CINXE.COM

Khalil AL-Wagih | Thamar University - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Khalil AL-Wagih | Thamar University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="sr6ojUbMiE8ElrU7QRe/knDcjVwdzE/1FTAJ3AMBvXC76pK66UeONhVd+1WkSDJQa6Zui4rHWrBULc/uzOdWCQ==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="khalil al-wagih" /> <meta name="description" content="Khalil AL-Wagih, Thamar University: 26 Followers, 4 Following, 15 Research papers. Research interests: Information Science, Mobile Ad Hoc Networks, and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15275,"monthly_visitors":"113 million","monthly_visitor_count":113468711,"monthly_visitor_count_in_millions":113,"user_count":277133608,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732401204000); window.Aedu.timeDifference = new Date().getTime() - 1732401204000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://thuniv.academia.edu/KhalilALWagih" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih","photo":"https://0.academia-photos.com/5278534/7382904/8299739/s65_khalil.al-wagih.jpg","has_photo":true,"department":{"id":419069,"name":"It","url":"https://thuniv.academia.edu/Departments/It/Documents","university":{"id":7392,"name":"Thamar University","url":"https://thuniv.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":459,"name":"Information Science","url":"https://www.academia.edu/Documents/in/Information_Science"},{"id":2339,"name":"Mobile Ad Hoc Networks","url":"https://www.academia.edu/Documents/in/Mobile_Ad_Hoc_Networks"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":922,"name":"Education","url":"https://www.academia.edu/Documents/in/Education"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining"},{"id":1003,"name":"Educational Technology","url":"https://www.academia.edu/Documents/in/Educational_Technology"},{"id":2065,"name":"Research Methodology","url":"https://www.academia.edu/Documents/in/Research_Methodology"},{"id":449,"name":"Software Engineering","url":"https://www.academia.edu/Documents/in/Software_Engineering"},{"id":1609,"name":"E-learning","url":"https://www.academia.edu/Documents/in/E-learning"},{"id":27,"name":"Entrepreneurship","url":"https://www.academia.edu/Documents/in/Entrepreneurship"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":389138,"link":"http://www.thuniv.net","name":"Homepage","link_domain":"www.thuniv.net","icon":"//www.google.com/s2/u/0/favicons?domain=www.thuniv.net"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://thuniv.academia.edu/KhalilALWagih&quot;,&quot;location&quot;:&quot;/KhalilALWagih&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;thuniv.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/KhalilALWagih&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-8d7745d3-05db-4ca1-8404-6b695b887404"></div> <div id="ProfileCheckPaperUpdate-react-component-8d7745d3-05db-4ca1-8404-6b695b887404"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Khalil AL-Wagih" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/5278534/7382904/8299739/s200_khalil.al-wagih.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Khalil AL-Wagih</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://thuniv.academia.edu/">Thamar University</a>, <a class="u-tcGrayDarker" href="https://thuniv.academia.edu/Departments/It/Documents">It</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Khalil" data-follow-user-id="5278534" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="5278534"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">26</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">4</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;"><b>Address:&nbsp;</b>Yemen<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="5278534">View All (12)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="5278534" href="https://www.academia.edu/Documents/in/Information_Science"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://thuniv.academia.edu/KhalilALWagih&quot;,&quot;location&quot;:&quot;/KhalilALWagih&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;thuniv.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/KhalilALWagih&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Information Science&quot;]}" data-trace="false" data-dom-id="Pill-react-component-df5512df-40ba-4227-b7a2-dfdabc38f896"></div> <div id="Pill-react-component-df5512df-40ba-4227-b7a2-dfdabc38f896"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="5278534" href="https://www.academia.edu/Documents/in/Mobile_Ad_Hoc_Networks"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Mobile Ad Hoc Networks&quot;]}" data-trace="false" data-dom-id="Pill-react-component-c78b6122-2129-41f3-9416-5f086f6f8ca9"></div> <div id="Pill-react-component-c78b6122-2129-41f3-9416-5f086f6f8ca9"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="5278534" href="https://www.academia.edu/Documents/in/Computer_Science"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Computer Science&quot;]}" data-trace="false" data-dom-id="Pill-react-component-dc16c704-dbe1-480e-ae09-fd388fbf46f0"></div> <div id="Pill-react-component-dc16c704-dbe1-480e-ae09-fd388fbf46f0"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="5278534" href="https://www.academia.edu/Documents/in/Education"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Education&quot;]}" data-trace="false" data-dom-id="Pill-react-component-29b503f8-e583-465b-9299-9c562ae9ffb1"></div> <div id="Pill-react-component-29b503f8-e583-465b-9299-9c562ae9ffb1"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="5278534" href="https://www.academia.edu/Documents/in/Technology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Technology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-ba412209-d729-4a55-a75f-b8fb084cb27c"></div> <div id="Pill-react-component-ba412209-d729-4a55-a75f-b8fb084cb27c"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Khalil AL-Wagih</h3></div><div class="js-work-strip profile--work_container" data-work-id="111320237"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111320237/Efficient_Implementation_of_CDP_Algorithms_for_Optimal_Evaluation_of_Array_Expressions"><img alt="Research paper thumbnail of Efficient Implementation of CDP Algorithms for Optimal Evaluation of Array Expressions" class="work-thumbnail" src="https://attachments.academia-assets.com/108891363/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111320237/Efficient_Implementation_of_CDP_Algorithms_for_Optimal_Evaluation_of_Array_Expressions">Efficient Implementation of CDP Algorithms for Optimal Evaluation of Array Expressions</a></div><div class="wp-workCard_item"><span>The Egyptian International Journal of Engineering Sciences and Technology (Print)</span><span>, Apr 1, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2879efcf9f8e1bf150a01f70c45c6b69" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108891363,&quot;asset_id&quot;:111320237,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108891363/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111320237"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111320237"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111320237; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111320237]").text(description); $(".js-view-count[data-work-id=111320237]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111320237; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111320237']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111320237, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2879efcf9f8e1bf150a01f70c45c6b69" } } $('.js-work-strip[data-work-id=111320237]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111320237,"title":"Efficient Implementation of CDP Algorithms for Optimal Evaluation of Array Expressions","translated_title":"","metadata":{"publication_date":{"day":1,"month":4,"year":2015,"errors":{}},"publication_name":"The Egyptian International Journal of Engineering Sciences and Technology (Print)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/111320237/Efficient_Implementation_of_CDP_Algorithms_for_Optimal_Evaluation_of_Array_Expressions","translated_internal_url":"","created_at":"2023-12-13T04:31:45.215-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108891363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108891363/thumbnails/1.jpg","file_name":"article_97112_572da51d7bbe61c498e9d793e2023418.pdf","download_url":"https://www.academia.edu/attachments/108891363/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Efficient_Implementation_of_CDP_Algorith.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108891363/article_97112_572da51d7bbe61c498e9d793e2023418-libre.pdf?1702471556=\u0026response-content-disposition=attachment%3B+filename%3DEfficient_Implementation_of_CDP_Algorith.pdf\u0026Expires=1732404803\u0026Signature=X67-eWlA9XXdTAcoMRVifRuq6Go9Lu5CRWrLKYHly6ingCMOWqns-JaWUMPyuFETaGYTRj~cZV6CkRTpELMX9c5AcosnQ96m6Z8uKqniWi7tr5pZ4JFgGI9AToJGpJpU7MlCZIo0Dwi9k7RN1T2xE3Z8vUBg2CKtUAVQgD6V19wBAIB-zeY6gTdc7gzpYGgTaRmG5tutUuZ6OdLuaN0SFcGzZx~nKmPdgCPhBElYxHbhKKbu1VTcojEVpQ3qlY9YaPsPIgjbKX3tBdE0NAxAevg~-DXla5BxNjQqAfhm-uhXbqwjsbhEN1uidKVHZqEnpfgdzRAALZddlimY-fiazA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Efficient_Implementation_of_CDP_Algorithms_for_Optimal_Evaluation_of_Array_Expressions","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":108891363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108891363/thumbnails/1.jpg","file_name":"article_97112_572da51d7bbe61c498e9d793e2023418.pdf","download_url":"https://www.academia.edu/attachments/108891363/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Efficient_Implementation_of_CDP_Algorith.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108891363/article_97112_572da51d7bbe61c498e9d793e2023418-libre.pdf?1702471556=\u0026response-content-disposition=attachment%3B+filename%3DEfficient_Implementation_of_CDP_Algorith.pdf\u0026Expires=1732404803\u0026Signature=X67-eWlA9XXdTAcoMRVifRuq6Go9Lu5CRWrLKYHly6ingCMOWqns-JaWUMPyuFETaGYTRj~cZV6CkRTpELMX9c5AcosnQ96m6Z8uKqniWi7tr5pZ4JFgGI9AToJGpJpU7MlCZIo0Dwi9k7RN1T2xE3Z8vUBg2CKtUAVQgD6V19wBAIB-zeY6gTdc7gzpYGgTaRmG5tutUuZ6OdLuaN0SFcGzZx~nKmPdgCPhBElYxHbhKKbu1VTcojEVpQ3qlY9YaPsPIgjbKX3tBdE0NAxAevg~-DXla5BxNjQqAfhm-uhXbqwjsbhEN1uidKVHZqEnpfgdzRAALZddlimY-fiazA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108891362,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108891362/thumbnails/1.jpg","file_name":"article_97112_572da51d7bbe61c498e9d793e2023418.pdf","download_url":"https://www.academia.edu/attachments/108891362/download_file","bulk_download_file_name":"Efficient_Implementation_of_CDP_Algorith.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108891362/article_97112_572da51d7bbe61c498e9d793e2023418-libre.pdf?1702471558=\u0026response-content-disposition=attachment%3B+filename%3DEfficient_Implementation_of_CDP_Algorith.pdf\u0026Expires=1732404803\u0026Signature=OtOrzABEK4NpS32gJl3Hc2zoXkrqg8vTWn58Os8Q9wr~n5YRwkDKmDhfhkUdxP0VAzF9wUGo1uOibJb-YvgcXVADkw-ogaTpQy8eOLWZOyb0xvnfq19FgWJ5cVT-QZOU-ZQLjZvZZqzxDSna9At2FWFDifTJWHSN93KEec23AR0CN2SQQTr7Qn9DiHoUooFa1jIdx9Vf03FEC5JMMPm8U8uJEcaZwG4Wo3-~99I6UOtfsP17An3P7O~gTmCb~02UbRM~K4dhCb8F-NIPajzojwQdvAj5B-7YZAk0Wa8BRTEnQCcM4WFCXbJUx-qrgRQVIG6R8lbMp6cHT3qS2QLEzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":37012470,"url":"http://eijest.journals.ekb.eg/article_97112_572da51d7bbe61c498e9d793e2023418.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="103344521"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/103344521/Automatic_Analysis_of_MRI_Images_for_Early_Prediction_of_Alzheimer_s_Disease_Stages_Based_on_Hybrid_Features_of_CNN_and_Handcrafted_Features"><img alt="Research paper thumbnail of Automatic Analysis of MRI Images for Early Prediction of Alzheimer’s Disease Stages Based on Hybrid Features of CNN and Handcrafted Features" class="work-thumbnail" src="https://attachments.academia-assets.com/103376311/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/103344521/Automatic_Analysis_of_MRI_Images_for_Early_Prediction_of_Alzheimer_s_Disease_Stages_Based_on_Hybrid_Features_of_CNN_and_Handcrafted_Features">Automatic Analysis of MRI Images for Early Prediction of Alzheimer’s Disease Stages Based on Hybrid Features of CNN and Handcrafted Features</a></div><div class="wp-workCard_item"><span>Diagnostics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Alzheimer’s disease (AD) is considered one of the challenges facing health care in the modern cen...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Alzheimer’s disease (AD) is considered one of the challenges facing health care in the modern century; until now, there has been no effective treatment to cure it, but there are drugs to slow its progression. Therefore, early detection of Alzheimer’s is vital to take needful measures before it develops into brain damage which cannot be treated. Magnetic resonance imaging (MRI) techniques have contributed to the diagnosis and prediction of its progression. MRI images require highly experienced doctors and radiologists, and the analysis of MRI images takes time to analyze each slice. Thus, deep learning techniques play a vital role in analyzing a huge amount of MRI images with high accuracy to detect Alzheimer’s and predict its progression. Because of the similarities in the characteristics of the early stages of Alzheimer’s, this study aimed to extract the features in several methods and integrate the features extracted from more than one method into the same features matrix. This st...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5d2bf014593b3836497dcb0f9cc85d7a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:103376311,&quot;asset_id&quot;:103344521,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/103376311/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="103344521"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="103344521"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 103344521; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=103344521]").text(description); $(".js-view-count[data-work-id=103344521]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 103344521; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='103344521']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 103344521, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5d2bf014593b3836497dcb0f9cc85d7a" } } $('.js-work-strip[data-work-id=103344521]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":103344521,"title":"Automatic Analysis of MRI Images for Early Prediction of Alzheimer’s Disease Stages Based on Hybrid Features of CNN and Handcrafted Features","translated_title":"","metadata":{"abstract":"Alzheimer’s disease (AD) is considered one of the challenges facing health care in the modern century; until now, there has been no effective treatment to cure it, but there are drugs to slow its progression. Therefore, early detection of Alzheimer’s is vital to take needful measures before it develops into brain damage which cannot be treated. Magnetic resonance imaging (MRI) techniques have contributed to the diagnosis and prediction of its progression. MRI images require highly experienced doctors and radiologists, and the analysis of MRI images takes time to analyze each slice. Thus, deep learning techniques play a vital role in analyzing a huge amount of MRI images with high accuracy to detect Alzheimer’s and predict its progression. Because of the similarities in the characteristics of the early stages of Alzheimer’s, this study aimed to extract the features in several methods and integrate the features extracted from more than one method into the same features matrix. This st...","publisher":"MDPI AG","publication_name":"Diagnostics"},"translated_abstract":"Alzheimer’s disease (AD) is considered one of the challenges facing health care in the modern century; until now, there has been no effective treatment to cure it, but there are drugs to slow its progression. Therefore, early detection of Alzheimer’s is vital to take needful measures before it develops into brain damage which cannot be treated. Magnetic resonance imaging (MRI) techniques have contributed to the diagnosis and prediction of its progression. MRI images require highly experienced doctors and radiologists, and the analysis of MRI images takes time to analyze each slice. Thus, deep learning techniques play a vital role in analyzing a huge amount of MRI images with high accuracy to detect Alzheimer’s and predict its progression. Because of the similarities in the characteristics of the early stages of Alzheimer’s, this study aimed to extract the features in several methods and integrate the features extracted from more than one method into the same features matrix. This st...","internal_url":"https://www.academia.edu/103344521/Automatic_Analysis_of_MRI_Images_for_Early_Prediction_of_Alzheimer_s_Disease_Stages_Based_on_Hybrid_Features_of_CNN_and_Handcrafted_Features","translated_internal_url":"","created_at":"2023-06-14T09:35:50.295-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":103376311,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/103376311/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/103376311/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Analysis_of_MRI_Images_for_Ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/103376311/pdf-libre.pdf?1686762111=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Analysis_of_MRI_Images_for_Ear.pdf\u0026Expires=1732404803\u0026Signature=JDbcrh1HTyE7v33dGLu02IO5aqv5rZVMhHTRWhZ7faFvwUwgkYbtop-Rlty~Vw3RiNsy4dRTxsqk4Gc76iY9WKR1EAK8GH42oS2DykxdKE6TO50npON9cCJyeVJCPORchmcnyhiGlqaVsyV6z0GxeTLgRZHVwcxZuCig3p3JBelYezGTDpELqNmbHW1BOi~x1X-pGWzLmRdTxbMUjfbioP-z55JKdJdEWcUCIxP51uNj-RKkTpQt93KP01vcJK6fSHv6KxlKAjO7dHkKTHO-1B36HYcq5reojDwuqGcB9uhY3-AsuQJRM5CsuKx0UUOE-qjSqYxs24yz-Lkk~cfxAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Automatic_Analysis_of_MRI_Images_for_Early_Prediction_of_Alzheimer_s_Disease_Stages_Based_on_Hybrid_Features_of_CNN_and_Handcrafted_Features","translated_slug":"","page_count":22,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":103376311,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/103376311/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/103376311/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Analysis_of_MRI_Images_for_Ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/103376311/pdf-libre.pdf?1686762111=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Analysis_of_MRI_Images_for_Ear.pdf\u0026Expires=1732404803\u0026Signature=JDbcrh1HTyE7v33dGLu02IO5aqv5rZVMhHTRWhZ7faFvwUwgkYbtop-Rlty~Vw3RiNsy4dRTxsqk4Gc76iY9WKR1EAK8GH42oS2DykxdKE6TO50npON9cCJyeVJCPORchmcnyhiGlqaVsyV6z0GxeTLgRZHVwcxZuCig3p3JBelYezGTDpELqNmbHW1BOi~x1X-pGWzLmRdTxbMUjfbioP-z55JKdJdEWcUCIxP51uNj-RKkTpQt93KP01vcJK6fSHv6KxlKAjO7dHkKTHO-1B36HYcq5reojDwuqGcB9uhY3-AsuQJRM5CsuKx0UUOE-qjSqYxs24yz-Lkk~cfxAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":103376310,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/103376310/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/103376310/download_file","bulk_download_file_name":"Automatic_Analysis_of_MRI_Images_for_Ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/103376310/pdf-libre.pdf?1686762133=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Analysis_of_MRI_Images_for_Ear.pdf\u0026Expires=1732404803\u0026Signature=OL07IJAlTAMk8OhhDea7b2DCjue-q7rWuQ8Ol9-VSKZvZdPCblQXjBzz62BO~LAA9xZdLaUKDnnJBB0x4BD4xTIRWgbLVbTm1lP6ii0~FyT~KfZwSV7Laqig4WSjAjsM~tXE~tJ6svl6SC09Dnz7df8NMeOKLUTjLgQ5DgHupUjsrHkCwG3OjZxuSjrNiC5NZXs5gA8fMkM0xannL4u1cnnnnTpq5jTDy7-Gqjr6lDmxqNSkrBZXBrGKAx~QGkMOffBS3VqWP57TxLaHw8Th33MsJxbSyzsgFW1ZfUNopEOd8nGHZamp-ursPHPUmFK0d9xq9UI6EWWfBrcGlaOCAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":129880,"name":"Diagnostics","url":"https://www.academia.edu/Documents/in/Diagnostics"}],"urls":[{"id":32259492,"url":"https://www.mdpi.com/2075-4418/13/9/1654/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="103344517"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/103344517/Development_of_Advanced_Monitoring_System_in_Real_Time_Environment"><img alt="Research paper thumbnail of Development of Advanced Monitoring System in Real Time Environment" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/103344517/Development_of_Advanced_Monitoring_System_in_Real_Time_Environment">Development of Advanced Monitoring System in Real Time Environment</a></div><div class="wp-workCard_item"><span>Thamar University Journal of Natural &amp;amp; Applied Sciences</span><span>, Jan 27, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="103344517"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="103344517"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 103344517; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=103344517]").text(description); $(".js-view-count[data-work-id=103344517]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 103344517; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='103344517']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 103344517, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=103344517]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":103344517,"title":"Development of Advanced Monitoring System in Real Time Environment","translated_title":"","metadata":{"publication_date":{"day":27,"month":1,"year":2023,"errors":{}},"publication_name":"Thamar University Journal of Natural \u0026amp; Applied Sciences"},"translated_abstract":null,"internal_url":"https://www.academia.edu/103344517/Development_of_Advanced_Monitoring_System_in_Real_Time_Environment","translated_internal_url":"","created_at":"2023-06-14T09:35:45.210-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Development_of_Advanced_Monitoring_System_in_Real_Time_Environment","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":32259491,"url":"https://doi.org/10.59167/tujnas.v1i1.1257"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="103344506"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/103344506/A_Study_of_%CE%B1_%CE%B2_Tracker_with_Some_New_Algorithms_for_Selecting_%CE%B1_and_%CE%B2_Parameters"><img alt="Research paper thumbnail of A Study of α β Tracker with Some New Algorithms for Selecting α and β Parameters" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/103344506/A_Study_of_%CE%B1_%CE%B2_Tracker_with_Some_New_Algorithms_for_Selecting_%CE%B1_and_%CE%B2_Parameters">A Study of α β Tracker with Some New Algorithms for Selecting α and β Parameters</a></div><div class="wp-workCard_item"><span>Thamar University Journal of Natural &amp;amp; Applied Sciences</span><span>, Jan 27, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="103344506"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="103344506"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 103344506; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=103344506]").text(description); $(".js-view-count[data-work-id=103344506]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 103344506; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='103344506']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 103344506, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=103344506]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":103344506,"title":"A Study of α β Tracker with Some New Algorithms for Selecting α and β Parameters","translated_title":"","metadata":{"publication_date":{"day":27,"month":1,"year":2023,"errors":{}},"publication_name":"Thamar University Journal of Natural \u0026amp; Applied Sciences"},"translated_abstract":null,"internal_url":"https://www.academia.edu/103344506/A_Study_of_%CE%B1_%CE%B2_Tracker_with_Some_New_Algorithms_for_Selecting_%CE%B1_and_%CE%B2_Parameters","translated_internal_url":"","created_at":"2023-06-14T09:35:21.068-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Study_of_α_β_Tracker_with_Some_New_Algorithms_for_Selecting_α_and_β_Parameters","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"}],"urls":[{"id":32259487,"url":"https://doi.org/10.59167/tujnas.v1i1.1258"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="103344493"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/103344493/Hybrid_Techniques_of_X_ray_Analysis_to_Predict_Knee_Osteoarthritis_Grades_Based_on_Fusion_Features_of_CNN_and_Handcrafted"><img alt="Research paper thumbnail of Hybrid Techniques of X-ray Analysis to Predict Knee Osteoarthritis Grades Based on Fusion Features of CNN and Handcrafted" class="work-thumbnail" src="https://attachments.academia-assets.com/103376299/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/103344493/Hybrid_Techniques_of_X_ray_Analysis_to_Predict_Knee_Osteoarthritis_Grades_Based_on_Fusion_Features_of_CNN_and_Handcrafted">Hybrid Techniques of X-ray Analysis to Predict Knee Osteoarthritis Grades Based on Fusion Features of CNN and Handcrafted</a></div><div class="wp-workCard_item"><span>Diagnostics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Knee osteoarthritis (KOA) is a chronic disease that impedes movement, especially in the elderly, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Knee osteoarthritis (KOA) is a chronic disease that impedes movement, especially in the elderly, affecting more than 5% of people worldwide. KOA goes through many stages, from the mild grade that can be treated to the severe grade in which the knee must be replaced. Therefore, early diagnosis of KOA is essential to avoid its development to the advanced stages. X-rays are one of the vital techniques for the early detection of knee infections, which requires highly experienced doctors and radiologists to distinguish Kellgren-Lawrence (KL) grading. Thus, artificial intelligence techniques solve the shortcomings of manual diagnosis. This study developed three methodologies for the X-ray analysis of both the Osteoporosis Initiative (OAI) and Rani Channamma University (RCU) datasets for diagnosing KOA and discrimination between KL grades. In all methodologies, the Principal Component Analysis (PCA) algorithm was applied after the CNN models to delete the unimportant and redundant features...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b8aa3bd2eb0b09a0dd292cb8a907c200" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:103376299,&quot;asset_id&quot;:103344493,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/103376299/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="103344493"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="103344493"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 103344493; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=103344493]").text(description); $(".js-view-count[data-work-id=103344493]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 103344493; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='103344493']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 103344493, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b8aa3bd2eb0b09a0dd292cb8a907c200" } } $('.js-work-strip[data-work-id=103344493]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":103344493,"title":"Hybrid Techniques of X-ray Analysis to Predict Knee Osteoarthritis Grades Based on Fusion Features of CNN and Handcrafted","translated_title":"","metadata":{"abstract":"Knee osteoarthritis (KOA) is a chronic disease that impedes movement, especially in the elderly, affecting more than 5% of people worldwide. KOA goes through many stages, from the mild grade that can be treated to the severe grade in which the knee must be replaced. Therefore, early diagnosis of KOA is essential to avoid its development to the advanced stages. X-rays are one of the vital techniques for the early detection of knee infections, which requires highly experienced doctors and radiologists to distinguish Kellgren-Lawrence (KL) grading. Thus, artificial intelligence techniques solve the shortcomings of manual diagnosis. This study developed three methodologies for the X-ray analysis of both the Osteoporosis Initiative (OAI) and Rani Channamma University (RCU) datasets for diagnosing KOA and discrimination between KL grades. In all methodologies, the Principal Component Analysis (PCA) algorithm was applied after the CNN models to delete the unimportant and redundant features...","publisher":"MDPI AG","publication_name":"Diagnostics"},"translated_abstract":"Knee osteoarthritis (KOA) is a chronic disease that impedes movement, especially in the elderly, affecting more than 5% of people worldwide. KOA goes through many stages, from the mild grade that can be treated to the severe grade in which the knee must be replaced. Therefore, early diagnosis of KOA is essential to avoid its development to the advanced stages. X-rays are one of the vital techniques for the early detection of knee infections, which requires highly experienced doctors and radiologists to distinguish Kellgren-Lawrence (KL) grading. Thus, artificial intelligence techniques solve the shortcomings of manual diagnosis. This study developed three methodologies for the X-ray analysis of both the Osteoporosis Initiative (OAI) and Rani Channamma University (RCU) datasets for diagnosing KOA and discrimination between KL grades. In all methodologies, the Principal Component Analysis (PCA) algorithm was applied after the CNN models to delete the unimportant and redundant features...","internal_url":"https://www.academia.edu/103344493/Hybrid_Techniques_of_X_ray_Analysis_to_Predict_Knee_Osteoarthritis_Grades_Based_on_Fusion_Features_of_CNN_and_Handcrafted","translated_internal_url":"","created_at":"2023-06-14T09:35:09.757-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":103376299,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/103376299/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/103376299/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hybrid_Techniques_of_X_ray_Analysis_to_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/103376299/pdf-libre.pdf?1686762119=\u0026response-content-disposition=attachment%3B+filename%3DHybrid_Techniques_of_X_ray_Analysis_to_P.pdf\u0026Expires=1732404803\u0026Signature=KOhygpCcNcwx3jlJzldNWDhOr11sPkHDm~egIyJTSwwyoi3o5IoYGW-yehcKuzTFGrvgF5-EH6rBrLY-cmxanH4IK9R46Ab4vudW~0PxPrPwHmWl1ZQFeK8DX~3U7wDn9~dCD-y4ymQtm0f0cXhYLnwUKUSsmzJG0bUYNfKCozCPH5CRWhI4q9mvA1d69Z7zb~GUrHAOt7kkMFh4trSL5f27v9dKR2ofmyu8rJWDlOg6xOR0wEE9~YADqF2TRc2JeXxjRROwAlnGFmBrpauD67yT7WbJnE95jHeONZrA9sNZPd8Q9VyS5bhYwAamT~qmvzlPLxMHOATSVGKCjD5KHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hybrid_Techniques_of_X_ray_Analysis_to_Predict_Knee_Osteoarthritis_Grades_Based_on_Fusion_Features_of_CNN_and_Handcrafted","translated_slug":"","page_count":28,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":103376299,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/103376299/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/103376299/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hybrid_Techniques_of_X_ray_Analysis_to_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/103376299/pdf-libre.pdf?1686762119=\u0026response-content-disposition=attachment%3B+filename%3DHybrid_Techniques_of_X_ray_Analysis_to_P.pdf\u0026Expires=1732404803\u0026Signature=KOhygpCcNcwx3jlJzldNWDhOr11sPkHDm~egIyJTSwwyoi3o5IoYGW-yehcKuzTFGrvgF5-EH6rBrLY-cmxanH4IK9R46Ab4vudW~0PxPrPwHmWl1ZQFeK8DX~3U7wDn9~dCD-y4ymQtm0f0cXhYLnwUKUSsmzJG0bUYNfKCozCPH5CRWhI4q9mvA1d69Z7zb~GUrHAOt7kkMFh4trSL5f27v9dKR2ofmyu8rJWDlOg6xOR0wEE9~YADqF2TRc2JeXxjRROwAlnGFmBrpauD67yT7WbJnE95jHeONZrA9sNZPd8Q9VyS5bhYwAamT~qmvzlPLxMHOATSVGKCjD5KHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":129880,"name":"Diagnostics","url":"https://www.academia.edu/Documents/in/Diagnostics"}],"urls":[{"id":32259479,"url":"https://www.mdpi.com/2075-4418/13/9/1609/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85974734"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85974734/An_Efficient_Approach_For_Mobile_Core_Services_Placement_On_Network_Function_Virtualization"><img alt="Research paper thumbnail of An Efficient Approach For Mobile Core Services Placement On Network Function Virtualization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85974734/An_Efficient_Approach_For_Mobile_Core_Services_Placement_On_Network_Function_Virtualization">An Efficient Approach For Mobile Core Services Placement On Network Function Virtualization</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85974734"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85974734"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85974734; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85974734]").text(description); $(".js-view-count[data-work-id=85974734]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85974734; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85974734']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85974734, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85974734]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85974734,"title":"An Efficient Approach For Mobile Core Services Placement On Network Function Virtualization","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/85974734/An_Efficient_Approach_For_Mobile_Core_Services_Placement_On_Network_Function_Virtualization","translated_internal_url":"","created_at":"2022-09-01T03:17:26.161-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"An_Efficient_Approach_For_Mobile_Core_Services_Placement_On_Network_Function_Virtualization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85974731"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85974731/A_Hybrid_Approach_of_Association_Rule_Hidden_Makov_Model_to_Improve_Efficiency_Medical_Text_Classification"><img alt="Research paper thumbnail of A Hybrid Approach of Association Rule Hidden Makov Model to Improve Efficiency Medical Text Classification" class="work-thumbnail" src="https://attachments.academia-assets.com/90529137/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85974731/A_Hybrid_Approach_of_Association_Rule_Hidden_Makov_Model_to_Improve_Efficiency_Medical_Text_Classification">A Hybrid Approach of Association Rule Hidden Makov Model to Improve Efficiency Medical Text Classification</a></div><div class="wp-workCard_item"><span>International Journal of Computer Applications Technology and Research</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="99fbc1b8a5cfb3414f6a002e848ec784" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90529137,&quot;asset_id&quot;:85974731,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90529137/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85974731"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85974731"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85974731; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85974731]").text(description); $(".js-view-count[data-work-id=85974731]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85974731; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85974731']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85974731, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "99fbc1b8a5cfb3414f6a002e848ec784" } } $('.js-work-strip[data-work-id=85974731]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85974731,"title":"A Hybrid Approach of Association Rule Hidden Makov Model to Improve Efficiency Medical Text Classification","translated_title":"","metadata":{"publisher":"Association of Technology and Science","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"International Journal of Computer Applications Technology and Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/85974731/A_Hybrid_Approach_of_Association_Rule_Hidden_Makov_Model_to_Improve_Efficiency_Medical_Text_Classification","translated_internal_url":"","created_at":"2022-09-01T03:17:24.229-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90529137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90529137/thumbnails/1.jpg","file_name":"ijcatr0702.pdf","download_url":"https://www.academia.edu/attachments/90529137/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Hybrid_Approach_of_Association_Rule_Hi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90529137/ijcatr0702-libre.pdf?1662029878=\u0026response-content-disposition=attachment%3B+filename%3DA_Hybrid_Approach_of_Association_Rule_Hi.pdf\u0026Expires=1732404803\u0026Signature=cFMPv9puLKsIJkf~zF30EY-Pr8YvzRT9MksIC3pqQxlhDPG0ws3YFw4SzTvnP3ednlZ~DmZHwHYKAgqa9sa9JcN4W4ADrqYpnaY24LkP1VIBluq2lGvFil2xSGsBFqVGo~3JWONyYl8dX6NuHzMqthyfApgXs9CZJ2QKIYoOv3~UvVCKF3pXDtBVDJt1NMqwRThdVCfKGgjfwm~R1GmCzyFsZjKUDmdT151itPSx7ty32yT~eAF90VF~PHOsJ118LDjf5ySC8IPFW0-0jMV3Ppwqjp1ZIkp3FiX5JhtQG5TRSb2TXjE~LZxIwJYbn1sxO6qyFFC6LbH3ylTDaJeZnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Hybrid_Approach_of_Association_Rule_Hidden_Makov_Model_to_Improve_Efficiency_Medical_Text_Classification","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":90529137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90529137/thumbnails/1.jpg","file_name":"ijcatr0702.pdf","download_url":"https://www.academia.edu/attachments/90529137/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Hybrid_Approach_of_Association_Rule_Hi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90529137/ijcatr0702-libre.pdf?1662029878=\u0026response-content-disposition=attachment%3B+filename%3DA_Hybrid_Approach_of_Association_Rule_Hi.pdf\u0026Expires=1732404803\u0026Signature=cFMPv9puLKsIJkf~zF30EY-Pr8YvzRT9MksIC3pqQxlhDPG0ws3YFw4SzTvnP3ednlZ~DmZHwHYKAgqa9sa9JcN4W4ADrqYpnaY24LkP1VIBluq2lGvFil2xSGsBFqVGo~3JWONyYl8dX6NuHzMqthyfApgXs9CZJ2QKIYoOv3~UvVCKF3pXDtBVDJt1NMqwRThdVCfKGgjfwm~R1GmCzyFsZjKUDmdT151itPSx7ty32yT~eAF90VF~PHOsJ118LDjf5ySC8IPFW0-0jMV3Ppwqjp1ZIkp3FiX5JhtQG5TRSb2TXjE~LZxIwJYbn1sxO6qyFFC6LbH3ylTDaJeZnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85974728"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85974728/Quality_of_Service_Routing_Protocol_for_Mobile_Ad_hoc_Network"><img alt="Research paper thumbnail of Quality of Service Routing Protocol for Mobile Ad hoc Network" class="work-thumbnail" src="https://attachments.academia-assets.com/90529134/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85974728/Quality_of_Service_Routing_Protocol_for_Mobile_Ad_hoc_Network">Quality of Service Routing Protocol for Mobile Ad hoc Network</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The wireless Ad-Hoc network is infrastruc t re less with nodes in the network area are random ly ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The wireless Ad-Hoc network is infrastruc t re less with nodes in the network area are random ly moving and communicating between nodes while roamin g. In this paper we propose the TDMA Based Energy Efficient Quality of Service Routing Protoco l (EEQOSRP). The network scenario is established by considering 1000 X 1000 area and deploying randomly moving nodes using Too l Command Language (TCL). The resource reservation is used to decompos e the total simulation time of network into smaller time slots depending upon number of nodes in the network using TDMA technique. The route is established between Source and Destination node using AODV with QOS and Multi hop routing technique. The data packets are scheduled at Source node by assigning p riority and the path is established between nodes u sing shortest path and implemented using C++. It is obse rved that the values of Energy Consumption, Packet Delivery Ratio, End to End Delay and Throughput are improved Compared to Existing algorit...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="20b39a9362e88a3d7ef623f1e7760ce0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90529134,&quot;asset_id&quot;:85974728,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90529134/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85974728"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85974728"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85974728; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85974728]").text(description); $(".js-view-count[data-work-id=85974728]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85974728; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85974728']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85974728, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "20b39a9362e88a3d7ef623f1e7760ce0" } } $('.js-work-strip[data-work-id=85974728]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85974728,"title":"Quality of Service Routing Protocol for Mobile Ad hoc Network","translated_title":"","metadata":{"abstract":"The wireless Ad-Hoc network is infrastruc t re less with nodes in the network area are random ly moving and communicating between nodes while roamin g. In this paper we propose the TDMA Based Energy Efficient Quality of Service Routing Protoco l (EEQOSRP). The network scenario is established by considering 1000 X 1000 area and deploying randomly moving nodes using Too l Command Language (TCL). The resource reservation is used to decompos e the total simulation time of network into smaller time slots depending upon number of nodes in the network using TDMA technique. The route is established between Source and Destination node using AODV with QOS and Multi hop routing technique. The data packets are scheduled at Source node by assigning p riority and the path is established between nodes u sing shortest path and implemented using C++. It is obse rved that the values of Energy Consumption, Packet Delivery Ratio, End to End Delay and Throughput are improved Compared to Existing algorit...","publication_date":{"day":null,"month":null,"year":2013,"errors":{}}},"translated_abstract":"The wireless Ad-Hoc network is infrastruc t re less with nodes in the network area are random ly moving and communicating between nodes while roamin g. In this paper we propose the TDMA Based Energy Efficient Quality of Service Routing Protoco l (EEQOSRP). The network scenario is established by considering 1000 X 1000 area and deploying randomly moving nodes using Too l Command Language (TCL). The resource reservation is used to decompos e the total simulation time of network into smaller time slots depending upon number of nodes in the network using TDMA technique. The route is established between Source and Destination node using AODV with QOS and Multi hop routing technique. The data packets are scheduled at Source node by assigning p riority and the path is established between nodes u sing shortest path and implemented using C++. It is obse rved that the values of Energy Consumption, Packet Delivery Ratio, End to End Delay and Throughput are improved Compared to Existing algorit...","internal_url":"https://www.academia.edu/85974728/Quality_of_Service_Routing_Protocol_for_Mobile_Ad_hoc_Network","translated_internal_url":"","created_at":"2022-09-01T03:17:22.279-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90529134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90529134/thumbnails/1.jpg","file_name":"V2I3201302.pdf","download_url":"https://www.academia.edu/attachments/90529134/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Quality_of_Service_Routing_Protocol_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90529134/V2I3201302-libre.pdf?1662029878=\u0026response-content-disposition=attachment%3B+filename%3DQuality_of_Service_Routing_Protocol_for.pdf\u0026Expires=1732404803\u0026Signature=I3c2y28p~KCqtBqvUG12hvE~0oe~4Y7EGe8uaGPevWPGRyYmlRrK0KmySBq6KWuzRINklvEBl9J7-QXnEaYpT6svQ4yi6OC4sCaEveEFRDq2kaTrdna~yJkX3C6gODR~Y5y~GnnSyV8pRd91MIdBwOGEj1OZ9BokYNWXrle-dBhCOuQhEDdiiqw65vm4dshMQaZeHUVk0mUr64rqC6d4JAlSBBoVJ-0p3x2SDM3grQP~xwaq0pNtroQdjTAASGeWreqVbU8OTc-ojqt2joFIFkB4B7XSzSQdqhU5wMaKj-i7q1rh3BxwvsWvOWoKVaFAOymBoFx10URmJCiMCXJi8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Quality_of_Service_Routing_Protocol_for_Mobile_Ad_hoc_Network","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":90529134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90529134/thumbnails/1.jpg","file_name":"V2I3201302.pdf","download_url":"https://www.academia.edu/attachments/90529134/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Quality_of_Service_Routing_Protocol_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90529134/V2I3201302-libre.pdf?1662029878=\u0026response-content-disposition=attachment%3B+filename%3DQuality_of_Service_Routing_Protocol_for.pdf\u0026Expires=1732404803\u0026Signature=I3c2y28p~KCqtBqvUG12hvE~0oe~4Y7EGe8uaGPevWPGRyYmlRrK0KmySBq6KWuzRINklvEBl9J7-QXnEaYpT6svQ4yi6OC4sCaEveEFRDq2kaTrdna~yJkX3C6gODR~Y5y~GnnSyV8pRd91MIdBwOGEj1OZ9BokYNWXrle-dBhCOuQhEDdiiqw65vm4dshMQaZeHUVk0mUr64rqC6d4JAlSBBoVJ-0p3x2SDM3grQP~xwaq0pNtroQdjTAASGeWreqVbU8OTc-ojqt2joFIFkB4B7XSzSQdqhU5wMaKj-i7q1rh3BxwvsWvOWoKVaFAOymBoFx10URmJCiMCXJi8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":62540,"name":"Computer Network","url":"https://www.academia.edu/Documents/in/Computer_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85974714"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85974714/A_Chaotic_Bat_Algorithm_for_Solving_Definite_Integral"><img alt="Research paper thumbnail of A Chaotic Bat Algorithm for Solving Definite Integral" class="work-thumbnail" src="https://attachments.academia-assets.com/90529124/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85974714/A_Chaotic_Bat_Algorithm_for_Solving_Definite_Integral">A Chaotic Bat Algorithm for Solving Definite Integral</a></div><div class="wp-workCard_item"><span>INTERNATIONAL JOURNAL OF COMPUTERS &amp; TECHNOLOGY</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, an Improved Bat Algorithm with Chaos (IBACH) is presented for solving definite int...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, an Improved Bat Algorithm with Chaos (IBACH) is presented for solving definite integral. The IBACH satisfies the question of parallel calculating numerical integration in engineering and those segmentation points that are adaptive. Several numerical simulation results show that the algorithm offers an effective way to calculate numerical value of definite integrals; it has a high convergence rate, a high accuracy and robustness.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e6f976f951fe8df6967ea6600bbf9bf6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90529124,&quot;asset_id&quot;:85974714,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90529124/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85974714"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85974714"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85974714; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85974714]").text(description); $(".js-view-count[data-work-id=85974714]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85974714; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85974714']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85974714, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e6f976f951fe8df6967ea6600bbf9bf6" } } $('.js-work-strip[data-work-id=85974714]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85974714,"title":"A Chaotic Bat Algorithm for Solving Definite Integral","translated_title":"","metadata":{"abstract":"In this paper, an Improved Bat Algorithm with Chaos (IBACH) is presented for solving definite integral. The IBACH satisfies the question of parallel calculating numerical integration in engineering and those segmentation points that are adaptive. Several numerical simulation results show that the algorithm offers an effective way to calculate numerical value of definite integrals; it has a high convergence rate, a high accuracy and robustness.","publisher":"CIRWOLRD","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"INTERNATIONAL JOURNAL OF COMPUTERS \u0026 TECHNOLOGY"},"translated_abstract":"In this paper, an Improved Bat Algorithm with Chaos (IBACH) is presented for solving definite integral. The IBACH satisfies the question of parallel calculating numerical integration in engineering and those segmentation points that are adaptive. Several numerical simulation results show that the algorithm offers an effective way to calculate numerical value of definite integrals; it has a high convergence rate, a high accuracy and robustness.","internal_url":"https://www.academia.edu/85974714/A_Chaotic_Bat_Algorithm_for_Solving_Definite_Integral","translated_internal_url":"","created_at":"2022-09-01T03:17:02.144-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90529124,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90529124/thumbnails/1.jpg","file_name":"pdf_568.pdf","download_url":"https://www.academia.edu/attachments/90529124/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Chaotic_Bat_Algorithm_for_Solving_Defi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90529124/pdf_568-libre.pdf?1662029883=\u0026response-content-disposition=attachment%3B+filename%3DA_Chaotic_Bat_Algorithm_for_Solving_Defi.pdf\u0026Expires=1732404803\u0026Signature=Ze7Zd1~e9RpyJqCpBYGZ24PlFCAriar0AGGg8IzZVTFEUFOpIB0sbTATxIq6I4580cp0EUoo3BLHginVfiKct4rUuaHc9yWKTGzT1VpNqVU8DC6278bybiGM-eTkB~o0qOqXjYO9fXXHPFE2h88OPSV7uhad9G-gd3hD0wQhEss4IDtSUKYW9x8CiqYpT14D9LLMzXzCdzFDxcfCKAyVxe2a6Hwivlz7nFKP6FKVnFY4EbycozzrjsgspselSynYD470KxBiJsjF0t5I2MiLC5BS~Nra8kIFJmMM7bp8crVNdUu~lQ0-d2~puWS7sv7m2dkLESXaYChszdd4mWPKcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Chaotic_Bat_Algorithm_for_Solving_Definite_Integral","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":90529124,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90529124/thumbnails/1.jpg","file_name":"pdf_568.pdf","download_url":"https://www.academia.edu/attachments/90529124/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Chaotic_Bat_Algorithm_for_Solving_Defi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90529124/pdf_568-libre.pdf?1662029883=\u0026response-content-disposition=attachment%3B+filename%3DA_Chaotic_Bat_Algorithm_for_Solving_Defi.pdf\u0026Expires=1732404803\u0026Signature=Ze7Zd1~e9RpyJqCpBYGZ24PlFCAriar0AGGg8IzZVTFEUFOpIB0sbTATxIq6I4580cp0EUoo3BLHginVfiKct4rUuaHc9yWKTGzT1VpNqVU8DC6278bybiGM-eTkB~o0qOqXjYO9fXXHPFE2h88OPSV7uhad9G-gd3hD0wQhEss4IDtSUKYW9x8CiqYpT14D9LLMzXzCdzFDxcfCKAyVxe2a6Hwivlz7nFKP6FKVnFY4EbycozzrjsgspselSynYD470KxBiJsjF0t5I2MiLC5BS~Nra8kIFJmMM7bp8crVNdUu~lQ0-d2~puWS7sv7m2dkLESXaYChszdd4mWPKcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":43981,"name":"Optimization","url":"https://www.academia.edu/Documents/in/Optimization"},{"id":131957,"name":"Bat Algorithm","url":"https://www.academia.edu/Documents/in/Bat_Algorithm"},{"id":365167,"name":"Definite Integral","url":"https://www.academia.edu/Documents/in/Definite_Integral"},{"id":1410747,"name":"Meta Heuristics","url":"https://www.academia.edu/Documents/in/Meta_Heuristics"},{"id":1689174,"name":"Computers Technology","url":"https://www.academia.edu/Documents/in/Computers_Technology"}],"urls":[{"id":23526837,"url":"https://cirworld.com/index.php/ijct/article/download/1959/pdf_568"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79366138"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79366138/Improved_Firefly_Algorithm_for_Unconstrained_Optimization_Problems"><img alt="Research paper thumbnail of Improved Firefly Algorithm for Unconstrained Optimization Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/86105679/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79366138/Improved_Firefly_Algorithm_for_Unconstrained_Optimization_Problems">Improved Firefly Algorithm for Unconstrained Optimization Problems</a></div><div class="wp-workCard_item"><span>International Journal of Computer Applications Technology and Research</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ae77d9f0730541983604cf2fb3c6032f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86105679,&quot;asset_id&quot;:79366138,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86105679/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79366138"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79366138"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79366138; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79366138]").text(description); $(".js-view-count[data-work-id=79366138]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79366138; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79366138']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79366138, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ae77d9f0730541983604cf2fb3c6032f" } } $('.js-work-strip[data-work-id=79366138]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79366138,"title":"Improved Firefly Algorithm for Unconstrained Optimization Problems","translated_title":"","metadata":{"publisher":"Association of Technology and Science","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"International Journal of Computer Applications Technology and Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/79366138/Improved_Firefly_Algorithm_for_Unconstrained_Optimization_Problems","translated_internal_url":"","created_at":"2022-05-18T02:50:16.922-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86105679,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86105679/thumbnails/1.jpg","file_name":"ijcatr04011014.pdf","download_url":"https://www.academia.edu/attachments/86105679/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Improved_Firefly_Algorithm_for_Unconstra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86105679/ijcatr04011014-libre.pdf?1652867935=\u0026response-content-disposition=attachment%3B+filename%3DImproved_Firefly_Algorithm_for_Unconstra.pdf\u0026Expires=1732404803\u0026Signature=Wc6MNXnFVvoKsAYbIPKdwP~opl4U1eVhr85DVPgIVPaYVYNzxrWWvM7vcxkfP7Jvt2mryaDtDYx1cvEQQtT~7~1LBwvKd2EtVsZQ-ugwvJXUOopfkeOJI9VAV-MSmHiC-XpCaOtE7FZgrNZetiYNp-C934siK09sygV-q4NvYXzSo0x1hKb-bF2qjPFCRITVmBHhiAUjoJ7ysBENV00pYf5VT7ggYsGo6s2osvEjXm92WdQ81KDNXQPPviUnVU5C9JpSN9sYwaDIc56UfdEP2JuL5kGEF7kserql93TOi2CPKiBHvuPmhtbJJ9-3HE3o-nnFvVto8Dbq05ePdd2zJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Improved_Firefly_Algorithm_for_Unconstrained_Optimization_Problems","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":86105679,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86105679/thumbnails/1.jpg","file_name":"ijcatr04011014.pdf","download_url":"https://www.academia.edu/attachments/86105679/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Improved_Firefly_Algorithm_for_Unconstra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86105679/ijcatr04011014-libre.pdf?1652867935=\u0026response-content-disposition=attachment%3B+filename%3DImproved_Firefly_Algorithm_for_Unconstra.pdf\u0026Expires=1732404803\u0026Signature=Wc6MNXnFVvoKsAYbIPKdwP~opl4U1eVhr85DVPgIVPaYVYNzxrWWvM7vcxkfP7Jvt2mryaDtDYx1cvEQQtT~7~1LBwvKd2EtVsZQ-ugwvJXUOopfkeOJI9VAV-MSmHiC-XpCaOtE7FZgrNZetiYNp-C934siK09sygV-q4NvYXzSo0x1hKb-bF2qjPFCRITVmBHhiAUjoJ7ysBENV00pYf5VT7ggYsGo6s2osvEjXm92WdQ81KDNXQPPviUnVU5C9JpSN9sYwaDIc56UfdEP2JuL5kGEF7kserql93TOi2CPKiBHvuPmhtbJJ9-3HE3o-nnFvVto8Dbq05ePdd2zJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72796768"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72796768/An_Effective_Algorithm_for_Mining_Interesting_Maximal_Association_Rules"><img alt="Research paper thumbnail of An Effective Algorithm for Mining Interesting Maximal Association Rules" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72796768/An_Effective_Algorithm_for_Mining_Interesting_Maximal_Association_Rules">An Effective Algorithm for Mining Interesting Maximal Association Rules</a></div><div class="wp-workCard_item"><span>2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72796768"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72796768"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72796768; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72796768]").text(description); $(".js-view-count[data-work-id=72796768]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72796768; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72796768']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 72796768, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=72796768]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72796768,"title":"An Effective Algorithm for Mining Interesting Maximal Association Rules","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/72796768/An_Effective_Algorithm_for_Mining_Interesting_Maximal_Association_Rules","translated_internal_url":"","created_at":"2022-03-02T06:47:17.401-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"An_Effective_Algorithm_for_Mining_Interesting_Maximal_Association_Rules","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[],"research_interests":[],"urls":[{"id":18151847,"url":"http://xplorestaging.ieee.org/ielx7/9664650/9664753/09664770.pdf?arnumber=9664770"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72796766"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72796766/An_Improved_Flower_Pollination_Algorithm_for_Solving_Integer_Programming_Problems"><img alt="Research paper thumbnail of An Improved Flower Pollination Algorithm for Solving Integer Programming Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/81580994/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72796766/An_Improved_Flower_Pollination_Algorithm_for_Solving_Integer_Programming_Problems">An Improved Flower Pollination Algorithm for Solving Integer Programming Problems</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Flower pollination algorithm is a new nature-inspired algorithm, based on the characteristics of ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Flower pollination algorithm is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new method is developed based on the flower pollination algorithm combined with chaos theory (IFPCH) to solve integer programming problems. IFPCH rounds the parameter values to the closest integer after producing new solutions. Numerical simulation results show that the algorithm proved to be superior in almost all tested problems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="74c232d190d86c40651a3b99b219a795" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81580994,&quot;asset_id&quot;:72796766,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81580994/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72796766"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72796766"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72796766; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72796766]").text(description); $(".js-view-count[data-work-id=72796766]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72796766; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72796766']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 72796766, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "74c232d190d86c40651a3b99b219a795" } } $('.js-work-strip[data-work-id=72796766]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72796766,"title":"An Improved Flower Pollination Algorithm for Solving Integer Programming Problems","translated_title":"","metadata":{"abstract":"Flower pollination algorithm is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new method is developed based on the flower pollination algorithm combined with chaos theory (IFPCH) to solve integer programming problems. IFPCH rounds the parameter values to the closest integer after producing new solutions. Numerical simulation results show that the algorithm proved to be superior in almost all tested problems.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}}},"translated_abstract":"Flower pollination algorithm is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new method is developed based on the flower pollination algorithm combined with chaos theory (IFPCH) to solve integer programming problems. IFPCH rounds the parameter values to the closest integer after producing new solutions. Numerical simulation results show that the algorithm proved to be superior in almost all tested problems.","internal_url":"https://www.academia.edu/72796766/An_Improved_Flower_Pollination_Algorithm_for_Solving_Integer_Programming_Problems","translated_internal_url":"","created_at":"2022-03-02T06:47:16.079-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81580994,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580994/thumbnails/1.jpg","file_name":"3nz5wp6c77mo16.pdf","download_url":"https://www.academia.edu/attachments/81580994/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Improved_Flower_Pollination_Algorithm.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580994/3nz5wp6c77mo16-libre.pdf?1646233122=\u0026response-content-disposition=attachment%3B+filename%3DAn_Improved_Flower_Pollination_Algorithm.pdf\u0026Expires=1732404803\u0026Signature=Xh-Y0Kv7VPwrTJFXFj9kK9w9LnAM4cmGvQwliZuJJWzMeUTbApbYmVUTkq2vP-VqJXkYn-W~aa1aKdKcfU-5UVD5RuzB6G1PtZALyjTU3AEKAahiI00~5RG9SHuDoQuaPkL7x~tLJNXwPECWtZ2Jv-~2ilsDwY7Xc38HyC-8lWUcYIJjtv9IdaspRZ~mKeaZ3hGZPUBivuzalZzV9xzXGqdveOuaKpuIm8s0rT5zP3e9FlUiq6DeGfsHiJGIch55BqUgKGA04M2K9ml9iqFo~gGAHeWWueEHnrfDhMFZNNsh-9LSWMPbY-uXWsmTk9QgZChU4WTMiWK2F8bpnCngSQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Improved_Flower_Pollination_Algorithm_for_Solving_Integer_Programming_Problems","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":81580994,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580994/thumbnails/1.jpg","file_name":"3nz5wp6c77mo16.pdf","download_url":"https://www.academia.edu/attachments/81580994/download_file?st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Improved_Flower_Pollination_Algorithm.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580994/3nz5wp6c77mo16-libre.pdf?1646233122=\u0026response-content-disposition=attachment%3B+filename%3DAn_Improved_Flower_Pollination_Algorithm.pdf\u0026Expires=1732404803\u0026Signature=Xh-Y0Kv7VPwrTJFXFj9kK9w9LnAM4cmGvQwliZuJJWzMeUTbApbYmVUTkq2vP-VqJXkYn-W~aa1aKdKcfU-5UVD5RuzB6G1PtZALyjTU3AEKAahiI00~5RG9SHuDoQuaPkL7x~tLJNXwPECWtZ2Jv-~2ilsDwY7Xc38HyC-8lWUcYIJjtv9IdaspRZ~mKeaZ3hGZPUBivuzalZzV9xzXGqdveOuaKpuIm8s0rT5zP3e9FlUiq6DeGfsHiJGIch55BqUgKGA04M2K9ml9iqFo~gGAHeWWueEHnrfDhMFZNNsh-9LSWMPbY-uXWsmTk9QgZChU4WTMiWK2F8bpnCngSQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72796765"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72796765/Path_Mapping_Approach_for_Network_Function_Virtualization_Resource_Allocation_with_Network_Function_Decomposition_Support"><img alt="Research paper thumbnail of Path Mapping Approach for Network Function Virtualization Resource Allocation with Network Function Decomposition Support" class="work-thumbnail" src="https://attachments.academia-assets.com/81580954/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72796765/Path_Mapping_Approach_for_Network_Function_Virtualization_Resource_Allocation_with_Network_Function_Decomposition_Support">Path Mapping Approach for Network Function Virtualization Resource Allocation with Network Function Decomposition Support</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Recently, Network Function Virtualization (NFV) and Software Defined Networking (SDN) have attrac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Recently, Network Function Virtualization (NFV) and Software Defined Networking (SDN) have attracted many mobile operators. For the flexible deployment of Network Functions (NFs) in an NFV environment, NF decompositions and control/user plane separation have been introduced in the literature. That is to map traditional functions into their corresponding Virtual Network Functions (VNFs). This mapping requires the NFV Resource Allocation (NFV-RA) for multi-path service graphs with a high number of virtual nodes and links, which is a complex NP-hard problem that inherited its complexity from the Virtual Network Embedding (VNE). This paper proposes a new path mapping approach to solving the NFV-RA problem for decomposed Network Service Chains (NSCs). The proposed solution has symmetrically considered optimizing an average embedding cost with an enhancement on average execution time. The proposed approach has been compared to two other existing schemes using 6 and 16 scenarios of short a...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a4e7c900ddd7ab0db338dd6946a4c1dc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81580954,&quot;asset_id&quot;:72796765,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81580954/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72796765"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72796765"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72796765; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72796765]").text(description); $(".js-view-count[data-work-id=72796765]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72796765; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72796765']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 72796765, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a4e7c900ddd7ab0db338dd6946a4c1dc" } } $('.js-work-strip[data-work-id=72796765]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72796765,"title":"Path Mapping Approach for Network Function Virtualization Resource Allocation with Network Function Decomposition Support","translated_title":"","metadata":{"abstract":"Recently, Network Function Virtualization (NFV) and Software Defined Networking (SDN) have attracted many mobile operators. For the flexible deployment of Network Functions (NFs) in an NFV environment, NF decompositions and control/user plane separation have been introduced in the literature. That is to map traditional functions into their corresponding Virtual Network Functions (VNFs). This mapping requires the NFV Resource Allocation (NFV-RA) for multi-path service graphs with a high number of virtual nodes and links, which is a complex NP-hard problem that inherited its complexity from the Virtual Network Embedding (VNE). This paper proposes a new path mapping approach to solving the NFV-RA problem for decomposed Network Service Chains (NSCs). The proposed solution has symmetrically considered optimizing an average embedding cost with an enhancement on average execution time. The proposed approach has been compared to two other existing schemes using 6 and 16 scenarios of short a...","publisher":"Symmetry","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"Recently, Network Function Virtualization (NFV) and Software Defined Networking (SDN) have attracted many mobile operators. For the flexible deployment of Network Functions (NFs) in an NFV environment, NF decompositions and control/user plane separation have been introduced in the literature. That is to map traditional functions into their corresponding Virtual Network Functions (VNFs). This mapping requires the NFV Resource Allocation (NFV-RA) for multi-path service graphs with a high number of virtual nodes and links, which is a complex NP-hard problem that inherited its complexity from the Virtual Network Embedding (VNE). This paper proposes a new path mapping approach to solving the NFV-RA problem for decomposed Network Service Chains (NSCs). The proposed solution has symmetrically considered optimizing an average embedding cost with an enhancement on average execution time. The proposed approach has been compared to two other existing schemes using 6 and 16 scenarios of short a...","internal_url":"https://www.academia.edu/72796765/Path_Mapping_Approach_for_Network_Function_Virtualization_Resource_Allocation_with_Network_Function_Decomposition_Support","translated_internal_url":"","created_at":"2022-03-02T06:47:15.117-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81580954,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580954/thumbnails/1.jpg","file_name":"symmetry-11-01173.pdf","download_url":"https://www.academia.edu/attachments/81580954/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Path_Mapping_Approach_for_Network_Functi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580954/symmetry-11-01173-libre.pdf?1646232773=\u0026response-content-disposition=attachment%3B+filename%3DPath_Mapping_Approach_for_Network_Functi.pdf\u0026Expires=1732404803\u0026Signature=SFRKNSIIHskzY9NfRkZhy9zrUHt3P~pcSKPLGRhSxIh34bCwXaKZ2JgpHsXWa4~z0zZZYfHlVmyvHR0ks7i7aPNoX95Qm4sRdd5aLQumNICYQ84Xe55-S3xLYl0DEFedo5Ejz~USDFaITH06MKzXQ~IvicTkL1VVbvXX6bmYzQ54G0~oeoeYms66ekyNvd24aSe9nmhi0Sp7CPjKa25z14xVPGL1UeLCx55H0Ds-UyYULE89etVeThh4dyUn~CytdfjLGSy5J8QdvTO-Sd51HT~qaTBVHm37q6jpJm5PJX28sVKMeq7MhAR8bjW2DbSABgU8VEYpvgfLIHLzrrGkXA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Path_Mapping_Approach_for_Network_Function_Virtualization_Resource_Allocation_with_Network_Function_Decomposition_Support","translated_slug":"","page_count":25,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":81580954,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580954/thumbnails/1.jpg","file_name":"symmetry-11-01173.pdf","download_url":"https://www.academia.edu/attachments/81580954/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Path_Mapping_Approach_for_Network_Functi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580954/symmetry-11-01173-libre.pdf?1646232773=\u0026response-content-disposition=attachment%3B+filename%3DPath_Mapping_Approach_for_Network_Functi.pdf\u0026Expires=1732404804\u0026Signature=XJvhbDY~OiCN7x7NRoc8KpOUAUEX2OozBq-0zRRa0NDZK1meGowJSkCgYN7U0-e57DpyV~I2U~IDaL3wtqkBkEcSQP6ig1d1qxrcZYUtoWVGR7hXMZwjWZaPdQp6P9pkt0aL1mcSNYZXHPhYJPklSY74N3G8~gOAdTcUWcpD67eW5gf3q-MpQHNYVevntUcElc9rIO4MdrHLrAj8WI-NR1WyKYtWnH5MDF1nxyPPJeGbUBSWD0c4IeBn4o6f6izaLx5GQX9iayyTAtaBO~wtrhjaaQXsMx5KcU2Gp~tk206TRXzqHyYbHG9M9YS-SeVunb09ixrKLYmXRFitSGyBmA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81580953,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580953/thumbnails/1.jpg","file_name":"symmetry-11-01173.pdf","download_url":"https://www.academia.edu/attachments/81580953/download_file","bulk_download_file_name":"Path_Mapping_Approach_for_Network_Functi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580953/symmetry-11-01173-libre.pdf?1646232774=\u0026response-content-disposition=attachment%3B+filename%3DPath_Mapping_Approach_for_Network_Functi.pdf\u0026Expires=1732404804\u0026Signature=DclCmvmyzM4AprxWkrRMDycOiubRHhh-dBPNs-qaQUyY7jRFjwRiquLytW5JP6lQ5H6pZ3yt1fAOV47G8mPm8wSEQwT390UdAn~aXVtIM6jiWuKL~AiE78-xeSJRBJxFpxB5dpIq1wtU8G1UDBmTXvX0gA0Lc4LAqR5tsWWILD3uweun-yVgJwAR-0MaoXQHKQXxj8ym6jvLhREE6dFpaBYhqm3hyoQis9hdtYqoC5tr0csi88YBWNIOe-wrxr-oIPApe8Z5paOMim3VvWuwXuWH5yEhmb5CL4ObBmCP0pRwMm7Ljew1F~tUn3tjHmegdrstgiWnL6IeDX78yPy1Cw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":126829,"name":"Symmetry","url":"https://www.academia.edu/Documents/in/Symmetry"}],"urls":[{"id":18151845,"url":"https://res.mdpi.com/d_attachment/symmetry/symmetry-11-01173/article_deploy/symmetry-11-01173.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72796764"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72796764/Applications_of_Kalman_and_Extended_Kalman_Filtering_to_Target_Tracking"><img alt="Research paper thumbnail of Applications of Kalman and Extended Kalman Filtering to Target Tracking" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72796764/Applications_of_Kalman_and_Extended_Kalman_Filtering_to_Target_Tracking">Applications of Kalman and Extended Kalman Filtering to Target Tracking</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This study deals with the famous trackers named Kalman and extended Kalman filters. This is intro...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This study deals with the famous trackers named Kalman and extended Kalman filters. This is introduced by describing the state space representation approach to model the target system. A modification to the state prediction equation of Kalman and extended Kalman filters is given in order to offer an ability of multi-step ahead prediction of the target future position. The problem of missed measurements, with different percentages of missing, is studied and a method to estimate these missed measurements is then suggested. Some simulation experiments are performed and indicated that Kalman filtering techniques are promising when they deal with target tracking problem.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72796764"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72796764"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72796764; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72796764]").text(description); $(".js-view-count[data-work-id=72796764]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72796764; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72796764']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 72796764, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=72796764]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72796764,"title":"Applications of Kalman and Extended Kalman Filtering to Target Tracking","translated_title":"","metadata":{"abstract":"This study deals with the famous trackers named Kalman and extended Kalman filters. This is introduced by describing the state space representation approach to model the target system. A modification to the state prediction equation of Kalman and extended Kalman filters is given in order to offer an ability of multi-step ahead prediction of the target future position. The problem of missed measurements, with different percentages of missing, is studied and a method to estimate these missed measurements is then suggested. Some simulation experiments are performed and indicated that Kalman filtering techniques are promising when they deal with target tracking problem.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}}},"translated_abstract":"This study deals with the famous trackers named Kalman and extended Kalman filters. This is introduced by describing the state space representation approach to model the target system. A modification to the state prediction equation of Kalman and extended Kalman filters is given in order to offer an ability of multi-step ahead prediction of the target future position. The problem of missed measurements, with different percentages of missing, is studied and a method to estimate these missed measurements is then suggested. Some simulation experiments are performed and indicated that Kalman filtering techniques are promising when they deal with target tracking problem.","internal_url":"https://www.academia.edu/72796764/Applications_of_Kalman_and_Extended_Kalman_Filtering_to_Target_Tracking","translated_internal_url":"","created_at":"2022-03-02T06:47:14.882-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Applications_of_Kalman_and_Extended_Kalman_Filtering_to_Target_Tracking","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[],"research_interests":[],"urls":[{"id":18151844,"url":"http://computerscience.uomosul.edu.iq/files/files/files_6169509.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72796707"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72796707/Analysis_of_Accident_Times_for_Highway_Locations_Using_K_Means_Clustering_and_Decision_Rules_Extracted_from_Decision_Trees"><img alt="Research paper thumbnail of Analysis of Accident Times for Highway Locations Using K-Means Clustering and Decision Rules Extracted from Decision Trees" class="work-thumbnail" src="https://attachments.academia-assets.com/81580899/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72796707/Analysis_of_Accident_Times_for_Highway_Locations_Using_K_Means_Clustering_and_Decision_Rules_Extracted_from_Decision_Trees">Analysis of Accident Times for Highway Locations Using K-Means Clustering and Decision Rules Extracted from Decision Trees</a></div><div class="wp-workCard_item"><span>International Journal of Computer Applications Technology and Research</span><span>, Jan 25, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7f01cad89a4abb2dffeec815d5e68c80" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81580899,&quot;asset_id&quot;:72796707,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81580899/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72796707"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72796707"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72796707; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72796707]").text(description); $(".js-view-count[data-work-id=72796707]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72796707; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72796707']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 72796707, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7f01cad89a4abb2dffeec815d5e68c80" } } $('.js-work-strip[data-work-id=72796707]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72796707,"title":"Analysis of Accident Times for Highway Locations Using K-Means Clustering and Decision Rules Extracted from Decision Trees","translated_title":"","metadata":{"publisher":"Association of Technology and Science","publication_date":{"day":25,"month":1,"year":2018,"errors":{}},"publication_name":"International Journal of Computer Applications Technology and Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/72796707/Analysis_of_Accident_Times_for_Highway_Locations_Using_K_Means_Clustering_and_Decision_Rules_Extracted_from_Decision_Trees","translated_internal_url":"","created_at":"2022-03-02T06:46:21.539-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81580899,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580899/thumbnails/1.jpg","file_name":"ijcatr0701.pdf","download_url":"https://www.academia.edu/attachments/81580899/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analysis_of_Accident_Times_for_Highway_L.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580899/ijcatr0701-libre.pdf?1646232766=\u0026response-content-disposition=attachment%3B+filename%3DAnalysis_of_Accident_Times_for_Highway_L.pdf\u0026Expires=1732404804\u0026Signature=USaS7a6T~o3fQkBojNfZudQHRafvJDTPLLdcB5rMFd3quIim52FKawYPNU6UyA8jR31Hikwk5OLjIXFCVma4t1iT8V~6Vfe0aaAD00C-hM3YwacCUr64G8IeIkcjiXdB8a4zP0bg67PKj0Hq0TRhYQye2SQcNqVNpAweTr9iMnShGNvwwO8S45aCjsqIH7wtu8kPHk~xP166BJqyBi9xaAKhppOqsdbU5syK3shtR6MVu-4OZQSCRoyEMbnE8aDdrqPP7PY660U~JKXTaMXbbxnrYq6DwSXhp9~x-eTVSYR7eYMn9ZVgWjcr~pewnJn1wVhXFjChj4x~NM6YF7l8Nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Analysis_of_Accident_Times_for_Highway_Locations_Using_K_Means_Clustering_and_Decision_Rules_Extracted_from_Decision_Trees","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":81580899,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580899/thumbnails/1.jpg","file_name":"ijcatr0701.pdf","download_url":"https://www.academia.edu/attachments/81580899/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analysis_of_Accident_Times_for_Highway_L.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580899/ijcatr0701-libre.pdf?1646232766=\u0026response-content-disposition=attachment%3B+filename%3DAnalysis_of_Accident_Times_for_Highway_L.pdf\u0026Expires=1732404804\u0026Signature=USaS7a6T~o3fQkBojNfZudQHRafvJDTPLLdcB5rMFd3quIim52FKawYPNU6UyA8jR31Hikwk5OLjIXFCVma4t1iT8V~6Vfe0aaAD00C-hM3YwacCUr64G8IeIkcjiXdB8a4zP0bg67PKj0Hq0TRhYQye2SQcNqVNpAweTr9iMnShGNvwwO8S45aCjsqIH7wtu8kPHk~xP166BJqyBi9xaAKhppOqsdbU5syK3shtR6MVu-4OZQSCRoyEMbnE8aDdrqPP7PY660U~JKXTaMXbbxnrYq6DwSXhp9~x-eTVSYR7eYMn9ZVgWjcr~pewnJn1wVhXFjChj4x~NM6YF7l8Nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81580901,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580901/thumbnails/1.jpg","file_name":"ijcatr0701.pdf","download_url":"https://www.academia.edu/attachments/81580901/download_file","bulk_download_file_name":"Analysis_of_Accident_Times_for_Highway_L.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580901/ijcatr0701-libre.pdf?1646232762=\u0026response-content-disposition=attachment%3B+filename%3DAnalysis_of_Accident_Times_for_Highway_L.pdf\u0026Expires=1732404804\u0026Signature=YP32fW5eG6725PXVXGpDLynMAV9mNEma2biH~~eCj7ilO5GipLV7LG-ele95uISAS~jo0ThZCUHSxALYPu70sB9Vw7ox7ZlIuJEu94Ym66dnv6HrfVtNWCem9kS4tiTS5D4vrP32FpS0W1AnWPGPxMTzH39axorHsU14pqKsyfc~X5AhN6IQdgxtvc0XJX79q5y-Vl0bpnAD9Y2Y~KyJo1DeuX6YZkrp7xjIDdEjAFxu3-bijmNH94FzckKCc20W71smO6VuyqXbhUuyKcfi6~uTNY-Cn8a-8qkHS7oQWdbOCe2vjbITNtIlWpQScf8DZsJTYA82OSsuDJdC8GbENA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":18151817,"url":"https://doi.org/10.7753/ijcatr0701.1001"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="14178153" id="papers"><div class="js-work-strip profile--work_container" data-work-id="111320237"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111320237/Efficient_Implementation_of_CDP_Algorithms_for_Optimal_Evaluation_of_Array_Expressions"><img alt="Research paper thumbnail of Efficient Implementation of CDP Algorithms for Optimal Evaluation of Array Expressions" class="work-thumbnail" src="https://attachments.academia-assets.com/108891363/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111320237/Efficient_Implementation_of_CDP_Algorithms_for_Optimal_Evaluation_of_Array_Expressions">Efficient Implementation of CDP Algorithms for Optimal Evaluation of Array Expressions</a></div><div class="wp-workCard_item"><span>The Egyptian International Journal of Engineering Sciences and Technology (Print)</span><span>, Apr 1, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2879efcf9f8e1bf150a01f70c45c6b69" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108891363,&quot;asset_id&quot;:111320237,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108891363/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111320237"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111320237"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111320237; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111320237]").text(description); $(".js-view-count[data-work-id=111320237]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111320237; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111320237']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 111320237, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2879efcf9f8e1bf150a01f70c45c6b69" } } $('.js-work-strip[data-work-id=111320237]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111320237,"title":"Efficient Implementation of CDP Algorithms for Optimal Evaluation of Array Expressions","translated_title":"","metadata":{"publication_date":{"day":1,"month":4,"year":2015,"errors":{}},"publication_name":"The Egyptian International Journal of Engineering Sciences and Technology (Print)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/111320237/Efficient_Implementation_of_CDP_Algorithms_for_Optimal_Evaluation_of_Array_Expressions","translated_internal_url":"","created_at":"2023-12-13T04:31:45.215-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108891363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108891363/thumbnails/1.jpg","file_name":"article_97112_572da51d7bbe61c498e9d793e2023418.pdf","download_url":"https://www.academia.edu/attachments/108891363/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Efficient_Implementation_of_CDP_Algorith.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108891363/article_97112_572da51d7bbe61c498e9d793e2023418-libre.pdf?1702471556=\u0026response-content-disposition=attachment%3B+filename%3DEfficient_Implementation_of_CDP_Algorith.pdf\u0026Expires=1732404803\u0026Signature=X67-eWlA9XXdTAcoMRVifRuq6Go9Lu5CRWrLKYHly6ingCMOWqns-JaWUMPyuFETaGYTRj~cZV6CkRTpELMX9c5AcosnQ96m6Z8uKqniWi7tr5pZ4JFgGI9AToJGpJpU7MlCZIo0Dwi9k7RN1T2xE3Z8vUBg2CKtUAVQgD6V19wBAIB-zeY6gTdc7gzpYGgTaRmG5tutUuZ6OdLuaN0SFcGzZx~nKmPdgCPhBElYxHbhKKbu1VTcojEVpQ3qlY9YaPsPIgjbKX3tBdE0NAxAevg~-DXla5BxNjQqAfhm-uhXbqwjsbhEN1uidKVHZqEnpfgdzRAALZddlimY-fiazA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Efficient_Implementation_of_CDP_Algorithms_for_Optimal_Evaluation_of_Array_Expressions","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":108891363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108891363/thumbnails/1.jpg","file_name":"article_97112_572da51d7bbe61c498e9d793e2023418.pdf","download_url":"https://www.academia.edu/attachments/108891363/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Efficient_Implementation_of_CDP_Algorith.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108891363/article_97112_572da51d7bbe61c498e9d793e2023418-libre.pdf?1702471556=\u0026response-content-disposition=attachment%3B+filename%3DEfficient_Implementation_of_CDP_Algorith.pdf\u0026Expires=1732404803\u0026Signature=X67-eWlA9XXdTAcoMRVifRuq6Go9Lu5CRWrLKYHly6ingCMOWqns-JaWUMPyuFETaGYTRj~cZV6CkRTpELMX9c5AcosnQ96m6Z8uKqniWi7tr5pZ4JFgGI9AToJGpJpU7MlCZIo0Dwi9k7RN1T2xE3Z8vUBg2CKtUAVQgD6V19wBAIB-zeY6gTdc7gzpYGgTaRmG5tutUuZ6OdLuaN0SFcGzZx~nKmPdgCPhBElYxHbhKKbu1VTcojEVpQ3qlY9YaPsPIgjbKX3tBdE0NAxAevg~-DXla5BxNjQqAfhm-uhXbqwjsbhEN1uidKVHZqEnpfgdzRAALZddlimY-fiazA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108891362,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108891362/thumbnails/1.jpg","file_name":"article_97112_572da51d7bbe61c498e9d793e2023418.pdf","download_url":"https://www.academia.edu/attachments/108891362/download_file","bulk_download_file_name":"Efficient_Implementation_of_CDP_Algorith.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108891362/article_97112_572da51d7bbe61c498e9d793e2023418-libre.pdf?1702471558=\u0026response-content-disposition=attachment%3B+filename%3DEfficient_Implementation_of_CDP_Algorith.pdf\u0026Expires=1732404803\u0026Signature=OtOrzABEK4NpS32gJl3Hc2zoXkrqg8vTWn58Os8Q9wr~n5YRwkDKmDhfhkUdxP0VAzF9wUGo1uOibJb-YvgcXVADkw-ogaTpQy8eOLWZOyb0xvnfq19FgWJ5cVT-QZOU-ZQLjZvZZqzxDSna9At2FWFDifTJWHSN93KEec23AR0CN2SQQTr7Qn9DiHoUooFa1jIdx9Vf03FEC5JMMPm8U8uJEcaZwG4Wo3-~99I6UOtfsP17An3P7O~gTmCb~02UbRM~K4dhCb8F-NIPajzojwQdvAj5B-7YZAk0Wa8BRTEnQCcM4WFCXbJUx-qrgRQVIG6R8lbMp6cHT3qS2QLEzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":37012470,"url":"http://eijest.journals.ekb.eg/article_97112_572da51d7bbe61c498e9d793e2023418.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="103344521"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/103344521/Automatic_Analysis_of_MRI_Images_for_Early_Prediction_of_Alzheimer_s_Disease_Stages_Based_on_Hybrid_Features_of_CNN_and_Handcrafted_Features"><img alt="Research paper thumbnail of Automatic Analysis of MRI Images for Early Prediction of Alzheimer’s Disease Stages Based on Hybrid Features of CNN and Handcrafted Features" class="work-thumbnail" src="https://attachments.academia-assets.com/103376311/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/103344521/Automatic_Analysis_of_MRI_Images_for_Early_Prediction_of_Alzheimer_s_Disease_Stages_Based_on_Hybrid_Features_of_CNN_and_Handcrafted_Features">Automatic Analysis of MRI Images for Early Prediction of Alzheimer’s Disease Stages Based on Hybrid Features of CNN and Handcrafted Features</a></div><div class="wp-workCard_item"><span>Diagnostics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Alzheimer’s disease (AD) is considered one of the challenges facing health care in the modern cen...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Alzheimer’s disease (AD) is considered one of the challenges facing health care in the modern century; until now, there has been no effective treatment to cure it, but there are drugs to slow its progression. Therefore, early detection of Alzheimer’s is vital to take needful measures before it develops into brain damage which cannot be treated. Magnetic resonance imaging (MRI) techniques have contributed to the diagnosis and prediction of its progression. MRI images require highly experienced doctors and radiologists, and the analysis of MRI images takes time to analyze each slice. Thus, deep learning techniques play a vital role in analyzing a huge amount of MRI images with high accuracy to detect Alzheimer’s and predict its progression. Because of the similarities in the characteristics of the early stages of Alzheimer’s, this study aimed to extract the features in several methods and integrate the features extracted from more than one method into the same features matrix. This st...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5d2bf014593b3836497dcb0f9cc85d7a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:103376311,&quot;asset_id&quot;:103344521,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/103376311/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="103344521"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="103344521"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 103344521; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=103344521]").text(description); $(".js-view-count[data-work-id=103344521]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 103344521; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='103344521']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 103344521, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5d2bf014593b3836497dcb0f9cc85d7a" } } $('.js-work-strip[data-work-id=103344521]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":103344521,"title":"Automatic Analysis of MRI Images for Early Prediction of Alzheimer’s Disease Stages Based on Hybrid Features of CNN and Handcrafted Features","translated_title":"","metadata":{"abstract":"Alzheimer’s disease (AD) is considered one of the challenges facing health care in the modern century; until now, there has been no effective treatment to cure it, but there are drugs to slow its progression. Therefore, early detection of Alzheimer’s is vital to take needful measures before it develops into brain damage which cannot be treated. Magnetic resonance imaging (MRI) techniques have contributed to the diagnosis and prediction of its progression. MRI images require highly experienced doctors and radiologists, and the analysis of MRI images takes time to analyze each slice. Thus, deep learning techniques play a vital role in analyzing a huge amount of MRI images with high accuracy to detect Alzheimer’s and predict its progression. Because of the similarities in the characteristics of the early stages of Alzheimer’s, this study aimed to extract the features in several methods and integrate the features extracted from more than one method into the same features matrix. This st...","publisher":"MDPI AG","publication_name":"Diagnostics"},"translated_abstract":"Alzheimer’s disease (AD) is considered one of the challenges facing health care in the modern century; until now, there has been no effective treatment to cure it, but there are drugs to slow its progression. Therefore, early detection of Alzheimer’s is vital to take needful measures before it develops into brain damage which cannot be treated. Magnetic resonance imaging (MRI) techniques have contributed to the diagnosis and prediction of its progression. MRI images require highly experienced doctors and radiologists, and the analysis of MRI images takes time to analyze each slice. Thus, deep learning techniques play a vital role in analyzing a huge amount of MRI images with high accuracy to detect Alzheimer’s and predict its progression. Because of the similarities in the characteristics of the early stages of Alzheimer’s, this study aimed to extract the features in several methods and integrate the features extracted from more than one method into the same features matrix. This st...","internal_url":"https://www.academia.edu/103344521/Automatic_Analysis_of_MRI_Images_for_Early_Prediction_of_Alzheimer_s_Disease_Stages_Based_on_Hybrid_Features_of_CNN_and_Handcrafted_Features","translated_internal_url":"","created_at":"2023-06-14T09:35:50.295-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":103376311,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/103376311/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/103376311/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Analysis_of_MRI_Images_for_Ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/103376311/pdf-libre.pdf?1686762111=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Analysis_of_MRI_Images_for_Ear.pdf\u0026Expires=1732404803\u0026Signature=JDbcrh1HTyE7v33dGLu02IO5aqv5rZVMhHTRWhZ7faFvwUwgkYbtop-Rlty~Vw3RiNsy4dRTxsqk4Gc76iY9WKR1EAK8GH42oS2DykxdKE6TO50npON9cCJyeVJCPORchmcnyhiGlqaVsyV6z0GxeTLgRZHVwcxZuCig3p3JBelYezGTDpELqNmbHW1BOi~x1X-pGWzLmRdTxbMUjfbioP-z55JKdJdEWcUCIxP51uNj-RKkTpQt93KP01vcJK6fSHv6KxlKAjO7dHkKTHO-1B36HYcq5reojDwuqGcB9uhY3-AsuQJRM5CsuKx0UUOE-qjSqYxs24yz-Lkk~cfxAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Automatic_Analysis_of_MRI_Images_for_Early_Prediction_of_Alzheimer_s_Disease_Stages_Based_on_Hybrid_Features_of_CNN_and_Handcrafted_Features","translated_slug":"","page_count":22,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":103376311,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/103376311/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/103376311/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Analysis_of_MRI_Images_for_Ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/103376311/pdf-libre.pdf?1686762111=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Analysis_of_MRI_Images_for_Ear.pdf\u0026Expires=1732404803\u0026Signature=JDbcrh1HTyE7v33dGLu02IO5aqv5rZVMhHTRWhZ7faFvwUwgkYbtop-Rlty~Vw3RiNsy4dRTxsqk4Gc76iY9WKR1EAK8GH42oS2DykxdKE6TO50npON9cCJyeVJCPORchmcnyhiGlqaVsyV6z0GxeTLgRZHVwcxZuCig3p3JBelYezGTDpELqNmbHW1BOi~x1X-pGWzLmRdTxbMUjfbioP-z55JKdJdEWcUCIxP51uNj-RKkTpQt93KP01vcJK6fSHv6KxlKAjO7dHkKTHO-1B36HYcq5reojDwuqGcB9uhY3-AsuQJRM5CsuKx0UUOE-qjSqYxs24yz-Lkk~cfxAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":103376310,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/103376310/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/103376310/download_file","bulk_download_file_name":"Automatic_Analysis_of_MRI_Images_for_Ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/103376310/pdf-libre.pdf?1686762133=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Analysis_of_MRI_Images_for_Ear.pdf\u0026Expires=1732404803\u0026Signature=OL07IJAlTAMk8OhhDea7b2DCjue-q7rWuQ8Ol9-VSKZvZdPCblQXjBzz62BO~LAA9xZdLaUKDnnJBB0x4BD4xTIRWgbLVbTm1lP6ii0~FyT~KfZwSV7Laqig4WSjAjsM~tXE~tJ6svl6SC09Dnz7df8NMeOKLUTjLgQ5DgHupUjsrHkCwG3OjZxuSjrNiC5NZXs5gA8fMkM0xannL4u1cnnnnTpq5jTDy7-Gqjr6lDmxqNSkrBZXBrGKAx~QGkMOffBS3VqWP57TxLaHw8Th33MsJxbSyzsgFW1ZfUNopEOd8nGHZamp-ursPHPUmFK0d9xq9UI6EWWfBrcGlaOCAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":129880,"name":"Diagnostics","url":"https://www.academia.edu/Documents/in/Diagnostics"}],"urls":[{"id":32259492,"url":"https://www.mdpi.com/2075-4418/13/9/1654/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="103344517"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/103344517/Development_of_Advanced_Monitoring_System_in_Real_Time_Environment"><img alt="Research paper thumbnail of Development of Advanced Monitoring System in Real Time Environment" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/103344517/Development_of_Advanced_Monitoring_System_in_Real_Time_Environment">Development of Advanced Monitoring System in Real Time Environment</a></div><div class="wp-workCard_item"><span>Thamar University Journal of Natural &amp;amp; Applied Sciences</span><span>, Jan 27, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="103344517"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="103344517"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 103344517; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=103344517]").text(description); $(".js-view-count[data-work-id=103344517]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 103344517; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='103344517']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 103344517, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=103344517]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":103344517,"title":"Development of Advanced Monitoring System in Real Time Environment","translated_title":"","metadata":{"publication_date":{"day":27,"month":1,"year":2023,"errors":{}},"publication_name":"Thamar University Journal of Natural \u0026amp; Applied Sciences"},"translated_abstract":null,"internal_url":"https://www.academia.edu/103344517/Development_of_Advanced_Monitoring_System_in_Real_Time_Environment","translated_internal_url":"","created_at":"2023-06-14T09:35:45.210-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Development_of_Advanced_Monitoring_System_in_Real_Time_Environment","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":32259491,"url":"https://doi.org/10.59167/tujnas.v1i1.1257"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="103344506"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/103344506/A_Study_of_%CE%B1_%CE%B2_Tracker_with_Some_New_Algorithms_for_Selecting_%CE%B1_and_%CE%B2_Parameters"><img alt="Research paper thumbnail of A Study of α β Tracker with Some New Algorithms for Selecting α and β Parameters" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/103344506/A_Study_of_%CE%B1_%CE%B2_Tracker_with_Some_New_Algorithms_for_Selecting_%CE%B1_and_%CE%B2_Parameters">A Study of α β Tracker with Some New Algorithms for Selecting α and β Parameters</a></div><div class="wp-workCard_item"><span>Thamar University Journal of Natural &amp;amp; Applied Sciences</span><span>, Jan 27, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="103344506"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="103344506"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 103344506; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=103344506]").text(description); $(".js-view-count[data-work-id=103344506]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 103344506; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='103344506']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 103344506, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=103344506]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":103344506,"title":"A Study of α β Tracker with Some New Algorithms for Selecting α and β Parameters","translated_title":"","metadata":{"publication_date":{"day":27,"month":1,"year":2023,"errors":{}},"publication_name":"Thamar University Journal of Natural \u0026amp; Applied Sciences"},"translated_abstract":null,"internal_url":"https://www.academia.edu/103344506/A_Study_of_%CE%B1_%CE%B2_Tracker_with_Some_New_Algorithms_for_Selecting_%CE%B1_and_%CE%B2_Parameters","translated_internal_url":"","created_at":"2023-06-14T09:35:21.068-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Study_of_α_β_Tracker_with_Some_New_Algorithms_for_Selecting_α_and_β_Parameters","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"}],"urls":[{"id":32259487,"url":"https://doi.org/10.59167/tujnas.v1i1.1258"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="103344493"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/103344493/Hybrid_Techniques_of_X_ray_Analysis_to_Predict_Knee_Osteoarthritis_Grades_Based_on_Fusion_Features_of_CNN_and_Handcrafted"><img alt="Research paper thumbnail of Hybrid Techniques of X-ray Analysis to Predict Knee Osteoarthritis Grades Based on Fusion Features of CNN and Handcrafted" class="work-thumbnail" src="https://attachments.academia-assets.com/103376299/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/103344493/Hybrid_Techniques_of_X_ray_Analysis_to_Predict_Knee_Osteoarthritis_Grades_Based_on_Fusion_Features_of_CNN_and_Handcrafted">Hybrid Techniques of X-ray Analysis to Predict Knee Osteoarthritis Grades Based on Fusion Features of CNN and Handcrafted</a></div><div class="wp-workCard_item"><span>Diagnostics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Knee osteoarthritis (KOA) is a chronic disease that impedes movement, especially in the elderly, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Knee osteoarthritis (KOA) is a chronic disease that impedes movement, especially in the elderly, affecting more than 5% of people worldwide. KOA goes through many stages, from the mild grade that can be treated to the severe grade in which the knee must be replaced. Therefore, early diagnosis of KOA is essential to avoid its development to the advanced stages. X-rays are one of the vital techniques for the early detection of knee infections, which requires highly experienced doctors and radiologists to distinguish Kellgren-Lawrence (KL) grading. Thus, artificial intelligence techniques solve the shortcomings of manual diagnosis. This study developed three methodologies for the X-ray analysis of both the Osteoporosis Initiative (OAI) and Rani Channamma University (RCU) datasets for diagnosing KOA and discrimination between KL grades. In all methodologies, the Principal Component Analysis (PCA) algorithm was applied after the CNN models to delete the unimportant and redundant features...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b8aa3bd2eb0b09a0dd292cb8a907c200" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:103376299,&quot;asset_id&quot;:103344493,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/103376299/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="103344493"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="103344493"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 103344493; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=103344493]").text(description); $(".js-view-count[data-work-id=103344493]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 103344493; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='103344493']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 103344493, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b8aa3bd2eb0b09a0dd292cb8a907c200" } } $('.js-work-strip[data-work-id=103344493]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":103344493,"title":"Hybrid Techniques of X-ray Analysis to Predict Knee Osteoarthritis Grades Based on Fusion Features of CNN and Handcrafted","translated_title":"","metadata":{"abstract":"Knee osteoarthritis (KOA) is a chronic disease that impedes movement, especially in the elderly, affecting more than 5% of people worldwide. KOA goes through many stages, from the mild grade that can be treated to the severe grade in which the knee must be replaced. Therefore, early diagnosis of KOA is essential to avoid its development to the advanced stages. X-rays are one of the vital techniques for the early detection of knee infections, which requires highly experienced doctors and radiologists to distinguish Kellgren-Lawrence (KL) grading. Thus, artificial intelligence techniques solve the shortcomings of manual diagnosis. This study developed three methodologies for the X-ray analysis of both the Osteoporosis Initiative (OAI) and Rani Channamma University (RCU) datasets for diagnosing KOA and discrimination between KL grades. In all methodologies, the Principal Component Analysis (PCA) algorithm was applied after the CNN models to delete the unimportant and redundant features...","publisher":"MDPI AG","publication_name":"Diagnostics"},"translated_abstract":"Knee osteoarthritis (KOA) is a chronic disease that impedes movement, especially in the elderly, affecting more than 5% of people worldwide. KOA goes through many stages, from the mild grade that can be treated to the severe grade in which the knee must be replaced. Therefore, early diagnosis of KOA is essential to avoid its development to the advanced stages. X-rays are one of the vital techniques for the early detection of knee infections, which requires highly experienced doctors and radiologists to distinguish Kellgren-Lawrence (KL) grading. Thus, artificial intelligence techniques solve the shortcomings of manual diagnosis. This study developed three methodologies for the X-ray analysis of both the Osteoporosis Initiative (OAI) and Rani Channamma University (RCU) datasets for diagnosing KOA and discrimination between KL grades. In all methodologies, the Principal Component Analysis (PCA) algorithm was applied after the CNN models to delete the unimportant and redundant features...","internal_url":"https://www.academia.edu/103344493/Hybrid_Techniques_of_X_ray_Analysis_to_Predict_Knee_Osteoarthritis_Grades_Based_on_Fusion_Features_of_CNN_and_Handcrafted","translated_internal_url":"","created_at":"2023-06-14T09:35:09.757-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":103376299,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/103376299/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/103376299/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hybrid_Techniques_of_X_ray_Analysis_to_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/103376299/pdf-libre.pdf?1686762119=\u0026response-content-disposition=attachment%3B+filename%3DHybrid_Techniques_of_X_ray_Analysis_to_P.pdf\u0026Expires=1732404803\u0026Signature=KOhygpCcNcwx3jlJzldNWDhOr11sPkHDm~egIyJTSwwyoi3o5IoYGW-yehcKuzTFGrvgF5-EH6rBrLY-cmxanH4IK9R46Ab4vudW~0PxPrPwHmWl1ZQFeK8DX~3U7wDn9~dCD-y4ymQtm0f0cXhYLnwUKUSsmzJG0bUYNfKCozCPH5CRWhI4q9mvA1d69Z7zb~GUrHAOt7kkMFh4trSL5f27v9dKR2ofmyu8rJWDlOg6xOR0wEE9~YADqF2TRc2JeXxjRROwAlnGFmBrpauD67yT7WbJnE95jHeONZrA9sNZPd8Q9VyS5bhYwAamT~qmvzlPLxMHOATSVGKCjD5KHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hybrid_Techniques_of_X_ray_Analysis_to_Predict_Knee_Osteoarthritis_Grades_Based_on_Fusion_Features_of_CNN_and_Handcrafted","translated_slug":"","page_count":28,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":103376299,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/103376299/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/103376299/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hybrid_Techniques_of_X_ray_Analysis_to_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/103376299/pdf-libre.pdf?1686762119=\u0026response-content-disposition=attachment%3B+filename%3DHybrid_Techniques_of_X_ray_Analysis_to_P.pdf\u0026Expires=1732404803\u0026Signature=KOhygpCcNcwx3jlJzldNWDhOr11sPkHDm~egIyJTSwwyoi3o5IoYGW-yehcKuzTFGrvgF5-EH6rBrLY-cmxanH4IK9R46Ab4vudW~0PxPrPwHmWl1ZQFeK8DX~3U7wDn9~dCD-y4ymQtm0f0cXhYLnwUKUSsmzJG0bUYNfKCozCPH5CRWhI4q9mvA1d69Z7zb~GUrHAOt7kkMFh4trSL5f27v9dKR2ofmyu8rJWDlOg6xOR0wEE9~YADqF2TRc2JeXxjRROwAlnGFmBrpauD67yT7WbJnE95jHeONZrA9sNZPd8Q9VyS5bhYwAamT~qmvzlPLxMHOATSVGKCjD5KHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":129880,"name":"Diagnostics","url":"https://www.academia.edu/Documents/in/Diagnostics"}],"urls":[{"id":32259479,"url":"https://www.mdpi.com/2075-4418/13/9/1609/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85974734"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85974734/An_Efficient_Approach_For_Mobile_Core_Services_Placement_On_Network_Function_Virtualization"><img alt="Research paper thumbnail of An Efficient Approach For Mobile Core Services Placement On Network Function Virtualization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85974734/An_Efficient_Approach_For_Mobile_Core_Services_Placement_On_Network_Function_Virtualization">An Efficient Approach For Mobile Core Services Placement On Network Function Virtualization</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85974734"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85974734"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85974734; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85974734]").text(description); $(".js-view-count[data-work-id=85974734]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85974734; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85974734']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85974734, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85974734]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85974734,"title":"An Efficient Approach For Mobile Core Services Placement On Network Function Virtualization","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/85974734/An_Efficient_Approach_For_Mobile_Core_Services_Placement_On_Network_Function_Virtualization","translated_internal_url":"","created_at":"2022-09-01T03:17:26.161-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"An_Efficient_Approach_For_Mobile_Core_Services_Placement_On_Network_Function_Virtualization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85974731"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85974731/A_Hybrid_Approach_of_Association_Rule_Hidden_Makov_Model_to_Improve_Efficiency_Medical_Text_Classification"><img alt="Research paper thumbnail of A Hybrid Approach of Association Rule Hidden Makov Model to Improve Efficiency Medical Text Classification" class="work-thumbnail" src="https://attachments.academia-assets.com/90529137/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85974731/A_Hybrid_Approach_of_Association_Rule_Hidden_Makov_Model_to_Improve_Efficiency_Medical_Text_Classification">A Hybrid Approach of Association Rule Hidden Makov Model to Improve Efficiency Medical Text Classification</a></div><div class="wp-workCard_item"><span>International Journal of Computer Applications Technology and Research</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="99fbc1b8a5cfb3414f6a002e848ec784" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90529137,&quot;asset_id&quot;:85974731,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90529137/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85974731"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85974731"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85974731; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85974731]").text(description); $(".js-view-count[data-work-id=85974731]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85974731; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85974731']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85974731, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "99fbc1b8a5cfb3414f6a002e848ec784" } } $('.js-work-strip[data-work-id=85974731]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85974731,"title":"A Hybrid Approach of Association Rule Hidden Makov Model to Improve Efficiency Medical Text Classification","translated_title":"","metadata":{"publisher":"Association of Technology and Science","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"International Journal of Computer Applications Technology and Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/85974731/A_Hybrid_Approach_of_Association_Rule_Hidden_Makov_Model_to_Improve_Efficiency_Medical_Text_Classification","translated_internal_url":"","created_at":"2022-09-01T03:17:24.229-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90529137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90529137/thumbnails/1.jpg","file_name":"ijcatr0702.pdf","download_url":"https://www.academia.edu/attachments/90529137/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Hybrid_Approach_of_Association_Rule_Hi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90529137/ijcatr0702-libre.pdf?1662029878=\u0026response-content-disposition=attachment%3B+filename%3DA_Hybrid_Approach_of_Association_Rule_Hi.pdf\u0026Expires=1732404803\u0026Signature=cFMPv9puLKsIJkf~zF30EY-Pr8YvzRT9MksIC3pqQxlhDPG0ws3YFw4SzTvnP3ednlZ~DmZHwHYKAgqa9sa9JcN4W4ADrqYpnaY24LkP1VIBluq2lGvFil2xSGsBFqVGo~3JWONyYl8dX6NuHzMqthyfApgXs9CZJ2QKIYoOv3~UvVCKF3pXDtBVDJt1NMqwRThdVCfKGgjfwm~R1GmCzyFsZjKUDmdT151itPSx7ty32yT~eAF90VF~PHOsJ118LDjf5ySC8IPFW0-0jMV3Ppwqjp1ZIkp3FiX5JhtQG5TRSb2TXjE~LZxIwJYbn1sxO6qyFFC6LbH3ylTDaJeZnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Hybrid_Approach_of_Association_Rule_Hidden_Makov_Model_to_Improve_Efficiency_Medical_Text_Classification","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":90529137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90529137/thumbnails/1.jpg","file_name":"ijcatr0702.pdf","download_url":"https://www.academia.edu/attachments/90529137/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Hybrid_Approach_of_Association_Rule_Hi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90529137/ijcatr0702-libre.pdf?1662029878=\u0026response-content-disposition=attachment%3B+filename%3DA_Hybrid_Approach_of_Association_Rule_Hi.pdf\u0026Expires=1732404803\u0026Signature=cFMPv9puLKsIJkf~zF30EY-Pr8YvzRT9MksIC3pqQxlhDPG0ws3YFw4SzTvnP3ednlZ~DmZHwHYKAgqa9sa9JcN4W4ADrqYpnaY24LkP1VIBluq2lGvFil2xSGsBFqVGo~3JWONyYl8dX6NuHzMqthyfApgXs9CZJ2QKIYoOv3~UvVCKF3pXDtBVDJt1NMqwRThdVCfKGgjfwm~R1GmCzyFsZjKUDmdT151itPSx7ty32yT~eAF90VF~PHOsJ118LDjf5ySC8IPFW0-0jMV3Ppwqjp1ZIkp3FiX5JhtQG5TRSb2TXjE~LZxIwJYbn1sxO6qyFFC6LbH3ylTDaJeZnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85974728"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85974728/Quality_of_Service_Routing_Protocol_for_Mobile_Ad_hoc_Network"><img alt="Research paper thumbnail of Quality of Service Routing Protocol for Mobile Ad hoc Network" class="work-thumbnail" src="https://attachments.academia-assets.com/90529134/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85974728/Quality_of_Service_Routing_Protocol_for_Mobile_Ad_hoc_Network">Quality of Service Routing Protocol for Mobile Ad hoc Network</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The wireless Ad-Hoc network is infrastruc t re less with nodes in the network area are random ly ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The wireless Ad-Hoc network is infrastruc t re less with nodes in the network area are random ly moving and communicating between nodes while roamin g. In this paper we propose the TDMA Based Energy Efficient Quality of Service Routing Protoco l (EEQOSRP). The network scenario is established by considering 1000 X 1000 area and deploying randomly moving nodes using Too l Command Language (TCL). The resource reservation is used to decompos e the total simulation time of network into smaller time slots depending upon number of nodes in the network using TDMA technique. The route is established between Source and Destination node using AODV with QOS and Multi hop routing technique. The data packets are scheduled at Source node by assigning p riority and the path is established between nodes u sing shortest path and implemented using C++. It is obse rved that the values of Energy Consumption, Packet Delivery Ratio, End to End Delay and Throughput are improved Compared to Existing algorit...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="20b39a9362e88a3d7ef623f1e7760ce0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90529134,&quot;asset_id&quot;:85974728,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90529134/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85974728"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85974728"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85974728; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85974728]").text(description); $(".js-view-count[data-work-id=85974728]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85974728; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85974728']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85974728, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "20b39a9362e88a3d7ef623f1e7760ce0" } } $('.js-work-strip[data-work-id=85974728]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85974728,"title":"Quality of Service Routing Protocol for Mobile Ad hoc Network","translated_title":"","metadata":{"abstract":"The wireless Ad-Hoc network is infrastruc t re less with nodes in the network area are random ly moving and communicating between nodes while roamin g. In this paper we propose the TDMA Based Energy Efficient Quality of Service Routing Protoco l (EEQOSRP). The network scenario is established by considering 1000 X 1000 area and deploying randomly moving nodes using Too l Command Language (TCL). The resource reservation is used to decompos e the total simulation time of network into smaller time slots depending upon number of nodes in the network using TDMA technique. The route is established between Source and Destination node using AODV with QOS and Multi hop routing technique. The data packets are scheduled at Source node by assigning p riority and the path is established between nodes u sing shortest path and implemented using C++. It is obse rved that the values of Energy Consumption, Packet Delivery Ratio, End to End Delay and Throughput are improved Compared to Existing algorit...","publication_date":{"day":null,"month":null,"year":2013,"errors":{}}},"translated_abstract":"The wireless Ad-Hoc network is infrastruc t re less with nodes in the network area are random ly moving and communicating between nodes while roamin g. In this paper we propose the TDMA Based Energy Efficient Quality of Service Routing Protoco l (EEQOSRP). The network scenario is established by considering 1000 X 1000 area and deploying randomly moving nodes using Too l Command Language (TCL). The resource reservation is used to decompos e the total simulation time of network into smaller time slots depending upon number of nodes in the network using TDMA technique. The route is established between Source and Destination node using AODV with QOS and Multi hop routing technique. The data packets are scheduled at Source node by assigning p riority and the path is established between nodes u sing shortest path and implemented using C++. It is obse rved that the values of Energy Consumption, Packet Delivery Ratio, End to End Delay and Throughput are improved Compared to Existing algorit...","internal_url":"https://www.academia.edu/85974728/Quality_of_Service_Routing_Protocol_for_Mobile_Ad_hoc_Network","translated_internal_url":"","created_at":"2022-09-01T03:17:22.279-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90529134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90529134/thumbnails/1.jpg","file_name":"V2I3201302.pdf","download_url":"https://www.academia.edu/attachments/90529134/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Quality_of_Service_Routing_Protocol_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90529134/V2I3201302-libre.pdf?1662029878=\u0026response-content-disposition=attachment%3B+filename%3DQuality_of_Service_Routing_Protocol_for.pdf\u0026Expires=1732404803\u0026Signature=I3c2y28p~KCqtBqvUG12hvE~0oe~4Y7EGe8uaGPevWPGRyYmlRrK0KmySBq6KWuzRINklvEBl9J7-QXnEaYpT6svQ4yi6OC4sCaEveEFRDq2kaTrdna~yJkX3C6gODR~Y5y~GnnSyV8pRd91MIdBwOGEj1OZ9BokYNWXrle-dBhCOuQhEDdiiqw65vm4dshMQaZeHUVk0mUr64rqC6d4JAlSBBoVJ-0p3x2SDM3grQP~xwaq0pNtroQdjTAASGeWreqVbU8OTc-ojqt2joFIFkB4B7XSzSQdqhU5wMaKj-i7q1rh3BxwvsWvOWoKVaFAOymBoFx10URmJCiMCXJi8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Quality_of_Service_Routing_Protocol_for_Mobile_Ad_hoc_Network","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":90529134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90529134/thumbnails/1.jpg","file_name":"V2I3201302.pdf","download_url":"https://www.academia.edu/attachments/90529134/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Quality_of_Service_Routing_Protocol_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90529134/V2I3201302-libre.pdf?1662029878=\u0026response-content-disposition=attachment%3B+filename%3DQuality_of_Service_Routing_Protocol_for.pdf\u0026Expires=1732404803\u0026Signature=I3c2y28p~KCqtBqvUG12hvE~0oe~4Y7EGe8uaGPevWPGRyYmlRrK0KmySBq6KWuzRINklvEBl9J7-QXnEaYpT6svQ4yi6OC4sCaEveEFRDq2kaTrdna~yJkX3C6gODR~Y5y~GnnSyV8pRd91MIdBwOGEj1OZ9BokYNWXrle-dBhCOuQhEDdiiqw65vm4dshMQaZeHUVk0mUr64rqC6d4JAlSBBoVJ-0p3x2SDM3grQP~xwaq0pNtroQdjTAASGeWreqVbU8OTc-ojqt2joFIFkB4B7XSzSQdqhU5wMaKj-i7q1rh3BxwvsWvOWoKVaFAOymBoFx10URmJCiMCXJi8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":62540,"name":"Computer Network","url":"https://www.academia.edu/Documents/in/Computer_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85974714"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85974714/A_Chaotic_Bat_Algorithm_for_Solving_Definite_Integral"><img alt="Research paper thumbnail of A Chaotic Bat Algorithm for Solving Definite Integral" class="work-thumbnail" src="https://attachments.academia-assets.com/90529124/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85974714/A_Chaotic_Bat_Algorithm_for_Solving_Definite_Integral">A Chaotic Bat Algorithm for Solving Definite Integral</a></div><div class="wp-workCard_item"><span>INTERNATIONAL JOURNAL OF COMPUTERS &amp; TECHNOLOGY</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, an Improved Bat Algorithm with Chaos (IBACH) is presented for solving definite int...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, an Improved Bat Algorithm with Chaos (IBACH) is presented for solving definite integral. The IBACH satisfies the question of parallel calculating numerical integration in engineering and those segmentation points that are adaptive. Several numerical simulation results show that the algorithm offers an effective way to calculate numerical value of definite integrals; it has a high convergence rate, a high accuracy and robustness.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e6f976f951fe8df6967ea6600bbf9bf6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90529124,&quot;asset_id&quot;:85974714,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90529124/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85974714"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85974714"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85974714; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85974714]").text(description); $(".js-view-count[data-work-id=85974714]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85974714; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85974714']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85974714, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e6f976f951fe8df6967ea6600bbf9bf6" } } $('.js-work-strip[data-work-id=85974714]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85974714,"title":"A Chaotic Bat Algorithm for Solving Definite Integral","translated_title":"","metadata":{"abstract":"In this paper, an Improved Bat Algorithm with Chaos (IBACH) is presented for solving definite integral. The IBACH satisfies the question of parallel calculating numerical integration in engineering and those segmentation points that are adaptive. Several numerical simulation results show that the algorithm offers an effective way to calculate numerical value of definite integrals; it has a high convergence rate, a high accuracy and robustness.","publisher":"CIRWOLRD","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"INTERNATIONAL JOURNAL OF COMPUTERS \u0026 TECHNOLOGY"},"translated_abstract":"In this paper, an Improved Bat Algorithm with Chaos (IBACH) is presented for solving definite integral. The IBACH satisfies the question of parallel calculating numerical integration in engineering and those segmentation points that are adaptive. Several numerical simulation results show that the algorithm offers an effective way to calculate numerical value of definite integrals; it has a high convergence rate, a high accuracy and robustness.","internal_url":"https://www.academia.edu/85974714/A_Chaotic_Bat_Algorithm_for_Solving_Definite_Integral","translated_internal_url":"","created_at":"2022-09-01T03:17:02.144-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90529124,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90529124/thumbnails/1.jpg","file_name":"pdf_568.pdf","download_url":"https://www.academia.edu/attachments/90529124/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Chaotic_Bat_Algorithm_for_Solving_Defi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90529124/pdf_568-libre.pdf?1662029883=\u0026response-content-disposition=attachment%3B+filename%3DA_Chaotic_Bat_Algorithm_for_Solving_Defi.pdf\u0026Expires=1732404803\u0026Signature=Ze7Zd1~e9RpyJqCpBYGZ24PlFCAriar0AGGg8IzZVTFEUFOpIB0sbTATxIq6I4580cp0EUoo3BLHginVfiKct4rUuaHc9yWKTGzT1VpNqVU8DC6278bybiGM-eTkB~o0qOqXjYO9fXXHPFE2h88OPSV7uhad9G-gd3hD0wQhEss4IDtSUKYW9x8CiqYpT14D9LLMzXzCdzFDxcfCKAyVxe2a6Hwivlz7nFKP6FKVnFY4EbycozzrjsgspselSynYD470KxBiJsjF0t5I2MiLC5BS~Nra8kIFJmMM7bp8crVNdUu~lQ0-d2~puWS7sv7m2dkLESXaYChszdd4mWPKcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Chaotic_Bat_Algorithm_for_Solving_Definite_Integral","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":90529124,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90529124/thumbnails/1.jpg","file_name":"pdf_568.pdf","download_url":"https://www.academia.edu/attachments/90529124/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Chaotic_Bat_Algorithm_for_Solving_Defi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90529124/pdf_568-libre.pdf?1662029883=\u0026response-content-disposition=attachment%3B+filename%3DA_Chaotic_Bat_Algorithm_for_Solving_Defi.pdf\u0026Expires=1732404803\u0026Signature=Ze7Zd1~e9RpyJqCpBYGZ24PlFCAriar0AGGg8IzZVTFEUFOpIB0sbTATxIq6I4580cp0EUoo3BLHginVfiKct4rUuaHc9yWKTGzT1VpNqVU8DC6278bybiGM-eTkB~o0qOqXjYO9fXXHPFE2h88OPSV7uhad9G-gd3hD0wQhEss4IDtSUKYW9x8CiqYpT14D9LLMzXzCdzFDxcfCKAyVxe2a6Hwivlz7nFKP6FKVnFY4EbycozzrjsgspselSynYD470KxBiJsjF0t5I2MiLC5BS~Nra8kIFJmMM7bp8crVNdUu~lQ0-d2~puWS7sv7m2dkLESXaYChszdd4mWPKcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":43981,"name":"Optimization","url":"https://www.academia.edu/Documents/in/Optimization"},{"id":131957,"name":"Bat Algorithm","url":"https://www.academia.edu/Documents/in/Bat_Algorithm"},{"id":365167,"name":"Definite Integral","url":"https://www.academia.edu/Documents/in/Definite_Integral"},{"id":1410747,"name":"Meta Heuristics","url":"https://www.academia.edu/Documents/in/Meta_Heuristics"},{"id":1689174,"name":"Computers Technology","url":"https://www.academia.edu/Documents/in/Computers_Technology"}],"urls":[{"id":23526837,"url":"https://cirworld.com/index.php/ijct/article/download/1959/pdf_568"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79366138"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79366138/Improved_Firefly_Algorithm_for_Unconstrained_Optimization_Problems"><img alt="Research paper thumbnail of Improved Firefly Algorithm for Unconstrained Optimization Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/86105679/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79366138/Improved_Firefly_Algorithm_for_Unconstrained_Optimization_Problems">Improved Firefly Algorithm for Unconstrained Optimization Problems</a></div><div class="wp-workCard_item"><span>International Journal of Computer Applications Technology and Research</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ae77d9f0730541983604cf2fb3c6032f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86105679,&quot;asset_id&quot;:79366138,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86105679/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79366138"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79366138"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79366138; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79366138]").text(description); $(".js-view-count[data-work-id=79366138]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79366138; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79366138']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79366138, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ae77d9f0730541983604cf2fb3c6032f" } } $('.js-work-strip[data-work-id=79366138]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79366138,"title":"Improved Firefly Algorithm for Unconstrained Optimization Problems","translated_title":"","metadata":{"publisher":"Association of Technology and Science","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"International Journal of Computer Applications Technology and Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/79366138/Improved_Firefly_Algorithm_for_Unconstrained_Optimization_Problems","translated_internal_url":"","created_at":"2022-05-18T02:50:16.922-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86105679,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86105679/thumbnails/1.jpg","file_name":"ijcatr04011014.pdf","download_url":"https://www.academia.edu/attachments/86105679/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Improved_Firefly_Algorithm_for_Unconstra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86105679/ijcatr04011014-libre.pdf?1652867935=\u0026response-content-disposition=attachment%3B+filename%3DImproved_Firefly_Algorithm_for_Unconstra.pdf\u0026Expires=1732404803\u0026Signature=Wc6MNXnFVvoKsAYbIPKdwP~opl4U1eVhr85DVPgIVPaYVYNzxrWWvM7vcxkfP7Jvt2mryaDtDYx1cvEQQtT~7~1LBwvKd2EtVsZQ-ugwvJXUOopfkeOJI9VAV-MSmHiC-XpCaOtE7FZgrNZetiYNp-C934siK09sygV-q4NvYXzSo0x1hKb-bF2qjPFCRITVmBHhiAUjoJ7ysBENV00pYf5VT7ggYsGo6s2osvEjXm92WdQ81KDNXQPPviUnVU5C9JpSN9sYwaDIc56UfdEP2JuL5kGEF7kserql93TOi2CPKiBHvuPmhtbJJ9-3HE3o-nnFvVto8Dbq05ePdd2zJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Improved_Firefly_Algorithm_for_Unconstrained_Optimization_Problems","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":86105679,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86105679/thumbnails/1.jpg","file_name":"ijcatr04011014.pdf","download_url":"https://www.academia.edu/attachments/86105679/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Improved_Firefly_Algorithm_for_Unconstra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86105679/ijcatr04011014-libre.pdf?1652867935=\u0026response-content-disposition=attachment%3B+filename%3DImproved_Firefly_Algorithm_for_Unconstra.pdf\u0026Expires=1732404803\u0026Signature=Wc6MNXnFVvoKsAYbIPKdwP~opl4U1eVhr85DVPgIVPaYVYNzxrWWvM7vcxkfP7Jvt2mryaDtDYx1cvEQQtT~7~1LBwvKd2EtVsZQ-ugwvJXUOopfkeOJI9VAV-MSmHiC-XpCaOtE7FZgrNZetiYNp-C934siK09sygV-q4NvYXzSo0x1hKb-bF2qjPFCRITVmBHhiAUjoJ7ysBENV00pYf5VT7ggYsGo6s2osvEjXm92WdQ81KDNXQPPviUnVU5C9JpSN9sYwaDIc56UfdEP2JuL5kGEF7kserql93TOi2CPKiBHvuPmhtbJJ9-3HE3o-nnFvVto8Dbq05ePdd2zJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72796768"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72796768/An_Effective_Algorithm_for_Mining_Interesting_Maximal_Association_Rules"><img alt="Research paper thumbnail of An Effective Algorithm for Mining Interesting Maximal Association Rules" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72796768/An_Effective_Algorithm_for_Mining_Interesting_Maximal_Association_Rules">An Effective Algorithm for Mining Interesting Maximal Association Rules</a></div><div class="wp-workCard_item"><span>2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72796768"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72796768"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72796768; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72796768]").text(description); $(".js-view-count[data-work-id=72796768]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72796768; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72796768']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 72796768, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=72796768]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72796768,"title":"An Effective Algorithm for Mining Interesting Maximal Association Rules","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/72796768/An_Effective_Algorithm_for_Mining_Interesting_Maximal_Association_Rules","translated_internal_url":"","created_at":"2022-03-02T06:47:17.401-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"An_Effective_Algorithm_for_Mining_Interesting_Maximal_Association_Rules","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[],"research_interests":[],"urls":[{"id":18151847,"url":"http://xplorestaging.ieee.org/ielx7/9664650/9664753/09664770.pdf?arnumber=9664770"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72796766"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72796766/An_Improved_Flower_Pollination_Algorithm_for_Solving_Integer_Programming_Problems"><img alt="Research paper thumbnail of An Improved Flower Pollination Algorithm for Solving Integer Programming Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/81580994/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72796766/An_Improved_Flower_Pollination_Algorithm_for_Solving_Integer_Programming_Problems">An Improved Flower Pollination Algorithm for Solving Integer Programming Problems</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Flower pollination algorithm is a new nature-inspired algorithm, based on the characteristics of ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Flower pollination algorithm is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new method is developed based on the flower pollination algorithm combined with chaos theory (IFPCH) to solve integer programming problems. IFPCH rounds the parameter values to the closest integer after producing new solutions. Numerical simulation results show that the algorithm proved to be superior in almost all tested problems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="74c232d190d86c40651a3b99b219a795" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81580994,&quot;asset_id&quot;:72796766,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81580994/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72796766"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72796766"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72796766; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72796766]").text(description); $(".js-view-count[data-work-id=72796766]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72796766; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72796766']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 72796766, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "74c232d190d86c40651a3b99b219a795" } } $('.js-work-strip[data-work-id=72796766]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72796766,"title":"An Improved Flower Pollination Algorithm for Solving Integer Programming Problems","translated_title":"","metadata":{"abstract":"Flower pollination algorithm is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new method is developed based on the flower pollination algorithm combined with chaos theory (IFPCH) to solve integer programming problems. IFPCH rounds the parameter values to the closest integer after producing new solutions. Numerical simulation results show that the algorithm proved to be superior in almost all tested problems.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}}},"translated_abstract":"Flower pollination algorithm is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new method is developed based on the flower pollination algorithm combined with chaos theory (IFPCH) to solve integer programming problems. IFPCH rounds the parameter values to the closest integer after producing new solutions. Numerical simulation results show that the algorithm proved to be superior in almost all tested problems.","internal_url":"https://www.academia.edu/72796766/An_Improved_Flower_Pollination_Algorithm_for_Solving_Integer_Programming_Problems","translated_internal_url":"","created_at":"2022-03-02T06:47:16.079-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81580994,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580994/thumbnails/1.jpg","file_name":"3nz5wp6c77mo16.pdf","download_url":"https://www.academia.edu/attachments/81580994/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Improved_Flower_Pollination_Algorithm.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580994/3nz5wp6c77mo16-libre.pdf?1646233122=\u0026response-content-disposition=attachment%3B+filename%3DAn_Improved_Flower_Pollination_Algorithm.pdf\u0026Expires=1732404803\u0026Signature=Xh-Y0Kv7VPwrTJFXFj9kK9w9LnAM4cmGvQwliZuJJWzMeUTbApbYmVUTkq2vP-VqJXkYn-W~aa1aKdKcfU-5UVD5RuzB6G1PtZALyjTU3AEKAahiI00~5RG9SHuDoQuaPkL7x~tLJNXwPECWtZ2Jv-~2ilsDwY7Xc38HyC-8lWUcYIJjtv9IdaspRZ~mKeaZ3hGZPUBivuzalZzV9xzXGqdveOuaKpuIm8s0rT5zP3e9FlUiq6DeGfsHiJGIch55BqUgKGA04M2K9ml9iqFo~gGAHeWWueEHnrfDhMFZNNsh-9LSWMPbY-uXWsmTk9QgZChU4WTMiWK2F8bpnCngSQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Improved_Flower_Pollination_Algorithm_for_Solving_Integer_Programming_Problems","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":81580994,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580994/thumbnails/1.jpg","file_name":"3nz5wp6c77mo16.pdf","download_url":"https://www.academia.edu/attachments/81580994/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Improved_Flower_Pollination_Algorithm.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580994/3nz5wp6c77mo16-libre.pdf?1646233122=\u0026response-content-disposition=attachment%3B+filename%3DAn_Improved_Flower_Pollination_Algorithm.pdf\u0026Expires=1732404803\u0026Signature=Xh-Y0Kv7VPwrTJFXFj9kK9w9LnAM4cmGvQwliZuJJWzMeUTbApbYmVUTkq2vP-VqJXkYn-W~aa1aKdKcfU-5UVD5RuzB6G1PtZALyjTU3AEKAahiI00~5RG9SHuDoQuaPkL7x~tLJNXwPECWtZ2Jv-~2ilsDwY7Xc38HyC-8lWUcYIJjtv9IdaspRZ~mKeaZ3hGZPUBivuzalZzV9xzXGqdveOuaKpuIm8s0rT5zP3e9FlUiq6DeGfsHiJGIch55BqUgKGA04M2K9ml9iqFo~gGAHeWWueEHnrfDhMFZNNsh-9LSWMPbY-uXWsmTk9QgZChU4WTMiWK2F8bpnCngSQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72796765"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72796765/Path_Mapping_Approach_for_Network_Function_Virtualization_Resource_Allocation_with_Network_Function_Decomposition_Support"><img alt="Research paper thumbnail of Path Mapping Approach for Network Function Virtualization Resource Allocation with Network Function Decomposition Support" class="work-thumbnail" src="https://attachments.academia-assets.com/81580954/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72796765/Path_Mapping_Approach_for_Network_Function_Virtualization_Resource_Allocation_with_Network_Function_Decomposition_Support">Path Mapping Approach for Network Function Virtualization Resource Allocation with Network Function Decomposition Support</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Recently, Network Function Virtualization (NFV) and Software Defined Networking (SDN) have attrac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Recently, Network Function Virtualization (NFV) and Software Defined Networking (SDN) have attracted many mobile operators. For the flexible deployment of Network Functions (NFs) in an NFV environment, NF decompositions and control/user plane separation have been introduced in the literature. That is to map traditional functions into their corresponding Virtual Network Functions (VNFs). This mapping requires the NFV Resource Allocation (NFV-RA) for multi-path service graphs with a high number of virtual nodes and links, which is a complex NP-hard problem that inherited its complexity from the Virtual Network Embedding (VNE). This paper proposes a new path mapping approach to solving the NFV-RA problem for decomposed Network Service Chains (NSCs). The proposed solution has symmetrically considered optimizing an average embedding cost with an enhancement on average execution time. The proposed approach has been compared to two other existing schemes using 6 and 16 scenarios of short a...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a4e7c900ddd7ab0db338dd6946a4c1dc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81580954,&quot;asset_id&quot;:72796765,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81580954/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72796765"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72796765"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72796765; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72796765]").text(description); $(".js-view-count[data-work-id=72796765]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72796765; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72796765']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 72796765, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a4e7c900ddd7ab0db338dd6946a4c1dc" } } $('.js-work-strip[data-work-id=72796765]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72796765,"title":"Path Mapping Approach for Network Function Virtualization Resource Allocation with Network Function Decomposition Support","translated_title":"","metadata":{"abstract":"Recently, Network Function Virtualization (NFV) and Software Defined Networking (SDN) have attracted many mobile operators. For the flexible deployment of Network Functions (NFs) in an NFV environment, NF decompositions and control/user plane separation have been introduced in the literature. That is to map traditional functions into their corresponding Virtual Network Functions (VNFs). This mapping requires the NFV Resource Allocation (NFV-RA) for multi-path service graphs with a high number of virtual nodes and links, which is a complex NP-hard problem that inherited its complexity from the Virtual Network Embedding (VNE). This paper proposes a new path mapping approach to solving the NFV-RA problem for decomposed Network Service Chains (NSCs). The proposed solution has symmetrically considered optimizing an average embedding cost with an enhancement on average execution time. The proposed approach has been compared to two other existing schemes using 6 and 16 scenarios of short a...","publisher":"Symmetry","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"Recently, Network Function Virtualization (NFV) and Software Defined Networking (SDN) have attracted many mobile operators. For the flexible deployment of Network Functions (NFs) in an NFV environment, NF decompositions and control/user plane separation have been introduced in the literature. That is to map traditional functions into their corresponding Virtual Network Functions (VNFs). This mapping requires the NFV Resource Allocation (NFV-RA) for multi-path service graphs with a high number of virtual nodes and links, which is a complex NP-hard problem that inherited its complexity from the Virtual Network Embedding (VNE). This paper proposes a new path mapping approach to solving the NFV-RA problem for decomposed Network Service Chains (NSCs). The proposed solution has symmetrically considered optimizing an average embedding cost with an enhancement on average execution time. The proposed approach has been compared to two other existing schemes using 6 and 16 scenarios of short a...","internal_url":"https://www.academia.edu/72796765/Path_Mapping_Approach_for_Network_Function_Virtualization_Resource_Allocation_with_Network_Function_Decomposition_Support","translated_internal_url":"","created_at":"2022-03-02T06:47:15.117-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81580954,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580954/thumbnails/1.jpg","file_name":"symmetry-11-01173.pdf","download_url":"https://www.academia.edu/attachments/81580954/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Path_Mapping_Approach_for_Network_Functi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580954/symmetry-11-01173-libre.pdf?1646232773=\u0026response-content-disposition=attachment%3B+filename%3DPath_Mapping_Approach_for_Network_Functi.pdf\u0026Expires=1732404803\u0026Signature=SFRKNSIIHskzY9NfRkZhy9zrUHt3P~pcSKPLGRhSxIh34bCwXaKZ2JgpHsXWa4~z0zZZYfHlVmyvHR0ks7i7aPNoX95Qm4sRdd5aLQumNICYQ84Xe55-S3xLYl0DEFedo5Ejz~USDFaITH06MKzXQ~IvicTkL1VVbvXX6bmYzQ54G0~oeoeYms66ekyNvd24aSe9nmhi0Sp7CPjKa25z14xVPGL1UeLCx55H0Ds-UyYULE89etVeThh4dyUn~CytdfjLGSy5J8QdvTO-Sd51HT~qaTBVHm37q6jpJm5PJX28sVKMeq7MhAR8bjW2DbSABgU8VEYpvgfLIHLzrrGkXA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Path_Mapping_Approach_for_Network_Function_Virtualization_Resource_Allocation_with_Network_Function_Decomposition_Support","translated_slug":"","page_count":25,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":81580954,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580954/thumbnails/1.jpg","file_name":"symmetry-11-01173.pdf","download_url":"https://www.academia.edu/attachments/81580954/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Path_Mapping_Approach_for_Network_Functi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580954/symmetry-11-01173-libre.pdf?1646232773=\u0026response-content-disposition=attachment%3B+filename%3DPath_Mapping_Approach_for_Network_Functi.pdf\u0026Expires=1732404804\u0026Signature=XJvhbDY~OiCN7x7NRoc8KpOUAUEX2OozBq-0zRRa0NDZK1meGowJSkCgYN7U0-e57DpyV~I2U~IDaL3wtqkBkEcSQP6ig1d1qxrcZYUtoWVGR7hXMZwjWZaPdQp6P9pkt0aL1mcSNYZXHPhYJPklSY74N3G8~gOAdTcUWcpD67eW5gf3q-MpQHNYVevntUcElc9rIO4MdrHLrAj8WI-NR1WyKYtWnH5MDF1nxyPPJeGbUBSWD0c4IeBn4o6f6izaLx5GQX9iayyTAtaBO~wtrhjaaQXsMx5KcU2Gp~tk206TRXzqHyYbHG9M9YS-SeVunb09ixrKLYmXRFitSGyBmA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81580953,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580953/thumbnails/1.jpg","file_name":"symmetry-11-01173.pdf","download_url":"https://www.academia.edu/attachments/81580953/download_file","bulk_download_file_name":"Path_Mapping_Approach_for_Network_Functi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580953/symmetry-11-01173-libre.pdf?1646232774=\u0026response-content-disposition=attachment%3B+filename%3DPath_Mapping_Approach_for_Network_Functi.pdf\u0026Expires=1732404804\u0026Signature=DclCmvmyzM4AprxWkrRMDycOiubRHhh-dBPNs-qaQUyY7jRFjwRiquLytW5JP6lQ5H6pZ3yt1fAOV47G8mPm8wSEQwT390UdAn~aXVtIM6jiWuKL~AiE78-xeSJRBJxFpxB5dpIq1wtU8G1UDBmTXvX0gA0Lc4LAqR5tsWWILD3uweun-yVgJwAR-0MaoXQHKQXxj8ym6jvLhREE6dFpaBYhqm3hyoQis9hdtYqoC5tr0csi88YBWNIOe-wrxr-oIPApe8Z5paOMim3VvWuwXuWH5yEhmb5CL4ObBmCP0pRwMm7Ljew1F~tUn3tjHmegdrstgiWnL6IeDX78yPy1Cw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":126829,"name":"Symmetry","url":"https://www.academia.edu/Documents/in/Symmetry"}],"urls":[{"id":18151845,"url":"https://res.mdpi.com/d_attachment/symmetry/symmetry-11-01173/article_deploy/symmetry-11-01173.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72796764"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72796764/Applications_of_Kalman_and_Extended_Kalman_Filtering_to_Target_Tracking"><img alt="Research paper thumbnail of Applications of Kalman and Extended Kalman Filtering to Target Tracking" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72796764/Applications_of_Kalman_and_Extended_Kalman_Filtering_to_Target_Tracking">Applications of Kalman and Extended Kalman Filtering to Target Tracking</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This study deals with the famous trackers named Kalman and extended Kalman filters. This is intro...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This study deals with the famous trackers named Kalman and extended Kalman filters. This is introduced by describing the state space representation approach to model the target system. A modification to the state prediction equation of Kalman and extended Kalman filters is given in order to offer an ability of multi-step ahead prediction of the target future position. The problem of missed measurements, with different percentages of missing, is studied and a method to estimate these missed measurements is then suggested. Some simulation experiments are performed and indicated that Kalman filtering techniques are promising when they deal with target tracking problem.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72796764"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72796764"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72796764; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72796764]").text(description); $(".js-view-count[data-work-id=72796764]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72796764; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72796764']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 72796764, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=72796764]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72796764,"title":"Applications of Kalman and Extended Kalman Filtering to Target Tracking","translated_title":"","metadata":{"abstract":"This study deals with the famous trackers named Kalman and extended Kalman filters. This is introduced by describing the state space representation approach to model the target system. A modification to the state prediction equation of Kalman and extended Kalman filters is given in order to offer an ability of multi-step ahead prediction of the target future position. The problem of missed measurements, with different percentages of missing, is studied and a method to estimate these missed measurements is then suggested. Some simulation experiments are performed and indicated that Kalman filtering techniques are promising when they deal with target tracking problem.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}}},"translated_abstract":"This study deals with the famous trackers named Kalman and extended Kalman filters. This is introduced by describing the state space representation approach to model the target system. A modification to the state prediction equation of Kalman and extended Kalman filters is given in order to offer an ability of multi-step ahead prediction of the target future position. The problem of missed measurements, with different percentages of missing, is studied and a method to estimate these missed measurements is then suggested. Some simulation experiments are performed and indicated that Kalman filtering techniques are promising when they deal with target tracking problem.","internal_url":"https://www.academia.edu/72796764/Applications_of_Kalman_and_Extended_Kalman_Filtering_to_Target_Tracking","translated_internal_url":"","created_at":"2022-03-02T06:47:14.882-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Applications_of_Kalman_and_Extended_Kalman_Filtering_to_Target_Tracking","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[],"research_interests":[],"urls":[{"id":18151844,"url":"http://computerscience.uomosul.edu.iq/files/files/files_6169509.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72796707"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72796707/Analysis_of_Accident_Times_for_Highway_Locations_Using_K_Means_Clustering_and_Decision_Rules_Extracted_from_Decision_Trees"><img alt="Research paper thumbnail of Analysis of Accident Times for Highway Locations Using K-Means Clustering and Decision Rules Extracted from Decision Trees" class="work-thumbnail" src="https://attachments.academia-assets.com/81580899/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72796707/Analysis_of_Accident_Times_for_Highway_Locations_Using_K_Means_Clustering_and_Decision_Rules_Extracted_from_Decision_Trees">Analysis of Accident Times for Highway Locations Using K-Means Clustering and Decision Rules Extracted from Decision Trees</a></div><div class="wp-workCard_item"><span>International Journal of Computer Applications Technology and Research</span><span>, Jan 25, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7f01cad89a4abb2dffeec815d5e68c80" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81580899,&quot;asset_id&quot;:72796707,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81580899/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72796707"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72796707"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72796707; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72796707]").text(description); $(".js-view-count[data-work-id=72796707]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72796707; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72796707']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 72796707, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7f01cad89a4abb2dffeec815d5e68c80" } } $('.js-work-strip[data-work-id=72796707]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72796707,"title":"Analysis of Accident Times for Highway Locations Using K-Means Clustering and Decision Rules Extracted from Decision Trees","translated_title":"","metadata":{"publisher":"Association of Technology and Science","publication_date":{"day":25,"month":1,"year":2018,"errors":{}},"publication_name":"International Journal of Computer Applications Technology and Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/72796707/Analysis_of_Accident_Times_for_Highway_Locations_Using_K_Means_Clustering_and_Decision_Rules_Extracted_from_Decision_Trees","translated_internal_url":"","created_at":"2022-03-02T06:46:21.539-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5278534,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81580899,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580899/thumbnails/1.jpg","file_name":"ijcatr0701.pdf","download_url":"https://www.academia.edu/attachments/81580899/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analysis_of_Accident_Times_for_Highway_L.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580899/ijcatr0701-libre.pdf?1646232766=\u0026response-content-disposition=attachment%3B+filename%3DAnalysis_of_Accident_Times_for_Highway_L.pdf\u0026Expires=1732404804\u0026Signature=USaS7a6T~o3fQkBojNfZudQHRafvJDTPLLdcB5rMFd3quIim52FKawYPNU6UyA8jR31Hikwk5OLjIXFCVma4t1iT8V~6Vfe0aaAD00C-hM3YwacCUr64G8IeIkcjiXdB8a4zP0bg67PKj0Hq0TRhYQye2SQcNqVNpAweTr9iMnShGNvwwO8S45aCjsqIH7wtu8kPHk~xP166BJqyBi9xaAKhppOqsdbU5syK3shtR6MVu-4OZQSCRoyEMbnE8aDdrqPP7PY660U~JKXTaMXbbxnrYq6DwSXhp9~x-eTVSYR7eYMn9ZVgWjcr~pewnJn1wVhXFjChj4x~NM6YF7l8Nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Analysis_of_Accident_Times_for_Highway_Locations_Using_K_Means_Clustering_and_Decision_Rules_Extracted_from_Decision_Trees","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":5278534,"first_name":"Khalil","middle_initials":null,"last_name":"AL-Wagih","page_name":"KhalilALWagih","domain_name":"thuniv","created_at":"2013-08-26T03:23:16.479-07:00","display_name":"Khalil AL-Wagih","url":"https://thuniv.academia.edu/KhalilALWagih"},"attachments":[{"id":81580899,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580899/thumbnails/1.jpg","file_name":"ijcatr0701.pdf","download_url":"https://www.academia.edu/attachments/81580899/download_file?st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&st=MTczMjQwMTIwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analysis_of_Accident_Times_for_Highway_L.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580899/ijcatr0701-libre.pdf?1646232766=\u0026response-content-disposition=attachment%3B+filename%3DAnalysis_of_Accident_Times_for_Highway_L.pdf\u0026Expires=1732404804\u0026Signature=USaS7a6T~o3fQkBojNfZudQHRafvJDTPLLdcB5rMFd3quIim52FKawYPNU6UyA8jR31Hikwk5OLjIXFCVma4t1iT8V~6Vfe0aaAD00C-hM3YwacCUr64G8IeIkcjiXdB8a4zP0bg67PKj0Hq0TRhYQye2SQcNqVNpAweTr9iMnShGNvwwO8S45aCjsqIH7wtu8kPHk~xP166BJqyBi9xaAKhppOqsdbU5syK3shtR6MVu-4OZQSCRoyEMbnE8aDdrqPP7PY660U~JKXTaMXbbxnrYq6DwSXhp9~x-eTVSYR7eYMn9ZVgWjcr~pewnJn1wVhXFjChj4x~NM6YF7l8Nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81580901,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81580901/thumbnails/1.jpg","file_name":"ijcatr0701.pdf","download_url":"https://www.academia.edu/attachments/81580901/download_file","bulk_download_file_name":"Analysis_of_Accident_Times_for_Highway_L.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81580901/ijcatr0701-libre.pdf?1646232762=\u0026response-content-disposition=attachment%3B+filename%3DAnalysis_of_Accident_Times_for_Highway_L.pdf\u0026Expires=1732404804\u0026Signature=YP32fW5eG6725PXVXGpDLynMAV9mNEma2biH~~eCj7ilO5GipLV7LG-ele95uISAS~jo0ThZCUHSxALYPu70sB9Vw7ox7ZlIuJEu94Ym66dnv6HrfVtNWCem9kS4tiTS5D4vrP32FpS0W1AnWPGPxMTzH39axorHsU14pqKsyfc~X5AhN6IQdgxtvc0XJX79q5y-Vl0bpnAD9Y2Y~KyJo1DeuX6YZkrp7xjIDdEjAFxu3-bijmNH94FzckKCc20W71smO6VuyqXbhUuyKcfi6~uTNY-Cn8a-8qkHS7oQWdbOCe2vjbITNtIlWpQScf8DZsJTYA82OSsuDJdC8GbENA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":18151817,"url":"https://doi.org/10.7753/ijcatr0701.1001"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "d6c41903ce775111ed2f1cf6fe5406090fb0491a839cb91bdf0807e9a832ab66", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="PcEdjnmVxb5RlAAMa3MhGsJbMo8OSu1axhZVKPQG8wk0lSe51h7Dx0BfTmKOLKzY2SHRWJlB+B+HC5MaO+AYcA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://thuniv.academia.edu/KhalilALWagih" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="lPRsjB2Jg/NVJHVaT1IBoSpeqq5+uncN0LXKypM2lP2doFa7sgKFikTvOzSqDYxjMSRJeemxYkiRqAz4XNB/hA==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10