CINXE.COM

Search results for: flow over cylinder

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flow over cylinder</title> <meta name="description" content="Search results for: flow over cylinder"> <meta name="keywords" content="flow over cylinder"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flow over cylinder" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flow over cylinder"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4972</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flow over cylinder</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4972</span> A 2D Numerical Model of Viscous Flow-Cylinder Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bang-Fuh%20Chen">Bang-Fuh Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Chun%20Chu"> Chih-Chun Chu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow induced cylinder vibration or earthquake-induced cylinder motion are moving in an arbitrary direction with time. The phenomenon of flow across cylinder is highly nonlinear and a linear-superposition of flow pattern across separated oscillating direction of cylinder motion is not valid to obtain the flow pattern across a cylinder oscillating in multiple directions. A novel finite difference scheme is developed to simulate the viscous flow across an arbitrary moving circular cylinder and we call this a complete 2D (two-dimensional) flow-cylinder interaction. That is, the cylinder is simultaneously oscillating in x- and y- directions. The time-dependent domain and meshes associated with the moving cylinder are mapped to a fixed computational domain and meshes, which are time independent. The numerical results are validated by several bench mark studies. Several examples are introduced including flow across steam-wise, transverse oscillating cylinder and flow across rotating cylinder and flow across arbitrary moving cylinder. The Morison’s formula can not describe the complex interaction phenomenon between cross flow and oscillating circular cylinder. And the completed 2D computational fluid dynamic analysis should be made to obtain the correct hydrodynamic force acting on the cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20cylinder" title="2D cylinder">2D cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-difference%20method" title=" finite-difference method"> finite-difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=flow-cylinder%20interaction" title=" flow-cylinder interaction"> flow-cylinder interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20induced%20vibration" title=" flow induced vibration"> flow induced vibration</a> </p> <a href="https://publications.waset.org/abstracts/30200/a-2d-numerical-model-of-viscous-flow-cylinder-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4971</span> Numerical Analysis of Passive Controlled Turbulent Flow around a Circular Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Soyler">Mustafa Soyler</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20M.%20Yavuz"> Mustafa M. Yavuz</a>, <a href="https://publications.waset.org/abstracts/search?q=Bulent%20Yaniktepe"> Bulent Yaniktepe</a>, <a href="https://publications.waset.org/abstracts/search?q=Coskun%20Ozalp"> Coskun Ozalp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, unsteady two-dimensional turbulent flow around a circular cylinder and passive control of the flow with groove on the cylinder was examined. In the CFD analysis, solutions were made using turbulent flow conditions. Steady and unsteady solutions were used in turbulent flow analysis. Numerical analysis of the flow around the circular cylinder is difficult since flow is not in a stable regime when Reynold number is between 1000 and 10000. The analyses in this study were performed at a subcritical Re number of 5000 and the results were compared with available experimental results of the drag coefficient (Cd) and Strouhal (St) number values in the literature. The effect of different groove types and depths on the Cd coefficient has been analyzed and grooves increase the Cd coefficient compared to the smooth cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20over%20cylinder" title=" flow over cylinder"> flow over cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20flow%20control" title=" passive flow control"> passive flow control</a> </p> <a href="https://publications.waset.org/abstracts/130644/numerical-analysis-of-passive-controlled-turbulent-flow-around-a-circular-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4970</span> Flow Visualization around a Rotationally Oscillating Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cemre%20Polat">Cemre Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Soyler"> Mustafa Soyler</a>, <a href="https://publications.waset.org/abstracts/search?q=Bulent%20Yaniktepe"> Bulent Yaniktepe</a>, <a href="https://publications.waset.org/abstracts/search?q=Coskun%20Ozalp"> Coskun Ozalp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, it was aimed to control the flow actively by giving an oscillating rotational motion to a vertically placed cylinder, and flow characteristics were determined. In the study, firstly, the flow structure around the flat cylinder was investigated with dye experiments, and then the cylinders with different oscillation angles (θ = 60°, θ = 120°, and θ = 180°) and different rotation speeds (15 rpm and 30 rpm) the flow structure around it was examined. Thus, the effectiveness of oscillation and rotation speed in flow control has been investigated. In the dye experiments, the dye/water mixture obtained by mixing Rhodamine 6G in powder form with water, which shines under laser light and allows detailed observation of the flow structure, was used. During the experiments, the dye was injected into the flow with the help of a thin needle at a distance that would not affect the flow from the front of the cylinder. In dye experiments, 100 frames per second were taken with a Canon brand EOS M50 (24MP) digital mirrorless camera at a resolution of 1280 * 720 pixels. Then, the images taken were analyzed, and the pictures representing the flow structure for each experiment were obtained. As a result of the study, it was observed that no separation points were formed at 180° swing angle at 15 rpm speed, 120° and 180° swing angle at 30 rpm, and the flow was controlled according to the fixed cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20flow%20control" title="active flow control">active flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=cylinder" title=" cylinder"> cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20visualization%20rotationally%20oscillating" title=" flow visualization rotationally oscillating"> flow visualization rotationally oscillating</a> </p> <a href="https://publications.waset.org/abstracts/130645/flow-visualization-around-a-rotationally-oscillating-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4969</span> Experimental Investigation of Flow Structure around a Rectangular Cylinder in Different Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cemre%20Polat">Cemre Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=Dogan%20B.%20Saydam"> Dogan B. Saydam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Soyler"> Mustafa Soyler</a>, <a href="https://publications.waset.org/abstracts/search?q=Coskun%20Ozalp"> Coskun Ozalp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the flow structure was investigated by particle imaging velocimetry (PIV) method at Re = 26000 for two different rectangular cylinders placed perpendicular and parallel to the flow direction. After obtaining streamwise and spanwise velocity data, average vorticity, streamlines, velocity magnitude, turbulence kinetic energy, root mean square of streamwise and spanwise velocity fluctuations are calculated, and critical points of flow structure are explained. As a result of the study, it was seen that the vertical configuration has less effect on the flow structure in the back region of the body compared to the horizontal configuration. When the streamwise velocity component is examined in both configurations, it is seen that the negative velocity component is stronger on the long sides compared to the short sides. It has been observed that the vertically positioned cylinder expands the flow separation point compared to the horizontally positioned cylinder; also the vertical cylinder creates an increase in turbulence kinetic energy compared to the horizontal cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bluff%20body" title="bluff body">bluff body</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20characteristics" title=" flow characteristics"> flow characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20cylinder" title=" rectangular cylinder"> rectangular cylinder</a> </p> <a href="https://publications.waset.org/abstracts/130636/experimental-investigation-of-flow-structure-around-a-rectangular-cylinder-in-different-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4968</span> Numerical Simulation of External Flow Around D-Shaped Cylinders </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouldouz%20Nourani%20Zonouz">Ouldouz Nourani Zonouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Salmanpour"> Mehdi Salmanpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation and analysis of flow behavior around different shapes bluff bodies is one of the reputed topics for several years. The importance of these researches is about the unwanted phenomena called flow separation. The location of separation and the size of the wake region should be considered in different industrial designs. In this research a bluff body with D-shaped cross section has been analyzed. In circular cylinder flow separation point changes with Reynolds number but in D-Shaped cylinder there is fix flow separation point. So there is more wake steadiness in D-Shaped cylinder as compared to Circular cylinder and drag reduction because of wake steadiness. In the present work CFD simulation is carried out for flow past a D-Shaped cylinder to see the wake behavior. The Reynolds number regime currently studied corresponds to low Reynolds number and nominally two-dimensional wake. Also the effect of D-Shaped cylinders on the rate of heat transfer has been considered. Various results such as velocity, pressure and temperature contours and also some dimensionless numbers like drag coefficient, pressure coefficient and Nusselt number calculated for different cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=D-shaped" title="D-shaped">D-shaped</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20flow" title=" external flow"> external flow</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20Reynolds%20number" title=" low Reynolds number"> low Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20cylinder" title=" square cylinder"> square cylinder</a> </p> <a href="https://publications.waset.org/abstracts/20748/numerical-simulation-of-external-flow-around-d-shaped-cylinders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4967</span> Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Hamad">F. A. Hamad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20He"> S. He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water&ndash;oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20cylinder" title="circular cylinder">circular cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20flow" title=" cross flow"> cross flow</a>, <a href="https://publications.waset.org/abstracts/search?q=hear%20transfer" title=" hear transfer"> hear transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=multicomponent%20multiphase%20flow" title=" multicomponent multiphase flow"> multicomponent multiphase flow</a> </p> <a href="https://publications.waset.org/abstracts/55747/heat-transfer-from-a-cylinder-in-cross-flow-of-single-and-multiphase-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4966</span> Analysis of the Secondary Stationary Flow Around an Oscillating Circular Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artem%20Nuriev">Artem Nuriev</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Zaitseva"> Olga Zaitseva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is devoted to the study of a viscous incompressible flow around a circular cylinder performing harmonic oscillations, especially the steady streaming phenomenon. The research methodology is based on the asymptotic explanation method combined with the computational bifurcation analysis. Present studies allow to identify several regimes of the secondary streaming with different flow structures. The results of the research are in good agreement with experimental and numerical simulation data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oscillating%20cylinder" title="oscillating cylinder">oscillating cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20streaming" title=" secondary streaming"> secondary streaming</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20regimes" title=" flow regimes"> flow regimes</a>, <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20and%20bifurcation%20analysis" title=" asymptotic and bifurcation analysis"> asymptotic and bifurcation analysis</a> </p> <a href="https://publications.waset.org/abstracts/15706/analysis-of-the-secondary-stationary-flow-around-an-oscillating-circular-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4965</span> Numerical Simulation of Flow Past Inline Tandem Cylinders in Uniform Shear Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Bhatt">Rajesh Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilip%20Kumar%20Maiti"> Dilip Kumar Maiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The incompressible shear flow past a square cylinder placed parallel to a plane wall of side length A in presence of upstream rectangular cylinder of height 0.5A and width 0.25A in an inline tandem arrangement are numerically investigated using finite volume method. The discretized equations are solved by an implicit, time-marching, pressure correction based SIMPLE algorithm. This study provides the qualitative insight in to the dependency of basic structure (i.e. vortex shedding or suppression) of flow over the downstream square cylinder and the upstream rectangular cylinder (and hence the aerodynamic characteristics) on inter-cylinder spacing (S) and Reynolds number (Re). The spacing between the cylinders is varied systematically from S = 0.5A to S = 7.0A so the sensitivity of the flow structure between the cylinders can be inspected. A sudden jump in strouhal number is observed, which shows the transition of flow pattern in the wake of the cylinders. The results are presented at Re = 100 and 200 in term of Strouhal number, RMS and mean of lift and drag coefficients and contour plots for different spacing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=square%20cylinder" title="square cylinder">square cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=isolated" title=" isolated"> isolated</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20arrangement" title=" tandem arrangement"> tandem arrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=spacing%20distance" title=" spacing distance"> spacing distance</a> </p> <a href="https://publications.waset.org/abstracts/17017/numerical-simulation-of-flow-past-inline-tandem-cylinders-in-uniform-shear-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4964</span> Effects of Viscous and Pressure Forces in Vortex and Wake Induced Vibrations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Chaithanya%20Mysa">Ravi Chaithanya Mysa</a>, <a href="https://publications.waset.org/abstracts/search?q=Abouzar%20Kaboudian"> Abouzar Kaboudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Boo%20Cheong%20Khoo"> Boo Cheong Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar%20Jaiman"> Rajeev Kumar Jaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cross-flow vortex-induced vibrations of a circular cylinder are compared with the wake-induced oscillations of the downstream cylinder of a tandem cylinder arrangement. It is known that the synchronization of the frequency of vortex shedding with the natural frequency of the structure leads to large amplitude motions. In the case of tandem cylinders, the large amplitudes of the downstream cylinder found are compared to single cylinder setup. In this work, in the tandem arrangement, the upstream cylinder is fixed and the downstream cylinder is free to oscillate in transverse direction. We show that the wake from the upstream cylinder interacts with the downstream cylinder which influences the response of the coupled system. Extensive numerical experiments have been performed on single cylinder as well as tandem cylinder arrangements in cross-flow. Here, the wake interactions in connection to the forces generated are systematically studied. The ratio of the viscous loads to the pressure loads is found to play a major role in the displacement response of the single and tandem cylinder arrangements, as the viscous forces dissipate the energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20cylinder" title="circular cylinder">circular cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-shedding" title=" vortex-shedding"> vortex-shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=VIV" title=" VIV"> VIV</a>, <a href="https://publications.waset.org/abstracts/search?q=wake-induced" title=" wake-induced"> wake-induced</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations "> vibrations </a> </p> <a href="https://publications.waset.org/abstracts/25526/effects-of-viscous-and-pressure-forces-in-vortex-and-wake-induced-vibrations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4963</span> Experimental Study of Flow Characteristics for a Cylinder with Respect to Attached Flexible Strip Body of Various Reynolds Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Teksin">S. Teksin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Yayla"> S. Yayla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study was to investigate details of flow structure in downstream of a circular cylinder base mounted on a flat surface in a rectangular duct with the dimensions of 8000 x 1000 x 750 mm in deep water flow for the Reynolds number 2500, 5000 and 7500. A flexible strip was attached to behind the cylinder and compared the bare body. Also, it was analyzed that how boundary layer affects the structure of flow around the cylinder. Diameter of the cylinder was 60 mm and the length of the flexible splitter plate which had a certain modulus of elasticity was 150 mm (L/D=2.5). Time-averaged velocity vectors, vortex contours, streamwise and transverse velocity components were investigated via Particle Image Velocimetry (PIV). Velocity vectors and vortex contours were displayed through the sections in which boundary layer effect was not present. On the other hand, streamwise and transverse velocity components were monitored for both cases, i.e. with and without boundary layer effect. Experiment results showed that the vortex formation occured in a larger area for L/D=2.5 and the point where the vortex was maximum from the base of the cylinder was shifted. Streamwise and transverse velocity component contours were symmetrical with reference to the center of the cylinder for all cases. All Froud numbers based on the Reynolds numbers were quite smaller than 1. The flow characteristics of velocity component values of attached circular cylinder arrangement decreased approximately twenty five percent comparing to bare cylinder case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partical%20image%20velocimetry" title="partical image velocimetry">partical image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20plate" title=" elastic plate"> elastic plate</a>, <a href="https://publications.waset.org/abstracts/search?q=cylinder" title=" cylinder"> cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20structure" title=" flow structure"> flow structure</a> </p> <a href="https://publications.waset.org/abstracts/11609/experimental-study-of-flow-characteristics-for-a-cylinder-with-respect-to-attached-flexible-strip-body-of-various-reynolds-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4962</span> Beyond the “Breakdown” of Karman Vortex Street</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajith%20Kumar%20S.">Ajith Kumar S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sankaran%20Namboothiri"> Sankaran Namboothiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sankrish%20J."> Sankrish J.</a>, <a href="https://publications.waset.org/abstracts/search?q=SarathKumar%20S."> SarathKumar S.</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anil%20Lal"> S. Anil Lal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical analysis of flow over a heated circular cylinder is done in this paper. The governing equations, Navier-Stokes, and energy equation within the Boussinesq approximation along with continuity equation are solved using hybrid FEM-FVM technique. The density gradient created due to the heating of the cylinder will induce buoyancy force, opposite to the direction of action of acceleration due to gravity, g. In the present work, the flow direction and the direction of buoyancy force are taken as same (vertical flow configuration), so that the buoyancy force accelerates the mean flow past the cylinder. The relative dominance of the buoyancy force over the inertia force is characterized by the Richardson number (Ri), which is one of the parameter that governs the flow dynamics and heat transfer in this analysis. It is well known that above a certain value of Reynolds number, Re (ratio of inertia force over the viscous forces), the unsteady Von Karman vortices can be seen shedding behind the cylinder. The shedding wake patterns could be seriously altered by heating/cooling the cylinder. The non-dimensional shedding frequency called the Strouhal number is found to be increasing as Ri increases. The aerodynamic force coefficients CL and CD are observed to change its value. In the present vertical configuration of flow over the cylinder, as Ri increases, shedding frequency gets increased and suddenly drops down to zero at a critical value of Richardson number. The unsteady vortices turn to steady standing recirculation bubbles behind the cylinder after this critical Richardson number. This phenomenon is well known in literature as "Breakdown of the Karman Vortex Street". It is interesting to see the flow structures on further increase in the Richardson number. On further heating of the cylinder surface, the size of the recirculation bubble decreases without loosing its symmetry about the horizontal axis passing through the center of the cylinder. The separation angle is found to be decreasing with Ri. Finally, we observed a second critical Richardson number, after which the the flow will be attached to the cylinder surface without any wake behind it. The flow structures will be symmetrical not only about the horizontal axis, but also with the vertical axis passing through the center of the cylinder. At this stage, there will be a "single plume" emanating from the rear stagnation point of the cylinder. We also observed the transition of the plume is a strong function of the Richardson number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag%20reduction" title="drag reduction">drag reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20over%20circular%20cylinder" title=" flow over circular cylinder"> flow over circular cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title=" flow control"> flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection%20flow" title=" mixed convection flow"> mixed convection flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20breakdown" title=" vortex breakdown"> vortex breakdown</a> </p> <a href="https://publications.waset.org/abstracts/27437/beyond-the-breakdown-of-karman-vortex-street" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4961</span> Experimental Measurements of Mean and Turbulence Quantities behind the Circular Cylinder by Attaching Different Number of Tripping Wires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Bak%20Khoshnevis">Amir Bak Khoshnevis</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdieh%20Khodadadi"> Mahdieh Khodadadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aghil%20Lotfi"> Aghil Lotfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a bluff body, roughness elements in simulating a turbulent boundary layer, leading to delayed flow separation, a smaller wake, and lower form drag. In the present work, flow past a circular cylinder with using tripping wires is studied experimentally. The wind tunnel used for modeling free stream is open blow circuit (maximum speed = 30m/s and maximum turbulence of free stream = 0.1%). The selected Reynolds number for all tests was constant (Re = 25000). The circular cylinder selected for this experiment is 20 and 400mm in diameter and length, respectively. The aim of this research is to find the optimal operation mode. In this study installed some tripping wires 1mm in diameter, with a different number of wires on the circular cylinder and the wake characteristics of the circular cylinder is studied. Results showed that by increasing number of tripping wires attached to the circular cylinder (6, 8, and 10, respectively), The optimal angle for the tripping wires with 1mm in diameter to be installed on the cylinder is 60̊ (or 6 wires required at angle difference of 60̊). Strouhal number for the cylinder with tripping wires 1mm in diameter at angular position 60̊ showed the maximum value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wake%20of%20circular%20cylinder" title="wake of circular cylinder">wake of circular cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=trip%20wire" title=" trip wire"> trip wire</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20defect" title=" velocity defect"> velocity defect</a>, <a href="https://publications.waset.org/abstracts/search?q=strouhal%20number" title=" strouhal number"> strouhal number</a> </p> <a href="https://publications.waset.org/abstracts/36656/experimental-measurements-of-mean-and-turbulence-quantities-behind-the-circular-cylinder-by-attaching-different-number-of-tripping-wires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4960</span> The Effects of the Aspect Ratio of a Flexible Cylinder on the Vortex Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abouzar%20Kaboudian">Abouzar Kaboudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Chaithanya%20Mysa"> Ravi Chaithanya Mysa</a>, <a href="https://publications.waset.org/abstracts/search?q=Boo%20Cheong%20Khoo"> Boo Cheong Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar%20Jaiman"> Rajeev Kumar Jaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vortex structures observed in the wake of a flexible cylinder can be significantly different from those of a traditional vibrating, spring mounted, rigid cylinder. These differences can significantly affect the VIV characteristics of the flow and subsequently the VIV response of the cylindrical structures. In this work, we present how the aspect ratio of a flexible cylinder can change the vortex structures in its wake. We will discuss different vortex dynamics which can be observed in the wake of the vibrating flexible cylinder, and how they can affect the vibrational response of the cylinder. Moreover, we will study the transition of these structures versus the aspect ratio of the flexible cylinder. We will discuss how these transitions affect the in-line and transverse forces on the structure. In the end, we will provide general guidelines on the minimum acceptable aspect ratio for the offshore riser studies which may have grave implications for future numerical and experimental works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title="aspect ratio">aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20cylinder" title=" flexible cylinder"> flexible cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-shedding" title=" vortex-shedding"> vortex-shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=VIV" title=" VIV"> VIV</a> </p> <a href="https://publications.waset.org/abstracts/25475/the-effects-of-the-aspect-ratio-of-a-flexible-cylinder-on-the-vortex-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4959</span> Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Salmanpour"> M. Salmanpour</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Nourani%20Zonouz"> O. Nourani Zonouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator&rsquo;s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=corona%20discharge" title=" corona discharge"> corona discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20hydrodynamics" title=" electro hydrodynamics"> electro hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20around%20square%20cylinders" title=" flow around square cylinders"> flow around square cylinders</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/17086/numerical-analysis-of-laminar-flow-around-square-cylinders-with-ehd-phenomenon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4958</span> Experimental Investigations of a Modified Taylor-Couette Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Esmael">Ahmed Esmael</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20El%20Shrif"> Ali El Shrif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the instability problem of a modified Taylor-Couette flow between two vertical coaxial cylinders of radius R1, R2 is considered. The modification is based on the wavy shape of the inner cylinder surface, where inner cylinders with different surface amplitude and wavelength are used. The study aims to discover the effect of the inner surface geometry on the instability phenomenon that undergoes Taylor-Couette flow. The study reveals that the transition processes depends strongly on the amplitude and wavelength of the inner cylinder surface and resulting in flow instabilities that are strongly different from that encountered in the case of the classical Taylor-Couette flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20instability" title="hydrodynamic instability">hydrodynamic instability</a>, <a href="https://publications.waset.org/abstracts/search?q=Modified%20Taylor-Couette%20Flow" title=" Modified Taylor-Couette Flow"> Modified Taylor-Couette Flow</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%20vortices" title=" Taylor vortices"> Taylor vortices</a> </p> <a href="https://publications.waset.org/abstracts/24825/experimental-investigations-of-a-modified-taylor-couette-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4957</span> Flow Control around Bluff Bodies by Attached Permeable Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gokturk%20Memduh%20Ozkan">Gokturk Memduh Ozkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Akilli"> Huseyin Akilli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use of attached permeable plates. Particle image velocimetry (PIV) technique and dye visualization experiments were performed in deep water and the flow characteristics were evaluated by means of time-averaged streamlines, Reynolds Shear Stress and Turbulent Kinetic Energy concentrations. The permeable plate was made of a chrome-nickel screen having a porosity value of β=0.6 and it was attached on the cylinder surface along its midspan. Five different angles were given to the plate (θ=0°, 15°, 30°, 45°, 60°) with respect to the centerline of the cylinder in order to examine its effect on the flow control. It was shown that the permeable plate is effective on elongating the vortex formation length and reducing the fluctuations in the wake region. Compared to the plain cylinder, the reductions in the values of maximum Reynolds shear stress and Turbulent Kinetic Energy were evaluated as 72.5% and 66%, respectively for the plate angles of θ=45° and 60° which were also found to be suggested for applications concerning the vortex shedding and consequent Vortex-Induced Vibrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bluff%20body" title="bluff body">bluff body</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title=" flow control"> flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=permeable%20plate" title=" permeable plate"> permeable plate</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=VIV" title=" VIV"> VIV</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a> </p> <a href="https://publications.waset.org/abstracts/9062/flow-control-around-bluff-bodies-by-attached-permeable-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4956</span> Unconfined Laminar Nanofluid Flow and Heat Transfer around a Square Cylinder with an Angle of Incidence </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Bouakkaz">Rafik Bouakkaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A finite-volume method simulation is used to investigate two dimensional unsteady flow of nanofluids and heat transfer characteristics past a square cylinder inclined with respect to the main flow in the laminar regime. The computations are carried out of nanoparticle volume fractions varying from 0 ≤ ∅ ≤ 5% for an inclination angle in the range 0° ≤ δ ≤ 45° at a Reynolds number of 100. The variation of stream line and isotherm patterns are presented for the above range of conditions. Also, it is noticed that the addition of nanoparticles enhances the heat transfer. Hence, the local Nusselt number is found to increase with increasing value of the concentration of nanoparticles for the fixed value of the inclination angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20nanoparticles" title="copper nanoparticles">copper nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20cylinder" title=" square cylinder"> square cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=inclination%20angle" title=" inclination angle"> inclination angle</a> </p> <a href="https://publications.waset.org/abstracts/101220/unconfined-laminar-nanofluid-flow-and-heat-transfer-around-a-square-cylinder-with-an-angle-of-incidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4955</span> Influence of Hydrophobic Surface on Flow Past Square Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ajith%20Kumar">S. Ajith Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaisakh%20S.%20Rajan"> Vaisakh S. Rajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In external flows, vortex shedding behind the bluff bodies causes to experience unsteady loads on a large number of engineering structures, resulting in structural failure. Vortex shedding can even turn out to be disastrous like the Tacoma Bridge failure incident. We need to have control over vortex shedding to get rid of this untoward condition by reducing the unsteady forces acting on the bluff body. In circular cylinders, hydrophobic surface in an otherwise no-slip surface is found to be delaying separation and minimizes the effects of vortex shedding drastically. Flow over square cylinder stands different from this behavior as separation can takes place from either of the two corner separation points (front or rear). An attempt is made in this study to numerically elucidate the effect of hydrophobic surface in flow over a square cylinder. A 2D numerical simulation has been done to understand the effects of the slip surface on the flow past square cylinder. The details of the numerical algorithm will be presented at the time of the conference. A non-dimensional parameter, Knudsen number is defined to quantify the slip on the cylinder surface based on Maxwell’s equation. The slip surface condition of the wall affects the vorticity distribution around the cylinder and the flow separation. In the numerical analysis, we observed that the hydrophobic surface enhances the shedding frequency and damps down the amplitude of oscillations of the square cylinder. We also found that the slip has a negative effect on aerodynamic force coefficients such as the coefficient of lift (CL), coefficient of drag (CD) etc. and hence replacing the no slip surface by a hydrophobic surface can be treated as an effective drag reduction strategy and the introduction of hydrophobic surface could be utilized for reducing the vortex induced vibrations (VIV) and is found as an effective method in controlling VIV thereby controlling the structural failures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag%20reduction" title="drag reduction">drag reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20past%20square%20cylinder" title=" flow past square cylinder"> flow past square cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title=" flow control"> flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20surfaces" title=" hydrophobic surfaces"> hydrophobic surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding "> vortex shedding </a> </p> <a href="https://publications.waset.org/abstracts/27450/influence-of-hydrophobic-surface-on-flow-past-square-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4954</span> Free Convective Flow in a Vertical Cylinder with Heat Sink: A Numerical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Omokhuale">Emmanuel Omokhuale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical model is presented to study free convective boundary layer flow in a semi-infinite vertical cylinder with heat sink effect in a porous medium. The governing dimensional governing partial differential equations (PDEs) with corresponding initial and boundary conditions are approximated and solved numerically employing finite difference method (FDM) the implicit type. Stability and convergence of the scheme are also established. Furthermore, the influence of significant physical parameters on the flow characteristics was analysed and shown graphically. The obtained results are benchmarked with previously published works in order to access the accuracy of the numerical method and found to be in good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20convection%20flow" title="free convection flow">free convection flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20cylinder" title=" vertical cylinder"> vertical cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=implicit%20finite%20difference%20method" title=" implicit finite difference method"> implicit finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20sink%20and%20porous%20medium" title=" heat sink and porous medium"> heat sink and porous medium</a> </p> <a href="https://publications.waset.org/abstracts/102468/free-convective-flow-in-a-vertical-cylinder-with-heat-sink-a-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4953</span> On the Effects of External Cross-Flow Excitation Forces on the Vortex-Induced-Vibrations of an Oscillating Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abouzar%20Kaboudian">Abouzar Kaboudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Chaithanya%20Mysa"> Ravi Chaithanya Mysa</a>, <a href="https://publications.waset.org/abstracts/search?q=Boo%20Cheong%20Khoo"> Boo Cheong Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar%20Jaiman"> Rajeev Kumar Jaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vortex induced vibrations can significantly affect the effectiveness of structures in aerospace as well as offshore marine industries. The oscillatory nature of the forces resulting from the vortex shedding around bluff bodies can result in undesirable effects such as increased loading, stresses, deflections, vibrations and noise in the structures, and also reduced fatigue life of the structures. To date, most studies concentrate on either the free oscillations or the prescribed motion of the bluff bodies. However, the structures in operation are usually subject to the external oscillatory forces (e.g. due to the platform motions in offshore industries). In this work, we present the effects of the external cross-flow forces on the vortex-induced vibrations of an oscillating cylinder. The effects of the amplitude, as well as the frequency of the external force on the fluid-forces on the oscillating cylinder are carefully studied and presented. Moreover, we present the transition of the response to be dominated by the vortex-induced-vibrations to the range where it is mostly dictated by the external oscillatory forces. Furthermore, we will discuss how the external forces can affect the flow structures around a cylinder. All results are compared against free oscillations of the cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20cylinder" title="circular cylinder">circular cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20force" title=" external force"> external force</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-shedding" title=" vortex-shedding"> vortex-shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=VIV" title=" VIV"> VIV</a> </p> <a href="https://publications.waset.org/abstracts/25468/on-the-effects-of-external-cross-flow-excitation-forces-on-the-vortex-induced-vibrations-of-an-oscillating-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4952</span> Evaluation of Sloshing in Process Equipment for Floating Cryogenic Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Jin">Bo Jin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A variety of process equipment having flow in and out is widely used in industrial land-based cryogenic facilities. In some of this equipment, such as vapor-liquid separator, a liquid level is established during the steady operation. As the implementation of such industrial processes extends to off-shore floating facilities, it is important to investigate the effect of sea motion on the process equipment partially filled with liquid. One important aspect to consider is the occurrence of sloshing therein. The flow characteristics are different from the classical study of sloshing, where the fluid is enclosed inside a vessel (e.g., storage tank) with no flow in or out. Liquid inside process equipment continuously flows in and out of the system. To understand this key difference, a Computational Fluid Dynamics (CFD) model is developed to simulate the liquid motion inside a partially filled cylinder with and without continuous flow in and out. For a partially filled vertical cylinder without any continuous flow in and out, the CFD model is found to be able to capture the well-known sloshing behavior documented in the literature. For the cylinder with a continuous steady flow in and out, the CFD simulation results demonstrate that the continuous flow suppresses sloshing. Given typical cryogenic fluid has very low viscosity, an analysis based on potential flow theory is developed to explain why flow into and out of the cylinder changes the natural frequency of the system and thereby suppresses sloshing. This analysis further validates the CFD results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20process%20equipment" title=" cryogenic process equipment"> cryogenic process equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=off-shore%20floating%20processes" title=" off-shore floating processes"> off-shore floating processes</a>, <a href="https://publications.waset.org/abstracts/search?q=sloshing" title=" sloshing "> sloshing </a> </p> <a href="https://publications.waset.org/abstracts/127327/evaluation-of-sloshing-in-process-equipment-for-floating-cryogenic-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4951</span> Effects of Viscous Dissipation on Free Convection Boundary Layer Flow towards a Horizontal Circular Cylinder </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Khairul%20Anuar%20Mohamed">Muhammad Khairul Anuar Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zuki%20Salleh"> Mohd Zuki Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuar%20Ishak"> Anuar Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Aida%20Zuraimi%20Md%20Noar"> Nor Aida Zuraimi Md Noar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the numerical investigation of viscous dissipation on convective boundary layer flow towards a horizontal circular cylinder with constant wall temperature is considered. The transformed partial differential equations are solved numerically by using an implicit finite-difference scheme known as the Keller-box method. Numerical solutions are obtained for the reduced Nusselt number and the skin friction coefficient as well as the velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number and Eckert number are analyzed and discussed. The results in this paper is original and important for the researchers working in the area of boundary layer flow and this can be used as reference and also as complement comparison purpose in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20convection" title="free convection">free convection</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20circular%20cylinder" title=" horizontal circular cylinder"> horizontal circular cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dissipation" title=" viscous dissipation"> viscous dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20boundary%20layer%20flow" title=" convective boundary layer flow"> convective boundary layer flow</a> </p> <a href="https://publications.waset.org/abstracts/21742/effects-of-viscous-dissipation-on-free-convection-boundary-layer-flow-towards-a-horizontal-circular-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4950</span> Characteristics of the Wake behind a Heated Cylinder in Relatively High Reynolds Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Khashehchi">Morteza Khashehchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Hooman"> Kamel Hooman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal effects on the dynamics and stability of the flow past a circular cylinder operating in the mixed convection regime is studied experimentally for Reynolds number (ReD) between 1000 and 4000, and different cylinder wall temperatures (Tw) between 25 and 75°C by means of Particle Image Velocimetry (PIV). The experiments were conducted in a horizontal wind tunnel with the heated cylinder placed horizontally. With such assumptions, the direction of the thermally induced buoyancy force acting on the fluid surrounding the heated cylinder would be perpendicular to the flow direction. In each experiment, to acquire 3000 PIV image pairs, the temperature and Reynolds number of the approach flow were held constant. By adjusting different temperatures in different Reynolds numbers, the corresponding Richardson number (RiD = Gr/Re^2) was varied between 0:0 (unheated) and 10, resulting in a change in the heat transfer process from forced convection to mixed convection. With increasing temperature of the wall cylinder, significant modifications of the wake flow pattern and wake vortex shedding process were clearly revealed. For cylinder at low wall temperature, the size of the wake and the vortex shedding process are found to be quite similar to those of an unheated cylinder. With high wall temperature, however, the high temperature gradient in the wake shear layer creates a type of vorticity with opposite sign to that of the shear layer vorticity. This temperature gradient vorticity weakens the strength of the shear layer vorticity, causing delay in reaching the recreation point. In addition to the wake characteristics, the shedding frequency for the heated cylinder is determined for all aforementioned cases. It is found that, as the cylinder wall is heated, the organization of the vortex shedding is altered and the relative position of the first detached vortices with respect to the second one is changed. This movement of the first detached vortex toward the second one increases the frequency of the shedding process. It is also found that the wake closure length decreases with increasing the Richardson number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heated%20cylinder" title="heated cylinder">heated cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=wake" title=" wake"> wake</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/6157/characteristics-of-the-wake-behind-a-heated-cylinder-in-relatively-high-reynolds-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4949</span> Vortex-Induced Vibrations of Two Cylinders in Close Proximity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Chaithanya%20Mysa">Ravi Chaithanya Mysa</a>, <a href="https://publications.waset.org/abstracts/search?q=Abouzar%20Kaboudian"> Abouzar Kaboudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Boo%20Cheong%20Khoo"> Boo Cheong Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar%20Jaiman"> Rajeev Kumar Jaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phenomenon of vortex-induced vibration has applications in off-shore industry, power transmission, energy extraction, etc. Two cylinders in crossflow whose centers are displaced in transverse direction are considered in the present work. The effects of the gap distance between the cylinders on the vortex shedding are presented. The inline distance between the cylinder centers is kept at zero. Two setups are considered for the study: first, we assume the two cylinders vibrate as a single rigid body mounted on a spring, and in the other case, each cylinder is mounted on a separate spring with no rigid connection to the other cylinder. The study focuses on the effect of transverse gap on the fluid-structure coupled response of two setups mentioned and corresponding flow contours. Incompressible flow is assumed in the Eulerian framework. The cylinder movement is modeled by a single degree of freedom rigid body motion (translational motion) in the Lagrangian framework. The governing equations were numerically solved by standard Petrov-Galerkin second order finite element schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-flow" title="cross-flow">cross-flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-induced%20vibrations" title=" vortex-induced vibrations"> vortex-induced vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=cylinder" title=" cylinder"> cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=close%20proximity" title=" close proximity"> close proximity</a> </p> <a href="https://publications.waset.org/abstracts/25524/vortex-induced-vibrations-of-two-cylinders-in-close-proximity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4948</span> Multiscale Structures and Their Evolution in a Screen Cylinder Wake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azlin%20Mohd%20Azmi">Azlin Mohd Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tongming%20Zhou"> Tongming Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Akira%20Rinoshika"> Akira Rinoshika</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng"> Liang Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The turbulent structures in the wake (x/d =10 to 60) of a screen cylinder have been reduced to understand the roles of the various structures as evolving downstream by comparing with those obtained in a solid circular cylinder wake at Reynolds number, Re of 7000. Using a wavelet multi-resolution technique, the flow structures are decomposed into a number of wavelet components based on their central frequencies. It is observed that in the solid cylinder wake, large-scale structures (of frequency f0 and 1.2 f0) make the largest contribution to the Reynolds stresses although they start to lose their roles significantly at x/d > 20. In the screen cylinder wake, the intermediate-scale structures (2f0 and 4f0) contribute the most to the Reynolds stresses at x/d =10 before being taken over by the large-scale structures (f0) further downstream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulent%20structure" title="turbulent structure">turbulent structure</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20cylinder" title=" screen cylinder"> screen cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20multi-resolution%20analysis" title=" wavelet multi-resolution analysis"> wavelet multi-resolution analysis</a> </p> <a href="https://publications.waset.org/abstracts/2815/multiscale-structures-and-their-evolution-in-a-screen-cylinder-wake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4947</span> Effects Induced by Dispersion-Promoting Cylinder on Fiber-Concentration Distributions in Pulp Suspension Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sumida">M. Sumida</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Fujimoto"> T. Fujimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber-concentration distributions in pulp liquid flows behind dispersion promoters were experimentally investigated to explore the feasibility of improving operational performance of hydraulic headboxes in papermaking machines. The proposed research was performed in the form of a basic test conducted on a screen-type model comprising a circular cylinder inserted within a channel. Tests were performed using pulp liquid possessing fiber concentrations ranging from 0.3-1.0 wt% under different flow velocities of 0.016-0.74 m/s. Fiber-concentration distributions were measured using the transmitted light attenuation method. Obtained test results were analyzed, and the influence of the flow velocities on wake characteristics behind the cylinder has been investigated with reference to findings of our preceding studies concerning pulp liquid flows in straight channels. Changes in fiber-concentration distribution along the flow direction were observed to be substantially large in the section from the cylinder to four times its diameter downstream of its centerline. Findings of this study provide useful information concerning the development of hydraulic headboxes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion%20promoter" title="dispersion promoter">dispersion promoter</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-concentration%20distribution" title=" fiber-concentration distribution"> fiber-concentration distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20headbox" title=" hydraulic headbox"> hydraulic headbox</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20liquid%20flow" title=" pulp liquid flow"> pulp liquid flow</a> </p> <a href="https://publications.waset.org/abstracts/93888/effects-induced-by-dispersion-promoting-cylinder-on-fiber-concentration-distributions-in-pulp-suspension-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4946</span> Stagnation Point Flow Over a Stretching Cylinder with Variable Thermal Conductivity and Slip Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Malik">M. Y. Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzana%20Khan"> Farzana Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we discuss the behavior of viscous fluid near stagnation point over a stretching cylinder with variable thermal conductivity. The effects of slip conditions are also encountered. Thermal conductivity is considered as a linear function of temperature. By using homotopy analysis method and Fehlberg method we compare the graphical results for both momentum and energy equations. The effect of different parameters on velocity and temperature fields are shown graphically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slip%20conditions" title="slip conditions">slip conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=stretching%20cylinder" title=" stretching cylinder"> stretching cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20generation%2Fabsorption" title=" heat generation/absorption"> heat generation/absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20point%20flow" title=" stagnation point flow"> stagnation point flow</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20thermal%20conductivity" title=" variable thermal conductivity"> variable thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/5197/stagnation-point-flow-over-a-stretching-cylinder-with-variable-thermal-conductivity-and-slip-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4945</span> Laminar Periodic Vortex Shedding over a Square Cylinder in Pseudoplastic Fluid Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Kumar">Shubham Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20Goswami"> Chaitanya Goswami</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudipto%20Sarkar"> Sudipto Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pseudoplastic (n < 1, n being the power index) fluid flow can be found in food, pharmaceutical and process industries and has very complex flow nature. To our knowledge, inadequate research work has been done in this kind of flow even at very low Reynolds numbers. Here, in the present computation, we have considered unsteady laminar flow over a square cylinder in pseudoplastic flow environment. For Newtonian fluid flow, this laminar vortex shedding range lies between Re = 47-180. In this problem, we consider Re = 100 (Re = U∞ a/ ν, U∞ is the free stream velocity of the flow, a is the side of the cylinder and ν is the kinematic viscosity of the fluid). The pseudoplastic fluid range has been chosen from close to the Newtonian fluid (n = 0.8) to very high pseudoplasticity (n = 0.1). The flow domain is constituted using Gambit 2.2.30 and this software is also used to generate mesh and to impose the boundary conditions. For all places, the domain size is considered as 36a × 16a with 280 ×192 grid point in the streamwise and flow normal directions respectively. The domain and the grid points are selected after a thorough grid independent study at n = 1.0. Fine and equal grid spacing is used close to the square cylinder to capture the upper and lower shear layers shed from the cylinder. Away from the cylinder the grid is unequal in size and stretched out in all direction. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition du/dy = 0, v = 0) at upper and lower domain boundary conditions are used for this simulation. Wall boundary (u = v = 0) is considered on the square cylinder surface. Fully conservative 2-D unsteady Navier-Stokes equations are discretized and then solved by Ansys Fluent 14.5 to understand the flow nature. SIMPLE algorithm written in finite volume method is selected for this purpose which is the default solver in scripted in Fluent. The result obtained for Newtonian fluid flow agrees well with previous work supporting Fluent’s usefulness in academic research. A minute analysis of instantaneous and time averaged flow field is obtained both for Newtonian and pseudoplastic fluid flow. It has been observed that drag coefficient increases continuously with the reduced value of n. Also, the vortex shedding phenomenon changes at n = 0.4 due to flow instability. These are some of the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ansys%20Fluent" title="Ansys Fluent">Ansys Fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20vortex%20shedding" title=" periodic vortex shedding"> periodic vortex shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudoplastic%20fluid%20flow" title=" pseudoplastic fluid flow"> pseudoplastic fluid flow</a> </p> <a href="https://publications.waset.org/abstracts/97092/laminar-periodic-vortex-shedding-over-a-square-cylinder-in-pseudoplastic-fluid-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4944</span> Non-Newtonian Fluid Flow Simulation for a Vertical Plate and a Square Cylinder Pair</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anamika%20Paul">Anamika Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudipto%20Sarkar"> Sudipto Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow behaviour of non-Newtonian fluid is quite complicated, although both the pseudoplastic (n < 1, n being the power index) and dilatant (n > 1) fluids under this category are used immensely in chemical and process industries. A limited research work is carried out for flow over a bluff body in non-Newtonian flow environment. In the present numerical simulation we control the vortices of a square cylinder by placing an upstream vertical splitter plate for pseudoplastic (n=0.8), Newtonian (n=1) and dilatant (n=1.2) fluids. The position of the upstream plate is also varied to calculate the critical distance between the plate and cylinder, below which the cylinder vortex shedding suppresses. Here the Reynolds number is considered as Re = 150 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid), which comes under laminar periodic vortex shedding regime. The vertical plate is having a dimension of 0.5a × 0.05a and it is placed at the cylinder centre-line. Gambit 2.2.30 is used to construct the flow domain and to impose the boundary conditions. In detail, we imposed velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. The unsteady 2-D Navier Stokes equations in fully conservative form are then discretized in second-order spatial and first-order temporal form. These discretized equations are then solved by Ansys Fluent 14.5 implementing SIMPLE algorithm written in finite volume method. Here, fine meshing is used surrounding the plate and cylinder. Away from the cylinder, the grids are slowly stretched out in all directions. To get an account of mesh quality, a total of 297 × 208 grid points are used for G/a = 3 (G being the gap between the plate and cylinder) in the streamwise and flow-normal directions respectively after a grid independent study. The computed mean flow quantities obtained from Newtonian flow are agreed well with the available literatures. The results are depicted with the help of instantaneous and time-averaged flow fields. Qualitative and quantitative noteworthy differences are obtained in the flow field with the changes in rheology of fluid. Also, aerodynamic forces and vortex shedding frequencies differ with the gap-ratio and power index of the fluid. We can conclude from the present simulation that fluent is capable to capture the vortex dynamics of unsteady laminar flow regime even in the non-Newtonian flow environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20gap-ratio" title=" critical gap-ratio"> critical gap-ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=splitter%20plate" title=" splitter plate"> splitter plate</a>, <a href="https://publications.waset.org/abstracts/search?q=wake-wake%20interactions" title=" wake-wake interactions"> wake-wake interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=dilatant" title=" dilatant"> dilatant</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudoplastic" title=" pseudoplastic"> pseudoplastic</a> </p> <a href="https://publications.waset.org/abstracts/96224/non-newtonian-fluid-flow-simulation-for-a-vertical-plate-and-a-square-cylinder-pair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4943</span> Numerical Simulation of Two-Dimensional Porous Cylinder Flow in In-Line Arrangement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamad%20Alhajeri">Hamad Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Almutairi"> Abdulrahman Almutairi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Alenezi"> A. H. Alenezi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Alhajeri"> M. H. Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayedh%20Alajmi"> Ayedh Alajmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow around three porous cylinders in inline arrangement is investigated in this paper computationally using the commercial code FLUENT. The arrangement generally operates with the dirty gases passing through the porous cylinders, the particulate material being deposited on the outside of the cylinders. However, in a combined cycle power plant, filtration is required to allow the hot exhaust gases to be fed to a turbine without causing any physical damage to the turbine blades. Three cylinder elements are placed in a two-dimensional rectangle duct with fixed face velocity and varying the velocity ratio between the approach and face velocity. Particle trajectories are obtained for a number of particle diameters and different inlet (approach) velocity to face filtration velocity ratios to investigate the behavior of particles around the cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20cylinders" title="porous cylinders">porous cylinders</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow" title=" fluid flow"> fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a> </p> <a href="https://publications.waset.org/abstracts/82446/numerical-simulation-of-two-dimensional-porous-cylinder-flow-in-in-line-arrangement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20over%20cylinder&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20over%20cylinder&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20over%20cylinder&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20over%20cylinder&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20over%20cylinder&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20over%20cylinder&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20over%20cylinder&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20over%20cylinder&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20over%20cylinder&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20over%20cylinder&amp;page=165">165</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20over%20cylinder&amp;page=166">166</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20over%20cylinder&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10