CINXE.COM
Search results for: glycemic control
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: glycemic control</title> <meta name="description" content="Search results for: glycemic control"> <meta name="keywords" content="glycemic control"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="glycemic control" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="glycemic control"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10782</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: glycemic control</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10782</span> The Effect of a Computer-Assisted Glycemic Surveillance Protocol on Nursing Workload</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96zlem%20Canbolat">Özlem Canbolat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevgisun%20Kapucu"> Sevgisun Kapucu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine the effect of a computer-assisted glycemic surveillance protocol on nursing workload in intensive care unit. The study is completed in an Education and Research Hospital in Ankara with the attendance of volunteered 19 nurse who had been worked in reanimation unit. Nurses used the written protocol and computer-assisted glycemic surveillance protocol for glycemic follow-up approach of the intensive care patients. Nurses used the written protocol first in the glycemic follow-up of the patient, then used the computer-assisted protocol. (Nurses used the written protocol first, then the computer-assisted protocol in the glycemic follow-up of the patient). Less time was spent in glycemic control with computerized protocol than written protocol and this difference is statistically significant (p < 0.001). It was determined that the computerized protocol application was completed in about 10 seconds (25% shorter) than the written protocol implementation. The computer-assisted glycemic surveillance protocol was found to be more easy and appropriate by nurses and the satisfaction level of the users was higher than with written protocol. While 79% of the nurses find it confusing to implement the written protocol, 79% were satisfied with the use of computerized protocol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer-assisted%20protocol" title="computer-assisted protocol">computer-assisted protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20control" title=" glycemic control"> glycemic control</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20infusion%20protocol" title=" insulin infusion protocol"> insulin infusion protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=intensive%20care" title=" intensive care"> intensive care</a>, <a href="https://publications.waset.org/abstracts/search?q=nursing%20workload" title=" nursing workload"> nursing workload</a> </p> <a href="https://publications.waset.org/abstracts/81279/the-effect-of-a-computer-assisted-glycemic-surveillance-protocol-on-nursing-workload" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10781</span> The Effect of Nutrition Education on Glycemic and Lipidemic Control in Iranian Patients with Type 2 Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Rabiei">Samira Rabiei</a>, <a href="https://publications.waset.org/abstracts/search?q=Faezeh%20Askari"> Faezeh Askari</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Rastmanesh"> Reza Rastmanesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To evaluate the effects of nutrition education and adherence to a healthy diet on glycemic and lipidemic control in patients with T2DM. Material and Methods: A randomized controlled trial was conducted on 494 patients with T2DM, aged 14-87 years from both sexes who were selected by convenience sampling from referees to Aliebneabitaleb hospital in Ghom. The participants were divided into two 247 person groups by stratified randomization. Both groups received a diet adjusted based on ideal body weight, and the intervention group was additionally educated about healthy food choices regarding diabetes. Information on medications, psychological factors, diet and physical activity was obtained from questionnaires. Blood samples were collected to measure FBS, 2 hPG, HbA1c, cholesterol, and triglyceride. After 2 months, weight and biochemical parameters were measured again. Independent T-test, Mann-Whitney, Chi-square, and Wilcoxon were used as appropriate. Logistic regression was used to determine the odds ratio of abnormal glycemic and lipidemic control according to the intervention. Results: The mean weight, FBS, 2 hPG, cholesterol and triglyceride after intervention were significantly lower than before that (p < 0.05). Discussion: Nutrition education plus a weigh reducer diet is more effective on glycemic and lipidemic control than a weight reducer diet, alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes%20mellitus" title="type 2 diabetes mellitus">type 2 diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition%20education" title=" nutrition education"> nutrition education</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20control" title=" glycemic control"> glycemic control</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20profile" title=" lipid profile"> lipid profile</a> </p> <a href="https://publications.waset.org/abstracts/75549/the-effect-of-nutrition-education-on-glycemic-and-lipidemic-control-in-iranian-patients-with-type-2-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10780</span> Glycemic Control on Self-Efficacy and Self-Care Behaviors among Omani Adults with Type 2 Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melba%20Sheila%20D%27Souza">Melba Sheila D'Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Anandhi%20Amirtharaj"> Anandhi Amirtharaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreedevi%20Balachandran"> Shreedevi Balachandran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Type 2 diabetes has a significant impact on individuals’ health and well-being. Glycemic control may influence self-efficacy and self-care behaviors, and reduce the risk of complications among adults with type 2 diabetes. Type 2 diabetes has substantial morbidity and mortality and 60% of adults’ poor self-care. Glycemic control is associated with reported self-efficacy and self-care behavior. Adults with type 2 diabetes with less information were less likely to take diabetes self-care. Aim: To examine the relationship between glycemic control, demographic factors, clinical factors on self-efficacy, self-care behaviors among Omani adults with type 2 diabetes. Methods: A correlational, descriptive study was used. Omani adults with type 2 diabetes (n=140) were recruited from a public hospital in Oman. The data were collected during January-March 2015. Ethical approval was given by the college research and ethics committee, College of Nursing, and the Hospital, Sultan Qaboos University Data was collected on self-efficacy, self-care behaviors and glycemic control. The study was approved by the Institution Ethics and Research Committee. Bivariate and multivariate analyses were conducted. Results: Most adults had a fasting blood glucose >7.2mmol/L (90.7%), with the majority demonstrating ‘uncontrolled or poor HbA1c of > 8%’ (65%). Variance of self-care behavior (20.6%) and 31.3% of the variance of the self-efficacy was explained by the age, duration of diabetes, medication, HbA1c and prevention of activities of living. Adults with type 2 diabetes with poor glycemic control were more likely to have poor self-efficacy and poor self-care behaviors. Conclusion: This study confirms that self-efficacy model on outcome predicts self-efficacy and self-care behavior. Higher understanding of diabetes, prevention of normal daily activities, higher ability to fit diabetes life in a positive manner and high patient-physician communication were significant with self-efficacy and self-care behaviors. Hence, glycemic control has a high effect on improving self-care behaviors like diet, exercise, medication, foot care and self-efficacy among type 2 diabetes. Implications: Using these findings to improve self-efficacy, individualized self-care management is recommended for better self-efficacy and self-care behaviors among adults with type 2 diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-efficacy" title="self-efficacy">self-efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=self-care%20behaviors" title=" self-care behaviors"> self-care behaviors</a>, <a href="https://publications.waset.org/abstracts/search?q=self-care%20management" title=" self-care management"> self-care management</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20control" title=" glycemic control"> glycemic control</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes" title=" type 2 diabetes"> type 2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=nurse" title=" nurse"> nurse</a> </p> <a href="https://publications.waset.org/abstracts/41778/glycemic-control-on-self-efficacy-and-self-care-behaviors-among-omani-adults-with-type-2-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10779</span> Erectile Dysfunction among Bangladeshi Men with Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahjada%20Selim">Shahjada Selim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Erectile dysfunction (ED) is an important impediment to quality of life of men. ED is approximate, three times more common in diabetic than non-diabetic men, and diabetic men develop ED earlier than age-matched non-diabetic subjects. Glycemic control and other factors may contribute in developing and or deteriorating ED. Aim: The aim of the study was to determine the prevalence of ED and its risk factors in type 2 diabetic (T2DM) men in Bangladesh. Methods: During 2013-2014, 3980 diabetic men aged 30-69 years were interviewed at the out-patient departments of seven diabetic centers in Dhaka by using the validated Bengali version of the questionnaire of the International index of erectile function (IIEF) for evaluation of baseline erectile function (EF). The indexes indicate a very high correlation between the items and the questionnaire is consistently reliable. Data were analyzed with Chi-squared (χ²) test using SPSS software. P ≤ 0.05 was considered significant. Results: Out of 3790, ED was found in 2046 (53.98%) of T2DM men. The prevalence of ED was increased with age from 10.5% in men aged 30-39 years to 33.6% in those aged over 60 years (P < 0.001). In comparison with patients with reported diabetes lasting ≤ 5 years (26.4%), the prevalence of ED was less than in those with diabetes of 6-11 years (35.3%) and of 12-30 years (42.5%, P <0.001). ED increased significantly in those who had poor glycemic control. The prevalence of ED in patients with good, fair and poor glycemic control was 22.8%, 42.5% and 47.9% respectively (P = 0.004). Treatment modalities (medical nutrition therapy, oral agents, insulin, and insulin plus oral agents) had significant association with ED and its severity (P < 0.001). Conclusion: Prevalence of ED is very high among T2DM men in Bangladesh and can be reduced the burden by improving glycemic status. Glycemic control, duration of diabetes, treatment modalities, increasing age are associated with ED. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erectile%20dysfunction" title="erectile dysfunction">erectile dysfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=men" title=" men"> men</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title=" Bangladesh"> Bangladesh</a> </p> <a href="https://publications.waset.org/abstracts/58405/erectile-dysfunction-among-bangladeshi-men-with-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10778</span> Continuous Glucose Monitoring Systems and the Improvement in Hypoglycemic Awareness Post-Islet Transplantation: A Single-Centre Cohort Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clare%20Flood">Clare Flood</a>, <a href="https://publications.waset.org/abstracts/search?q=Shareen%20Forbes"> Shareen Forbes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Type 1 diabetes mellitus (T1DM) is an autoimmune disorder affecting >400,000 people in the UK alone, with the global prevalence expected to double in the next decade. Islet transplant offers a minimally-invasive procedure with very low morbidity and almost no mortality, and is now as effective as whole pancreas transplant. The procedure was introduced to the UK in 2011 for patients with the most severe type 1 diabetes mellitus (T1DM) – those with unstable blood glucose, frequently occurring episodes of severe hypoglycemia and impaired awareness of hypoglycemia (IAH). Objectives: To evaluate the effectiveness of islet transplantation in improving glycemic control, reducing the burden of hypoglycemia and improving awareness of hypoglycemia through a single-centre cohort study at the Royal Infirmary of Edinburgh. Glycemic control and degree of hypoglycemic awareness will be determined and monitored pre- and post-transplantation to determine effectiveness of the procedure. Methods: A retrospective analysis of data collected over three years from the 16 patients who have undergone islet transplantation in Scotland. Glycated haemoglobin (HbA1c) was measured and continuous glucose monitoring systems (CGMS) were utilised to assess glycemic control, while Gold and Clarke score questionnaires tested IAH. Results: All patients had improved glycemic control following transplant, with optimal control seen visually at 3 months post-transplant. Glycemic control significantly improved, as illustrated by percentage time in hypoglycemia in the months following transplant (p=0.0211) and HbA1c (p=0.0426). Improved Clarke (p=0.0034) and Gold (p=0.0001) scores indicate improved glycemic awareness following transplant. Conclusion: While the small sample of islet transplant recipients at the Royal Infirmary of Edinburgh prevents definitive conclusions being drawn, it is indicated that through our retrospective, single-centre cohort study of 16 patients, islet transplant is capable of improving glycemic control, reducing the burden of hypoglycemia and IAH post-transplant. Data can be combined with similar trials at other centres to increase statistical power but from research in Edinburgh, it can be suggested that the minimally invasive procedure of islet transplantation offers selected patients with extremely unstable T1DM the incredible opportunity to regain control of their condition and improve their quality of life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=islet" title=" islet"> islet</a>, <a href="https://publications.waset.org/abstracts/search?q=transplant" title=" transplant"> transplant</a>, <a href="https://publications.waset.org/abstracts/search?q=CGMS" title=" CGMS"> CGMS</a> </p> <a href="https://publications.waset.org/abstracts/25389/continuous-glucose-monitoring-systems-and-the-improvement-in-hypoglycemic-awareness-post-islet-transplantation-a-single-centre-cohort-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10777</span> Impact of Dairy Polysaccharides on Caloric Intake and Postprandial Metabolic Responses in Young Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umair%20Arshad">Muhammad Umair Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Saima%20Ishtiaq"> Saima Ishtiaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Imran"> Ali Imran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different polysaccharides contribute towards the management of glycemic and satiety and consequently manage the metabolic syndrome. In the present study, we compared the postprandial glycemic and satiety responses of different dietary polysaccharides when added to milk (2% Milk Fat). The objective of this study was to evaluate different polysaccharides against postprandial glucose, appetite responses, and food intake at subsequent meals. In a repeated measures crossover design, 30 females (18–30 years) consumed 250 ml milk with 2% M.F. (control), or milk with carrageenan (2.5 g), guar gum (2.5 g) and alginate (2.5 g), followed by an ad libitum pizza meal after 120 min. Alginate and guar gum addition resulted in lower caloric intake at subsequent pizza meal. The post-treatment (0–120 min) glucose and average appetite were suppressed by alginate and guar gum (p < 0.0001), with a more pronounced effect of guar gum. However, alginate resulted in lower blood glucose (p < 0.0001) compared with control and carrageenan during post-treatment. Alginate and guar gum, added milk, and other beverages would be beneficial in the short-term regulation of postprandial glycemia and satiety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satiety" title="satiety">satiety</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20control" title=" glycemic control"> glycemic control</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20polysaccharides" title=" milk polysaccharides"> milk polysaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20intake" title=" food intake"> food intake</a> </p> <a href="https://publications.waset.org/abstracts/167098/impact-of-dairy-polysaccharides-on-caloric-intake-and-postprandial-metabolic-responses-in-young-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10776</span> Predictors of Glycaemic Variability and Its Association with Mortality in Critically Ill Patients with or without Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haoming%20Ma">Haoming Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Guo%20Yu"> Guo Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Peiru%20Zhou"> Peiru Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Previous studies show that dysglycemia, mostly hyperglycemia, hypoglycemia and glycemic variability(GV), are associated with excess mortality in critically ill patients, especially those without diabetes. Glycemic variability is an increasingly important measure of glucose control in the intensive care unit (ICU) due to this association. However, there is limited data pertaining to the relationship between different clinical factors and glycemic variability and clinical outcomes categorized by their DM status. This retrospective study of 958 intensive care unit(ICU) patients was conducted to investigate the relationship between GV and outcome in critically ill patients and further to determine the significant factors that contribute to the glycemic variability. Aim: We hypothesize that the factors contributing to mortality and the glycemic variability are different from critically ill patients with or without diabetes. And the primary aim of this study was to determine which dysglycemia (hyperglycemia\hypoglycemia\glycemic variability) is independently associated with an increase in mortality among critically ill patients in different groups (DM/Non-DM). Secondary objectives were to further investigate any factors affecting the glycemic variability in two groups. Method: A total of 958 diabetic and non-diabetic patients with severe diseases in the ICU were selected for this retrospective analysis. The glycemic variability was defined as the coefficient of variation (CV) of blood glucose. The main outcome was death during hospitalization. The secondary outcome was GV. The logistic regression model was used to identify factors associated with mortality. The relationships between GV and other variables were investigated using linear regression analysis. Results: Information on age, APACHE II score, GV, gender, in-ICU treatment and nutrition was available for 958 subjects. Predictors remaining in the final logistic regression model for mortality were significantly different in DM/Non-DM groups. Glycemic variability was associated with an increase in mortality in both DM(odds ratio 1.05; 95%CI:1.03-1.08,p<0.001) or Non-DM group(odds ratio 1.07; 95%CI:1.03-1.11,p=0.002). For critically ill patients without diabetes, factors associated with glycemic variability included APACHE II score(regression coefficient, 95%CI:0.29,0.22-0.36,p<0.001), Mean BG(0.73,0.46-1.01,p<0.001), total parenteral nutrition(2.87,1.57-4.17,p<0.001), serum albumin(-0.18,-0.271 to -0.082,p<0.001), insulin treatment(2.18,0.81-3.55,p=0.002) and duration of ventilation(0.006,0.002-1.010,p=0.003).However, for diabetes patients, APACHE II score(0.203,0.096-0.310,p<0.001), mean BG(0.503,0.138-0.869,p=0.007) and duration of diabetes(0.167,0.033-0.301,p=0.015) remained as independent risk factors of GV. Conclusion: We found that the relation between dysglycemia and mortality is different in the diabetes and non-diabetes groups. And we confirm that GV was associated with excess mortality in DM or Non-DM patients. Furthermore, APACHE II score, Mean BG, total parenteral nutrition, serum albumin, insulin treatment and duration of ventilation were significantly associated with an increase in GV in Non-DM patients. While APACHE II score, mean BG and duration of diabetes (years) remained as independent risk factors of increased GV in DM patients. These findings provide important context for further prospective trials investigating the effect of different clinical factors in critically ill patients with or without diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20variability" title=" glycemic variability"> glycemic variability</a>, <a href="https://publications.waset.org/abstracts/search?q=predictors" title=" predictors"> predictors</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20disease" title=" severe disease"> severe disease</a> </p> <a href="https://publications.waset.org/abstracts/138946/predictors-of-glycaemic-variability-and-its-association-with-mortality-in-critically-ill-patients-with-or-without-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10775</span> Mauriac Syndrome: A Rare Complicacation With an Easy Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Cid%20Galache">Pablo Cid Galache</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Zamorano%20Bonilla"> Laura Zamorano Bonilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mauriac syndrome (MS) is a rare complication of type 1 diabetes mellitus (DM1). It is rela-ted to low insulin concentrations. Therefore is a complication mainly found in developing countries. The main clinical features are hepatomegaly, edema, growth and puberty delay, and the presence of elevated transaminases and serum lipids. The MS incidence is de-creasing due to the new types of insulin and intensive glycemic control. Therefore is a rare diagnosis in Europe nowadays, being described mainly in developing countries or with so-cioeconomic limitations to guarantee an adequate management of diabetes. Edema secondary to fluid retention is a rare complication of insulin treatment, especially in young patients. Its severity is variable and is mainly related to the start of a proper treatment and the improvement in glycemic control after diagnosis or after periods of poor metabolic control. Edema resolves spontaneously without requiring treatment in most cases. The Pediatric Endocrinology Unit of Hospital Motril could diagnose a 14-year-old girl who presented very poor metabolic control during the last 3 years as a consequence of the socioeconomic conditions of the country of origin during the last years. Presents up to 4 admissions for ketoacidosis during the last 12 months. After the family moved to Spain our patient began to be followed up in our Hospital. Initially presented glycated hemoglobin figures of 11%. One week after the start of treatment, the patient was admitted in the emergency room due to the appearance of generalized edema and pain in the limbs. The main laboratory abnormalities include: blood glucose 225mg/dl; HbA1C 10.8% triglycerides 543 mg/dl, total cholesterol 339 mg/dl (LDL 225) GOT 124 U/l, GPT 89U/l. Abdominal ultrasound shows mild hepatomegaly and no signs of ascites were shown. The patient presented a progressive improvement with resolution of the edema and analitical abnormalities during the next two weeks. During admission, the family received diabetes education, achieving adequate glycemic control at discharge. Nowadays the patient has a good glycemic control having glycated hemoglobin levels around 7%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mauriac" title="Mauriac">Mauriac</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=complication" title=" complication"> complication</a>, <a href="https://publications.waset.org/abstracts/search?q=developing%20countries" title=" developing countries"> developing countries</a> </p> <a href="https://publications.waset.org/abstracts/172650/mauriac-syndrome-a-rare-complicacation-with-an-easy-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10774</span> The Effect of Aerobic Exercise on Glycemic Control in Prediabetes and Type 2 Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Chin%20Huang">Chun-Chin Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Individuals with prediabetes increase the risk of developing type 2 diabetes. Exercise is a potent stimulator of skeletal muscle glucose uptake and thus good for maintaining glucose homeostasis. That could be a conducive method to improve blood glucose regulation and prevent type 2 diabetes without medication intake. The aim of this study was to summarize mechanisms of insulin resistance and investigate the beneficial effects of acute and chronic aerobic exercise on glycemic control in prediabetes and type 2 diabetes. Aerobic exercise regulates glucose homeostasis and reduces blood glucose, insulin concentrations. Therefore, the type of aerobic exercise brings positive effects to prediabetes and type 2 diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title="insulin resistance">insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20sensitivity" title=" glucose sensitivity"> glucose sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=impaired%20fasting%20glucose" title=" impaired fasting glucose"> impaired fasting glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=impaired%20glucose%20tolerance" title=" impaired glucose tolerance"> impaired glucose tolerance</a> </p> <a href="https://publications.waset.org/abstracts/135391/the-effect-of-aerobic-exercise-on-glycemic-control-in-prediabetes-and-type-2-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10773</span> Dietary Practices of Adult Type 2 Diabetes Mellitus Patients Attending Kitui Out Patient Clinic at Kitui County, Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alice%20W.%20Theuri">Alice W. Theuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Anselimo%20O.%20Makokha"> Anselimo O. Makokha</a>, <a href="https://publications.waset.org/abstracts/search?q=Florence%20M.%20Kyallo"> Florence M. Kyallo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Type 2 diabetes mellitus (T2DM) is a serious metabolic disorder whose prevalence among adults has been increasing in the last decade. It is estimated that by 2030, the number of cases in Africa will almost double. Diet and lifestyle modifications are considered the cornerstone for the treatment and management of T2DM. Despite this, there is minimum literature assessing the dietary practices and glycemic control in a semi arid region context in Kenya. The objective of this study was to determine the dietary practices of adult T2DM patients attending Kitui out patient clinic in Kitui County. This was a cross sectional study design where every consenting second patient attending diabetic clinic was interviewed. A total of 138 T2DM patients were interviewed using a structured interview guide on socio-economic and dietary practices administered. The study was carried out in April and May 2017. There were more female (64%) than male (36%) in this study with majority being unemployed (38.4%). Forty seven percent (47.6%) had elevated HbA1c. Majority took three meals per day while DDS was 4.3 ± 1.09. The mean energy intake for men and women was 2823.8 ± 82.45 and 2766.3.30 ± 76.74 respectively. There was a non significant positive relationship (r= 131; P value = 0.124) between amount energy consumed and glycemic control. There were suboptimal dietary practices leading to poor glycemic control among T2DM patients attending diabetic clinic at Kitui District Hospital. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adults" title="adults">adults</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20practices" title=" dietary practices"> dietary practices</a>, <a href="https://publications.waset.org/abstracts/search?q=semi%20arid%20region" title=" semi arid region"> semi arid region</a>, <a href="https://publications.waset.org/abstracts/search?q=T2DM" title=" T2DM"> T2DM</a> </p> <a href="https://publications.waset.org/abstracts/98930/dietary-practices-of-adult-type-2-diabetes-mellitus-patients-attending-kitui-out-patient-clinic-at-kitui-county-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10772</span> Association of the Time in Targeted Blood Glucose Range of 3.9–10 Mmol/L with the Mortality of Critically Ill Patients with or without Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guo%20Yu">Guo Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Haoming%20Ma"> Haoming Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Peiru%20Zhou"> Peiru Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> BACKGROUND: In addition to hyperglycemia, hypoglycemia, and glycemic variability, a decrease in the time in the targeted blood glucose range (TIR) may be associated with an increased risk of death for critically ill patients. However, the relationship between the TIR and mortality may be influenced by the presence of diabetes and glycemic variability. METHODS: A total of 998 diabetic and non-diabetic patients with severe diseases in the ICU were selected for this retrospective analysis. The TIR is defined as the percentage of time spent in the target blood glucose range of 3.9–10.0 mmol/L within 24 hours. The relationship between TIR and in-hospital in diabetic and non-diabetic patients was analyzed. The effect of glycemic variability was also analyzed. RESULTS: The binary logistic regression model showed that there was a significant association between the TIR as a continuous variable and the in-hospital death of severely ill non-diabetic patients (OR=0.991, P=0.015). As a classification variable, TIR≥70% was significantly associated with in-hospital death (OR=0.581, P=0.003). Specifically, TIR≥70% was a protective factor for the in-hospital death of severely ill non-diabetic patients. The TIR of severely ill diabetic patients was not significantly associated with in-hospital death; however, glycemic variability was significantly and independently associated with in-hospital death (OR=1.042, P=0.027). Binary logistic regression analysis of comprehensive indices showed that for non-diabetic patients, the C3 index (low TIR & high CV) was a risk factor for increased mortality (OR=1.642, P<0.001). In addition, for diabetic patients, the C3 index was an independent risk factor for death (OR=1.994, P=0.008), and the C4 index (low TIR & low CV) was independently associated with increased survival. CONCLUSIONS: The TIR of non-diabetic patients during ICU hospitalization was associated with in-hospital death even after adjusting for disease severity and glycemic variability. There was no significant association between the TIR and mortality of diabetic patients. However, for both diabetic and non-diabetic critically ill patients, the combined effect of high TIR and low CV was significantly associated with ICU mortality. Diabetic patients seem to have higher blood glucose fluctuations and can tolerate a large TIR range. Both diabetic and non-diabetic critically ill patients should maintain blood glucose levels within the target range to reduce mortality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=severe%20disease" title="severe disease">severe disease</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20glucose%20control" title=" blood glucose control"> blood glucose control</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20in%20targeted%20blood%20glucose%20range" title=" time in targeted blood glucose range"> time in targeted blood glucose range</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20variability" title=" glycemic variability"> glycemic variability</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a> </p> <a href="https://publications.waset.org/abstracts/138917/association-of-the-time-in-targeted-blood-glucose-range-of-39-10-mmoll-with-the-mortality-of-critically-ill-patients-with-or-without-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10771</span> A Randomised Controlled Trial on the Nurse-Led Smartphone-Based Self-Management Programme for Type 2 Diabetes Patients with Poor Glycemic Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenru%20Wang">Wenru Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past decades, Asia has emerged as the ‘diabetes epicentre’ in the world due to rapid economic development, urbanization and nutrition transition. There is an urgent need to develop more effective and cost-effective care management strategies in response to this rising diabetes epidemic. This study aims to develop and compare a nurse-led smartphone-based self-management programme with an existing nurse-led diabetes service on health-related outcomes among type 2 diabetes patients with poor glycemic control in Singapore. We proposed a randomized controlled trial with pre- and repeated post-tests control group design. A total of 128 type 2 diabetes patients with poor glycemic control will be recruited from the diabetes clinic of an acute public hospital in Singapore through convenience sampling. Study participants will be either randomly allocated to the experimental group or control group. Outcome measures used will include the 10-item General Self-Efficacy Scale, 11-item Revised Summary of Diabetes Self-care Activities, and 19-item Diabetes-Dependent Quality of Life. Data will be collected at 3-time points: baseline, three months and six months from the baseline, respectively. It is expected that this programme will be an alternative offered to diabetes patients to master their self-care management skills, in addition to the existing diabetes service provided in diabetes clinics in Singapore hospitals. Also, the self-supporting and less resource-intensive nature of this programme, through the use of smartphone app as a mode of intervention delivery, will greatly reduce nurses’ direct contact time with patients and allow more time to be allocated to those who require more attention. The study has been registered with clinicaltrials.gov. The trial registration number is NCT03088475. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes" title="type 2 diabetes">type 2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=poor%20glycaemic%20control" title=" poor glycaemic control"> poor glycaemic control</a>, <a href="https://publications.waset.org/abstracts/search?q=nurse-led" title=" nurse-led"> nurse-led</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone-based" title=" smartphone-based"> smartphone-based</a>, <a href="https://publications.waset.org/abstracts/search?q=self-management" title=" self-management"> self-management</a>, <a href="https://publications.waset.org/abstracts/search?q=health-relevant%20outcomes" title=" health-relevant outcomes"> health-relevant outcomes</a> </p> <a href="https://publications.waset.org/abstracts/88966/a-randomised-controlled-trial-on-the-nurse-led-smartphone-based-self-management-programme-for-type-2-diabetes-patients-with-poor-glycemic-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10770</span> Beneficial Effect of Biotin in Combination with Canagliflozin on High Fat Diet Induced Diabetes in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayhana%20Begum">Rayhana Begum</a>, <a href="https://publications.waset.org/abstracts/search?q=HongBin%20Wang"> HongBin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Alam%20%20Siddiquee"> Nur Alam Siddiquee</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.Yasin%20Ahmed"> Md.Yasin Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biotin treatment has significant effects on blood glucose, and pharmacological doses of biotin improve hyperglycemia. The present study was aimed to investigate the efficacy and safety of biotin in combination with canagliflozin in improving glycemic control on High Fat Diet-induced diabetes in Rats. Thirty male rats were divided into five groups (six rats /group): control, high fat diet (HFD), canagliflozin (CAG), biotin (BIO), and CAG + BIO. The treatments with CAG and /or BIO significantly reduced the body weight gain, blood glucose and HbA1c levels, whereas CAG in combination with BIO revealed greater glycemic improvement than CAG monotherapy. The treatment with CAG and /or BIO causes significant change in lipid profile and CK level while the treatment with CAG in combination with BIO showed better results as compared with CAG monotherapy. Furthermore, combination of biotin with CAG improved the pancreatic and cardiac damage when compared with other treated groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=canagliflozin" title="canagliflozin">canagliflozin</a>, <a href="https://publications.waset.org/abstracts/search?q=biotin" title=" biotin"> biotin</a>, <a href="https://publications.waset.org/abstracts/search?q=HbA1c" title=" HbA1c"> HbA1c</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20profile" title=" lipid profile"> lipid profile</a> </p> <a href="https://publications.waset.org/abstracts/122288/beneficial-effect-of-biotin-in-combination-with-canagliflozin-on-high-fat-diet-induced-diabetes-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10769</span> Optimizing Glycemic Control with AI-Guided Dietary Supplements: A Randomized Trial in Type 2 Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Pokushalov">Evgeny Pokushalov</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20Garcia"> Claire Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Ponomarenko"> Andrey Ponomarenko</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Smith"> John Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Johnson"> Michael Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Inessa%20Pak"> Inessa Pak</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgenya%20Shrainer"> Evgenya Shrainer</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Kudlay"> Dmitry Kudlay</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Kasimova"> Leila Kasimova</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Miller"> Richard Miller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study evaluated the efficacy of an AI-guided dietary supplement regimen compared to a standard physician-guided regimen in managing Type 2 diabetes (T2D). A total of 160 patients were randomly assigned to either the AI-guided group (n=80) or the physician-guided group (n=80) and followed over 90 days. The AI-guided group received 5.3 ± 1.2 supplements per patient, while the physician-guided group received 2.7 ± 0.6 supplements per patient. The AI system personalized supplement types and dosages based on individual genetic and metabolic profiles. The AI-guided group showed a significant reduction in HbA1c levels from 7.5 ± 0.8% to 7.1 ± 0.7%, compared to a reduction from 7.6 ± 0.9% to 7.4 ± 0.8% in the physician-guided group (mean difference: -0.3%, 95% CI: -0.5% to -0.1%; p < 0.01). Secondary outcomes, including fasting plasma glucose, HOMA-IR, and insulin levels, also improved more in the AI-guided group. Subgroup analyses revealed that the AI-guided regimen was particularly effective in patients with specific genetic polymorphisms and elevated metabolic markers. Safety profiles were comparable between both groups, with no serious adverse events reported. In conclusion, the AI-guided dietary supplement regimen significantly improved glycemic control and metabolic health in T2D patients compared to the standard physician-guided approach, demonstrating the potential of personalized AI-driven interventions in diabetes management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Type%202%20diabetes" title="Type 2 diabetes">Type 2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=AI-guided%20supplementation" title=" AI-guided supplementation"> AI-guided supplementation</a>, <a href="https://publications.waset.org/abstracts/search?q=personalized%20medicine" title=" personalized medicine"> personalized medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20control" title=" glycemic control"> glycemic control</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20health" title=" metabolic health"> metabolic health</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20polymorphisms" title=" genetic polymorphisms"> genetic polymorphisms</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20supplements" title=" dietary supplements"> dietary supplements</a>, <a href="https://publications.waset.org/abstracts/search?q=HbA1c" title=" HbA1c"> HbA1c</a>, <a href="https://publications.waset.org/abstracts/search?q=fasting%20plasma%20glucose" title=" fasting plasma glucose"> fasting plasma glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMA-IR" title=" HOMA-IR"> HOMA-IR</a>, <a href="https://publications.waset.org/abstracts/search?q=personalized%20nutrition" title=" personalized nutrition"> personalized nutrition</a> </p> <a href="https://publications.waset.org/abstracts/194485/optimizing-glycemic-control-with-ai-guided-dietary-supplements-a-randomized-trial-in-type-2-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10768</span> Development of Low Glycemic Gluten Free Bread from Barnyard Millet and Lentil Flour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hemalatha%20Ganapathyswamy">Hemalatha Ganapathyswamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Thirukkumar%20Subramani"> Thirukkumar Subramani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Celiac disease is an autoimmune response to dietary wheat gluten. Gluten is the main structure forming protein in bread and hence developing gluten-free bread is a technological challenge. The study aims at using nonwheat flours like barnyard millet and lentil flour to replace wheat in bread formulations. Other characteristics of these grains, such as high protein, soluble fiber, mineral content and bioactive components make them attractive alternatives to traditional gluten-free ingredients in the production of high protein, gluten-free bread. The composite flour formulations for the development of gluten-free bread were optimized using lentil flour (50 to 70 g), barnyard millet flour (0 to 30 g) and corn flour (0 to 30 g) by means of response surface methodology with various independent variables for physical, sensorial and nutritional characteristics. The optimized composite flour which had a desirability value of 0.517, included lentil flour –62.94 g, barnyard millet flour– 24.34 g and corn flour– 12.72 g with overall acceptability score 8.00/9.00. The optimized gluten-free bread formulation had high protein (14.99g/100g) and fiber (1.95g/100g) content. The glycemic index of the gluten-free bread was 54.58 rendering it as low glycemic which enhances the functional benefit of the gluten-free bread. Since the standardised gluten-free bread from barnyard millet and lentil flour are high protein, and gluten-free with low glycemic index, the product would serve as an ideal therapeutic food in the management of both celiac disease and diabetes mellitus with better nutritional value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gluten%20free%20bread" title="gluten free bread">gluten free bread</a>, <a href="https://publications.waset.org/abstracts/search?q=lentil" title=" lentil"> lentil</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20glycemic%20index" title=" low glycemic index"> low glycemic index</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/85205/development-of-low-glycemic-gluten-free-bread-from-barnyard-millet-and-lentil-flour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10767</span> Effect of Scaling and Root Planing on Improvement of Glycemic Control in Periodontitis Patients with Type-2 Diabetes Mellitus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivalal%20Sharma">Shivalal Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjib%20K.%20Sharma"> Sanjib K. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhab%20Lamsal"> Madhab Lamsal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The aim of this study was to evaluate the clinical and laboratory changes three months after full-mouth scaling and root planing (SRP) in periodontitis patients with type 2 diabetes mellitus (DM). Methods: Forty-seven type 2 DM subjects with moderate to severe periodontitis were randomly divided into two groups. Treatment group (TG), 25 subjects, received full-mouth scaling and root planning; control group (CG), 22 subjects, received no treatment. At baseline and at the end of three months, glycated hemoglobin (HbA1c) values, fasting glucose, and clinical parameters like plaque index (PI), gingival index (GI), probing pocket depth (PPD), and clinical attachment level (CAL) were recorded in all the patients. Following SRP, the patients were enrolled in a monthly interval maintenance program for 3 months. Results: A statistically significant effect could be demonstrated for PI, GI, PPD, and CAL for the treatment group. HbA1c levels in the treatment group decreased significantly whereas the control group showed a slight but insignificant increase for these parameters. Conclusions: The results of this study showed that non-surgical periodontal treatment (SRP) is associated with improved glycemic control in type 2 DM patients and could be undertaken along with the standard measures for the diabetic patient care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=periodontitis" title="periodontitis">periodontitis</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes%20mellitus" title=" type 2 diabetes mellitus"> type 2 diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=non-surgical%20periodontal%20therapy" title=" non-surgical periodontal therapy"> non-surgical periodontal therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=SRP" title=" SRP"> SRP</a> </p> <a href="https://publications.waset.org/abstracts/14654/effect-of-scaling-and-root-planing-on-improvement-of-glycemic-control-in-periodontitis-patients-with-type-2-diabetes-mellitus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10766</span> Evaluation of Chromium Fortified-Parboiled Rice Coated with Herbal Extracts: Resistant Starch, and Glycemic Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wisnu%20Adi%20Yulianto">Wisnu Adi Yulianto</a>, <a href="https://publications.waset.org/abstracts/search?q=Chatarina%20%20Lilis%20Suryani"> Chatarina Lilis Suryani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamilisti%20Susiati"> Mamilisti Susiati</a>, <a href="https://publications.waset.org/abstracts/search?q=Hendy%20Indra%20Permana"> Hendy Indra Permana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parboiled rice was developed to produce rice that has low glycemic index, especially for diabetics. Yet, parboiled rice is not enough because diabetics also lack of chromium. The sign of chromium (Cr) deficiency in diabetics is impaired glucose tolerance. Cr fortification was done for increasing Cr content in rice. Naturally-occurring compounds that have been proven to improve insulin sensitivity include Cr and polyphenol found in cinnamon, pandan and bay leaf. This research aimed to evaluate content of resistant starch and glycemic index of Cr - fortified - parboiled rice (Cr-PR) coated with herbal extracts. Variety of unhulled rice and forticant used in the experiment were Ciherang and CrCl3, respectively. Three herbal extracts used were cinnamon, pandan and bay leaf. Each concentration of herbal extracts in the amount of 3%, 6%, and 9% were added in the coating substance to coat Cr-PR. Resistant starch (RS) content was determined by enzymatic process through glucooxydase method. Testing of the GI was conducted on 18 non-diabetic volunteers. RS content of Cr-PR coated with herbal extracts ranged between 8.27 – 8.84 % (dry weight). Cr-PR coated with all herbal extracts of 3% concentration had higher RS content than the ones with herbal extracts of 6% and 9% concentration (P <0.05). Value of the rice GI ranged 29 - 40. The lowest GI (29-30) was attained by the rice coated with enrichment of 6-9% cinnamon extract. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=Cr-fortified-parboiled%20rice" title=" Cr-fortified-parboiled rice"> Cr-fortified-parboiled rice</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20index" title=" glycemic index"> glycemic index</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20extracts" title=" herbal extracts"> herbal extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=resistant%20starch" title=" resistant starch"> resistant starch</a> </p> <a href="https://publications.waset.org/abstracts/37604/evaluation-of-chromium-fortified-parboiled-rice-coated-with-herbal-extracts-resistant-starch-and-glycemic-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10765</span> Association Nephropathy and Hypertension in Diabetic Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahlous%20Afef">Bahlous Afef</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouzid%20Kahena"> Bouzid Kahena</a>, <a href="https://publications.waset.org/abstracts/search?q=Bardkis%20Ahlem"> Bardkis Ahlem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mrad%20Mehdi"> Mrad Mehdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalai%20Eya"> Kalai Eya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Bahri"> Sonia Bahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmoula%20Jaouida"> Abdelmoula Jaouida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetic nephropathy is the first cause of chronic renal failure and hemodialysis use in several countries including Tunisia. The role of hypertension (HT) as major risk factor for nephropathy is undeniable. The aim of our study was to determine the relationship between blood pressure and nephropathy in a population of diabetic type 2 recently discovered. Materials and methods: We conducted a prospective study focused on 60 patients with type 2 diabetes recently discovered (<5 years). Each patient have benefited from: -a full clinical examination with measurement of blood pressure - exploring a blood-glucose control and renal function -urinary exploration with the determination of proteinuria microalbuminumie of 24 hours with a immunoturbidimetric method using Architect (ABBOTT CI 8200). Results and discussion: Hypertension was present in 46.7% of cases. Twenty patients, 35% of the study population showed nephropathy. Four of these patients (6.66% of cases) had proteinuria, while 16 (26.6% of patients) had microalbuminuria (> 30mg/24 hours). Systolic blood pressure was significantly (p < 0.05) associated with the presence of nephropathy (139 +19.44) vs. for the group with normal renal function (128.65 +15.12 mmHg). Conclusion: The etiology of diabetic nephropathy is multifactorial. However, systolic blood pressure and glycemic control remains the major risk factors. Better glycemic control and treatment of hypertension allowed preventing and slowing the progression of diabetic nephropathy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypertension" title="hypertension">hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=nephropathy" title=" nephropathy"> nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=hemodialysis" title=" hemodialysis"> hemodialysis</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a> </p> <a href="https://publications.waset.org/abstracts/42044/association-nephropathy-and-hypertension-in-diabetic-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10764</span> Comparison of Statins Dose Intensity on HbA1c Control in Outpatients with Type 2 Diabetes: A Prospective Cohort Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Hammad">Mohamed A. Hammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Dzul%20Azri%20Mohamed%20Noor"> Dzul Azri Mohamed Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Azhar%20Syed%20Sulaiman"> Syed Azhar Syed Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Khamis"> Ahmed A. Khamis</a>, <a href="https://publications.waset.org/abstracts/search?q=Abeer%20Kharshid"> Abeer Kharshid</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Azizah%20Aziz"> Nor Azizah Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of statins dose intensity (SDI) on glycemic control in patients with existing diabetes is unclear. Also, there are many contradictory findings were reported in the literature; thus, it is limiting the possibility to draw conclusions. This project was designed to compare the effect of SDI on glycated hemoglobin (HbA1c%) control in outpatients with Type 2 diabetes in the endocrine clinic at Hospital Pulau Pinang, Malaysia, between July 2015 and August 2016. A prospective cohort study was conducted, where records of 345 patients with Type 2 diabetes (Moderate-SDI group 289 patients and high-SDI cohort 56 patients) were reviewed to identify demographics and laboratory tests. The target of glycemic control (HbA1c < 7% for patient < 65 years, and < 8% for patient ≥ 65 years) was estimated, and the results were presented as descriptive statistics. From 289 moderate-SDI cohorts with a mean age of 57.3 ± 12.4 years, only 86 (29.8%) cases were shown to have controlled glycemia, while there were 203 (70.2%) cases with uncontrolled glycemia with confidence interval (CI) of 95% (6.2–10.8). On the other hand, the high-SDI group of 56 patients with Type 2 diabetes with a mean age 57.7±12.4 years is distributed among 11 (19.6%) patients with controlled diabetes, and 45 (80.4%) of them had uncontrolled glycemia, CI: 95% (7.1–11.9). The study has demonstrated that the relative risk (RR) of uncontrolled glycemia in patients with Type 2 diabetes that used high-SDI is 1.15, and the excessive relative risk (ERR) is 15%. The absolute risk (AR) is 10.2%, and the number needed to harm (NNH) is 10. Outpatients with Type 2 diabetes who use high-SDI of statin have a higher risk of uncontrolled glycemia than outpatients who had been treated with a moderate-SDI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cohort%20study" title="cohort study">cohort study</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20control" title=" diabetes control"> diabetes control</a>, <a href="https://publications.waset.org/abstracts/search?q=dose%20intensity" title=" dose intensity"> dose intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=HbA1c" title=" HbA1c"> HbA1c</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=statin" title=" statin"> statin</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes%20mellitus" title=" type 2 diabetes mellitus"> type 2 diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=uncontrolled%20glycemia" title=" uncontrolled glycemia"> uncontrolled glycemia</a> </p> <a href="https://publications.waset.org/abstracts/74808/comparison-of-statins-dose-intensity-on-hba1c-control-in-outpatients-with-type-2-diabetes-a-prospective-cohort-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10763</span> Factors Associated With Poor Glycaemic Control Among Patients With Type 2 Diabetes at Gatundu Level 5 Hospital. Kiambu County, Kenya: Key Lessons and Way Forward</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolyne%20Ndungu">Carolyne Ndungu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wesley%20Too"> Wesley Too</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Kassaman"> Diana Kassaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes is a global public health problem with an increasing morbidity and mortality rate across the globe. It is reported that 422 million people worldwide have diabetes with type 2 diabetes more common in people of African descent. Whilst prevalence of diabetes is four times more than it was in the last three decades, making it the world's ninth greatest cause of mortality, treatment of complications resulting from poor glycemic control is still high, contributing to poverty level in sub-Saharan. Poor treatment adherence has also been identified as a major contributing factor poor glycemic control among diabetic patients and still remains a significant challenge especially among patients living in rural Kenya. This study therefore seeks to identify gaps, barriers and challenges towards medication non-adherence among diabetic patients on follow-up at Kiambu County Referral Hospital, Kenya. Methods: A cross- sectional descriptive study was carried out at Gatundu Level five Hospital in Kiambu County. The study population consisted of adult patients with type two diabetes mellitus (T2DM) on follow up, at the Diabetes clinic between the month of June to July 2022. Systematic sampling of 200 participants was carried out. Ethical approvals from relevant authorities were done and ethical aspects of the study were also observed. Data analysis is ongoing using logistic regression analysis. Results, recommendations -contribution of this study will be highlighted within the next one month. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adherence" title="adherence">adherence</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=medication" title=" medication"> medication</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenya" title=" Kenya"> Kenya</a> </p> <a href="https://publications.waset.org/abstracts/153962/factors-associated-with-poor-glycaemic-control-among-patients-with-type-2-diabetes-at-gatundu-level-5-hospital-kiambu-county-kenya-key-lessons-and-way-forward" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10762</span> Correlation of Depression and Anxiety with Glycemic Control in Children with Type I Diabetes Mellitus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujata%20Sethi">Sujata Sethi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Kumar"> Pawan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameer%20Aggarwal"> Sameer Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Depression and anxiety are of significant concern in youth with type 1 diabetes mellitus (T1DM) and these are correlated with glycemic control in multiple ways. The extent of depression and anxiety in children with T1DM remains poorly studied in India. The index study aimed to find the prevalence of depression and anxiety and their correlation with HbA1c (glycated hemoglobin) levels in children with T1DM. Material and methods: This study was a cross-sectional study carried out on a purposive sample of 45 children with T1DM. Depressive symptoms were assessed using Children’s Depression Rating Scale-Revised (CDRS-R) and anxiety symptoms were assessed using Spence Children’s Anxiety Scale (SCAS). Glycated hemoglobin (HbA1c) levels of all the participants were recorded. Results: 43 out of 45 children were analyzed as HbA1c status for two was not known. 48.8% were females. Mean age was 12.95+2.04. The average duration of diabetes was 3.63+1.82. Mean CDRS-R score was 41.6+12.25 and mean SCAS score was 33.07+12.29. Mean recording of HbA1c level was 7.90+1.51. 27 (62.8%) out of 43 participants had abnormal scores on CDRS-R and 24 (55.8%) out of 43 had abnormal scores on SCAS. The correlation coefficient between HbA1c levels and the CDRS-R score came out to be 0.57 and between HbA1c and SCAS, it was 0.53. Both correlations were significant with the p-value of < 0.02. Conclusion: Children with T1DM have high co-morbidity of depression and anxiety which is significantly correlated with the HbA1c levels. Thus, it becomes important to screen the patients for depression and anxiety for better outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anxiety" title="anxiety">anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=HbA1c" title=" HbA1c"> HbA1c</a>, <a href="https://publications.waset.org/abstracts/search?q=T1DM" title=" T1DM"> T1DM</a> </p> <a href="https://publications.waset.org/abstracts/92240/correlation-of-depression-and-anxiety-with-glycemic-control-in-children-with-type-i-diabetes-mellitus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10761</span> Inpatient Glycemic Management Strategies and Their Association with Clinical Outcomes in Hospitalized SARS-CoV-2 Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thao%20Nguyen">Thao Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Maximiliano%20Hyon"> Maximiliano Hyon</a>, <a href="https://publications.waset.org/abstracts/search?q=Sany%20Rajagukguk"> Sany Rajagukguk</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Melkonyan"> Anna Melkonyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Type 2 Diabetes is a well-established risk factor for severe SARS-CoV-2 infection. Uncontrolled hyperglycemia in patients with established or newly diagnosed diabetes is associated with poor outcomes, including increased mortality and hospital length of stay. Objectives: Our study aims to compare three different glycemic management strategies and their association with clinical outcomes in patients hospitalized for moderate to severe SARS-CoV-2 infection. Identifying optimal glycemic management strategies will improve the quality of patient care and improve their outcomes. Method: This is a retrospective observational study on patients hospitalized at Adventist Health White Memorial with severe SARS-CoV-2 infection from 11/1/2020 to 02/28/2021. The following inclusion criteria were used: positive SARS-CoV-2 PCR test, age >18 yrs old, diabetes or random glucose >200 mg/dL on admission, oxygen requirement >4L/min, and treatment with glucocorticoids. Our exclusion criteria included: ICU admission within 24 hours, discharge within five days, death within five days, and pregnancy. The patients were divided into three glycemic management groups: Group 1, managed solely by the Primary Team, Group 2, by Pharmacy; and Group 3, by Endocrinologist. Primary outcomes were average glucose on Day 5, change in glucose between Days 3 and 5, and average insulin dose on Day 5 among groups. Secondary outcomes would be upgraded to ICU, inpatient mortality, and hospital length of stay. For statistics, we used IBM® SPSS, version 28, 2022. Results: Most studied patients were Hispanic, older than 60, and obese (BMI >30). It was the first CV-19 surge with the Delta variant in an unvaccinated population. Mortality was markedly high (> 40%) with longer LOS (> 13 days) and a high ICU transfer rate (18%). Most patients had markedly elevated inflammatory markers (CRP, Ferritin, and D-Dimer). These, in combination with glucocorticoids, resulted in severe hyperglycemia that was difficult to control. Average glucose on Day 5 was not significantly different between groups primary vs. pharmacy vs. endocrine (220.5 ± 63.4 vs. 240.9 ± 71.1 vs. 208.6 ± 61.7 ; P = 0.105). Change in glucose from days 3 to 5 was not significantly different between groups but trended towards favoring the endocrinologist group (-26.6±73.6 vs. 3.8±69.5 vs. -32.2±84.1; P= 0.052). TDD insulin was not significantly different between groups but trended towards higher TDD for the endocrinologist group (34.6 ± 26.1 vs. 35.2 ± 26.4 vs. 50.5 ± 50.9; P=0.054). The endocrinologist group used significantly more preprandial insulin compared to other groups (91.7% vs. 39.1% vs. 65.9% ; P < 0.001). The pharmacy used more basal insulin than other groups (95.1% vs. 79.5% vs. 79.2; P = 0.047). There were no differences among groups in the clinical outcomes: LOS, ICU upgrade, or mortality. Multivariate regression analysis controlled for age, sex, BMI, HbA1c level, renal function, liver function, CRP, d-dimer, and ferritin showed no difference in outcomes among groups. Conclusion: Given high-risk factors in our population, despite efforts from the glycemic management teams, it’s unsurprising no differences in clinical outcomes in mortality and length of stay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycemic%20management" title="glycemic management">glycemic management</a>, <a href="https://publications.waset.org/abstracts/search?q=strategies" title=" strategies"> strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=hospitalized" title=" hospitalized"> hospitalized</a>, <a href="https://publications.waset.org/abstracts/search?q=SARS-CoV-2" title=" SARS-CoV-2"> SARS-CoV-2</a>, <a href="https://publications.waset.org/abstracts/search?q=outcomes" title=" outcomes"> outcomes</a> </p> <a href="https://publications.waset.org/abstracts/152185/inpatient-glycemic-management-strategies-and-their-association-with-clinical-outcomes-in-hospitalized-sars-cov-2-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10760</span> Bone Mineral Density in Type 2 Diabetes Mellitus Postmenopausal Egyptian Female Patients: Correlation with Fetuin-A Level and Metabolic Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20M.%20Shoaib">Ahmed A. M. Shoaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20A.%20Esaily"> Heba A. Esaily</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20Emara"> Mahmoud M. Emara</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20A.%20E.%20Badr"> Eman A. E. Badr</a>, <a href="https://publications.waset.org/abstracts/search?q=Amany%20S.%20Khalifa"> Amany S. Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayada%20M.%20M."> Mayada M. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdel-Raizk"> Abdel-Raizk </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: DM is associated with metabolic bone diseases, osteoporosis, low-impact fractures and falls in geriatrics. Fetuin-A, which is a serum protein produced by the liver and promotes bone mineralization, is an independent risk factor for type 2 diabetes. Aim: Evaluation of fetuin-A level and bone mineral density in postmenopausal Egyptian female patients with type 2 diabetes mellitus and their correlation with each other & with other metabolic parameters. Patients and methods: Seventy postmenopausal female patients with type II diabetes and thirty postmenopausal female as control were included in this study. Measurement of Fetuin-A together with metabolic parameters and DXA in wrist, hip and spine, ALP, CBC, FBS, PP2H and HBA1c was done in all participants. Results: - Fetuin-A level was found to be highly significant (p< 0.001) between diabetic and nondiabetic groups and negatively correlated with BMD in spine. No difference in BMD was found between patients and control groups while significant negative correlation was found between FBS and hip BMD (<0.05) and between 2hpp and HBA1c with spine BMD in the diabetic group (<0.05). Osteoporosis represented 12.9% in spine area and 7.2% in hip and wrist areas in diabetic patients, while osteopenia were found in 58.5%, 57.1%, and 37.1% in diabetic patients in spine, wrist, and hip respectively. Conclusion: - type II diabetes cannot be considered as a risk factor for osteoporosis; while glycemic parameters (FBS, 2hpp & HBA1c) and serum Fetuin-A levels were correlated with BMD in diabetics. Good glycemic control can be protective against osteoporosis in diabetic elderly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fetuin-A" title="fetuin-A">fetuin-A</a>, <a href="https://publications.waset.org/abstracts/search?q=BMD" title=" BMD"> BMD</a>, <a href="https://publications.waset.org/abstracts/search?q=postmenopausal" title=" postmenopausal"> postmenopausal</a>, <a href="https://publications.waset.org/abstracts/search?q=DM%20type%20II" title=" DM type II"> DM type II</a> </p> <a href="https://publications.waset.org/abstracts/48745/bone-mineral-density-in-type-2-diabetes-mellitus-postmenopausal-egyptian-female-patients-correlation-with-fetuin-a-level-and-metabolic-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10759</span> Back Stepping Sliding Mode Control of Blood Glucose for Type I Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Tadrisi%20Parsa">N. Tadrisi Parsa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Vali"> A. R. Vali</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ghasemi"> R. Ghasemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes is a growing health problem in worldwide. Especially, the patients with Type 1 diabetes need strict glycemic control because they have deficiency of insulin production. This paper attempts to control blood glucose based on body mathematical body model. The Bergman minimal mathematical model is used to develop the nonlinear controller. A novel back-stepping based sliding mode control (B-SMC) strategy is proposed as a solution that guarantees practical tracking of a desired glucose concentration. In order to show the performance of the proposed design, it is compared with conventional linear and fuzzy controllers which have been done in previous researches. The numerical simulation result shows the advantages of sliding mode back stepping controller design to linear and fuzzy controllers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bergman%20model" title="bergman model">bergman model</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control" title=" nonlinear control"> nonlinear control</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20stepping" title=" back stepping"> back stepping</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control "> sliding mode control </a> </p> <a href="https://publications.waset.org/abstracts/14982/back-stepping-sliding-mode-control-of-blood-glucose-for-type-i-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10758</span> Management of Diabetics on Hemodialysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souheila%20Zemmouchi">Souheila Zemmouchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Diabetes is currently the leading cause of end-stage chronic kidney disease and dialysis, so it adds additional complexity to the management of chronic hemodialysis patients. These patients are extremely fragile because of their multiple cardiovascular and metabolic comorbidities. Clear and complete description of the experience: the management of a diabetic on hemodialysis is particularly difficult due to frequent hypoglycaemia and significant inter and perdialyticglycemic variability that is difficult to predict. The aim of our study is to describe the clinical-biological profile and to assess the cardiovascular risk of diabetics undergoing chronic hemodialysis, and compare them with non-diabetic hemodialysis patients. Methods: This cross-sectional, descriptive, and analytical study was carried out between January 01 and December 31, 2018, involving 309 hemodialysis patients spread over 4 centersThe data were collected prospectively then compiled and analyzed by the SPSS Version 10 software The FRAMINGHAM RISK SCORE has been used to assess cardiovascular risk in all hemodialysis patients Results: The survey involved 309 hemodialysis patients, including 83 diabetics, for a prevalence of 27% The average age 53 ± 10.2 years. The sex ratio is 1.5. 50% of diabetic hemodialysis patients retained residual diuresis against 32% in non-diabetics. In the group of diabetics, we noted more hypertension (70% versus 38% non-diabetics P 0.004), more intradialytichypoglycemia (15% versus 3% non-diabetics P 0.007), initially, vascular exhaustion was found in 4 diabetics versus 2 non-diabetics. 70% of diabetics with anuria had postdialytichyperglycemia. The study found a statistically significant difference between the different levels of cardiovascular risk according to the diabetic status. Conclusion: There are many challenges in the management of diabetics on hemodialysis, both to optimize glycemic control according to an individualized target and to coordinate comprehensive and effective care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hemodialysis" title="hemodialysis">hemodialysis</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20renal%20failure" title=" chronic renal failure"> chronic renal failure</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20control" title=" glycemic control"> glycemic control</a> </p> <a href="https://publications.waset.org/abstracts/143985/management-of-diabetics-on-hemodialysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10757</span> The Effect of Non-Surgical Periodontal Therapy on Metabolic Control in Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Areej%20Al-Khabbaz">Areej Al-Khabbaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Swapna%20%20Goerge"> Swapna Goerge</a>, <a href="https://publications.waset.org/abstracts/search?q=Majedah%20%20Abdul-Rasoul"> Majedah Abdul-Rasoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The most prevalent periodontal disease among children is gingivitis, and it usually becomes more severe in adolescence. A number of intervention studies suggested that resolution of periodontal inflammation can improve metabolic control in patients diagnosed with diabetes mellitus. Aim: to assess the effect of non-surgical periodontal therapy on glycemic control of children diagnosed with diabetes mellitus. Method: Twenty-eight children diagnosed with diabetes mellitus were recruited with established diagnosis diabetes for at least 1 year. Informed consent and child assent form were obtained from children and parents prior to enrolment. The dental examination for the participants was performed on the same week directly following their annual medical assessment. All patients had their glycosylated hemoglobin (HbA1c%) test one week prior to their annual medical and dental visit and 3 months following non-surgical periodontal therapy. All patients received a comprehensive periodontal examination The periodontal assessment included clinical attachment loss, bleeding on probing, plaque score, plaque index and gingival index. All patients were referred for non-surgical periodontal therapy, which included oral hygiene instruction and motivation followed by supra-gingival and subg-ingival scaling using ultrasonic and hand instruments. Statistical Analysis: Data were entered and analyzed using the Statistical Package for Social Science software (SPSS, Chicago, USA), version 18. Statistical analysis of clinical findings was performed to detect differences between the two groups in term of periodontal findings and HbA1c%. Binary logistic regression analysis was performed in order to examine which factors were significant in multivariate analysis after adjusting for confounding between effects. The regression model used the dependent variable ‘Improved glycemic control’, and the independent variables entered in the model were plaque index, gingival index, bleeding %, plaque Statistical significance was set at p < 0.05. Result: A total of 28 children. The mean age of the participants was 13.3±1.92 years. The study participants were divided into two groups; Compliant group (received dental scaling) and non-complaints group (received oral hygiene instructions only). No statistical difference was found between compliant and non-compliant group in age, gender distribution, oral hygiene practice and the level of diabetes control. There was a significant difference between compliant and non-compliant group in term of improvement of HBa1c before and after periodontal therapy. Mean gingival index was the only significant variable associated with improved glycemic control level. In conclusion, this study has demonstrated that non-surgical mechanical periodontal therapy can improve HbA1c% control. The result of this study confirmed that children with diabetes mellitus who are compliant to dental care and have routine professional scaling may have better metabolic control compared to diabetic children who are erratic with dental care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=children" title="children">children</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20control" title=" metabolic control"> metabolic control</a>, <a href="https://publications.waset.org/abstracts/search?q=periodontal%20therapy" title=" periodontal therapy "> periodontal therapy </a> </p> <a href="https://publications.waset.org/abstracts/103388/the-effect-of-non-surgical-periodontal-therapy-on-metabolic-control-in-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10756</span> Postprandial Glycemic and Appetite Responses of Muffins Supplemented with Different Vegetables in Young Males</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umair%20Arshad">Muhammad Umair Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objectives: Different vegetables have been reported to possess diabetic potential in in-vitro studies; however, the same role of these vegetables has not been much explored through human intervention. Therefore, the present study was conducted to examine the comparative effects of muffins supplemented with bitter gourd (BGM), and other vegetables like spinach (SPM) and eggplant (EPM) on subjective appetite, blood glucose (BG), gut hormones and food intake in healthy young males through a randomized, cross over experiment. Methods and Study Design: After 12 hours fasting, twenty-four healthy young males (18-30 Y) were fed 250ml of plain muffins (control) or supplemented with bitter gourd powder, BGM (10g/100g flour), or spinach powder, SPM (10g/100g flour), or eggplant powder, EPM (10g/100g flour). An ad libitum pizza meal was served at 120min to measure the food intake. Subjective appetite, blood glucose, and gut hormones (insulin, GLP-1, active ghrelin) were measured at intervals from baseline to 120min. Results: Post-treatment (0-120min) glucose, but not insulin, decreased following all the vegetables supplemented muffins compared to the control (p < 0.0001) with a more pronounced effect of BGM. However, post-treatment avg. subjective appetite (p=0.0017) and food intake (p=0.0021) were reduced following BGM but not SPM and EPM. BGM further improved GLP-1 concentration (p < 0.0001), and reduced active ghrelin (p=0.0022), compared with control. Conclusions: The bitter gourd supplemented baked foods possess potential more than other vegetables to regulate postprandial appetite and glycemic responses, without a disproportionate increase in insulin concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vegetables" title="vegetables">vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=muffins" title=" muffins"> muffins</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20homeostasis" title=" glucose homeostasis"> glucose homeostasis</a>, <a href="https://publications.waset.org/abstracts/search?q=subjective%20appetite" title=" subjective appetite"> subjective appetite</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20intake" title=" food intake "> food intake </a> </p> <a href="https://publications.waset.org/abstracts/109364/postprandial-glycemic-and-appetite-responses-of-muffins-supplemented-with-different-vegetables-in-young-males" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10755</span> Relation of Urinary Microalbumin with Glycosylated Hemoglobin (HbA1c) and Duration of Type 2 Diabetes Mellitus (T2DM) in Selected Male and Female Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Mahmood%20Alam">Junaid Mahmood Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Howarh%20Humaira%20Ali"> Howarh Humaira Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishrat%20Sultana"> Ishrat Sultana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Long term irregularity in the glycemic state, especially in Type 2 diabetes mellitus (T2DM) patients, depicted by higher levels of HbA1c, is noted to be correlated with the development of microalbuminuria. The aim of the current study is to investigate the association of urinary microalbumin with HbA1c and with duration of diabetes mellitus in selected male and female T2DM patients. This cross-sectional study was carried out in a total of 70 patients, thirty-five each male and females with diagnosed T2DM, within the age group of 35-60 years. Biochemical parameters of urea, creatinine, urinary microalbumin, HbA1c, fasting blood glucose and post- parendial blood glucose were determined by standard methods. Data was statistically examined by student’s t-test and Pearson’s correlation. Results showed that comparison of healthy control subjects with both male and female T2DM patients depicted significantly elevated levels of all parameters in (P < 0.05 to P < 0.001). Comparison of duration of T2DM with the existence of urinary microalbumin was moderately significant (P < 0.05) when duration was less than 4 years, significant (P < 0.01) with duration of 4-6 years and markedly significant (P < 0.001) with duration of more than 6 years. It is concluded that in male and female T2DM patients, duration of DM as well as poor glycemic control, depicted by higher levels of HbA1c is significantly correlated with elevated levels of urinary microalbumin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes%20mellitus" title="type 2 diabetes mellitus">type 2 diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=glycosylated%20hemoglobin" title=" glycosylated hemoglobin"> glycosylated hemoglobin</a>, <a href="https://publications.waset.org/abstracts/search?q=urinary%20microalbumin" title=" urinary microalbumin"> urinary microalbumin</a>, <a href="https://publications.waset.org/abstracts/search?q=T2DM" title=" T2DM"> T2DM</a>, <a href="https://publications.waset.org/abstracts/search?q=HbA1c" title=" HbA1c"> HbA1c</a> </p> <a href="https://publications.waset.org/abstracts/45579/relation-of-urinary-microalbumin-with-glycosylated-hemoglobin-hba1c-and-duration-of-type-2-diabetes-mellitus-t2dm-in-selected-male-and-female-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10754</span> Effects of Food Habits on Road Accidents Due to Micro-Sleepiness and Analysis of Attitudes to Develop a Food Product as a Preventive Measure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rumesh%20Liyanage">Rumesh Liyanage</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Nawaratne"> S. B. Nawaratne</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20D.%20S.%20Ranaweera"> K. K. D. S. Ranaweera</a>, <a href="https://publications.waset.org/abstracts/search?q=Indira%20Wickramasinghe"> Indira Wickramasinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20G.%20S.%20C.%20Katukurunda"> K. G. S. C. Katukurunda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study it was attempted to identify an effect of food habits and publics’ attitudes on micro-sleepiness and preventive measures to develop a food product to combat. Statistical data pertaining to road accidents were collected from, Sri Lanka Police Traffic Division and a pre-tested questionnaire was used to collect data from 250 respondents. They were selected representing drivers (especially highway drivers), private and public sector workers (shift based) and cramming students (university and school). Questionnaires were directed to fill independently and personally and collected data were analyzed statistically. Results revealed that 76.84, 96.39 and 80.93% out of total respondents consumed rice for all three meals which lead to ingesting higher glycemic meals. Taking two hyper glycemic meals before 14.00h was identified as a cause of micro-sleepiness within these respondents. Peak level of road accidents were observed at 14.00 - 20.00h (38.2%)and intensity of micro-sleepiness falls at the same time period (37.36%) while 14.00 to 16.00h was the peak time, 16.00 to 18.00h was the least; again 18.00 to 20.00h it reappears slightly. Even though respondents of the survey expressed that peak hours of micro- sleepiness is 14.00-16.00h, according to police reports, peak hours fall in between 18.00-20.00h. Out of the interviewees, 69.27% strongly wanted to avoid micro-sleepiness and intend to spend LKR 10-20 on a commercial product to combat micro sleepiness. As age-old practices to suppress micro-sleepiness are time taken, modern day respondents (51.64%) like to have a quick solution through a drink. Therefore, food habits of morning and noon may cause for micro- sleepiness while dinner may cause for both, natural and micro-sleepiness due to the heavy glycemic load of food. According to the study micro-sleepiness, can be categorized into three zones such as low-risk zone (08.00-10.00h and 18.00-20.00h), manageable zone (10.00-12.00h), and high- risk zone (14.00-16.00h). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20habits" title="food habits">food habits</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20load" title=" glycemic load"> glycemic load</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-sleepiness" title=" micro-sleepiness"> micro-sleepiness</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20accidents" title=" road accidents"> road accidents</a> </p> <a href="https://publications.waset.org/abstracts/35454/effects-of-food-habits-on-road-accidents-due-to-micro-sleepiness-and-analysis-of-attitudes-to-develop-a-food-product-as-a-preventive-measure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10753</span> Glycemic Control in Rice Consumption among Households with Diabetes Patients: The Role of Food Security</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandanee%20Wasana%20Kalansooriya">Chandanee Wasana Kalansooriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dietary behaviour is a crucial factor affecting diabetes control. With increasing rates of diabetes prevalence in Asian countries, examining their dietary patterns, which are largely based on rice, is timely required. It has been identified that higher consumption of some rice varieties is associated with increased risk of type 2 diabetes. Although diabetes patients are advised to consume healthier rice varieties, which contains low glycemic, several conditions, one of which food insecurity, make them difficult to preserve those healthy dietary guidelines. Hence this study tries to investigate how food security affects on making right decisions of rice consumption within diabetes affected households using a sample from Sri Lanka, a country which rice considered as the staple food and records the highest diabetes prevalence rate in South Asia. The study uses data from the Household Income and Expenditure Survey 2016, a nationally representative sample conducted by the Department of Census and Statistics, Sri Lanka. The survey used a two-stage stratified sampling method to cover different sectors and districts of the country and collected micro-data on demographics, health, income and expenditures of different categories. The study uses data from 2547 households which consist of one or more diabetes patients, based on the self-recorded health status. The Household Dietary Diversity Score (HDDS), which constructed based on twelve food groups, is used to measure the level of food security. Rice is categorized into three groups according to their Glycemic Index (GI), high GI, medium GI and low GI, and the likelihood and impact made by food security on each rice consumption categories are estimated using a Two-part Model. The shares of each rice categories out of total rice consumption is considered as the dependent variable to exclude the endogeneity issue between rice consumption and the HDDS. The results indicate that the consumption of medium GI rice is likely to increase with the increasing household food security, but low GI varieties are not. Households in rural and estate sectors are less likely and Tamil ethnic group is more likely to consume low GI rice varieties. Further, an increase in food security significantly decreases the consumption share of low GI rice, while it increases the share of medium GI varieties. The consumption share of low GI rice is largely affected by the ethnic variability. The effects of food security on the likelihood of consuming high GI rice varieties and changing its shares are statistically insignificant. Accordingly, the study concludes that a higher level of food security does not ensure diabetes patients are consuming healthy rice varieties or reducing consumption of unhealthy varieties. Hence policy attention must be directed towards educating people for making healthy dietary choices. Further, the study provides a room for further studies as it reveals considerable ethnic and sectorial differences in making healthy dietary decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20index" title=" glycemic index"> glycemic index</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20consumption" title=" rice consumption"> rice consumption</a> </p> <a href="https://publications.waset.org/abstracts/122432/glycemic-control-in-rice-consumption-among-households-with-diabetes-patients-the-role-of-food-security" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glycemic%20control&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glycemic%20control&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glycemic%20control&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glycemic%20control&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glycemic%20control&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glycemic%20control&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glycemic%20control&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glycemic%20control&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glycemic%20control&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glycemic%20control&page=359">359</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glycemic%20control&page=360">360</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glycemic%20control&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>