CINXE.COM
Search results for: integrated optical devices
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: integrated optical devices</title> <meta name="description" content="Search results for: integrated optical devices"> <meta name="keywords" content="integrated optical devices"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="integrated optical devices" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="integrated optical devices"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6784</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: integrated optical devices</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6784</span> Optical Design and Modeling of Micro Light-Emitting Diodes for Display Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaya%20B.%20M.">Chaya B. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Dhanush"> C. Dhanush</a>, <a href="https://publications.waset.org/abstracts/search?q=Inti%20Sai%20Srikar"> Inti Sai Srikar</a>, <a href="https://publications.waset.org/abstracts/search?q=Akula%20Pavan%20Parvatalu"> Akula Pavan Parvatalu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chirag%20Gowda%20R"> Chirag Gowda R</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, there has been a lot of interest in µ-LED technology because of its exceptional qualities, including auto emission, high visibility, low consumption of power, rapid response and longevity. Light-emitting diodes (LED) using III-nitride, such as lighting sources, visible light communication (VLC) devices, and high-power devices, are finding increasing use as miniaturization technology advances. The use of micro-LED displays in place of traditional display technologies like liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) is one of the most prominent recent advances, which may even represent the next generation of displays. The development of fully integrated, multifunctional devices and the incorporation of extra capabilities into micro-LED displays, such as sensing, light detection, and solar cells, are the pillars of advanced technology. Due to the wide range of applications for micro-LED technology, the effectiveness and dependability of these devices in numerous harsh conditions are becoming increasingly important. Enough research has been conducted to overcome the under-effectiveness of micro-LED devices. In this paper, different Micro LED design structures are proposed in order to achieve optimized optical properties. In order to attain improved external quantum efficiency (EQE), devices' light extraction efficiency (LEE) has also been boosted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20time%20domain" title="finite difference time domain">finite difference time domain</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20out%20coupling%20efficiency" title=" light out coupling efficiency"> light out coupling efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=far%20field%20intensity" title=" far field intensity"> far field intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20density" title=" power density"> power density</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20efficiency" title=" quantum efficiency"> quantum efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20panel%20displays" title=" flat panel displays"> flat panel displays</a> </p> <a href="https://publications.waset.org/abstracts/166079/optical-design-and-modeling-of-micro-light-emitting-diodes-for-display-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6783</span> A Connected Structure of All-Optical Logic Gate “NOT-AND”</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roumaissa%20Derdour">Roumaissa Derdour</a>, <a href="https://publications.waset.org/abstracts/search?q=Lebbal%20Mohamed%20Redha"> Lebbal Mohamed Redha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a study of the transmission of the all-optical logic gate using a structure connected with a triangular photonic crystal lattice that is improved. The proposed logic gate consists of a photonic crystal nano-resonator formed by changing the size of the air holes. In addition to the simplicity, the response time is very short, and the designed nano-resonator increases the bit rate of the logic gate. The two-dimensional finite difference time domain (2DFDTD) method is used to simulate the structure; the transmission obtained is about 98% with very negligible losses. The proposed photonic crystal AND logic gate is widely used in future integrated optical microelectronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=logic%20gates" title="logic gates">logic gates</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystals" title=" photonic crystals"> photonic crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20integrated%20circuits" title=" optical integrated circuits"> optical integrated circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20cavities" title=" resonant cavities"> resonant cavities</a> </p> <a href="https://publications.waset.org/abstracts/161597/a-connected-structure-of-all-optical-logic-gate-not-and" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6782</span> Soliton Interaction in Multi-Core Optical Fiber: Application to WDM System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Arun%20Prakash">S. Arun Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Malathi"> V. Malathi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mani%20Rajan"> M. S. Mani Rajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analytical bright two soliton solution of the 3-coupled nonlinear Schrödinger equations with variable coefficients in birefringent optical fiber is obtained by Darboux transformation method. To the design of ultra-speed optical devices, Soliton interaction and control in birefringence fiber is investigated. Lax pair is constructed for N coupled NLS system through AKNS method. Using two soliton solution, we demonstrate different interaction behaviors of solitons in birefringent fiber depending on the choice of control parameters. Our results shows that interactions of optical solitons have some specific applications such as construction of logic gates, optical computing, soliton switching, and soliton amplification in wavelength division multiplexing (WDM) system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20soliton" title="optical soliton">optical soliton</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20interaction" title=" soliton interaction"> soliton interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20switching" title=" soliton switching"> soliton switching</a>, <a href="https://publications.waset.org/abstracts/search?q=WDM" title=" WDM"> WDM</a> </p> <a href="https://publications.waset.org/abstracts/37276/soliton-interaction-in-multi-core-optical-fiber-application-to-wdm-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6781</span> Fabrication of LiNbO₃ Based Conspicuous Nanomaterials for Renewable Energy Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riffat%20Kalsoom">Riffat Kalsoom</a>, <a href="https://publications.waset.org/abstracts/search?q=Qurat-Ul-Ain%20Javed"> Qurat-Ul-Ain Javed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical and dielectric properties of lithium niobates have made them the fascinating materials to be used in optical industry for device formation such as Q and optical switching. Synthesis of lithium niobates was carried out by solvothermal process with and without temperature fluctuation at 200°C for 4 hrs, and behavior of properties for different durations was also examined. Prepared samples of LiNbO₃ were examined in a way as crystallographic phases by using XRD diffractometer, morphology by scanning electron microscope (SEM), absorption by UV-Visible Spectroscopy and dielectric measurement by impedance analyzer. A structural change from trigonal to spherical shape was observed by changing the time of reaction. Crystallite size decreases by the temperature fluctuation and increasing reaction time. Band gap decreases whereas dielectric constant and dielectric loss was increased with increasing time of reaction. Trend of AC conductivity is explained by Joschner’s power law. Due to these significant properties, it finds its applications in devices, such as cells, Q switching and optical switching for laser and gigahertz frequencies, respectively and these applications depend on the industrial demands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20niobates" title="lithium niobates">lithium niobates</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20devices" title=" renewable energy devices"> renewable energy devices</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20structure" title=" controlled structure"> controlled structure</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20fluctuations" title=" temperature fluctuations"> temperature fluctuations</a> </p> <a href="https://publications.waset.org/abstracts/93681/fabrication-of-linbo3-based-conspicuous-nanomaterials-for-renewable-energy-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6780</span> Improved Pattern Matching Applied to Surface Mounting Devices Components Localization on Automated Optical Inspection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pedro%20M.%20A.%20Vitoriano">Pedro M. A. Vitoriano</a>, <a href="https://publications.waset.org/abstracts/search?q=Tito.%20G.%20Amaral"> Tito. G. Amaral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated Optical Inspection (AOI) Systems are commonly used on Printed Circuit Boards (PCB) manufacturing. The use of this technology has been proven as highly efficient for process improvements and quality achievements. The correct extraction of the component for posterior analysis is a critical step of the AOI process. Nowadays, the Pattern Matching Algorithm is commonly used, although this algorithm requires extensive calculations and is time consuming. This paper will present an improved algorithm for the component localization process, with the capability of implementation in a parallel execution system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AOI" title="AOI">AOI</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20optical%20inspection" title=" automated optical inspection"> automated optical inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=SMD" title=" SMD"> SMD</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20mounting%20devices" title=" surface mounting devices"> surface mounting devices</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20matching" title=" pattern matching"> pattern matching</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20execution" title=" parallel execution"> parallel execution</a> </p> <a href="https://publications.waset.org/abstracts/59624/improved-pattern-matching-applied-to-surface-mounting-devices-components-localization-on-automated-optical-inspection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6779</span> Additive Manufacturing of Microstructured Optical Waveguides Using Two-Photon Polymerization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leonnel%20Mhuka">Leonnel Mhuka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The field of photonics has witnessed substantial growth, with an increasing demand for miniaturized and high-performance optical components. Microstructured optical waveguides have gained significant attention due to their ability to confine and manipulate light at the subwavelength scale. Conventional fabrication methods, however, face limitations in achieving intricate and customizable waveguide structures. Two-photon polymerization (TPP) emerges as a promising additive manufacturing technique, enabling the fabrication of complex 3D microstructures with submicron resolution. Objectives: This experiment aimed to utilize two-photon polymerization to fabricate microstructured optical waveguides with precise control over geometry and dimensions. The objective was to demonstrate the feasibility of TPP as an additive manufacturing method for producing functional waveguide devices with enhanced performance. Methods: A femtosecond laser system operating at a wavelength of 800 nm was employed for two-photon polymerization. A custom-designed CAD model of the microstructured waveguide was converted into G-code, which guided the laser focus through a photosensitive polymer material. The waveguide structures were fabricated using a layer-by-layer approach, with each layer formed by localized polymerization induced by non-linear absorption of the laser light. Characterization of the fabricated waveguides included optical microscopy, scanning electron microscopy, and optical transmission measurements. The optical properties, such as mode confinement and propagation losses, were evaluated to assess the performance of the additive manufactured waveguides. Conclusion: The experiment successfully demonstrated the additive manufacturing of microstructured optical waveguides using two-photon polymerization. Optical microscopy and scanning electron microscopy revealed the intricate 3D structures with submicron resolution. The measured optical transmission indicated efficient light propagation through the fabricated waveguides. The waveguides exhibited well-defined mode confinement and relatively low propagation losses, showcasing the potential of TPP-based additive manufacturing for photonics applications. The experiment highlighted the advantages of TPP in achieving high-resolution, customized, and functional microstructured optical waveguides. Conclusion: his experiment substantiates the viability of two-photon polymerization as an innovative additive manufacturing technique for producing complex microstructured optical waveguides. The successful fabrication and characterization of these waveguides open doors to further advancements in the field of photonics, enabling the development of high-performance integrated optical devices for various applications <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Additive%20Manufacturing" title="Additive Manufacturing">Additive Manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=Microstructured%20Optical%20Waveguides" title=" Microstructured Optical Waveguides"> Microstructured Optical Waveguides</a>, <a href="https://publications.waset.org/abstracts/search?q=Two-Photon%20Polymerization" title=" Two-Photon Polymerization"> Two-Photon Polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=Photonics%20Applications" title=" Photonics Applications"> Photonics Applications</a> </p> <a href="https://publications.waset.org/abstracts/171074/additive-manufacturing-of-microstructured-optical-waveguides-using-two-photon-polymerization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6778</span> Investigation of Thickness Dependent Optical Properties of Bi₂Sb(₃-ₓ):Te ₓ (where x = 0.1, 0.2, 0.3) Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reena%20Panchal">Reena Panchal</a>, <a href="https://publications.waset.org/abstracts/search?q=Maunik%20Jani"> Maunik Jani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Vyas"> S. M. Vyas</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20R.%20Pandya"> G. R. Pandya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Group V-VI compounds have a narrow bandgap, which makes them useful in many electronic devices. In bulk form, BiSbTe alloys are semi-metals or semi-conductors. They are used in thermoelectric and thermomagnetic devices, fabrication of ionizing, radiation detectors, LEDs, solid-state electrodes, photosensitive heterostructures, solar cells, ionic batteries, etc. Thin films of Bi₂Sb(₃-ₓ):Tex (where x = 0.1, 0.2, 0.3) of various thicknesses were grown by the thermal evaporation technique on a glass substrate at room temperature under a pressure of 10-₄ mbar for different time periods such as 10s, 15s, and 20s. The thickness of these thin films was also obtained by using the swaneopeol envelop method and compared those values with instrumental values. The optical absorption (%) data of thin films was measured in the wave number range of 650 cm-¹ to 4000 cm-¹. The band gap has been evaluated from these optical absorption data, and the results indicate that absorption occurred by a direct interband transition. It was discovered that when thickness decreased, the band gap increased; this dependency was inversely related to the square of thickness, which is explained by the quantum size effect. Using the values of bandgap, found the values of optical electronegativity (∆χ) and optical refractive index (η) using various relations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title="thin films">thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=band%20gap" title=" band gap"> band gap</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20thickness" title=" film thickness"> film thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20study" title=" optical study"> optical study</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20effect" title=" size effect"> size effect</a> </p> <a href="https://publications.waset.org/abstracts/190143/investigation-of-thickness-dependent-optical-properties-of-bi2sb3-te-where-x-01-02-03-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6777</span> Optical and Dielectric Properties of Self-Assembled 0D Hybrid Organic-Inorganic Insulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kassou">S. Kassou</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20El%20Mrabet"> R. El Mrabet</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belaaraj"> A. Belaaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Guionneau"> P. Guionneau</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hadi"> N. Hadi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Lamcharfi"> T. Lamcharfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The organic–inorganic hybrid perovskite-like [C<sub>6</sub>H<sub>5</sub>C<sub>2</sub>H<sub>4</sub>NH<sub>3</sub>]<sub>2</sub>ZnCl<sub>4</sub> (PEA-ZnCl<sub>4</sub>) was synthesized by saturated solutions method. X-ray powder diffraction, Raman spectroscopy, UV-visible transmittance, and capacitance meter measurements have been used to characterize the structure, the functional groups, the optical parameters, and the dielectric constants of the material. The material has a layered structure. The optical transmittance (T %) was recorded and applied to deduce the absorption coefficient (α) and optical band gap (Eg). The hybrid shows an insulator character with a direct band gap about 4.46 eV, and presents high dielectric constants up to a frequency of about 10<sup>5</sup> Hz, which suggests a ferroelectric behavior. The reported optical and dielectric properties can help to understand the fundamental properties of perovskite materials and also to be used for optimizing or designing new devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20constants" title="dielectric constants">dielectric constants</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap%20%28eg%29" title=" optical band gap (eg)"> optical band gap (eg)</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20parameters" title=" optical parameters"> optical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly%20organic%20inorganic%20hybrid" title=" self-assembly organic inorganic hybrid"> self-assembly organic inorganic hybrid</a> </p> <a href="https://publications.waset.org/abstracts/65237/optical-and-dielectric-properties-of-self-assembled-0d-hybrid-organic-inorganic-insulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6776</span> Optical Repeater Assisted Visible Light Device-to-Device Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samrat%20Vikramaditya%20Tiwari">Samrat Vikramaditya Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20Sewaiwar"> Atul Sewaiwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeon-Ho%20Chung"> Yeon-Ho Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Device-to-device (D2D) communication is considered a promising technique to provide wireless peer-to-peer communication services. Due to increasing demand on mobile services, available spectrum for radio frequency (RF) based communications becomes scarce. Recently, visible light communications (VLC) has evolved as a high speed wireless data transmission technology for indoor environments with abundant available bandwidth. In this paper, a novel VLC based D2D communication that provides wireless peer-to-peer communication is proposed. Potential low operating power devices for an efficient D2D communication over increasing distance of separation between devices is analyzed. Optical repeaters (OR) are also proposed to enhance the performance in an environment where direct D2D communications yield degraded performance. Simulation results show that VLC plays an important role in providing efficient D2D communication up to a distance of 1 m between devices. It is also found that the OR significantly improves the coverage distance up to 3.5 m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visible%20light%20communication" title="visible light communication">visible light communication</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20emitting%20diode" title=" light emitting diode"> light emitting diode</a>, <a href="https://publications.waset.org/abstracts/search?q=device-to-device" title=" device-to-device"> device-to-device</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20repeater" title=" optical repeater"> optical repeater</a> </p> <a href="https://publications.waset.org/abstracts/36727/optical-repeater-assisted-visible-light-device-to-device-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6775</span> All-Silicon Raman Laser with Quasi-Phase-Matched Structures and Resonators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita">Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The principle of all-silicon Raman lasers for an output wavelength of 1.3 μm is presented, which employs quasi-phase-matched structures and resonators to enhance the output power. 1.3-μm laser beams for GE-PONs in FTTH systems generated from a silicon device are very important because such a silicon device can be monolithically integrated with the silicon planar lightwave circuits (Si PLCs) used in the GE-PONs. This reduces the device fabrication processes and time and also optical losses at the junctions between optical waveguides of the Si PLCs and Si laser devices when compared with 1.3-μm III-V semiconductor lasers set on the Si PLCs employed at present. We show that the quasi-phase-matched Si Raman laser with resonators can produce about 174 times larger laser power at 1.3 μm (at maximum) than that without resonators for a Si waveguide of Raman gain 20 cm/GW and optical loss 1.2 dB/cm, pumped at power 10 mW, where the length of the waveguide is 3 mm and its cross-section is (1.5 μm)2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=All-Silicon%20Raman%20Laser" title="All-Silicon Raman Laser">All-Silicon Raman Laser</a>, <a href="https://publications.waset.org/abstracts/search?q=FTTH" title=" FTTH"> FTTH</a>, <a href="https://publications.waset.org/abstracts/search?q=GE-PON" title=" GE-PON"> GE-PON</a>, <a href="https://publications.waset.org/abstracts/search?q=Quasi-Phase-Matched%20Structure" title=" Quasi-Phase-Matched Structure"> Quasi-Phase-Matched Structure</a>, <a href="https://publications.waset.org/abstracts/search?q=resonator" title=" resonator"> resonator</a> </p> <a href="https://publications.waset.org/abstracts/63334/all-silicon-raman-laser-with-quasi-phase-matched-structures-and-resonators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6774</span> Effect of Manganese Doping Percentage on Optical Band Gap and Conductivity of Copper Sulphide Nano-Films Prepared by Electrodeposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20Okafor">P. C. Okafor</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Ekpunobi"> A. J. Ekpunobi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mn doped copper sulphide (CuS:Mn) nano-films were deposited on indiums coated tin oxide (ITO) glass substrates using electrodeposition method. Electrodeposition was carried out using bath of PH = 3 at room temperature. Other depositions parameters such as deposition time (DT) are kept constant while Mn doping was varied from 3% to 23%. Absorption spectra of CuS:Mn films was obtained by using JENWAY 6405 UV-VIS -spectrophotometer. Optical band gap (E_g ), optical conductivity (σo) and electrical conductivity (σe) of CuS:Mn films were determined using absorption spectra and appropriate formula. The effect of Mn doping % on these properties were investigated. Results show that film thickness (t) for the 13.27 nm to 18.49 nm; absorption coefficient (α) from 0.90 x 1011 to 1.50 x 1011 optical band gap from 2.29eV to 2.35 eV; optical conductivity from 1.70 x 1013 and electrical conductivity from 160 millions to 154 millions. Possible applications of such films for solar cells fabrication and optoelectronic devices applications were also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20sulphide%20%28CuS%29" title="copper sulphide (CuS)">copper sulphide (CuS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Manganese%20%28Mn%29%20doping" title=" Manganese (Mn) doping"> Manganese (Mn) doping</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap" title=" optical band gap"> optical band gap</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20conductivity" title=" optical conductivity"> optical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/19832/effect-of-manganese-doping-percentage-on-optical-band-gap-and-conductivity-of-copper-sulphide-nano-films-prepared-by-electrodeposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">722</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6773</span> Crystalline Silicon Optical Whispering Gallery Mode (WGM) Resonators for Precision Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20Bilenko">Igor Bilenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Artem%20Shitikov"> Artem Shitikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Gorodetsky"> Michael Gorodetsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical whispering gallery mode (WGM) resonators combine very high optical quality factor (Q) with small size. Resonators made from low loss crystalline fluorites (CaF2, MgF2) may have Q as high as 1010 that make them unique devices for modern applications including ultrasensitive sensors, frequency control, and precision spectroscopy. While silicon is a promising material transparent from near infrared to terahertz frequencies, fundamental limit for Si WGM quality factor was not reached yet. In our paper, we presented experimental results on the preparation and testing of resonators at 1550 nm wavelength made from crystalline silicon grown and treated by different techniques. Q as high as 3x107 was demonstrated. Future steps need to reach a higher value and possible applications are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20quality%20factor" title="optical quality factor">optical quality factor</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20optical%20losses" title=" silicon optical losses"> silicon optical losses</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20optical%20resonator" title=" silicon optical resonator"> silicon optical resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=whispering%20gallery%20modes" title=" whispering gallery modes"> whispering gallery modes</a> </p> <a href="https://publications.waset.org/abstracts/81630/crystalline-silicon-optical-whispering-gallery-mode-wgm-resonators-for-precision-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6772</span> Investigation Of Eugan's, Optical Properties With Dft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahieddine.%20Bouabdellah">Bahieddine. Bouabdellah</a>, <a href="https://publications.waset.org/abstracts/search?q=Benameur.%20Amiri"> Benameur. Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader.nouri"> Abdelkader.nouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Europium-doped gallium nitride (EuGaN) is a promising material for optoelectronic and thermoelectric devices. This study investigates its optical properties using density functional theory (DFT) with the FP-LAPW method and MBJ+U correction. The simulation substitutes a gallium atom with europium in a hexagonal GaN lattice (6% doping). Distinct absorption peaks are observed in the optical analysis. These results highlight EuGaN's potential for various applications and pave the way for further research on rare earth-doped materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eugan" title="eugan">eugan</a>, <a href="https://publications.waset.org/abstracts/search?q=fp-lapw" title=" fp-lapw"> fp-lapw</a>, <a href="https://publications.waset.org/abstracts/search?q=dft" title=" dft"> dft</a>, <a href="https://publications.waset.org/abstracts/search?q=wien2k" title=" wien2k"> wien2k</a>, <a href="https://publications.waset.org/abstracts/search?q=mbj%20hubbard" title=" mbj hubbard"> mbj hubbard</a> </p> <a href="https://publications.waset.org/abstracts/185924/investigation-of-eugans-optical-properties-with-dft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6771</span> Efficient Backup Protection for Hybrid WDM/TDM GPON System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmahdi%20Mohammadine">Elmahdi Mohammadine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahouzi%20Esmail"> Ahouzi Esmail</a>, <a href="https://publications.waset.org/abstracts/search?q=Najid%20Abdellah"> Najid Abdellah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This contribution aims to present a new protected hybrid WDM/TDM PON architecture using Wavelength Selective Switches and Optical Line Protection devices. The objective from using these technologies is to improve flexibility and enhance the protection of GPON networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wavlenght%20Division%20Multiplexed%20Passive%20Optical%20Network%20%28WDM-PON%29" title="Wavlenght Division Multiplexed Passive Optical Network (WDM-PON)">Wavlenght Division Multiplexed Passive Optical Network (WDM-PON)</a>, <a href="https://publications.waset.org/abstracts/search?q=Time%20Division%20Multiplexed%20%20PON%20%28TDM-PON%29" title=" Time Division Multiplexed PON (TDM-PON)"> Time Division Multiplexed PON (TDM-PON)</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=Protection" title=" Protection"> Protection</a>, <a href="https://publications.waset.org/abstracts/search?q=Wavelength%20Selective%20Switches%20%28WSS%29" title=" Wavelength Selective Switches (WSS)"> Wavelength Selective Switches (WSS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Optical%20Line%20Protection%20%28OLP%29" title=" Optical Line Protection (OLP)"> Optical Line Protection (OLP)</a> </p> <a href="https://publications.waset.org/abstracts/18804/efficient-backup-protection-for-hybrid-wdmtdm-gpon-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6770</span> Comparison of Corneal Curvature Measurements Conducted with Tomey AO-2000® and the Current Standard Biometer IOL Master®</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Radzi%20Hilmi">Mohd Radzi Hilmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairidzan%20Mohd%20Kamal"> Khairidzan Mohd Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Che%20Azemin%20Mohd%20Zulfaezal"> Che Azemin Mohd Zulfaezal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariffin%20Azrin%20Esmady"> Ariffin Azrin Esmady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Corneal curvature (CC) is an important anterior segment parameter. This study compared CC measurements conducted with two optical devices in phakic eyes. Methods: Sixty phakic eyes of 30 patients were enrolled in this study. CC was measured three times with the optical biometer and topography-keratometer Tomey AO-2000 (Tomey Corporation, Nagoya, Japan), then with the standard partial optical coherence interferometry (PCI) IOL Master (Carl Zeiss Meditec, Dublin, CA) and data were statistically analysed. Results: The measurements resulted in a mean CC of 43.86 ± 1.57 D with Tomey AO-2000 and 43.84 ± 1.55 D with IOL Master. Distribution of data is normal, and no significance difference in CC values was detected (P = 0.952) between the two devices. Correlation between CC measurements was highly significant (r = 0. 99; P < 0.0001). The mean difference of CC values between devices was 0.017 D and 95% limit of agreement was -0.088 to 0.12. Duration taken for measurements with the standard biometer IOL Master was longer (55.17 ± 2.24 seconds) than with Tomey AO-2000 (39.88 ± 2.38 seconds) in automatic mode. Duration of manual measurement with Tomey AO-2000 in manual mode was the shortest (28.57 ± 2.71 seconds). Conclusion: In phakic eyes, CC measured with Tomey AO-2000 and IOL Master showed similar values, and high correlation was observed between these two devices. This shows that both devices can be used interchangeably. Tomey AO-2000 is better in terms of faster to operate and has its own topography systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corneal%20topography" title="corneal topography">corneal topography</a>, <a href="https://publications.waset.org/abstracts/search?q=corneal%20curvature" title=" corneal curvature"> corneal curvature</a>, <a href="https://publications.waset.org/abstracts/search?q=IOL%20Master" title=" IOL Master"> IOL Master</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomey%20AO2000" title=" Tomey AO2000 "> Tomey AO2000 </a> </p> <a href="https://publications.waset.org/abstracts/38452/comparison-of-corneal-curvature-measurements-conducted-with-tomey-ao-2000-and-the-current-standard-biometer-iol-master" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6769</span> Synthesis of AgInS2–ZnS at Low Temperature with Tunable Photoluminescence for Photovoltaic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nitu%20Chhikaraa">Nitu Chhikaraa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Tyagia"> S. B. Tyagia</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Jainb"> Kiran Jainb</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamta%20Kharkwala"> Mamta Kharkwala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The I–III–VI2 semiconductor Nanocrystals such as AgInS2 have great interest for various applications such as optical devices (solar cell and LED), cellular Imaging and bio tagging etc. we synthesized the phase and shape controlled chalcopyrite AgInS2 (AIS) colloidal nanoparticles by thermal decomposition of metal xanthate at low temperature in an organic solvent’s containing surfactant molecules. Here we are focusing on enhancements of photoluminescence of AgInS2 Nps by coating of ZnS at low temperature for application of optical devices. The size of core shell Nps was less than 50nm.by increasing the time and temperature the emission of the wavelength of the Zn coated AgInS2 Nps could be adjusted from visible region to IR the QY of the AgInS2 Nps could be increased by coating of ZnS from 20 to 80% which was reasonably good as compared to those of the previously reported. The synthesized NPs were characterized by PL, UV, XRD and TEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PL" title="PL">PL</a>, <a href="https://publications.waset.org/abstracts/search?q=UV" title=" UV"> UV</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a> </p> <a href="https://publications.waset.org/abstracts/19343/synthesis-of-agins2-zns-at-low-temperature-with-tunable-photoluminescence-for-photovoltaic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6768</span> Compact Optical Sensors for Harsh Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Branislav%20Timotijevic">Branislav Timotijevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Yves%20Petremand"> Yves Petremand</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Luetzelschwab"> Markus Luetzelschwab</a>, <a href="https://publications.waset.org/abstracts/search?q=Dara%20Bayat"> Dara Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Aebi"> Laurent Aebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20MEMS" title="optical MEMS">optical MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20sensor" title=" temperature sensor"> temperature sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerometer" title=" accelerometer"> accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=harsh%20environment" title=" harsh environment"> harsh environment</a> </p> <a href="https://publications.waset.org/abstracts/65332/compact-optical-sensors-for-harsh-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6767</span> Optical Bands Splitting in Tm₃Fe₅O₁₂ Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Vidyasagar">R. Vidyasagar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20L.%20S.%20Vilela"> G. L. S. Vilela</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Guiraldelli"> B. M. Guiraldelli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Henriques"> A. B. Henriques</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20%20Moodera"> J. Moodera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nano-scaled magnetic systems that can have both magnetic and optical transitions controlled and manipulated by external means have received enormous research attention for their potential applications in magneto-optics and spintronic devices. Among several ferrimagnetic insulators, the Tm₃Fe₅O₁₂ (TmIG) has become a prototype material displaying huge perpendicular magnetic anisotropy. Nevertheless, the optical properties of nano-scale TnIG films have not yet been investigated. We report the observation of giant splitting in the optical transitions of high-quality thin films of Tm₃Fe₅O₁₂ (TmIG) grown by rf sputtering on gadolinium gallium garnet substrates (GGG-111) substrate. The optical absorbance profiles measured with optical absorption spectroscopy show a dual optical transition in visible frequency regimes attributed to the transitions of electrons from the O-2p valence band to the Fe-3d conduction band and from the O-2p valence band to the Fe-2p⁵3d⁶ excitonic states at the Γ-symmetric point of the TmIG Brillouin zone. When the thickness of the film is reduced from 120 nm to 7.5 nm, the 1st optical transition energy shifted from 2.98 to 3.11 eV ( ~130 meV), and the 2nd transition energy shifted from 2.62 to 2.56 eV (~ 60 meV). The giant band splitting of both transitions can be attributed to the population of excited states associated with the atomic modification pertaining to the compressive or tensile strains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20transitions" title="optical transitions">optical transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrimagnetic%20insulator" title=" ferrimagnetic insulator"> ferrimagnetic insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=strains" title=" strains"> strains</a> </p> <a href="https://publications.waset.org/abstracts/186490/optical-bands-splitting-in-tm3fe5o12-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6766</span> Integrated Free Space Optical Communication and Optical Sensor Network System with Artificial Intelligence Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yibeltal%20Chanie%20Manie">Yibeltal Chanie Manie</a>, <a href="https://publications.waset.org/abstracts/search?q=Zebider%20Asire%20Munyelet"> Zebider Asire Munyelet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 5G and 6G technology offers enhanced quality of service with high data transmission rates, which necessitates the implementation of the Internet of Things (IoT) in 5G/6G architecture. In this paper, we proposed the integration of free space optical communication (FSO) with fiber sensor networks for IoT applications. Recently, free-space optical communications (FSO) are gaining popularity as an effective alternative technology to the limited availability of radio frequency (RF) spectrum. FSO is gaining popularity due to flexibility, high achievable optical bandwidth, and low power consumption in several applications of communications, such as disaster recovery, last-mile connectivity, drones, surveillance, backhaul, and satellite communications. Hence, high-speed FSO is an optimal choice for wireless networks to satisfy the full potential of 5G/6G technology, offering 100 Gbit/s or more speed in IoT applications. Moreover, machine learning must be integrated into the design, planning, and optimization of future optical wireless communication networks in order to actualize this vision of intelligent processing and operation. In addition, fiber sensors are important to achieve real-time, accurate, and smart monitoring in IoT applications. Moreover, we proposed deep learning techniques to estimate the strain changes and peak wavelength of multiple Fiber Bragg grating (FBG) sensors using only the spectrum of FBGs obtained from the real experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20sensor" title="optical sensor">optical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20Intelligence" title=" artificial Intelligence"> artificial Intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=Internet%20of%20Things" title=" Internet of Things"> Internet of Things</a>, <a href="https://publications.waset.org/abstracts/search?q=free-space%20optics" title=" free-space optics"> free-space optics</a> </p> <a href="https://publications.waset.org/abstracts/177165/integrated-free-space-optical-communication-and-optical-sensor-network-system-with-artificial-intelligence-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6765</span> Synthesis, Spectral, Thermal, Optical and Dielectric Studies of Some Organic Arylidene Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sathiyamoorthi">S. Sathiyamoorthi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Srinivasan"> P. Srinivasan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Suganya%20Devi"> K. Suganya Devi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arylidene derivatives are the subclass of chalcone derivatives. Chalcone derivatives are studied widely for the past decade because of its nonlinearity. To seek new organic group of crystals which suit for fabrication of optical devices, three-member organic arylidene crystals were synthesized by using Claisen–Schmidt condensation reaction. Good quality crystals were grown by slow evaporation method. Functional groups were identified by FT-IR and FT-Raman spectrum. Optical transparency and optical band gap were determined by UV-Vis-IR studies. Thermal stability and melting point were calculated using TGA and DSC. Variation of dielectric loss and dielectric constant with frequency were calculated by dielectric measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSC%20and%20TGA%20studies" title="DSC and TGA studies">DSC and TGA studies</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optic%20studies" title=" nonlinear optic studies"> nonlinear optic studies</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20Transform%20Infrared%20Spectroscopy" title=" Fourier Transform Infrared Spectroscopy"> Fourier Transform Infrared Spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-vis-NIR%20spectra" title=" UV-vis-NIR spectra"> UV-vis-NIR spectra</a> </p> <a href="https://publications.waset.org/abstracts/67546/synthesis-spectral-thermal-optical-and-dielectric-studies-of-some-organic-arylidene-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6764</span> Design, Optimize the Damping System for Optical Scanning Equipment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duy%20Nhat%20Tran">Duy Nhat Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Tien%20Pham"> Van Tien Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Quang%20Trung%20Trinh"> Quang Trung Trinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tien%20Hai%20Tran"> Tien Hai Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Cong%20Bui"> Van Cong Bui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, artificial intelligence and the Internet of Things have experienced significant advancements. Collecting image data and real-time analysis and processing of tasks have become increasingly popular in various aspects of life. Optical scanning devices are widely used to observe and analyze different environments, whether fixed outdoors, mounted on mobile devices, or used in unmanned aerial vehicles. As a result, the interaction between the physical environment and these devices has become more critical in terms of safety. Two commonly used methods for addressing these challenges are active and passive approaches. Each method has its advantages and disadvantages, but combining both methods can lead to higher efficiency. One solution is to utilize direct-drive motors for position control and real-time feedback within the operational range to determine appropriate control parameters with high precision. If the maximum motor torque is smaller than the inertial torque and the rotor reaches the operational limit, the spring system absorbs the impact force. Numerous experiments have been conducted to demonstrate the effectiveness of device protection during operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20device" title="optical device">optical device</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20safety" title=" collision safety"> collision safety</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20absorption" title=" collision absorption"> collision absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=precise%20mechanics" title=" precise mechanics"> precise mechanics</a> </p> <a href="https://publications.waset.org/abstracts/180386/design-optimize-the-damping-system-for-optical-scanning-equipment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6763</span> Monitoring and Prediction of Intra-Crosstalk in All-Optical Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Jedidi">Ahmed Jedidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesfer%20Mohammed%20Alshamrani"> Mesfer Mohammed Alshamrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Alwi%20Mohammad%20A.%20Bamhdi"> Alwi Mohammad A. Bamhdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical performance monitoring and optical network management are essential in building a reliable, high-capacity, and service-differentiation enabled all-optical network. One of the serious problems in this network is the fact that optical crosstalk is additive, and thus the aggregate effect of crosstalk over a whole AON may be more nefarious than a single point of crosstalk. As results, we note a huge degradation of the Quality of Service (QoS) in our network. For that, it is necessary to identify and monitor the impairments in whole network. In this way, this paper presents new system to identify and monitor crosstalk in AONs in real-time fashion. particular, it proposes a new technique to manage intra-crosstalk in objective to relax QoS of the network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=all-optical%20networks" title="all-optical networks">all-optical networks</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20crosstalk" title=" optical crosstalk"> optical crosstalk</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20cross-connect" title=" optical cross-connect"> optical cross-connect</a>, <a href="https://publications.waset.org/abstracts/search?q=crosstalk" title=" crosstalk"> crosstalk</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring%20crosstalk" title=" monitoring crosstalk"> monitoring crosstalk</a> </p> <a href="https://publications.waset.org/abstracts/40796/monitoring-and-prediction-of-intra-crosstalk-in-all-optical-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6762</span> Nanocomposites Based Micro/Nano Electro-Mechanical Systems for Energy Harvesters and Photodetectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhamanohar%20Aepuru">Radhamanohar Aepuru</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Mangalaraja"> R. V. Mangalaraja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible electronic devices have drawn potential interest and provide significant new insights to develop energy conversion and storage devices such as photodetectors and nanogenerators. Recently, self-powered electronic systems have captivated huge attention for next generation MEMS/NEMS devices that can operate independently by generating built-in field without any need of external bias voltage and have wide variety of applications in telecommunication, imaging, environmental and defence sectors. The basic physical process involved in these devices are charge generation, separation, and charge flow across the electrodes. Many inorganic nanostructures have been exploring to fabricate various optoelectronic and electromechanical devices. However, the interaction of nanostructures and their excited charge carrier dynamics, photoinduced charge separation, and fast carrier mobility are yet to be studied. The proposed research is to address one such area and to realize the self-powered electronic devices. In the present work, nanocomposites of inorganic nanostructures based on ZnO, metal halide perovskites; and polyvinylidene fluoride (PVDF) based nanocomposites are realized for photodetectors and nanogenerators. The characterization of the inorganic nanostructures is carried out through steady state optical absorption and luminescence spectroscopies as well as X-ray diffraction and high-resolution transmission electron microscopy (TEM) studies. The detailed carrier dynamics is investigated using various spectroscopic techniques. The developed composite nanostructures exhibit significant optical and electrical properties, which have wide potential applications in various MEMS/NEMS devices such as photodetectors and nanogenerators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectrics" title="dielectrics">dielectrics</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanogenerators" title=" nanogenerators"> nanogenerators</a>, <a href="https://publications.waset.org/abstracts/search?q=photodetectors" title=" photodetectors"> photodetectors</a> </p> <a href="https://publications.waset.org/abstracts/103933/nanocomposites-based-micronano-electro-mechanical-systems-for-energy-harvesters-and-photodetectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6761</span> Optical Multicast over OBS Networks: An Approach Based on Code-Words and Tunable Decoders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Sliti">Maha Sliti</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20Abdallah"> Walid Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Boudriga"> Noureddine Boudriga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the frame of this work, we present an optical multicasting approach based on optical code-words. Our approach associates, in the edge node, an optical code-word to a group multicast address. In the core node, a set of tunable decoders are used to send a traffic data to multiple destinations based on the received code-word. The use of code-words, which correspond to the combination of an input port and a set of output ports, allows the implementation of an optical switching matrix. At the reception of a burst, it will be delayed in an optical memory. And, the received optical code-word is split to a set of tunable optical decoders. When it matches a configured code-word, the delayed burst is switched to a set of output ports. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20multicast" title="optical multicast">optical multicast</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20burst%20switching%20networks" title=" optical burst switching networks"> optical burst switching networks</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20code-words" title=" optical code-words"> optical code-words</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable%20decoder" title=" tunable decoder"> tunable decoder</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20optical%20memory" title=" virtual optical memory"> virtual optical memory</a> </p> <a href="https://publications.waset.org/abstracts/11614/optical-multicast-over-obs-networks-an-approach-based-on-code-words-and-tunable-decoders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">607</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6760</span> An Exploration on Competency-Based Curricula in Integrated Circuit Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih%20Chin%20Yang">Chih Chin Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung%20Shan%20Sun"> Chung Shan Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the relationships between professional competences and school curricula in IC design industry are explored. The semi-structured questionnaire survey and focus group interview is the research method. Study participants are graduates of microelectronics engineering professional departments who are currently employed in the IC industry. The IC industries are defined as the electronic component manufacturing industry and optical-electronic component manufacturing industry in the semiconductor industry and optical-electronic material devices, respectively. Study participants selected from IC design industry include IC engineering and electronic & semiconductor engineering. The human training with IC design professional competence in microelectronics engineering professional departments is explored in this research. IC professional competences of human resources in the IC design industry include general intelligence and professional intelligence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IC%20design" title="IC design">IC design</a>, <a href="https://publications.waset.org/abstracts/search?q=curricula" title=" curricula"> curricula</a>, <a href="https://publications.waset.org/abstracts/search?q=competence" title=" competence"> competence</a>, <a href="https://publications.waset.org/abstracts/search?q=task" title=" task"> task</a>, <a href="https://publications.waset.org/abstracts/search?q=duty" title=" duty"> duty</a> </p> <a href="https://publications.waset.org/abstracts/3001/an-exploration-on-competency-based-curricula-in-integrated-circuit-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6759</span> Application of Carbon Nanotube and Nanowire FET Devices in Future VLSI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Chaudhury">Saurabh Chaudhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeet%20Kumar%20Sinha"> Sanjeet Kumar Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MOSFET has been the main building block in high performance and low power VLSI chips for the last several decades. Device scaling is fundamental to technological advancements, which allows more devices to be integrated on a single die providing greater functionality per chip. Ultimately, the goal of scaling is to build an individual transistor that is smaller, faster, cheaper, and consumes less power. Scaling continued following Moore's law initially and now we see an exponential growth in today's nano scaled chip. However, device scaling to deep nano meter regime leads to exponential increase in leakage currents and excessive heat generation. Moreover, fabrication process variability causing a limitation to further scaling. Researchers believe that with a mix of chemistry, physics, and engineering, nano electronics may provide a solution to increasing fabrication costs and may allow integrated circuits to be scaled beyond the limits of the modern transistor. Carbon nano tube (CNT) and nano wires (NW) based FETs have been analyzed and characterized in laboratory and also been demonstrated as prototypes. This work presents an extensive simulation based study and analysis of CNTFET and NW-FET devices and comparison of the results with conventional MOSFET. From this study, we can conclude that these devices have got some excellent properties and favorable characteristics which will definitely lead the future semiconductor devices in post silicon era. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire%20FET" title=" nanowire FET"> nanowire FET</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power" title=" low power"> low power</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoscaled%20devices" title=" nanoscaled devices"> nanoscaled devices</a>, <a href="https://publications.waset.org/abstracts/search?q=VLSI" title=" VLSI"> VLSI</a> </p> <a href="https://publications.waset.org/abstracts/15828/application-of-carbon-nanotube-and-nanowire-fet-devices-in-future-vlsi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6758</span> Enhanced Constraint-Based Optical Network (ECON) for Enhancing OSNR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20R.%20Kavitha">G. R. Kavitha</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Indumathi"> T. S. Indumathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the constantly rising demands of the multimedia services, the requirements of long haul transport network are constantly changing in the area of optical network. Maximum data transmission using optimization of the communication channel poses the biggest challenge. Although there has been a constant focus on this area from the past decade, there was no evidence of a significant result that has been accomplished. Hence, after reviewing some potential design of optical network from literatures, it was understood that optical signal to noise ratio was one of the elementary attributes that can define the performance of the optical network. In this paper, we propose a framework termed as ECON (Enhanced Constraint-based Optical Network) that primarily optimize the optical signal to noise ratio using ROADM. The simulation is performed in Matlab and optical signal to noise ratio is extracted considering the system matrix. The outcome of the proposed study shows that optimized OSNR as compared to the existing studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=component" title="component">component</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20network" title=" optical network"> optical network</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20optical%20add-drop%20multiplexer" title=" reconfigurable optical add-drop multiplexer"> reconfigurable optical add-drop multiplexer</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20signal-to-noise%20ratio" title=" optical signal-to-noise ratio"> optical signal-to-noise ratio</a> </p> <a href="https://publications.waset.org/abstracts/17847/enhanced-constraint-based-optical-network-econ-for-enhancing-osnr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6757</span> Photoluminescence and Spectroscopic Studies of Tm3+ Ions Doped Lead Tungsten Tellurite Glasses for Visible Red and Near-Ir Laser Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Venkateswarlu">M. Venkateswarlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20Allam"> Srinivasa Rao Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Mahamuda"> S. K. Mahamuda</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Swapna"> K. Swapna</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vijaya%20Prakash"> G. Vijaya Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead Tungsten Tellurite (LTT) glasses doped with different concentrations of Tm3+ ions were prepared by using melt quenching technique and characterized through optical absorption, photoluminescence and decay spectral studies to know the feasibility of using these glasses as luminescent devices in visible Red and NIR regions. By using optical absorption spectral data, the energy band gaps for all the glasses were evaluated and were found to be in the range of 2.34-2.59 eV; which is very useful for the construction of optical devices. Judd-Ofelt (J-O)theory has been applied to the optical absorption spectral profiles to calculate the J-O intensity parameters Ωλ (λ=2, 4 and 6) and consecutively used to evaluate various radiative properties such as radiative transition probability (AR), radiative lifetimes (τ_R) and branching ratios (β_R) for the prominent luminescent levels. The luminescence spectra for all the LTT glass samples have shown two intense peaks in bright red and Near Infrared regions at 650 nm (1G4→3F4) and 800 nm (3H4→3H6) respectively for which effective bandwidths (〖Δλ〗_P), experimental branching ratios (β_exp) and stimulated emission cross-sections (σ_se) are evaluated. The decay profiles for all the glasses were also recorded to measure the quantum efficiency of the prepared LTT glasses by coupling the radiative and experimental lifetimes. From the measured emission cross-sections, quantum efficiency and CIE chromaticity coordinates, it was found that 0.5 mol% of Tm3+ ions doped LTT glass is most suitable for generating bright visible red and NIR lasers to operate at 650 and 800 nm respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glasses" title="glasses">glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=JO%20parameters" title=" JO parameters"> JO parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20materials" title=" optical materials"> optical materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thullium" title=" thullium"> thullium</a> </p> <a href="https://publications.waset.org/abstracts/47260/photoluminescence-and-spectroscopic-studies-of-tm3-ions-doped-lead-tungsten-tellurite-glasses-for-visible-red-and-near-ir-laser-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6756</span> Fabrication of Optical Tissue Phantoms Simulating Human Skin and Their Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihoon%20Park">Jihoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungkon%20Yu"> Sungkon Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungjo%20Jung"> Byungjo Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although various optical tissue phantoms (OTPs) simulating human skin have been actively studied, their completeness is unclear because skin tissue has the intricate optical property and complicated structure disturbing the optical simulation. In this study, we designed multilayer OTP mimicking skin structure, and fabricated OTP models simulating skin-blood vessel and skin pigmentation in the skin, which are useful in Biomedical optics filed. The OTPs were characterized with the optical property and the cross-sectional structure, and analyzed by using various optical tools such as a laser speckle imaging system, OCT and a digital microscope to show the practicality. The measured optical property was within 5% error, and the thickness of each layer was uniform within 10% error in micrometer scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20vessel" title="blood vessel">blood vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom" title=" optical tissue phantom"> optical tissue phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20property" title=" optical property"> optical property</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20tissue" title=" skin tissue"> skin tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=pigmentation" title=" pigmentation"> pigmentation</a> </p> <a href="https://publications.waset.org/abstracts/68389/fabrication-of-optical-tissue-phantoms-simulating-human-skin-and-their-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6755</span> Randomly Casted Single-Wall Carbon Nanotubes Films for High Performance Hybrid Photovoltaic Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=My%20Ali%20El%20Khakani">My Ali El Khakani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single-wall Carbon nanotubes (SWCNTs) possess an unprecedented combination of unique properties that make them highly promising for suitable for a new generation of photovoltaic (PV) devices. Prior to discussing the integration of SWCNTs films into effective PV devices, we will briefly highlight our work on the synthesis of SWCNTs by means of the KrF pulsed laser deposition technique, their purification and transfer onto n-silicon substrates to form p-n junctions. Some of the structural and optoelectronic properties of SWCNTs relevant to PV applications will be emphasized. By varying the SWCNTs film density (µg/cm2), we were able to point out the existence of an optimum value that yields the highest photoconversion efficiency (PCE) of ~10%. Further control of the doping of the p-SWCNTs films, through their exposure to nitric acid vapors, along with the insertion of an optimized hole-extraction-layer in the p-SWCNTs/n-Si hybrid devices permitted to achieve a PCE value as high as 14.2%. Such a high PCE value demonstrates the full potential of these p-SWCNTs/n-Si devices for sunlight photoconversion. On the other hand, by examining both the optical transmission and electrical conductance of the SWCNTs’ films, we established a figure of merit (FOM) that was shown to correlate well with the PCE performance. Such a direct relationship between the FOM and the PCE can be used as a guide for further PCE enhancement of these novel p-SWCNTs/n-Si PV devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes%20%28CNTs%29" title="carbon nanotubes (CNTs)">carbon nanotubes (CNTs)</a>, <a href="https://publications.waset.org/abstracts/search?q=CNTs-silicon%20hybrid%20devices" title=" CNTs-silicon hybrid devices"> CNTs-silicon hybrid devices</a>, <a href="https://publications.waset.org/abstracts/search?q=photoconversion" title=" photoconversion"> photoconversion</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20devices" title=" photovoltaic devices"> photovoltaic devices</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20deposition" title=" pulsed laser deposition"> pulsed laser deposition</a> </p> <a href="https://publications.waset.org/abstracts/106925/randomly-casted-single-wall-carbon-nanotubes-films-for-high-performance-hybrid-photovoltaic-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=integrated%20optical%20devices&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=integrated%20optical%20devices&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=integrated%20optical%20devices&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=integrated%20optical%20devices&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=integrated%20optical%20devices&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=integrated%20optical%20devices&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=integrated%20optical%20devices&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=integrated%20optical%20devices&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=integrated%20optical%20devices&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=integrated%20optical%20devices&page=226">226</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=integrated%20optical%20devices&page=227">227</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=integrated%20optical%20devices&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>