vitro-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4349</span> FEM Investigation of Inhomogeneous Wall Thickness Backward Extrusion for Aerosol Can Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jemal%20Ebrahim%20Dessie">Jemal Ebrahim Dessie</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20Lukacs"> Zsolt Lukacs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wall of the aerosol can is extruded from the backward extrusion process. Necking is another forming process stage developed on the can shoulder after the backward extrusion process. Due to the thinner thickness of the wall, buckling is the critical challenge for current pure aluminum aerosol can industries. Design and investigation of extrusion with inhomogeneous wall thickness could be the best solution for reducing and optimization of neck retraction numbers. FEM simulation of inhomogeneous wall thickness has been simulated through this investigation. From axisymmetric Deform-2D backward extrusion, an aerosol can with a thickness of 0.4 mm at the top and 0.33 mm at the bottom of the aerosol can have been developed. As the result, it can optimize the number of retractions of the necking process and manufacture defect-free aerosol can shoulder due to the necking process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20can" title="aerosol can">aerosol can</a>, <a href="https://publications.waset.org/abstracts/search?q=backward%20extrusion" title=" backward extrusion"> backward extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Deform-2D" title=" Deform-2D"> Deform-2D</a>, <a href="https://publications.waset.org/abstracts/search?q=necking" title=" necking"> necking</a> </p> <a href="https://publications.waset.org/abstracts/135808/fem-investigation-of-inhomogeneous-wall-thickness-backward-extrusion-for-aerosol-can-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4348</span> Estimations of Spectral Dependence of Tropospheric Aerosol Single Scattering Albedo in Sukhothai, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siriluk%20Ruangrungrote">Siriluk Ruangrungrote</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analyses of available data from MFR-7 measurement were performed and discussed on the study of tropospheric aerosol and its consequence in Thailand. Since, ASSA (w) is one of the most important parameters for a determination of aerosol effect on radioactive forcing. Here the estimation of w was directly determined in terms of the ratio of aerosol scattering optical depth to aerosol extinction optical depth (ωscat/ωext) without any utilization of aerosol computer code models. This is of benefit for providing the elimination of uncertainty causing by the modeling assumptions and the estimation of actual aerosol input data. Diurnal w of 5 cloudless-days in winter and early summer at 5 distinct wavelengths of 415, 500, 615, 673 and 870 nm with the consideration of Rayleigh scattering and atmospheric column NO2 and Ozone contents were investigated, respectively. Besides, the tendency of spectral dependence of ω representing two seasons was observed. The characteristic of spectral results reveals that during wintertime the atmosphere of the inland rural vicinity for the period of measurement possibly dominated with a lesser amount of soil dust aerosols loading than one in early summer. Hence, the major aerosol loading particularly in summer was subject to a mixture of both soil dust and biomass burning aerosols. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20scattering%20optical%20depth" title="aerosol scattering optical depth">aerosol scattering optical depth</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20extinction%20optical%20depth" title=" aerosol extinction optical depth"> aerosol extinction optical depth</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20burning%20aerosol" title=" biomass burning aerosol"> biomass burning aerosol</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20dust%20aerosol" title=" soil dust aerosol"> soil dust aerosol</a> </p> <a href="https://publications.waset.org/abstracts/38336/estimations-of-spectral-dependence-of-tropospheric-aerosol-single-scattering-albedo-in-sukhothai-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4347</span> Development of a Very High Sensitivity Magnetic Field Sensor Based on Planar Hall Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Roy">Arnab Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Anil%20Kumar"> P. S. Anil Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hall bar magnetic field sensors based on planar hall effect were fabricated from permalloy (Ni¬80Fe20) thin films grown by pulsed laser ablation. As large as 400% planar Hall voltage change was observed for a magnetic field sweep within ±4 Oe, a value comparable with present day TMR sensors at room temperature. A very large planar Hall sensitivity of 1200 Ω/T was measured close to switching fields, which was not obtained so far apart from 2DEG Hall sensors. In summary, a highly sensitive low magnetic field sensor has been constructed which has the added advantage of simple architecture, good signal to noise ratio and robustness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=planar%20hall%20effect" title="planar hall effect">planar hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=permalloy" title=" permalloy"> permalloy</a>, <a href="https://publications.waset.org/abstracts/search?q=NiFe" title=" NiFe"> NiFe</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20ablation" title=" pulsed laser ablation"> pulsed laser ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20magnetic%20field%20sensor" title=" low magnetic field sensor"> low magnetic field sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20sensitivity%20magnetic%20field%20sensor" title=" high sensitivity magnetic field sensor"> high sensitivity magnetic field sensor</a> </p> <a href="https://publications.waset.org/abstracts/17435/development-of-a-very-high-sensitivity-magnetic-field-sensor-based-on-planar-hall-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4346</span> Spectroscopic Characterization of Indium-Tin Laser Ablated Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hanif">Muhammad Hanif</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Salik"> Muhammad Salik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present research work we present the optical emission studies of the Indium (In)-Tin (Sn) plasma produced by the first (1064 nm) harmonic of an Nd: YAG nanosecond pulsed laser. The experimentally observed line profiles of neutral Indium (InI) and Tin (SnI) are used to extract the electron temperature (Te) using the Boltzmann plot method. Whereas, the electron number density (Ne) has been determined from the Stark broadening line profile method. The Te is calculated by varying the distance from the target surface along the line of propagation of plasma plume and also by varying the laser irradiance. Beside we have studied the variation of Ne as a function of laser irradiance as well as its variation with distance from the target surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indium-tin%20plasma" title="indium-tin plasma">indium-tin plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20ablation" title=" laser ablation"> laser ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20emission%20spectroscopy" title=" optical emission spectroscopy"> optical emission spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20temperature" title=" electron temperature"> electron temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20number%20density" title=" electron number density"> electron number density</a> </p> <a href="https://publications.waset.org/abstracts/26921/spectroscopic-characterization-of-indium-tin-laser-ablated-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4345</span> Second Harmonic Generation of Higher-Order Gaussian Laser Beam in Density Rippled Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Wadhwa">Jyoti Wadhwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvinder%20Singh"> Arvinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the theoretical investigation of an enhanced second-harmonic generation of higher-order Gaussian laser beam in plasma having a density ramp. The mechanism responsible for the self-focusing of a laser beam in plasma is considered to be the relativistic mass variation of plasma electrons under the effect of a highly intense laser beam. Using the moment theory approach and considering the Wentzel-Kramers-Brillouin approximation for the non-linear Schrodinger wave equation, the differential equation is derived, which governs the spot size of the higher-order Gaussian laser beam in plasma. The nonlinearity induced by the laser beam creates the density gradient in the background plasma electrons, which is responsible for the excitation of the electron plasma wave. The large amplitude electron plasma wave interacts with the fundamental beam, which further produces the coherent radiations with double the frequency of the incident beam. The analysis shows the important role of the different modes of higher-order Gaussian laser beam and density ramp on the efficiency of generated harmonics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20rippled%20plasma" title="density rippled plasma">density rippled plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20order%20Gaussian%20laser%20beam" title=" higher order Gaussian laser beam"> higher order Gaussian laser beam</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20theory%20approach" title=" moment theory approach"> moment theory approach</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20harmonic%20generation." title=" second harmonic generation. "> second harmonic generation. </a> </p> <a href="https://publications.waset.org/abstracts/124846/second-harmonic-generation-of-higher-order-gaussian-laser-beam-in-density-rippled-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4344</span> Simulation Study of Enhanced Terahertz Radiation Generation by Two-Color Laser Plasma Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nirmal%20Kumar%20Verma">Nirmal Kumar Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Jha"> Pallavi Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terahertz (THz) radiation generation by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization and spectroscopic techniques. Due to non ionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser - plasma based THz radiation sources. The present paper is devoted to the simulation study of the enhanced THz radiation generation by propagation of two-color, linearly polarized laser pulses through magnetized plasma. The two laser pulses orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-color%20laser%20pulses" title="two-color laser pulses">two-color laser pulses</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz%20radiation" title=" terahertz radiation"> terahertz radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetized%20plasma" title=" magnetized plasma"> magnetized plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20and%20extraordinary%20mode" title=" ordinary and extraordinary mode"> ordinary and extraordinary mode</a> </p> <a href="https://publications.waset.org/abstracts/53261/simulation-study-of-enhanced-terahertz-radiation-generation-by-two-color-laser-plasma-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4343</span> Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Slepicka">P. Slepicka</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Slepickova%20Kasalkova"> N. Slepickova Kasalkova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Michaljanicova"> I. Michaljanicova</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Nedela"> O. Nedela</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kolska"> Z. Kolska</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Svorcik"> V. Svorcik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20response" title="cell response">cell response</a>, <a href="https://publications.waset.org/abstracts/search?q=excimer%20laser" title=" excimer laser"> excimer laser</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20treatment" title=" polymer treatment"> polymer treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20pattern" title=" periodic pattern"> periodic pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20morphology" title=" surface morphology"> surface morphology</a> </p> <a href="https://publications.waset.org/abstracts/60306/submicron-laser-induced-dot-ripple-and-wrinkle-structures-and-their-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4342</span> Fabrication of Carbon Nanoparticles and Graphene Using Pulsed Laser Ablation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davoud%20Dorranian">Davoud Dorranian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajar%20Sadeghi"> Hajar Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Elmira%20Solati"> Elmira Solati </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanostructures in various forms were synthesized using pulsed laser ablation of a graphite target in different liquid environment. The beam of a Q-switched Nd:YAG laser of 1064-nm wavelength at 7-ns pulse width is employed to irradiate the solid target in water, acetone, alcohol, and cetyltrimethylammonium bromide (CTAB). Then the effect of the liquid environment on the characteristic of carbon nanostructures produced by laser ablation was investigated. The optical properties of the carbon nanostructures were examined at room temperature by UV–Vis-NIR spectrophotometer. The crystalline structure of the carbon nanostructures was analyzed by X-ray diffraction (XRD). The morphology of samples was investigated by field emission scanning electron microscope (FE-SEM). Transmission electron microscope (TEM) was employed to investigate the form of carbon nanostructures. Raman spectroscopy was used to determine the quality of carbon nanostructures. Results show that different carbon nanostructures such as nanoparticles and few-layer graphene were formed in various liquid environments. The UV-Vis-NIR absorption spectra of samples reveal that the intensity of absorption peak of nanoparticles in alcohol is higher than the other liquid environments due to the larger number of nanoparticles in this environment. The red shift of the absorption peak of the sample in acetone confirms that produced carbon nanoparticles in this liquid are averagely larger than the other medium. The difference in the intensity and shape of the absorption peak indicated the effect of the liquid environment in producing the nanoparticles. The XRD pattern of the sample in water indicates an amorphous structure due to existence the graphene sheets. X-ray diffraction pattern shows that the degree of crystallinity of sample produced in CTAB is higher than the other liquid environments. Transmission electron microscopy images reveal that the generated carbon materials in water are graphene sheet and in the other liquid environments are graphene sheet and spherical nanostructures. According to the TEM images, we have the larger amount of carbon nanoparticles in the alcohol environment. FE-SEM micrographs indicate that in this liquids sheet like structures are formed however in acetone, produced sheets are adhered and these layers overlap with each other. According to the FE-SEM micrographs, the surface morphology of the sample in CTAB was coarser than that without surfactant. From Raman spectra, it can be concluded the distinct shape, width, and position of the graphene peaks and corresponding graphite source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanostructures" title="carbon nanostructures">carbon nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20ablation" title=" pulsed laser ablation"> pulsed laser ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite" title=" graphite"> graphite</a> </p> <a href="https://publications.waset.org/abstracts/36792/fabrication-of-carbon-nanoparticles-and-graphene-using-pulsed-laser-ablation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4341</span> Characterization of a Pure Diamond-Like Carbon Film Deposited by Nanosecond Pulsed Laser Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camilla%20G.%20Goncalves">Camilla G. Goncalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Benedito%20Christ"> Benedito Christ</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Miyakawa"> Walter Miyakawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20J.%20Abdalla"> Antonio J. Abdalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=DLC" title=" DLC"> DLC</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20deposition" title=" pulsed laser deposition"> pulsed laser deposition</a> </p> <a href="https://publications.waset.org/abstracts/112763/characterization-of-a-pure-diamond-like-carbon-film-deposited-by-nanosecond-pulsed-laser-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4340</span> Comparison of Safety and Efficacy between Thulium Fibre Laser and Holmium YAG Laser for Retrograde Intrarenal Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujeet%20Poudyal">Sujeet Poudyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: After Holmium:yttrium-aluminum-garnet (Ho: YAG) laser has revolutionized the management of urolithiasis, the introduction of Thulium fibre laser (TFL) has already challenged Ho:YAG laser due to its multiple commendable properties. Nevertheless, there are only few studies comparing TFL and holmium laser in Retrograde Intrarenal Surgery(RIRS). Therefore, this study was carried out to compare the efficacy and safety of thulium fiber laser (TFL) and holmium laser in RIRS. Methods: This prospective comparative study, which included all patients undergoing laser lithotripsy (RIRS) for proximal ureteric calculus and nephrolithiasis from March 2022 to March 2023, consisted of 63 patients in Ho:YAG laser group and 65 patients in TFL group. Stone free rate, operative time, laser utilization time, energy used, and complications were analysed between the two groups. Results: Mean stone size was comparable in TFL (14.23±4.1 mm) and Ho:YAG (13.88±3.28 mm) group, p-0.48. Similarly, mean stone density in TFL (1269±262 HU) was comparable to Ho:YAG (1189±212 HU), p-0.48. There was significant difference in lasing time between TFL (12.69±7.41 mins) and Ho:YAG (20.44±14 mins), p-0.012). TFL group had operative time of 43.47± 16.8 mins which was shorter than Ho:YAG group (58±26.3 mins),p-0.005. Both TFL and Ho:YAG groups had comparable total energy used(11.4±6.2 vs 12±8 respectively, p-0.758). Stone free rate was 87%for TFL, whereas it was 79.5% for Ho:YAG, p-0.25). Two cases of sepsis and one ureteric stricture were encountered in TFL, whereas three cases suffered from sepsis apart from one ureteric stricture in Ho:YAG group, p-0.62). Conclusion: Thulium Fibre Laser has similar efficacy as Holmium: YAG Laser in terms of safety and stone free rate. However, due to better stone ablation rate in TFL, it can become the game changer in management of urolithiasis in the coming days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retrograde%20intrarenal%20surgery" title="retrograde intrarenal surgery">retrograde intrarenal surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=thulium%20fibre%20laser" title=" thulium fibre laser"> thulium fibre laser</a>, <a href="https://publications.waset.org/abstracts/search?q=holmium%3Ayttrium-aluminum-garnet%20%28ho%3Ayag%29%20laser" title=" holmium:yttrium-aluminum-garnet (ho:yag) laser"> holmium:yttrium-aluminum-garnet (ho:yag) laser</a>, <a href="https://publications.waset.org/abstracts/search?q=nephrolithiasis" title=" nephrolithiasis"> nephrolithiasis</a> </p> <a href="https://publications.waset.org/abstracts/168964/comparison-of-safety-and-efficacy-between-thulium-fibre-laser-and-holmium-yag-laser-for-retrograde-intrarenal-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4339</span> Effects of Two Cross Focused Intense Laser Beams On THz Generation in Rippled Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar">Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Gupta"> Naveen Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terahertz (THz) generation has been investigated by beating two cosh-Gaussian laser beams of the same amplitude but different wavenumbers and frequencies through rippled collisionless plasma. The ponderomotive force is operative which is induced due to the intensity gradient of the laser beam over the cross-section area of the wavefront. The electrons evacuate towards a low-intensity regime, which modifies the dielectric function of the medium and results in cross focusing of cosh-Gaussian laser beams. The evolution of spot size of laser beams has been studied by solving nonlinear Schrodinger wave equation (NLSE) with variational technique. The laser beams impart oscillations to electrons which are enhanced with ripple density. The nonlinear oscillatory motion of electrons gives rise to a nonlinear current density driving THz radiation. It has been observed that the periodicity of the ripple density helps to enhance the THz radiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rippled%20collisionless%20plasma" title="rippled collisionless plasma">rippled collisionless plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=cosh-gaussian%20laser%20beam" title=" cosh-gaussian laser beam"> cosh-gaussian laser beam</a>, <a href="https://publications.waset.org/abstracts/search?q=ponderomotive%20force" title=" ponderomotive force"> ponderomotive force</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20technique" title=" variational technique"> variational technique</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20current%20density" title=" nonlinear current density"> nonlinear current density</a> </p> <a href="https://publications.waset.org/abstracts/139951/effects-of-two-cross-focused-intense-laser-beams-on-thz-generation-in-rippled-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4338</span> Electromagnetic Radiation Generation by Two-Color Sinusoidal Laser Pulses Propagating in Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nirmal%20Kumar%20Verma">Nirmal Kumar Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Jha"> Pallavi Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generation of the electromagnetic radiation oscillating at the frequencies in the terahertz range by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization, and spectroscopic techniques. Due to nonionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals, when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser-plasma based THz radiation sources. The present paper is devoted to the study of the enhanced electromagnetic radiation generation by propagation of two-color, linearly polarized laser pulses through the magnetized plasma. The two lasers pulse orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through the homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-color%20laser%20pulses" title="two-color laser pulses">two-color laser pulses</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20radiation" title=" electromagnetic radiation"> electromagnetic radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetized%20plasma" title=" magnetized plasma"> magnetized plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20and%20extraordinary%20modes" title=" ordinary and extraordinary modes"> ordinary and extraordinary modes</a> </p> <a href="https://publications.waset.org/abstracts/53322/electromagnetic-radiation-generation-by-two-color-sinusoidal-laser-pulses-propagating-in-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4337</span> Creation of GaxCo1-xZnSe0.4 (x = 0.1, 0.3, 0.5) Nanoparticles Using Pulse Laser Ablation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong%20Pan">Yong Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Wang"> Li Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xue%20Qiong%20Su"> Xue Qiong Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Wen%20Gao"> Dong Wen Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To date, nanomaterials have received extensive attention over the years because of their wide application. Various nanomaterials such as nanoparticles, nanowire, nanoring, nanostars and other nanostructures have begun to be systematically studied. The preparation of these materials by chemical methods is not only costly, but also has a long cycle and high toxicity. At the same time, preparation of nanoparticles of multi-doped composites has been limited due to the special structure of the materials. In order to prepare multi-doped composites with the same structure as macro-materials and simplify the preparation method, the Ga<sub>x</sub>Co<sub>1-x</sub>ZnSe<sub>0.4</sub> (x = 0.1, 0.3, 0.5) nanoparticles are prepared by Pulse Laser Ablation (PLA) method. The particle component and structure are systematically investigated by X-ray diffraction (XRD) and Raman spectra, which show that the success of our preparation and the same concentration between nanoparticles (NPs) and target. Morphology of the NPs characterized by Transmission Electron Microscopy (TEM) indicates the circular-shaped particles in preparation. Fluorescence properties are reflected by PL spectra, which demonstrate the best performance in concentration of Ga<sub>0.3</sub>Co<sub>0.3</sub>ZnSe<sub>0.4</sub>. Therefore, all the results suggest that PLA is promising to prepare the multi-NPs since it can modulate performance of NPs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PLA" title="PLA">PLA</a>, <a href="https://publications.waset.org/abstracts/search?q=physics" title=" physics"> physics</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-doped" title=" multi-doped"> multi-doped</a> </p> <a href="https://publications.waset.org/abstracts/109367/creation-of-gaxco1-xznse04-x-01-03-05-nanoparticles-using-pulse-laser-ablation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4336</span> Interaction between Unsteady Supersonic Jet and Vortex Rings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazumasa%20Kitazono">Kazumasa Kitazono</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Fukuoka"> Hiroshi Fukuoka</a>, <a href="https://publications.waset.org/abstracts/search?q=Nao%20Kuniyoshi"> Nao Kuniyoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minoru%20Yaga"> Minoru Yaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Eri%20Ueno"> Eri Ueno</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoaki%20Fukuda"> Naoaki Fukuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshio%20Takiya"> Toshio Takiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=shock-wave" title=" shock-wave"> shock-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20jet" title=" unsteady jet"> unsteady jet</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20ring" title=" vortex ring"> vortex ring</a> </p> <a href="https://publications.waset.org/abstracts/50911/interaction-between-unsteady-supersonic-jet-and-vortex-rings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4335</span> Self-Action Effects of a Non-Gaussian Laser Beam Through Plasma </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar">Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Gupta"> Naveen Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The propagation of the Non-Gaussian laser beam results in strong self-focusing as compare to the Gaussian laser beam, which helps to achieve a prerequisite of the plasma-based electron, Terahertz generation, and higher harmonic generations. The theoretical investigation on the evolution of non-Gaussian laser beam through the collisional plasma with ramped density has been presented. The non-uniform irradiance over the cross-section of the laser beam results in redistribution of the carriers that modifies the optical response of the plasma in such a way that the plasma behaves like a converging lens to the laser beam. The formulation is based on finding a semi-analytical solution of the nonlinear Schrodinger wave equation (NLSE) with the help of variational theory. It has been observed that the decentred parameter ‘q’ of laser and wavenumber of ripples of medium contribute to providing the required conditions for the improvement of self-focusing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-Gaussian%20beam" title="non-Gaussian beam">non-Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=collisional%20plasma" title=" collisional plasma"> collisional plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20theory" title=" variational theory"> variational theory</a>, <a href="https://publications.waset.org/abstracts/search?q=self-focusing" title=" self-focusing"> self-focusing</a> </p> <a href="https://publications.waset.org/abstracts/124754/self-action-effects-of-a-non-gaussian-laser-beam-through-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4334</span> Volatile Organic Compounds Detection by Surface Acoustic Wave Sensors with Nanoparticles Embedded in Polymer Sensitive Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Viespe">Cristian Viespe</a>, <a href="https://publications.waset.org/abstracts/search?q=Dana%20Miu"> Dana Miu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface acoustic wave (SAW) sensors with nanoparticles (NPs) of various dimensions and concentrations embedded in different types of polymer sensing films for detecting volatile organic compounds (VOCs) were studied. The sensors were ‘delay line’ type with a center frequency of 69.4 MHz on ST-X quartz substrates. NPs with different diameters of 7 nm or 13 nm were obtained by laser ablation with lasers having 5 ns or 10 ps pulse durations, respectively. The influence of NPs dimensions and concentrations on sensor properties such as frequency shift, sensitivity, noise and response time were investigated. To the best of our knowledge, the influence of NP dimensions on SAW sensor properties with has not been investigated. The frequency shift and sensitivity increased with increasing NP concentration in the polymer for a given NP dimension and with decreasing NP diameter for a given concentration. The best performances were obtained for the smallest NPs used. The SAW sensor with NPs of 7 nm had a limit of detection (LOD) of 65 ppm (almost five times better than the sensor with polymer alone), and a response time of about 9 s for ethanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20acoustic%20wave%20sensor" title="surface acoustic wave sensor">surface acoustic wave sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds" title=" volatile organic compounds"> volatile organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20ablation" title=" laser ablation"> laser ablation</a> </p> <a href="https://publications.waset.org/abstracts/100929/volatile-organic-compounds-detection-by-surface-acoustic-wave-sensors-with-nanoparticles-embedded-in-polymer-sensitive-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerosol%20generation%20by%20laser%20ablation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerosol%20generation%20by%20laser%20ablation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerosol%20generation%20by%20laser%20ablation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerosol%20generation%20by%20laser%20ablation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerosol%20generation%20by%20laser%20ablation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerosol%20generation%20by%20laser%20ablation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerosol%20generation%20by%20laser%20ablation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerosol%20generation%20by%20laser%20ablation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerosol%20generation%20by%20laser%20ablation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerosol%20generation%20by%20laser%20ablation&page=145">145</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerosol%20generation%20by%20laser%20ablation&page=146">146</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerosol%20generation%20by%20laser%20ablation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>