CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;22 of 22 results for author: <span class="mathjax">Blanco, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Blanco%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Blanco, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Blanco%2C+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Blanco, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15644">arXiv:2502.15644</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.15644">pdf</a>, <a href="https://arxiv.org/format/2502.15644">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Multiple-Amplifier Sensing Charged-Coupled Device: Model and improvement of the Node Removal Efficiency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gimenez%2C+B+J+I">Blas J. Irigoyen Gimenez</a>, <a href="/search/physics?searchtype=author&amp;query=Gamero%2C+M+E">Miqueas E. Gamero</a>, <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C+R+C">Claudio R. Chavez Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Lapi%2C+A+J">Agustin J. Lapi</a>, <a href="/search/physics?searchtype=author&amp;query=Chierchie%2C+F">Fernando Chierchie</a>, <a href="/search/physics?searchtype=author&amp;query=Moroni%2C+G+F">Guillermo Fernandez Moroni</a>, <a href="/search/physics?searchtype=author&amp;query=Estrada%2C+J">Juan Estrada</a>, <a href="/search/physics?searchtype=author&amp;query=Tiffenberg%2C+J">Javier Tiffenberg</a>, <a href="/search/physics?searchtype=author&amp;query=Drlica-Wagner%2C+A">Alex Drlica-Wagner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15644v1-abstract-short" style="display: inline;"> The Multiple Amplifier Sensing Charge-Coupled Device (MAS-CCD) has emerged as a promising technology for astronomical observation, quantum imaging, and low-energy particle detection due to its ability to reduce the readout noise without increasing the readout time as in its predecessor, the Skipper-CCD, by reading out the same charge packet through multiple inline amplifiers. Previous works identi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15644v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15644v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15644v1-abstract-full" style="display: none;"> The Multiple Amplifier Sensing Charge-Coupled Device (MAS-CCD) has emerged as a promising technology for astronomical observation, quantum imaging, and low-energy particle detection due to its ability to reduce the readout noise without increasing the readout time as in its predecessor, the Skipper-CCD, by reading out the same charge packet through multiple inline amplifiers. Previous works identified a new parameter in this sensor, called the Node Removal Inefficiency (NRI), related to inefficiencies in charge transfer and residual charge removal from the output gates after readout. These inefficiencies can lead to distortions in the measured signals similar to those produced by the charge transfer inefficiencies in standard CCDs. This work introduces more details in the mathematical description of the NRI mechanism and provides techniques to quantify its magnitude from the measured data. It also proposes a new operation strategy that significantly reduces its effect with minimal alterations of the timing sequences or voltage settings for the other components of the sensor. The proposed technique is corroborated by experimental results on a sixteen-amplifier MAS-CCD. At the same time, the experimental data demonstrate that this approach minimizes the NRI effect to levels comparable to other sources of distortion the charge transfer inefficiency in scientific devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15644v1-abstract-full').style.display = 'none'; document.getElementById('2502.15644v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-25-0089-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00091">arXiv:2501.00091</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.00091">pdf</a>, <a href="https://arxiv.org/format/2501.00091">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Deep learning optimal molecular scintillators for dark matter direct detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cook%2C+C">Cameron Cook</a>, <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">Carlos Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Smirnov%2C+J">Juri Smirnov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00091v2-abstract-short" style="display: inline;"> Direct searches for sub-GeV dark matter are limited by the intrinsic quantum properties of the target material. In this proof-of-concept study, we argue that this problem is particularly well suited for machine learning. We demonstrate that a simple neural architecture consisting of a variational autoencoder and a multi-layer perceptron can efficiently generate unique molecules with desired proper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00091v2-abstract-full').style.display = 'inline'; document.getElementById('2501.00091v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00091v2-abstract-full" style="display: none;"> Direct searches for sub-GeV dark matter are limited by the intrinsic quantum properties of the target material. In this proof-of-concept study, we argue that this problem is particularly well suited for machine learning. We demonstrate that a simple neural architecture consisting of a variational autoencoder and a multi-layer perceptron can efficiently generate unique molecules with desired properties. In specific, the energy threshold and signal (quantum) efficiency determine the minimum mass and cross section to which a detector can be sensitive. Organic molecules present a particularly interesting class of materials with intrinsically anisotropic electronic responses and $\mathcal{O}$(few) eV excitation energies. However, the space of possible organic compounds is intractably large, which makes traditional database screening challenging. We adopt excitation energies and proxy transition matrix elements as target properties learned by our network. Our model is able to generate molecules that are not in even the most expansive quantum chemistry databases and predict their relevant properties for high-throughput and efficient screening. Following a massive generation of novel molecules, we use clustering analysis to identify some of the most promising molecular structures that optimise the desired molecular properties for dark matter detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00091v2-abstract-full').style.display = 'none'; document.getElementById('2501.00091v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12516">arXiv:2402.12516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.12516">pdf</a>, <a href="https://arxiv.org/ps/2402.12516">ps</a>, <a href="https://arxiv.org/format/2402.12516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TED.2024.3463631">10.1109/TED.2024.3463631 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Skipper-in-CMOS: Non-Destructive Readout with Sub-Electron Noise Performance for Pixel Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lapi%2C+A+J">Agustin J. Lapi</a>, <a href="/search/physics?searchtype=author&amp;query=Sofo-Haro%2C+M">Miguel Sofo-Haro</a>, <a href="/search/physics?searchtype=author&amp;query=Parpillon%2C+B+C">Benjamin C. Parpillon</a>, <a href="/search/physics?searchtype=author&amp;query=Birman%2C+A">Adi Birman</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez-Moroni%2C+G">Guillermo Fernandez-Moroni</a>, <a href="/search/physics?searchtype=author&amp;query=Rota%2C+L">Lorenzo Rota</a>, <a href="/search/physics?searchtype=author&amp;query=Bessia%2C+F+A">Fabricio Alcalde Bessia</a>, <a href="/search/physics?searchtype=author&amp;query=Gupta%2C+A">Aseem Gupta</a>, <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C+C">Claudio Chavez Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Chierchie%2C+F">Fernando Chierchie</a>, <a href="/search/physics?searchtype=author&amp;query=Segal%2C+J">Julie Segal</a>, <a href="/search/physics?searchtype=author&amp;query=Kenney%2C+C+J">Christopher J. Kenney</a>, <a href="/search/physics?searchtype=author&amp;query=Dragone%2C+A">Angelo Dragone</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shaorui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Braga%2C+D">Davide Braga</a>, <a href="/search/physics?searchtype=author&amp;query=Fenigstein%2C+A">Amos Fenigstein</a>, <a href="/search/physics?searchtype=author&amp;query=Estrada%2C+J">Juan Estrada</a>, <a href="/search/physics?searchtype=author&amp;query=Fahim%2C+F">Farah Fahim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12516v2-abstract-short" style="display: inline;"> The Skipper-in-CMOS image sensor integrates the non-destructive readout capability of Skipper Charge Coupled Devices (Skipper-CCDs) with the high conversion gain of a pinned photodiode in a CMOS imaging process, while taking advantage of in-pixel signal processing. This allows both single photon counting as well as high frame rate readout through highly parallel processing. The first results obtai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12516v2-abstract-full').style.display = 'inline'; document.getElementById('2402.12516v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12516v2-abstract-full" style="display: none;"> The Skipper-in-CMOS image sensor integrates the non-destructive readout capability of Skipper Charge Coupled Devices (Skipper-CCDs) with the high conversion gain of a pinned photodiode in a CMOS imaging process, while taking advantage of in-pixel signal processing. This allows both single photon counting as well as high frame rate readout through highly parallel processing. The first results obtained from a 15 x 15 um^2 pixel cell of a Skipper-in-CMOS sensor fabricated in Tower Semiconductor&#39;s commercial 180 nm CMOS Image Sensor process are presented. Measurements confirm the expected reduction of the readout noise with the number of samples down to deep sub-electron noise of 0.15rms e-, demonstrating the charge transfer operation from the pinned photodiode and the single photon counting operation when the sensor is exposed to light. The article also discusses new testing strategies employed for its operation and characterization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12516v2-abstract-full').style.display = 'none'; document.getElementById('2402.12516v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0031-PPD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Electron Devices, vol. 71, no. 11, pp. 6843-6849, Nov. 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.10306">arXiv:2402.10306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.10306">pdf</a>, <a href="https://arxiv.org/ps/2402.10306">ps</a>, <a href="https://arxiv.org/format/2402.10306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/jfm.2023.1035">10.1017/jfm.2023.1035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linear and nonlinear receptivity mechanisms in boundary layers subject to free-stream turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+D+C+P">Diego C. P. Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Hanifi%2C+A">Ardeshir Hanifi</a>, <a href="/search/physics?searchtype=author&amp;query=Henningson%2C+D+S">Dan S. Henningson</a>, <a href="/search/physics?searchtype=author&amp;query=Cavalieri%2C+A+V+G">Andr茅 V. G. Cavalieri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.10306v1-abstract-short" style="display: inline;"> Large-eddy simulations of a flat-plate boundary layer, without a leading edge, subject to multiple levels of incoming free stream turbulence are considered in the present work. Within an input-output model where non-linear terms of the incompressible Navier-Stokes equations are treated as an external forcing, we manage to separate inputs related to perturbations coming through the intake of the nu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10306v1-abstract-full').style.display = 'inline'; document.getElementById('2402.10306v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.10306v1-abstract-full" style="display: none;"> Large-eddy simulations of a flat-plate boundary layer, without a leading edge, subject to multiple levels of incoming free stream turbulence are considered in the present work. Within an input-output model where non-linear terms of the incompressible Navier-Stokes equations are treated as an external forcing, we manage to separate inputs related to perturbations coming through the intake of the numerical domain, whose evolution represents a linear mechanism, and the volumetric non-linear forcing due to triadic interactions. With these, we perform the full reconstruction of the statistics of the flow, as measured in the simulations, to quantify pairs of wavenumbers and frequencies more affected by either linear or non-linear receptivity mechanisms. Inside the boundary layer, different wavenumbers at near-zero frequency reveal streaky structures. Those that are amplified predominantly via linear interactions with the incoming vorticity occur upstream and display transient growth, while those generated by the non-linear forcing are the most energetic and appear in more downstream positions. The latter feature vortices growing proportionally to the laminar boundary layer thickness, along with a velocity profile that agrees with the optimal amplification obtained by linear transient growth theory. The numerical approach presented is general and could potentially be extended to any simulation for which receptivity to incoming perturbations needs to be assessed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10306v1-abstract-full').style.display = 'none'; document.getElementById('2402.10306v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Fluid Mechanics. 2024;979:A31 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06057">arXiv:2312.06057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06057">pdf</a>, <a href="https://arxiv.org/ps/2312.06057">ps</a>, <a href="https://arxiv.org/format/2312.06057">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/jfm.2022.790">10.1017/jfm.2022.790 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved convergence of the spectral proper orthogonal decomposition through time shifting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+D+C+P">Diego C. P. Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Martini%2C+E">Eduardo Martini</a>, <a href="/search/physics?searchtype=author&amp;query=Sasaki%2C+K">Kenzo Sasaki</a>, <a href="/search/physics?searchtype=author&amp;query=Cavalieri%2C+A+V+G">Andr茅 V. G. Cavalieri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06057v2-abstract-short" style="display: inline;"> Spectral proper orthogonal decomposition (SPOD) is an increasingly popular modal analysis method in the field of fluid dynamics due to its specific properties: a linear system forced with white noise should have SPOD modes identical to response modes from resolvent analysis. The SPOD, coupled with the Welch method for spectral estimation, may require long time-resolved data sets. In this work, a l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06057v2-abstract-full').style.display = 'inline'; document.getElementById('2312.06057v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06057v2-abstract-full" style="display: none;"> Spectral proper orthogonal decomposition (SPOD) is an increasingly popular modal analysis method in the field of fluid dynamics due to its specific properties: a linear system forced with white noise should have SPOD modes identical to response modes from resolvent analysis. The SPOD, coupled with the Welch method for spectral estimation, may require long time-resolved data sets. In this work, a linearised Ginzburg-Landau model is considered in order to study the method&#39;s convergence. SPOD modes of the white-noise forced equation are computed and compared with corresponding response resolvent modes. The quantified error is shown to be related to the time length of Welch blocks (spectral window size) normalised by a convective time. Subsequently, an algorithm based on a temporal data shift is devised to further improve SPOD convergence and is applied to the Ginzburg-Landau system. Next, its efficacy is demonstrated in a numerical database of a boundary layer subject to bypass transition. The proposed approach achieves substantial improvement in mode convergence with smaller spectral window sizes with respect to the standard method. Furthermore, SPOD modes display growing wall-normal and span-wise velocity components along the stream-wise direction, a feature which had not yet been observed and is also predicted by a global resolvent calculation. The shifting algorithm for the SPOD opens the possibility for using the method on datasets with time series of moderate duration, often produced by large simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06057v2-abstract-full').style.display = 'none'; document.getElementById('2312.06057v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">GitHub repository listed in the acknowledgements</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Fluid Mechanics, vol. 950, p. A9, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.10396">arXiv:2211.10396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.10396">pdf</a>, <a href="https://arxiv.org/format/2211.10396">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2023.06.001">10.1016/j.physrep.2023.06.001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Particle Physics at the European Spallation Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abele%2C+H">H. Abele</a>, <a href="/search/physics?searchtype=author&amp;query=Alekou%2C+A">A. Alekou</a>, <a href="/search/physics?searchtype=author&amp;query=Algora%2C+A">A. Algora</a>, <a href="/search/physics?searchtype=author&amp;query=Andersen%2C+K">K. Andersen</a>, <a href="/search/physics?searchtype=author&amp;query=Baessler%2C+S">S. Baessler</a>, <a href="/search/physics?searchtype=author&amp;query=Barron-Palos%2C+L">L. Barron-Palos</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">E. Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bentley%2C+P">P. Bentley</a>, <a href="/search/physics?searchtype=author&amp;query=Berezhiani%2C+Z">Z. Berezhiani</a>, <a href="/search/physics?searchtype=author&amp;query=Bessler%2C+Y">Y. Bessler</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharyya%2C+A+K">A. K. Bhattacharyya</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+A">A. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bijnens%2C+J">J. Bijnens</a>, <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">C. Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Kraljevic%2C+N+B">N. Blaskovic Kraljevic</a>, <a href="/search/physics?searchtype=author&amp;query=Blennow%2C+M">M. Blennow</a>, <a href="/search/physics?searchtype=author&amp;query=Bodek%2C+K">K. Bodek</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Bohm%2C+C">C. Bohm</a>, <a href="/search/physics?searchtype=author&amp;query=Bolling%2C+B">B. Bolling</a>, <a href="/search/physics?searchtype=author&amp;query=Bouquerel%2C+E">E. Bouquerel</a>, <a href="/search/physics?searchtype=author&amp;query=Brooijmans%2C+G">G. Brooijmans</a>, <a href="/search/physics?searchtype=author&amp;query=Broussard%2C+L+J">L. J. Broussard</a>, <a href="/search/physics?searchtype=author&amp;query=Buchan%2C+O">O. Buchan</a> , et al. (154 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.10396v2-abstract-short" style="display: inline;"> Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world&#39;s brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10396v2-abstract-full').style.display = 'inline'; document.getElementById('2211.10396v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.10396v2-abstract-full" style="display: none;"> Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world&#39;s brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10396v2-abstract-full').style.display = 'none'; document.getElementById('2211.10396v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">121 pages, updated version after referee comments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.09002">arXiv:2208.09002</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.09002">pdf</a>, <a href="https://arxiv.org/format/2208.09002">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.115015">10.1103/PhysRevD.106.115015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Molecular Migdal Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">Carlos Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Harris%2C+I">Ian Harris</a>, <a href="/search/physics?searchtype=author&amp;query=Kahn%2C+Y">Yonatan Kahn</a>, <a href="/search/physics?searchtype=author&amp;query=Lillard%2C+B">Benjamin Lillard</a>, <a href="/search/physics?searchtype=author&amp;query=P%C3%A9rez-R%C3%ADos%2C+J">Jes煤s P茅rez-R铆os</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.09002v1-abstract-short" style="display: inline;"> Nuclear scattering events with large momentum transfer in atomic, molecular, or solid-state systems may result in electronic excitations. In the context of atomic scattering by dark matter (DM), this is known as the Migdal effect, but the same effect has also been studied in molecules in the chemistry and neutron scattering literature. Here we present two distinct Migdal-like effects from DM scatt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09002v1-abstract-full').style.display = 'inline'; document.getElementById('2208.09002v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.09002v1-abstract-full" style="display: none;"> Nuclear scattering events with large momentum transfer in atomic, molecular, or solid-state systems may result in electronic excitations. In the context of atomic scattering by dark matter (DM), this is known as the Migdal effect, but the same effect has also been studied in molecules in the chemistry and neutron scattering literature. Here we present two distinct Migdal-like effects from DM scattering in molecules, which we collectively refer to as the molecular Migdal effect: a center-of-mass recoil, equivalent to the standard Migdal treatment, and a non-adiabatic coupling resulting from corrections to the Born-Oppenheimer approximation. The molecular bonds break spherical symmetry, leading to large daily modulation in the Migdal rate from anisotropies in the matrix elements. Our treatment reduces to the standard Migdal effect in atomic systems but does not rely on the impulse approximation or any semiclassical treatments of nuclear motion, and as such may be extended to models where DM scatters through a long-range force. We demonstrate all of these features in a few simple toy models of diatomic molecules, namely ${\rm H}_2^+$, N$_2$, and CO, and find total molecular Migdal rates competitive with those in semiconductors for the same target mass. We discuss how our results may be extended to more realistic targets comprised of larger molecules which could be deployed at the kilogram scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09002v1-abstract-full').style.display = 'none'; document.getElementById('2208.09002v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v1: 15+2 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02309">arXiv:2203.02309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.02309">pdf</a>, <a href="https://arxiv.org/format/2203.02309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ac841a">10.1088/1361-6471/ac841a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Aerne%2C+V">V. Aerne</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&amp;query=Akimov%2C+D+Y">D. Yu. Akimov</a>, <a href="/search/physics?searchtype=author&amp;query=Akshat%2C+J">J. Akshat</a>, <a href="/search/physics?searchtype=author&amp;query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&amp;query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&amp;query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J">J. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a> , et al. (572 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02309v1-abstract-short" style="display: inline;"> The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02309v1-abstract-full').style.display = 'inline'; document.getElementById('2203.02309v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02309v1-abstract-full" style="display: none;"> The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02309v1-abstract-full').style.display = 'none'; document.getElementById('2203.02309v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">77 pages, 40 figures, 1262 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-22-003 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. G: Nucl. Part. Phys. 50 (2023) 013001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.13285">arXiv:2201.13285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.13285">pdf</a>, <a href="https://arxiv.org/format/2201.13285">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10726-x">10.1140/epjc/s10052-022-10726-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Double Chooz antineutrino detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Double+Chooz+Collaboration"> Double Chooz Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=de+Kerret%2C+H">H. de Kerret</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+Y">Y. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Aberle%2C+C">C. Aberle</a>, <a href="/search/physics?searchtype=author&amp;query=Abrah%C3%A3o%2C+T">T. Abrah茫o</a>, <a href="/search/physics?searchtype=author&amp;query=Ahijado%2C+J+M">J. M. Ahijado</a>, <a href="/search/physics?searchtype=author&amp;query=Akiri%2C+T">T. Akiri</a>, <a href="/search/physics?searchtype=author&amp;query=Alarc%C3%B3n%2C+J+M">J. M. Alarc贸n</a>, <a href="/search/physics?searchtype=author&amp;query=Alba%2C+J">J. Alba</a>, <a href="/search/physics?searchtype=author&amp;query=Almazan%2C+H">H. Almazan</a>, <a href="/search/physics?searchtype=author&amp;query=Anjos%2C+J+C+d">J. C. dos Anjos</a>, <a href="/search/physics?searchtype=author&amp;query=Appel%2C+S">S. Appel</a>, <a href="/search/physics?searchtype=author&amp;query=Ardellier%2C+F">F. Ardellier</a>, <a href="/search/physics?searchtype=author&amp;query=Barabanov%2C+I">I. Barabanov</a>, <a href="/search/physics?searchtype=author&amp;query=Barriere%2C+J+C">J. C. Barriere</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">E. Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bekman%2C+I">I. Bekman</a>, <a href="/search/physics?searchtype=author&amp;query=Bergevin%2C+M">M. Bergevin</a>, <a href="/search/physics?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoli%2C+W">W. Bertoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bezerra%2C+T+J+C">T. J. C. Bezerra</a>, <a href="/search/physics?searchtype=author&amp;query=Bezrukov%2C+L">L. Bezrukov</a>, <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">C. Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Bleurvacq%2C+N">N. Bleurvacq</a> , et al. (226 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.13285v2-abstract-short" style="display: inline;"> This article describes the setup and performance of the near and far detectors in the Double Chooz experiment. The electron antineutrinos of the Chooz nuclear power plant were measured in two identically designed detectors with different average baselines of about 400 m and 1050 m from the two reactor cores. Over many years of data taking the neutrino signals were extracted from interactions in th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.13285v2-abstract-full').style.display = 'inline'; document.getElementById('2201.13285v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.13285v2-abstract-full" style="display: none;"> This article describes the setup and performance of the near and far detectors in the Double Chooz experiment. The electron antineutrinos of the Chooz nuclear power plant were measured in two identically designed detectors with different average baselines of about 400 m and 1050 m from the two reactor cores. Over many years of data taking the neutrino signals were extracted from interactions in the detectors with the goal of measuring a fundamental parameter in the context of neutrino oscillation, the mixing angle 胃13. The central part of the Double Chooz detectors was a main detector comprising four cylindrical volumes filled with organic liquids. From the inside towards the outside there were volumes containing gadolinium-loaded scintillator, gadolinium-free scintillator, a buffer oil and, optically separated, another liquid scintillator acting as veto system. Above this main detector an additional outer veto system using plastic scintillator strips was installed. The technologies developed in Double Chooz were inspiration for several other antineutrino detectors in the field. The detector design allowed implementation of efficient background rejection techniques including use of pulse shape information provided by the data acquisition system. The Double Chooz detectors featured remarkable stability, in particular for the detected photons, as well as high radiopurity of the detector components. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.13285v2-abstract-full').style.display = 'none'; document.getElementById('2201.13285v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 29 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J. C (2022) 82:804 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.08601">arXiv:2103.08601</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.08601">pdf</a>, <a href="https://arxiv.org/format/2103.08601">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.036011">10.1103/PhysRevD.104.036011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark Matter Daily Modulation With Anisotropic Organic Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">Carlos Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Kahn%2C+Y">Yonatan Kahn</a>, <a href="/search/physics?searchtype=author&amp;query=Lillard%2C+B">Benjamin Lillard</a>, <a href="/search/physics?searchtype=author&amp;query=McDermott%2C+S+D">Samuel D. McDermott</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.08601v2-abstract-short" style="display: inline;"> Aromatic organic compounds, because of their small excitation energies ~ O(few eV) and scintillating properties, are promising targets for detecting dark matter of mass ~ O(few MeV). Additionally, their planar molecular structures lead to large anisotropies in the electronic wavefunctions, yielding a significant daily modulation in the event rate expected to be observed in crystals of these molecu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08601v2-abstract-full').style.display = 'inline'; document.getElementById('2103.08601v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.08601v2-abstract-full" style="display: none;"> Aromatic organic compounds, because of their small excitation energies ~ O(few eV) and scintillating properties, are promising targets for detecting dark matter of mass ~ O(few MeV). Additionally, their planar molecular structures lead to large anisotropies in the electronic wavefunctions, yielding a significant daily modulation in the event rate expected to be observed in crystals of these molecules. We characterize the daily modulation rate of dark matter interacting with an anisotropic scintillating organic crystal such as trans-stilbene, and show that daily modulation is an ~ O(1) fraction of the total rate for small DM masses and comparable to, or larger than, the ~ 10% annual modulation fraction at large DM masses. As we discuss in detail, this modulation provides significant leverage for detecting or excluding dark matter scattering, even in the presence of a non-negligible background rate. Assuming a non-modulating background rate of 1/min/kg that scales with total exposure, we find that a 100 kg yr experiment is sensitive to the cross section corresponding to the correct relic density for dark matter masses between 1.3-14 MeV (1.5-1000 MeV) if dark matter interacts via a heavy (light) mediator. This modulation can be understood using an effective velocity scale v* = Delta E/q*, where Delta E is the electronic transition energy and q* is a characteristic momentum scale of the electronic orbitals. We also characterize promising future directions for development of scintillating organic crystals as dark matter detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08601v2-abstract-full').style.display = 'none'; document.getElementById('2103.08601v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 11 figures; v2: matches journal version up to typo fixed in eq. (12)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-066-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 036011 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.05421">arXiv:1810.05421</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.05421">pdf</a>, <a href="https://arxiv.org/ps/1810.05421">ps</a>, <a href="https://arxiv.org/format/1810.05421">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> </div> <p class="title is-5 mathjax"> The use of blogs in the education field: A qualitative systematic review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=del+Blanco%2C+C+R">Carlos R. del Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Magari%C3%B1o%2C+I">Ivan Garc铆a-Magari帽o</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.05421v1-abstract-short" style="display: inline;"> Blogs have become one of the most successful tools of the Web 2.0 because of their ease of use and the availability of open platforms. They have quickly spread in the education field thanks to the many attractive qualities that have been attributed to them, such as collaboration, communication, enhancing of professional writing, and the improvement of information-gathering skills. However, many of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.05421v1-abstract-full').style.display = 'inline'; document.getElementById('1810.05421v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.05421v1-abstract-full" style="display: none;"> Blogs have become one of the most successful tools of the Web 2.0 because of their ease of use and the availability of open platforms. They have quickly spread in the education field thanks to the many attractive qualities that have been attributed to them, such as collaboration, communication, enhancing of professional writing, and the improvement of information-gathering skills. However, many of the studies that have addressed this issue were not based on an empirical research, and therefore they are unreliable. On the other hand, the studies that do have conducted an empirical research have usually relied on participant self-reported data (surveys, interviews, and contents of blogs), which can significantly bias the positive results usually reported on the use of blogs. Another source of bias and inaccuracy in the reported results is that most of the studies lacked control group, i.e they do not follow an experimental design. The purpose of this review is to examine the current state of the studies related to the evaluation of the blog effects in the education field. The methods to select the studies and perform the corresponding analysis have followed a qualitative systematic approach. The selection has been restricted to empirical and peer-reviewed studies published between January 2011 and June 2013. The findings have been integrated and compared using the Grounded Theory, giving rise to a set of categories that have structured the results of the review. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.05421v1-abstract-full').style.display = 'none'; document.getElementById('1810.05421v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.01480">arXiv:1504.01480</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.01480">pdf</a>, <a href="https://arxiv.org/format/1504.01480">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Letter of Intent: The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Anghel%2C+I">I. Anghel</a>, <a href="/search/physics?searchtype=author&amp;query=Beacom%2C+J+F">J. F. Beacom</a>, <a href="/search/physics?searchtype=author&amp;query=Bergevin%2C+M">M. Bergevin</a>, <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">C. Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Catano-Mur%2C+E">E. Catano-Mur</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Lodovico%2C+F">F. Di Lodovico</a>, <a href="/search/physics?searchtype=author&amp;query=Elagin%2C+A">A. Elagin</a>, <a href="/search/physics?searchtype=author&amp;query=Frisch%2C+H">H. Frisch</a>, <a href="/search/physics?searchtype=author&amp;query=Griskevich%2C+J">J. Griskevich</a>, <a href="/search/physics?searchtype=author&amp;query=Hill%2C+R">R. Hill</a>, <a href="/search/physics?searchtype=author&amp;query=Jocher%2C+G">G. Jocher</a>, <a href="/search/physics?searchtype=author&amp;query=Katori%2C+T">T. Katori</a>, <a href="/search/physics?searchtype=author&amp;query=Krennrich%2C+F">F. Krennrich</a>, <a href="/search/physics?searchtype=author&amp;query=Learned%2C+J">J. Learned</a>, <a href="/search/physics?searchtype=author&amp;query=Malek%2C+M">M. Malek</a>, <a href="/search/physics?searchtype=author&amp;query=Northrop%2C+R">R. Northrop</a>, <a href="/search/physics?searchtype=author&amp;query=Pilcher%2C+C">C. Pilcher</a>, <a href="/search/physics?searchtype=author&amp;query=Ramberg%2C+E">E. Ramberg</a>, <a href="/search/physics?searchtype=author&amp;query=Repond%2C+J">J. Repond</a>, <a href="/search/physics?searchtype=author&amp;query=Sacco%2C+R">R. Sacco</a>, <a href="/search/physics?searchtype=author&amp;query=Sanchez%2C+M+C">M. C. Sanchez</a>, <a href="/search/physics?searchtype=author&amp;query=Smy%2C+M">M. Smy</a>, <a href="/search/physics?searchtype=author&amp;query=Sobel%2C+H">H. Sobel</a>, <a href="/search/physics?searchtype=author&amp;query=Svoboda%2C+R">R. Svoboda</a>, <a href="/search/physics?searchtype=author&amp;query=Usman%2C+S+M">S. M. Usman</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.01480v1-abstract-short" style="display: inline;"> Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01480v1-abstract-full').style.display = 'inline'; document.getElementById('1504.01480v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.01480v1-abstract-full" style="display: none;"> Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01480v1-abstract-full').style.display = 'none'; document.getElementById('1504.01480v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FNAL P1063 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.4230">arXiv:1302.4230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.4230">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1089/ast.2012.0904">10.1089/ast.2012.0904 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous Mirror Symmetry Breaking in the Limited Enantioselective Autocatalysis Model: Abyssal Hydrothermal Vents as Scenario for the Emergence of Chirality in Prebiotic Chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rib%C3%B3%2C+J+M">Josep M. Rib贸</a>, <a href="/search/physics?searchtype=author&amp;query=Crusats%2C+J">Joaquim Crusats</a>, <a href="/search/physics?searchtype=author&amp;query=El-Hachemi%2C+Z">Zoubir El-Hachemi</a>, <a href="/search/physics?searchtype=author&amp;query=Moyano%2C+A">Albert Moyano</a>, <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">Celia Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Hochberg%2C+D">David Hochberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.4230v1-abstract-short" style="display: inline;"> The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.4230v1-abstract-full').style.display = 'inline'; document.getElementById('1302.4230v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.4230v1-abstract-full" style="display: none;"> The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution nor in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continous internal flow. In such conditions the system can evolve, for certain reaction and system parameters, towards a chiral stationary state, i.e., the system is able to reach a bifurcation point leading to SMSB. Numerical simulations using reasonable chemical parameters suggest that an adequate scenario for such a SMSB would be that of abyssal hydrothermal vents, by virtue of the typical temperature gradients found there and the role of inorganic solids mediating chemical reactions in an enzyme-like role. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.4230v1-abstract-full').style.display = 'none'; document.getElementById('1302.4230v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrobiology, Volume 13, Number 2, 2013 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.4379">arXiv:1212.4379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.4379">pdf</a>, <a href="https://arxiv.org/ps/1212.4379">ps</a>, <a href="https://arxiv.org/format/1212.4379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jp305627m">10.1021/jp305627m <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Models for Mirror Symmetry Breaking via 尾-Sheet-Controlled Copolymerization: (i) Mass Balance and (ii) Probabilistic Treatment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">Celia Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Hochberg%2C+D">David Hochberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.4379v1-abstract-short" style="display: inline;"> Experimental mechanisms that yield the growth of homochiral copolymers over their heterochiral counterparts have been advocated by Lahav and co-workers. These chiral amplification mechanisms proceed through racemic 尾-sheet-controlled polymerization operative in both surface crystallites as well as in solution. We develop two complementary theoretical models for these template-induced desymmetrizat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.4379v1-abstract-full').style.display = 'inline'; document.getElementById('1212.4379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.4379v1-abstract-full" style="display: none;"> Experimental mechanisms that yield the growth of homochiral copolymers over their heterochiral counterparts have been advocated by Lahav and co-workers. These chiral amplification mechanisms proceed through racemic 尾-sheet-controlled polymerization operative in both surface crystallites as well as in solution. We develop two complementary theoretical models for these template-induced desymmetrization processes leading to multicomponent homochiral copolymers. First, assuming reversible 尾-sheet formation, the equilibrium between the free monomer pool and the polymer strand within the template is assumed. This yields coupled nonlinear mass balance equations whose solutions are used to calculate enantiomeric excesses and average lengths of the homochiral chains formed. The second approach is a probabilistic treatment based on random polymerization. The occlusion probabilities depend on the polymerization activation energies for each monomer species and are proportional to the concentrations of the monomers in solution in the constant pool approximation. The monomer occlusion probabilities are represented geometrically in terms of unit simplexes from which conditions for maximizing or minimizing the likelihood for mirror symmetry breaking can be determined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.4379v1-abstract-full').style.display = 'none'; document.getElementById('1212.4379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. B, 2012, 116, 13953-13967 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.4363">arXiv:1212.4363</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.4363">pdf</a>, <a href="https://arxiv.org/ps/1212.4363">ps</a>, <a href="https://arxiv.org/format/1212.4363">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C2CP43488A">10.1039/C2CP43488A <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mirror symmetry breaking with limited enantioselective autocatalysis and temperature gradients: a stability survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">Celia Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Rib%C3%B3%2C+J+M">Josep M. Rib贸</a>, <a href="/search/physics?searchtype=author&amp;query=Crusats%2C+J">Joaquim Crusats</a>, <a href="/search/physics?searchtype=author&amp;query=El-Hachemi%2C+Z">Zoubir El-Hachemi</a>, <a href="/search/physics?searchtype=author&amp;query=Moyano%2C+A">Albert Moyano</a>, <a href="/search/physics?searchtype=author&amp;query=Hochberg%2C+D">David Hochberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.4363v1-abstract-short" style="display: inline;"> We analyze limited enantioselective (LES) autocatalysis in a temperature gradient and with internal flow/recycling of hot and cold material. Microreversibility forbids broken mirror symmetry for LES in the presence of a temperature gradient alone. This symmetry can be broken however when the auto-catalysis and limited enantioselective catalysis are each localized within the regions of low and high&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.4363v1-abstract-full').style.display = 'inline'; document.getElementById('1212.4363v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.4363v1-abstract-full" style="display: none;"> We analyze limited enantioselective (LES) autocatalysis in a temperature gradient and with internal flow/recycling of hot and cold material. Microreversibility forbids broken mirror symmetry for LES in the presence of a temperature gradient alone. This symmetry can be broken however when the auto-catalysis and limited enantioselective catalysis are each localized within the regions of low and high temperature, respectively. This scheme has been recently proposed as a plausible model for spontaneous emergence of chirality in abyssal hydrothermal vents. Regions in chemical parameter space are mapped out in which the racemic state is unstable and bifurcates to chiral solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.4363v1-abstract-full').style.display = 'none'; document.getElementById('1212.4363v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Chem. Chem. Phys., 2013, Advance Article </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.1872">arXiv:1210.1872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1210.1872">pdf</a>, <a href="https://arxiv.org/ps/1210.1872">ps</a>, <a href="https://arxiv.org/format/1210.1872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C2CP42620J">10.1039/C2CP42620J <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral and chemical oscillations in a simple dimerization model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stich%2C+M">Michael Stich</a>, <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">Celia Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Hochberg%2C+D">David Hochberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.1872v1-abstract-short" style="display: inline;"> We consider the APED model (activation-polymerization-epimerization-depolymerization) for describing the emergence of chiral solutions within a non-catalytic framework for chiral polymerization. The minimal APED model for dimerization can lead to the spontaneous appearance of chiral oscillations and we describe in detail the nature of these oscillations in the enantiomeric excess, and which are th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.1872v1-abstract-full').style.display = 'inline'; document.getElementById('1210.1872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.1872v1-abstract-full" style="display: none;"> We consider the APED model (activation-polymerization-epimerization-depolymerization) for describing the emergence of chiral solutions within a non-catalytic framework for chiral polymerization. The minimal APED model for dimerization can lead to the spontaneous appearance of chiral oscillations and we describe in detail the nature of these oscillations in the enantiomeric excess, and which are the consequence of oscillations of the concentrations of the associated chemical species. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.1872v1-abstract-full').style.display = 'none'; document.getElementById('1210.1872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted in PCCP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.1060">arXiv:1210.1060</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1210.1060">pdf</a>, <a href="https://arxiv.org/ps/1210.1060">ps</a>, <a href="https://arxiv.org/format/1210.1060">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C2CC18045F">10.1039/C2CC18045F <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Induced mirror symmetry breaking via template-controlled copolymerization: theoretical insights </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">Celia Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Hochberg%2C+D">David Hochberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.1060v1-abstract-short" style="display: inline;"> A chemical equilibrium model of template-controlled copolymerization is presented for describing the outcome of the experimental induced desymmetrization scenarios recently proposed by Lahav and coworkers. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.1060v1-abstract-full" style="display: none;"> A chemical equilibrium model of template-controlled copolymerization is presented for describing the outcome of the experimental induced desymmetrization scenarios recently proposed by Lahav and coworkers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.1060v1-abstract-full').style.display = 'none'; document.getElementById('1210.1060v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This article is part of the ChemComm &#39;Chirality&#39; web themed issue. Supplementary Information available</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chem. Commun., 2012,48, 3659-3661 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.2693">arXiv:1202.2693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1202.2693">pdf</a>, <a href="https://arxiv.org/ps/1202.2693">ps</a>, <a href="https://arxiv.org/format/1202.2693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.00.002100">10.1103/PhysRevA.00.002100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multistate transitions and quantum oscillations of optical activity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">Celia Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Hochberg%2C+D">David Hochberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.2693v1-abstract-short" style="display: inline;"> We consider the effects of multistate transitions on the tunneling racemization of chiral molecules. This requires going beyond simple two-state models of enantiomers and to include transitions within a multiple-level quantum-mechanical system.We derive an effective two-level description which accounts for transitions from the enantiomers to an arbitrary number of excited states as an application&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.2693v1-abstract-full').style.display = 'inline'; document.getElementById('1202.2693v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.2693v1-abstract-full" style="display: none;"> We consider the effects of multistate transitions on the tunneling racemization of chiral molecules. This requires going beyond simple two-state models of enantiomers and to include transitions within a multiple-level quantum-mechanical system.We derive an effective two-level description which accounts for transitions from the enantiomers to an arbitrary number of excited states as an application of the Weisskopf-Wigner approximation scheme. Modifications to the optical activity from these additional states are considered in general terms under the assumption of \textit{CPT} invariance and then under T invariance. Some formal dynamical analogies between enantiomers and the neutral K-meson system are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.2693v1-abstract-full').style.display = 'none'; document.getElementById('1202.2693v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 85, 022114 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.2268">arXiv:1202.2268</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1202.2268">pdf</a>, <a href="https://arxiv.org/ps/1202.2268">ps</a>, <a href="https://arxiv.org/format/1202.2268">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C2CP22813K">10.1039/C2CP22813K <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Homochiral oligopeptides by chiral amplification: Interpretation of experimental data with a copolymerization model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">Celia Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Hochberg%2C+D">David Hochberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.2268v1-abstract-short" style="display: inline;"> We present a differential rate equation model of chiral polymerization based on a simple copolymerization scheme in which the enantiomers are added to, or removed from, the homochiral or heterochiral chains (reversible stepwise isodesmic growth or dissociation). The model is set up for closed systems and takes into account the corresponding thermodynamic constraints implied by the reversible monom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.2268v1-abstract-full').style.display = 'inline'; document.getElementById('1202.2268v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.2268v1-abstract-full" style="display: none;"> We present a differential rate equation model of chiral polymerization based on a simple copolymerization scheme in which the enantiomers are added to, or removed from, the homochiral or heterochiral chains (reversible stepwise isodesmic growth or dissociation). The model is set up for closed systems and takes into account the corresponding thermodynamic constraints implied by the reversible monomer attachments, while obeying a constant mass constraint. In its simplest form, the model depends on a single variable rate constant, the maximum chain length N, and the initial concentrations. We have fit the model to the experimental data from the Rehovot group on lattice-controlled chiral amplification of oligopeptides. We find in all the chemical systems employed except for one, that the model fits the measured relative abundances of the oligopetides with higher degrees of correlation than from a purely random polymerization process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.2268v1-abstract-full').style.display = 'none'; document.getElementById('1202.2268v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 12 figures, 9 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Chem. Chem. Phys., 2012, 14, 2301-2311 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1109.6558">arXiv:1109.6558</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1109.6558">pdf</a>, <a href="https://arxiv.org/ps/1109.6558">ps</a>, <a href="https://arxiv.org/format/1109.6558">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C1CP21011D">10.1039/C1CP21011D <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral symmetry breaking via crystallization of the glycine and 伪-amino acid system: a mathematical model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">Celia Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Hochberg%2C+D">David Hochberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1109.6558v1-abstract-short" style="display: inline;"> We introduce and numerically solve a mathematical model of the experimentally established mechanisms responsible for the symmetry breaking transition observed in the chiral crystallization experiments reported by I. Weissbuch, L. Addadi, L. Leiserowitz and M. Lahav, J. Am. Chem. Soc. 110 (1988), 561-567. The mathematical model is based on five basic processes: (1) The formation of achiral glycine&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.6558v1-abstract-full').style.display = 'inline'; document.getElementById('1109.6558v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1109.6558v1-abstract-full" style="display: none;"> We introduce and numerically solve a mathematical model of the experimentally established mechanisms responsible for the symmetry breaking transition observed in the chiral crystallization experiments reported by I. Weissbuch, L. Addadi, L. Leiserowitz and M. Lahav, J. Am. Chem. Soc. 110 (1988), 561-567. The mathematical model is based on five basic processes: (1) The formation of achiral glycine clusters in solution, (2) The nucleation of oriented glycine crystals at the air/water interface in the presence of hydrophobic amino acids, (3) A kinetic orienting effect which inhibits crystal growth, (4) The enantioselective occlusion of the amino acids from solution, and (5) The growth of oriented host glycine crystals at the interface. We translate these processes into differential rate equations. We first study the model with the orienting process (2) without (3) and then combine both allowing us to make detailed comparisons of both orienting effects which actually act in unison in the experiment. Numerical results indicate that the model can yield a high percentage orientation of the mixed crystals at the interface and the consequent resolution of the initially racemic mixture of amino acids in solution. The model thus leads to separation of enantiomeric territories, the generation and amplification of optical activity by enantioselective occlusion of chiral additives through chiral surfaces of glycine crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.6558v1-abstract-full').style.display = 'none'; document.getElementById('1109.6558v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Chem. Chem. Phys., 2011, 13, 12920-12934 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.2229">arXiv:1104.2229</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.2229">pdf</a>, <a href="https://arxiv.org/ps/1104.2229">ps</a>, <a href="https://arxiv.org/format/1104.2229">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cplett.2011.02.032">10.1016/j.cplett.2011.02.032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temporary mirror symmetry breaking and chiral excursions in open and closed systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">Celia Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Stich%2C+M">Michael Stich</a>, <a href="/search/physics?searchtype=author&amp;query=Hochberg%2C+D">David Hochberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.2229v1-abstract-short" style="display: inline;"> The reversible Frank model is capable of amplifying the initial small statistical deviations from the idealized racemic composition. This temporary amplification can be interpreted as a chiral excursion in a dynamic phase space. It is well known that if the system is open to matter and energy exchange, a permanently chiral state can be reached asymptotically, while the final state is necessarily r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2229v1-abstract-full').style.display = 'inline'; document.getElementById('1104.2229v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.2229v1-abstract-full" style="display: none;"> The reversible Frank model is capable of amplifying the initial small statistical deviations from the idealized racemic composition. This temporary amplification can be interpreted as a chiral excursion in a dynamic phase space. It is well known that if the system is open to matter and energy exchange, a permanently chiral state can be reached asymptotically, while the final state is necessarily racemic if the system is closed. In this work, we combine phase space analysis, stability analysis and numerical simulations to study the initial chiral excursions and determine how they depend on whether the system is open, semi-open or closed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2229v1-abstract-full').style.display = 'none'; document.getElementById('1104.2229v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chemical Physics Letters 505 (2011) 140-147 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.2225">arXiv:1104.2225</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.2225">pdf</a>, <a href="https://arxiv.org/ps/1104.2225">ps</a>, <a href="https://arxiv.org/format/1104.2225">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C0CP00992J">10.1039/C0CP00992J <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral polymerization: symmetry breaking and entropy production in closed systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+C">Celia Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Hochberg%2C+D">David Hochberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.2225v1-abstract-short" style="display: inline;"> We solve numerically a kinetic model of chiral polymerization in systems closed to matter and energy flow, paying special emphasis to its ability to amplify the small initial enantiomeric excesses due to the internal and unavoidable statistical fluctuations. The reaction steps are assumed to be reversible, implying a thermodynamic constraint among some of the rate constants. Absolute asymmetric sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2225v1-abstract-full').style.display = 'inline'; document.getElementById('1104.2225v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.2225v1-abstract-full" style="display: none;"> We solve numerically a kinetic model of chiral polymerization in systems closed to matter and energy flow, paying special emphasis to its ability to amplify the small initial enantiomeric excesses due to the internal and unavoidable statistical fluctuations. The reaction steps are assumed to be reversible, implying a thermodynamic constraint among some of the rate constants. Absolute asymmetric synthesis is achieved in this scheme. The system can persist for long times in quasi- stationary chiral asymmetric states before racemizing. Strong inhibition leads to long-period chiral oscillations in the enantiomeric excesses of the longest homopolymer chains. We also calculate the entropy production 蟽 per unit volume and show that 蟽 increases to a peak value either before or in the vicinity of the chiral symmetry breaking transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2225v1-abstract-full').style.display = 'none'; document.getElementById('1104.2225v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Chem. Chem. Phys., 2011, 13, 839-849 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10