CINXE.COM
Search results for: catchment management
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: catchment management</title> <meta name="description" content="Search results for: catchment management"> <meta name="keywords" content="catchment management"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="catchment management" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="catchment management"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9739</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: catchment management</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9739</span> Rules in Policy Integration, Case Study: Victoria Catchment Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratri%20Werdiningtyas">Ratri Werdiningtyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongping%20Wei"> Yongping Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Western"> Andrew Western</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper contributes to on-going attempts at bringing together land, water and environmental policy in catchment management. A tension remains in defining the boundaries of policy integration. Most of Integrated Water Resource Management is valued as rhetoric policy. It is far from being achieved on the ground because the socio-ecological system has not been understood and developed into complete and coherent problem representation. To clarify the feature of integration, this article draws on institutional fit for public policy integration and uses these insights in an empirical setting to identify the mechanism that can facilitate effective public integration for catchment management. This research is based on the journey of Victoria’s government from 1890-2016. A total of 274 Victorian Acts related to land, water, environment management published in those periods has been investigated. Four conditions of integration have been identified in their co-evolution: (1) the integration policy based on reserves, (2) the integration policy based on authority interest, (3) policy based on integrated information and, (4) policy based coordinated resource, authority and information. Results suggest that policy coordination among their policy instrument is superior rather than policy integration in the case of catchment management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catchment%20management" title="catchment management">catchment management</a>, <a href="https://publications.waset.org/abstracts/search?q=co-evolution" title=" co-evolution"> co-evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20integration" title=" policy integration"> policy integration</a>, <a href="https://publications.waset.org/abstracts/search?q=phase" title=" phase"> phase</a> </p> <a href="https://publications.waset.org/abstracts/101538/rules-in-policy-integration-case-study-victoria-catchment-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9738</span> Hydrological, Hydraulics, Analysis and Design of the Aposto –Yirgalem Road Upgrading Project, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azazhu%20Wassie">Azazhu Wassie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study tried to analyze and identify the drainage pattern and catchment characteristics of the river basin and assess the impact of the hydrologic parameters (catchment area, rainfall intensity, runoff coefficient, land use, and soil type) on the referenced study area. Since there is no river gauging station near the road, even for large rivers, rainfall-runoff models are adopted for flood estimation, i.e., for catchment areas less than 50 ha, the rational method is used; for catchment areas, less than 65 km², the SCS unit hydrograph method is used; and for catchment areas greater than 65 km², HEC-HMS is adopted for flood estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arc%20GIS" title="Arc GIS">Arc GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=catchment%20area" title=" catchment area"> catchment area</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%2Fland%20cover" title=" land use/land cover"> land use/land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20flood" title=" peak flood"> peak flood</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20intensity" title=" rainfall intensity"> rainfall intensity</a> </p> <a href="https://publications.waset.org/abstracts/188232/hydrological-hydraulics-analysis-and-design-of-the-aposto-yirgalem-road-upgrading-project-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9737</span> Monitoring of Hydrological Parameters in the Alexandra Jukskei Catchment in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vhuhwavho%20Gadisi">Vhuhwavho Gadisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20Alowo"> Rebecca Alowo</a>, <a href="https://publications.waset.org/abstracts/search?q=German%20Nkhonjera"> German Nkhonjera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been noted that technical programming for handling groundwater resources is not accessible. The lack of these systems hinders groundwater management processes necessary for decision-making through monitoring and evaluation regarding the Jukskei River of the Crocodile River (West) Basin in Johannesburg, South Africa. Several challenges have been identified in South Africa's Jukskei Catchment concerning groundwater management. Some of those challenges will include the following: Gaps in data records; there is a need for training and equipping of monitoring staff; formal accreditation of monitoring capacities and equipment; there is no access to regulation terms (e.g., meters). Taking into consideration necessities and human requirements as per typical densities in various regions of South Africa, there is a need to construct several groundwater level monitoring stations in a particular segment; the available raw data on groundwater level should be converted into consumable products for example, short reports on delicate areas (e.g., Dolomite compartments, wetlands, aquifers, and sole source) and considering the increasing civil unrest there has been vandalism and theft of groundwater monitoring infrastructure. GIS was employed at the catchment level to plot the relationship between those identified groundwater parameters in the catchment area and the identified borehole. GIS-based maps were designed for groundwater monitoring to be pretested on one borehole in the Jukskei catchment. This data will be used to establish changes in the borehole compared to changes in the catchment area according to identified parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=Jukskei" title=" Jukskei"> Jukskei</a>, <a href="https://publications.waset.org/abstracts/search?q=catchment" title=" catchment"> catchment</a> </p> <a href="https://publications.waset.org/abstracts/165746/monitoring-of-hydrological-parameters-in-the-alexandra-jukskei-catchment-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9736</span> Modeling Soil Erosion and Sediment Yield in Geba Catchment, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gebremedhin%20Kiros">Gebremedhin Kiros</a>, <a href="https://publications.waset.org/abstracts/search?q=Amba%20Shetty"> Amba Shetty</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakshman%20Nandagiri"> Lakshman Nandagiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil erosion is a major threat to the sustainability of land and water resources in the catchment and there is a need to identify critical areas of erosion so that suitable conservation measures may be adopted. The present study was taken up to understand the temporal and spatial distribution of soil erosion and daily sediment yield in Geba catchment (5137 km2) located in the Northern Highlands of Ethiopia. Soil and Water Assessment Tool (SWAT) was applied to the Geba catchment using data pertaining to rainfall, climate, soils, topography and land use/land cover (LU/LC) for the historical period 2000-2013. LU/LC distribution in the catchment was characterized using LANDSAT satellite imagery and the GIS-based ArcSWAT version of the model. The model was calibrated and validated using sediment concentration measurements made at the catchment outlet. The catchment was divided into 13 sub-basins and based on estimated soil erosion, these were prioritized on the basis of susceptibility to soil erosion. Model results indicated that the average sediment yield estimated of the catchment was 12.23 tons/ha/yr. The generated soil loss map indicated that a large portion of the catchment has high erosion rates resulting in significantly large sediment yield at the outlet. Steep and unstable terrain, the occurrence of highly erodible soils and low vegetation cover appeared to favor high soil erosion. Results obtained from this study prove useful in adopting in targeted soil and water conservation measures and promote sustainable management of natural resources in the Geba and similar catchments in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ethiopia" title="Ethiopia">Ethiopia</a>, <a href="https://publications.waset.org/abstracts/search?q=Geba%20catchment" title=" Geba catchment"> Geba catchment</a>, <a href="https://publications.waset.org/abstracts/search?q=MUSLE" title=" MUSLE"> MUSLE</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT%20Model" title=" SWAT Model"> SWAT Model</a> </p> <a href="https://publications.waset.org/abstracts/62392/modeling-soil-erosion-and-sediment-yield-in-geba-catchment-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9735</span> A Study of Erosion and Sedimentation Rates Based on Two Different Seasons Using CS-137 As A Tracer in the Sembrong Catchment, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalal%20Sharib%40Sarip">Jalal Sharib@Sarip</a>, <a href="https://publications.waset.org/abstracts/search?q=Dainee%20nor%20Fardzila%20Ahmad%20Tugi">Dainee nor Fardzila Ahmad Tugi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Tarmizi%20Ishak">Mohd Tarmizi Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Izwan%20Abdul%20Adziz">Mohd Izwan Abdul Adziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper aims to determine the rate of soil erosion and sedimentation by using Cesium-137,137Cs as a medium-term tracer in the Sembrong catchment, Malaysia, over two different study seasons. The results of the analysis show that rates of soil erosion and sedimentation for both seasons were variable. This can be clearly seen where the dry season only gives the value of the rate of soil erosion. Meanwhile, the wet season has given both soil erosion and sedimentation rate values. The dry season had rates of soil erosion between 5.09 t/ha/y to 51.03 t/ha/y. The wet season had soil erosion and sedimentation rates between 8.02 t/ha/y to 39.78 t/ha/y and -4.81 t/ha/y to - 50.81 t/ha/y, each, respectively. rubber and oil palm plantations referring to Station 17 and station 4/6, located near Semberong Lake and Sembrong River, had the highest rates of soil erosion and sedimentation at 51.03 t/ha/y and -50.81 t/ha/y, respectively. Various factors must also be taken into account, such as soil types, the total volume of rainfall received for both seasons, as well as differences in land use at the study stations. In conclusion, 137Cs as a medium-term tracer was successfully used to determine rates of soil erosion and sedimentation in two different seasons for the Sembrong catchment area. The data on soil erosion and sedimentation rates for this study will be very useful for present, and future land and water management in the Sembrong catchment area and may be compared with other similar catchments in Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title="soil erosion">soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=cesium-137" title=" cesium-137"> cesium-137</a>, <a href="https://publications.waset.org/abstracts/search?q=catchment%20management" title=" catchment management"> catchment management</a> </p> <a href="https://publications.waset.org/abstracts/153757/a-study-of-erosion-and-sedimentation-rates-based-on-two-different-seasons-using-cs-137-as-a-tracer-in-the-sembrong-catchment-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9734</span> Integrated Water Resources Management to Ensure Water Security of Arial Khan River Catchment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abul%20Kalam%20Azad">Abul Kalam Azad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water security has become an increasingly important issue both at the national and international levels. Bangladesh having an abundance of water during monsoon while the shortage of water during the dry season is far from being water secured. Though water security has been discussed discretely at a different level but a holistic effort to ensure water security is yet to be made. The elements of water security such as sectoral demands of water, conflicting requirements amongst the sectors, balancing between demand and supply including the quality of water can best be understood and managed in a catchment as it is the standard functioning unit. The Arial Khan River catchment consists of parts of Faridpur, Madaripur, Shariatpur and Barishal districts have all the components of water demands such as agriculture, domestic, commercial, industrial, forestry, fisheries, navigation or recreation and e-flow requirements. Based on secondary and primary data, water demands of various sectors have been determined. CROPWAT 8.0 has been used to determine the Agricultural Water Demand. Mean Annual Flow (MAF) and Flow Duration Curve (FDC) have been used to determine the e-flow requirements. Water Evaluation and Planning System (WEAP) based decision support tool as part of Integrated Water Resources Management (IWRM) has been utilized for ensuring the water security of the Arial Khan River catchment. Studies and practice around the globe connected with water security were consulted to mitigate the pressure on demand and supply including the options available to ensure the water security. Combining all the information, a framework for ensuring water security has been suggested for Arial Khan River catchment which can further be projected to river basin as well as for the country. This will assist planners and researchers to introduce the model for integrated water resources management of any catchment/river basins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20security" title="water security">water security</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20demand" title=" water demand"> water demand</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20supply" title=" water supply"> water supply</a>, <a href="https://publications.waset.org/abstracts/search?q=WEAP" title=" WEAP"> WEAP</a>, <a href="https://publications.waset.org/abstracts/search?q=CROPWAT" title=" CROPWAT"> CROPWAT</a> </p> <a href="https://publications.waset.org/abstracts/191697/integrated-water-resources-management-to-ensure-water-security-of-arial-khan-river-catchment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9733</span> Estimation of Soil Erosion and Sediment Yield for ONG River Using GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Behera">Sanjay Kumar Behera</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanhu%20Charan%20Patra"> Kanhu Charan Patra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A GIS-based method has been applied for the determination of soil erosion and sediment yield in a small watershed in Ong River basin, Odisha, India. The method involves spatial disintegration of the catchment into homogenous grid cells to capture the catchment heterogeneity. The gross soil erosion in each cell was calculated using Universal Soil Loss Equation (USLE) by carefully determining its various parameters. The concept of sediment delivery ratio is used to route surface erosion from each of the discretized cells to the catchment outlet. The process of sediment delivery from grid cells to the catchment outlet is represented by the topographical characteristics of the cells. The effect of DEM resolution on sediment yield is analyzed using two different resolutions of DEM. The spatial discretization of the catchment and derivation of the physical parameters related to erosion in the cell are performed through GIS techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEM" title="DEM">DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio" title=" sediment delivery ratio"> sediment delivery ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a> </p> <a href="https://publications.waset.org/abstracts/21590/estimation-of-soil-erosion-and-sediment-yield-for-ong-river-using-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9732</span> Validation of SWAT Model for Prediction of Water Yield and Water Balance: Case Study of Upstream Catchment of Jebba Dam in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeniyi%20G.%20Adeogun">Adeniyi G. Adeogun</a>, <a href="https://publications.waset.org/abstracts/search?q=Bolaji%20F.%20Sule"> Bolaji F. Sule</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebayo%20W.%20Salami"> Adebayo W. Salami</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20O.%20Daramola"> Michael O. Daramola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimation of water yield and water balance in a river catchment is critical to the sustainable management of water resources at watershed level in any country. Therefore, in the present study, Soil and Water Assessment Tool (SWAT) interfaced with Geographical Information System (GIS) was applied as a tool to predict water balance and water yield of a catchment area in Nigeria. The catchment area, which was 12,992km2, is located upstream Jebba hydropower dam in North central part of Nigeria. In this study, data on the observed flow were collected and compared with simulated flow using SWAT. The correlation between the two data sets was evaluated using statistical measures, such as, Nasch-Sucliffe Efficiency (NSE) and coefficient of determination (R2). The model output shows a good agreement between the observed flow and simulated flow as indicated by NSE and R2, which were greater than 0.7 for both calibration and validation period. A total of 42,733 mm of water was predicted by the calibrated model as the water yield potential of the basin for a simulation period 1985 to 2010. This interesting performance obtained with SWAT model suggests that SWAT model could be a promising tool to predict water balance and water yield in sustainable management of water resources. In addition, SWAT could be applied to other water resources in other basins in Nigeria as a decision support tool for sustainable water management in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT" title=" SWAT"> SWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20yield" title=" water yield"> water yield</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed%20level" title=" watershed level"> watershed level</a> </p> <a href="https://publications.waset.org/abstracts/3782/validation-of-swat-model-for-prediction-of-water-yield-and-water-balance-case-study-of-upstream-catchment-of-jebba-dam-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9731</span> Determining the Sources of Sediment at Different Areas of the Catchment: A Case Study of Welbedacht Reservoir, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20T.%20Chabalala">D. T. Chabalala</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Ndambuki"> J. M. Ndambuki</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Ilunga"> M. F. Ilunga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sedimentation includes the processes of erosion, transportation, deposition, and the compaction of sediment. Sedimentation in reservoir results in a decrease in water storage capacity, downstream problems involving aggregation and degradation, blockage of the intake, and change in water quality. A study was conducted in Caledon River catchment in the upstream of Welbedacht Reservoir located in the South Eastern part of Free State province, South Africa. The aim of this research was to investigate and develop a model for an Integrated Catchment Modelling of Sedimentation processes and management for the Welbedacht reservoir. Revised Universal Soil Loss Equation (RUSLE) was applied to determine sources of sediment at different areas of the catchment. The model has been also used to determine the impact of changes from management practice on erosion generation. The results revealed that the main sources of sediment in the watershed are cultivated land (273 ton per hectare), built up and forest (103.3 ton per hectare), and grassland, degraded land, mining and quarry (3.9, 9.8 and 5.3 ton per hectare) respectively. After application of soil conservation practices to developed Revised Universal Soil Loss Equation model, the results revealed that the total average annual soil loss in the catchment decreased by 76% and sediment yield from cultivated land decreased by 75%, while the built up and forest area decreased by 42% and 99% respectively. Thus, results of this study will be used by government departments in order to develop sustainable policies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Welbedacht%20reservoir" title="Welbedacht reservoir">Welbedacht reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=RUSLE" title=" RUSLE"> RUSLE</a>, <a href="https://publications.waset.org/abstracts/search?q=Caledon%20River" title=" Caledon River"> Caledon River</a> </p> <a href="https://publications.waset.org/abstracts/60717/determining-the-sources-of-sediment-at-different-areas-of-the-catchment-a-case-study-of-welbedacht-reservoir-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9730</span> Identifying Controlling Factors for the Evolution of Shallow Groundwater Chemistry of Ellala Catchment, Northern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grmay%20Kassa%20Brhane">Grmay Kassa Brhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Hailemariam%20Siyum%20Mekonen"> Hailemariam Siyum Mekonen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designed to identify the hydrogeochemical and anthropogenic processes controlling the evaluation of groundwater chemistry in the Ellala catchment which covers about 296.5 km2 areal extent. The chemical analysis revealed that the major ions in the groundwater are Ca2+, Mg2+, Na+, and K+ (cations) and HCO3-, PO43-, Cl-, NO3-, and SO42-(anions). Most of the groundwater samples (68.42%) revealed that the groundwater in the catchment is non-alkaline. In addition to the contribution of aquifer material, the solid materials and liquid wastes discharged from different sources can be the main sources of pH and EC in the groundwater. It is observed that the EC of the groundwater is fairly correlated with the DTS. This indicates that high mineralized water is more conductor than water with low concentration. The degree of salinity of the groundwater increases along the groundwater flow path from East to West; then, areas surrounding Mekelle City are highly saline due to the liquid and solid wastes discharged from the city and the industries. The groundwater facies in the catchment are predominated with calcium, magnesium, and bicarbonate which are labeled as Ca-Mg-HCO3 and Mg-Ca-HCO3. The main geochemical process controlling the evolution of the groundwater chemistry in the catchment is rock-water interaction, particularly carbonate dissolution. Due to the clay layer in the aquifer, the reverse is ion exchange. Non-significant silicate weathering and halite dissolution also contribute to the evolution of groundwater chemistry in the catchment. The groundwater in the catchment is dominated by the meteoritic origin although it needs further groundwater chemistry study with isotope dating analysis. The groundwater is under-saturated with calcite, dolomite, and aragonite minerals; hence, the more these minerals encounter the groundwater, the more the minerals dissolve. The main source of calcium and magnesium in groundwater is the dissolution of carbonate minerals (calcite and dolomite) since carbonate rocks are the dominant aquifer materials in the catchment. In addition to this, the weathering of dolerite rock is a possible source of magnesium ions. The relatively higher concentration of sodium over chloride indicates that the source of sodium-ion is reverse ion exchange and/or weathering of sodium-bearing materials, such as shale and dolerite rather than halite dissolution. High concentration of phosphate, nitrate, and chloride in the groundwater is the main anthropogenic source that needs treatment, quality control, and management in the catchment. From the Base Exchange Index Analysis, it is possible to understand that, in the catchment, the groundwater is dominated by the meteoritic origin, although it needs further groundwater chemistry study with isotope dating analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ellala%20catchment" title="Ellala catchment">Ellala catchment</a>, <a href="https://publications.waset.org/abstracts/search?q=factor" title=" factor"> factor</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry" title=" chemistry"> chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemical" title=" geochemical"> geochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a> </p> <a href="https://publications.waset.org/abstracts/178488/identifying-controlling-factors-for-the-evolution-of-shallow-groundwater-chemistry-of-ellala-catchment-northern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9729</span> Determining the Extent and Direction of Relief Transformations Caused by Ski Run Construction Using LIDAR Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Fidelus-Orzechowska">Joanna Fidelus-Orzechowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominika%20Wronska-Walach"> Dominika Wronska-Walach</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslaw%20Cebulski"> Jaroslaw Cebulski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mountain areas are very often exposed to numerous transformations connected with the development of tourist infrastructure. In mountain areas in Poland ski tourism is very popular, so agricultural areas are often transformed into tourist areas. The construction of new ski runs can change the direction and rate of slope development. The main aim of this research was to determine geomorphological and hydrological changes within slopes caused by ski run constructions. The study was conducted in the Remiaszów catchment in the Inner Polish Carpathians (southern Poland). The mean elevation of the catchment is 859 m a.s.l. and the maximum is 946 m a.s.l. The surface area of the catchment is 1.16 km2, of which 16.8% is the area of the two studied ski runs. The studied ski runs were constructed in 2014 and 2015. In order to determine the relief transformations connected with new ski run construction high resolution LIDAR data was analyzed. The general relief changes in the studied catchment were determined on the basis of ALS (Airborne Laser Scanning ) data obtained before (2013) and after (2016) ski run construction. Based on the two sets of ALS data a digital elevation models of differences (DoDs) was created, which made it possible to determine the quantitative relief changes in the entire studied catchment. Additionally, cross and longitudinal profiles were calculated within slopes where new ski runs were built. Detailed data on relief changes within selected test surfaces was obtained based on TLS (Terrestrial Laser Scanning). Hydrological changes within the analyzed catchment were determined based on the convergence and divergence index. The study shows that the construction of the new ski runs caused significant geomorphological and hydrological changes in the entire studied catchment. However, the most important changes were identified within the ski slopes. After the construction of ski runs the entire catchment area lowered about 0.02 m. Hydrological changes in the studied catchment mainly led to the interruption of surface runoff pathways and changes in runoff direction and geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrological%20changes" title="hydrological changes">hydrological changes</a>, <a href="https://publications.waset.org/abstracts/search?q=mountain%20areas" title=" mountain areas"> mountain areas</a>, <a href="https://publications.waset.org/abstracts/search?q=relief%20transformations" title=" relief transformations"> relief transformations</a>, <a href="https://publications.waset.org/abstracts/search?q=ski%20run%20construction" title=" ski run construction"> ski run construction</a> </p> <a href="https://publications.waset.org/abstracts/95843/determining-the-extent-and-direction-of-relief-transformations-caused-by-ski-run-construction-using-lidar-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9728</span> Restoration of a Forest Catchment in Himachal Pradesh, India: An Institutional Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakshi%20Gupta">Sakshi Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavita%20Sardana"> Kavita Sardana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Management of a forest catchment involves diverse dimensions, multiple stakeholders, and conflicting interests, primarily due to the wide variety of valuable ecosystem services offered by it. Often, the coordination among different levels of formal institutions governing the catchment, local communities, as well as societal norms, taboos, customs and practices, happens to be amiss, leading to conflicting policy interventions which prove detrimental for such resources. In the case of Ala Catchment, which is a protected forest located at a distance of 9 km North-East of the town of Dalhousie, within district Chamba of Himachal Pradesh, India, and serves as one of the primary sources of public water supply for the downstream town of Dalhousie and nearby areas, several policy measures have been adopted for the restoration of the forest catchment, as well as for the improvement of public water supply. These catchment forest restoration measures include; the installation of a fence along the perimeter of the catchment, plantation of trees in the empty patches of the forest, construction of check dams, contour trenches, contour bunds, issuance of grazing permits, and installation of check posts to keep track of trespassers. While the measures adopted to address the acute shortage of public water supply in the Dalhousie region include; building and maintenance of large capacity water storage tanks, laying of pipelines, expanding public water distribution infrastructure to include water sources other than Ala Catchment Forest and introducing of five new water supply schemes for drinking water as well as irrigation. However, despite these policy measures, the degradation of the Ala catchment and acute shortage of water supply continue to distress the region. This study attempts to conduct an institutional analysis to assess the impact of policy measures for the restoration of the Ala Catchment in the Chamba district of Himachal Pradesh in India. For this purpose, the theoretical framework of Ostrom’s Institutional Assessment and Development (IAD) Framework was used. Snowball sampling was used to conduct private interviews and focused group discussions. A semi-structured questionnaire was administered to interview a total of 184 respondents across stakeholders from both formal and informal institutions. The central hypothesis of the study is that the interplay of formal and informal institutions facilitates the implementation of policy measures for ameliorating Ala Catchment, in turn improving the livelihood of people depending on this forest catchment for direct and indirect benefits. The findings of the study suggest that leakages in the successful implementation of policy measures occur at several nodes of decision-making, which adversely impact the catchment and the ecosystem services provided by it. Some of the key reasons diagnosed by the immediate analysis include; ad-hoc assignment of property rights, rise in tourist inflow increasing the pressures on water demand, illegal trespassing by local and nomadic pastoral communities for grazing and unlawful extraction of forest products, and rent-seeking by a few influential formal institutions. Consequently, it is indicated that the interplay of formal and informal institutions may be obscuring the consequentiality of the policy measures on the restoration of the catchment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catchment%20forest%20restoration" title="catchment forest restoration">catchment forest restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=institutional%20analysis%20and%20development%20framework" title=" institutional analysis and development framework"> institutional analysis and development framework</a>, <a href="https://publications.waset.org/abstracts/search?q=institutional%20interplay" title=" institutional interplay"> institutional interplay</a>, <a href="https://publications.waset.org/abstracts/search?q=protected%20forest" title=" protected forest"> protected forest</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20supply%20management" title=" water supply management"> water supply management</a> </p> <a href="https://publications.waset.org/abstracts/164220/restoration-of-a-forest-catchment-in-himachal-pradesh-india-an-institutional-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9727</span> Geographic Information Systems and Remotely Sensed Data for the Hydrological Modelling of Mazowe Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ellen%20Nhedzi%20Gozo">Ellen Nhedzi Gozo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unavailability of adequate hydro-meteorological data has always limited the analysis and understanding of hydrological behaviour of several dam catchments including Mazowe Dam in Zimbabwe. The problem of insufficient data for Mazowe Dam catchment analysis was solved by extracting catchment characteristics and aerial hydro-meteorological data from ASTER, LANDSAT, Shuttle Radar Topographic Mission SRTM remote sensing (RS) images using ILWIS, ArcGIS and ERDAS Imagine geographic information systems (GIS) software. Available observed hydrological as well as meteorological data complemented the use of the remotely sensed information. Ground truth land cover was mapped using a Garmin Etrex global positioning system (GPS) system. This information was then used to validate land cover classification detail that was obtained from remote sensing images. A bathymetry survey was conducted using a SONAR system connected to GPS. Hydrological modelling using the HBV model was then performed to simulate the hydrological process of the catchment in an effort to verify the reliability of the derived parameters. The model output shows a high Nash-Sutcliffe Coefficient that is close to 1 indicating that the parameters derived from remote sensing and GIS can be applied with confidence in the analysis of Mazowe Dam catchment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20systems" title="geographic information systems">geographic information systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20modelling" title=" hydrological modelling"> hydrological modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20management" title=" water resources management"> water resources management</a> </p> <a href="https://publications.waset.org/abstracts/46387/geographic-information-systems-and-remotely-sensed-data-for-the-hydrological-modelling-of-mazowe-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9726</span> Groundwater Recharge Estimation of Fetam Catchment in Upper Blue Nile Basin North-Western Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mekonen%20G.">Mekonen G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sileshi%20M."> Sileshi M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Melkamu%20M."> Melkamu M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recharge estimation is important for the assessment and management of groundwater resources effectively. This study applied the soil moisture balance and Baseflow separation methods to estimate groundwater recharge in the Fetam Catchment. It is one of the major catchments understudied from the different catchments in the upper Blue Nile River basin. Surface water has been subjected to high seasonal variation; due to this, groundwater is a primary option for drinking water supply to the community. This research has been conducted to estimate groundwater recharge by using fifteen years of River flow data for the Baseflow separation and ten years of daily meteorological data for the daily soil moisture balance recharge estimating method. The recharge rate by the two methods is 170.5 and 244.9mm/year daily soil moisture and baseflow separation method, respectively, and the average recharge is 207.7mm/year. The average value of annual recharge in the catchment is almost equal to the average recharge in the country, which is 200mm/year. So, each method has its own limitations, and taking the average value is preferable rather than taking a single value. Baseflow provides overestimated result compared to the average of the two, and soil moisture balance is the list estimator. The recharge estimation in the area also should be done by other recharge estimation methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=recharge" title=" recharge"> recharge</a>, <a href="https://publications.waset.org/abstracts/search?q=baseflow%20separation" title=" baseflow separation"> baseflow separation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture%20balance" title=" soil moisture balance"> soil moisture balance</a>, <a href="https://publications.waset.org/abstracts/search?q=Fetam%20catchment" title=" Fetam catchment"> Fetam catchment</a> </p> <a href="https://publications.waset.org/abstracts/162990/groundwater-recharge-estimation-of-fetam-catchment-in-upper-blue-nile-basin-north-western-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9725</span> Design Flood Estimation in Satluj Basin-Challenges for Sunni Dam Hydro Electric Project, Himachal Pradesh-India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Kalia">Navneet Kalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalit%20Mohan%20Verma"> Lalit Mohan Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Guleria"> Vinay Guleria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Design Flood studies are essential for effective planning and functioning of water resource projects. Design flood estimation for Sunni Dam Hydro Electric Project located in State of Himachal Pradesh, India, on the river Satluj, was a big challenge in view of the river flowing in the Himalayan region from Tibet to India, having a large catchment area of varying topography, climate, and vegetation. No Discharge data was available for the part of the river in Tibet, whereas, for India, it was available only at Khab, Rampur, and Luhri. The estimation of Design Flood using standard methods was not possible. This challenge was met using two different approaches for upper (snow-fed) and lower (rainfed) catchment using Flood Frequency Approach and Hydro-metrological approach. i) For catchment up to Khab Gauging site (Sub-Catchment, C1), Flood Frequency approach was used. Around 90% of the catchment area (46300 sqkm) up to Khab is snow-fed which lies above 4200m. In view of the predominant area being snow-fed area, 1 in 10000 years return period flood estimated using Flood Frequency analysis at Khab was considered as Probable Maximum Flood (PMF). The flood peaks were taken from daily observed discharges at Khab, which were increased by 10% to make them instantaneous. Design Flood of 4184 cumec thus obtained was considered as PMF at Khab. ii) For catchment between Khab and Sunni Dam (Sub-Catchment, C2), Hydro-metrological approach was used. This method is based upon the catchment response to the rainfall pattern observed (Probable Maximum Precipitation - PMP) in a particular catchment area. The design flood computation mainly involves the estimation of a design storm hyetograph and derivation of the catchment response function. A unit hydrograph is assumed to represent the response of the entire catchment area to a unit rainfall. The main advantage of the hydro-metrological approach is that it gives a complete flood hydrograph which allows us to make a realistic determination of its moderation effect while passing through a reservoir or a river reach. These studies were carried out to derive PMF for the catchment area between Khab and Sunni Dam site using a 1-day and 2-day PMP values of 232 and 416 cm respectively. The PMF so obtained was 12920.60 cumec. Final Result: As the Catchment area up to Sunni Dam has been divided into 2 sub-catchments, the Flood Hydrograph for the Catchment C1 has been routed through the connecting channel reach (River Satluj) using Muskingum method and accordingly, the Design Flood was computed after adding the routed flood ordinates with flood ordinates of catchment C2. The total Design Flood (i.e. 2-Day PMF) with a peak of 15473 cumec was obtained. Conclusion: Even though, several factors are relevant while deciding the method to be used for design flood estimation, data availability and the purpose of study are the most important factors. Since, generally, we cannot wait for the hydrological data of adequate quality and quantity to be available, flood estimation has to be done using whatever data is available. Depending upon the type of data available for a particular catchment, the method to be used is to be selected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20flood" title="design flood">design flood</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20storm" title=" design storm"> design storm</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20frequency" title=" flood frequency"> flood frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=PMF" title=" PMF"> PMF</a>, <a href="https://publications.waset.org/abstracts/search?q=PMP" title=" PMP"> PMP</a>, <a href="https://publications.waset.org/abstracts/search?q=unit%20hydrograph" title=" unit hydrograph"> unit hydrograph</a> </p> <a href="https://publications.waset.org/abstracts/51791/design-flood-estimation-in-satluj-basin-challenges-for-sunni-dam-hydro-electric-project-himachal-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9724</span> Urban Runoff Modeling of Ungauged Volcanic Catchment in Madinah, Western Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alahmadi">Fahad Alahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhan%20Abd%20Rahman"> Norhan Abd Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abdulrazzak"> Mohammad Abdulrazzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulikifli%20Yusop"> Zulikifli Yusop </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Runoff prediction of ungauged catchment is still a challenging task especially in arid regions with a unique land cover such as volcanic basalt rocks where geological weathering and fractures are highly significant. In this study, Bathan catchment in Madinah western Saudi Arabia was selected for analysis. The aim of this paper is to evaluate different rainfall loss methods; soil conservation Services curve number (SCS-CN), green-ampt and initial-constant rate. Different direct runoff methods were evaluated: soil conservation services dimensionless unit hydrograph (SCS-UH), Snyder unit hydrograph and Clark unit hydrograph. The study showed the superiority of SCS-CN loss method and Clark unit hydrograph method for ungauged catchment where there is no observed runoff data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20runoff%20modelling" title="urban runoff modelling">urban runoff modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=arid%20regions" title=" arid regions"> arid regions</a>, <a href="https://publications.waset.org/abstracts/search?q=ungauged%20catchments" title=" ungauged catchments"> ungauged catchments</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20rocks" title=" volcanic rocks"> volcanic rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=Madinah" title=" Madinah"> Madinah</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/14362/urban-runoff-modeling-of-ungauged-volcanic-catchment-in-madinah-western-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9723</span> The Depth Penetration of Beryllium-7, ⁷BE as a Tracer in the Sembrong Catchment Area Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Sharib">J. Sharib</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20N.%20A.%20Tugi"> D. N. A. Tugi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Ishak"> M. T. Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20A.%20Adziz"> M. I. A. Adziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this research paper conducted was to study the penetration of ⁷Be onto the soil surface for two different seasons in different areas of agricultural activity. The study was conducted during the dry and wet seasons from January to May 2019 in the Sembrong catchment area. The Sembrong Catchment Area is located in the district of Kluang, Johor in the South of Peninsular Malaysia and was selected based on the small size of the catchment and surrounded by various agricultural activities. A total of twenty (20) core soil samples to a depth of 10 cm each were taken using a metal corer made of metal. All these samples were brought to the Radiochemistry and Environment Group (RAS), Nuclear Malaysia, Block 23, Bangi, Malaysia, to enable the preparation, drying and analysis work to be carried out. Furthermore, all samples were oven dried at 45 – 60 ºC so that the dry weight became constant and gently disaggregated. Lastly, dried samples were milled and sieved at 2 mm before being packed into a well-type container and ready for ⁷Be analysis. The result of the analysis shows that the penetration of ⁷Be into the soil surface decreases by an exponential decay. The distribution of profiles to the interior of the soil surface or ho values ranged from 1.56 to 3.62 kg m⁻² and from 2.59 to 4.17 kg m⁻² for both dry and wet seasons. Consequently, the dry season has given a lower ho value when compared to the wet season. In conclusion, ⁷Be is a very suitable tracer to be used in determining the penetration onto the soil surface or ho values for the two different seasons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depth%20penetration" title="depth penetration">depth penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20season" title=" dry season"> dry season</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20season" title=" wet season"> wet season</a>, <a href="https://publications.waset.org/abstracts/search?q=sembrong%20catchment" title=" sembrong catchment"> sembrong catchment</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20type%20container" title=" well type container"> well type container</a> </p> <a href="https://publications.waset.org/abstracts/153606/the-depth-penetration-of-beryllium-7-7be-as-a-tracer-in-the-sembrong-catchment-area-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9722</span> Social Network Analysis, Social Power in Water Co-Management (Case Study: Iran, Shemiranat, Jirood Village)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariba%20Ebrahimi">Fariba Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ghorbani"> Mehdi Ghorbani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Salajegheh"> Ali Salajegheh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comprehensively water management considers economic, environmental, technical and social and also sustainability of water resources for future generations. Grassland management implies cooperative approach and involves all stakeholders and also introduces issues to managers, decision and policy makers. Solving these issues needs integrated and system approach. According to the recognition of actors or key persons in necessary to apply cooperative management of Water. Therefore, based on stakeholder analysis and social network analysis can be used to demonstrate the most effective actors for environmental decisions. In this research, social powers according are specified to social network approach at Water utilizers’ level of Natural in Jirood catchment of Latian basin. In this paper, utilizers of water resources were recognized using field trips and then, trust and collaboration matrix produced using questionnaires. In the next step, degree centrality index were Examined. Finally, geometric position of each actor was illustrated in the network. The results of the research based on centrality index have a key role in recognition of cooperative management of Water in Jirood and also will help managers and planners of water in the case of recognition of social powers in order to organization and implementation of sustainable management of Water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20network%20analysis" title="social network analysis">social network analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20co-management" title=" water co-management"> water co-management</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20power" title=" social power"> social power</a>, <a href="https://publications.waset.org/abstracts/search?q=centrality%20index" title=" centrality index"> centrality index</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20stakeholders%20network" title=" local stakeholders network"> local stakeholders network</a>, <a href="https://publications.waset.org/abstracts/search?q=Jirood%20catchment" title=" Jirood catchment"> Jirood catchment</a> </p> <a href="https://publications.waset.org/abstracts/37464/social-network-analysis-social-power-in-water-co-management-case-study-iran-shemiranat-jirood-village" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9721</span> Analysis of Urban Flooding in Wazirabad Catchment of Kabul City with Help of Geo-SWMM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fazli%20Rahim%20Shinwari">Fazli Rahim Shinwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulrich%20Dittmer"> Ulrich Dittmer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Like many megacities around the world, Kabul is facing severe problems due to the rising frequency of urban flooding. Since 2001, Kabul is experiencing rapid population growth because of the repatriation of refugees and internal migration. Due to unplanned development, green areas inside city and hilly areas within and around the city are converted into new housing towns that had increased runoff. Trenches along the roadside comprise the unplanned drainage network of the city that drains the combined sewer flow. In rainy season overflow occurs, and after streets become dry, the dust particles contaminate the air which is a major cause of air pollution in Kabul city. In this study, a stormwater management model is introduced as a basis for a systematic approach to urban drainage planning in Kabul. For this purpose, Kabul city is delineated into 8 watersheds with the help of one-meter resolution LIDAR DEM. Storm, water management model, is developed for Wazirabad catchment by using available data and literature values. Due to lack of long term metrological data, the model is only run for hourly rainfall data of a rain event that occurred in April 2016. The rain event from 1st to 3rd April with maximum intensity of 3mm/hr caused huge flooding in Wazirabad Catchment of Kabul City. Model-estimated flooding at some points of the catchment as an actual measurement of flooding was not possible; results were compared with information obtained from local people, Kabul Municipality and Capital Region Independent Development Authority. The model helped to identify areas where flooding occurred because of less capacity of drainage system and areas where the main reason for flooding is due to blockage in the drainage canals. The model was used for further analysis to find a sustainable solution to the problem. The option to construct new canals was analyzed, and two new canals were proposed that will reduce the flooding frequency in Wazirabad catchment of Kabul city. By developing the methodology to develop a stormwater management model from digital data and information, the study had fulfilled the primary objective, and similar methodology can be used for other catchments of Kabul city to prepare an emergency and long-term plan for drainage system of Kabul city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20hydrology" title="urban hydrology">urban hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=storm%20water%20management" title=" storm water management"> storm water management</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=SWMM" title=" SWMM"> SWMM</a>, <a href="https://publications.waset.org/abstracts/search?q=GEO-SWMM" title=" GEO-SWMM"> GEO-SWMM</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=identification%20of%20flood%20vulnerable%20areas" title=" identification of flood vulnerable areas"> identification of flood vulnerable areas</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20flooding%20analysis" title=" urban flooding analysis"> urban flooding analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20urban%20drainage" title=" sustainable urban drainage"> sustainable urban drainage</a> </p> <a href="https://publications.waset.org/abstracts/105349/analysis-of-urban-flooding-in-wazirabad-catchment-of-kabul-city-with-help-of-geo-swmm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9720</span> Catchment Nutrient Balancing Approach to Improve River Water Quality: A Case Study at the River Petteril, Cumbria, United Kingdom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nalika%20S.%20Rajapaksha">Nalika S. Rajapaksha</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Airton"> James Airton</a>, <a href="https://publications.waset.org/abstracts/search?q=Amina%20Aboobakar"> Amina Aboobakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nick%20Chappell"> Nick Chappell</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Dyer"> Andy Dyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nutrient pollution and their impact on water quality is a key concern in England. Many water quality issues originate from multiple sources of pollution spread across the catchment. The river water quality in England has improved since 1990s and wastewater effluent discharges into rivers now contain less phosphorus than in the past. However, excess phosphorus is still recognised as the prevailing issue for rivers failing Water Framework Directive (WFD) good ecological status. To achieve WFD Phosphorus objectives, Wastewater Treatment Works (WwTW) permit limits are becoming increasingly stringent. Nevertheless, in some rural catchments, the apportionment of Phosphorus pollution can be greater from agricultural runoff and other sources such as septic tanks. Therefore, the challenge of meeting the requirements of watercourses to deliver WFD objectives often goes beyond water company activities, providing significant opportunities to co-deliver activities in wider catchments to reduce nutrient load at source. The aim of this study was to apply the United Utilities' Catchment Systems Thinking (CaST) strategy and pilot an innovative permitting approach - Catchment Nutrient Balancing (CNB) in a rural catchment in Cumbria (the River Petteril) in collaboration with the regulator and others to achieve WFD objectives and multiple benefits. The study area is mainly agricultural land, predominantly livestock farms. The local ecology is impacted by significant nutrient inputs which require intervention to meet WFD obligations. There are a range of Phosphorus inputs into the river, including discharges from wastewater assets but also significantly from agricultural contributions. Solely focusing on the WwTW discharges would not have resolved the problem hence in order to address this issue effectively, a CNB trial was initiated at a small WwTW, targeting the removal of a total of 150kg of Phosphorus load, of which 13kg were to be reduced through the use of catchment interventions. Various catchment interventions were implemented across selected farms in the upstream of the catchment and also an innovative polonite reactive filter media was implemented at the WwTW as an alternative to traditional Phosphorus treatment methods. During the 3 years of this trial, the impact of the interventions in the catchment and the treatment works were monitored. In 2020 and 2022, it respectively achieved a 69% and 63% reduction in the phosphorus level in the catchment against the initial reduction target of 9%. Phosphorus treatment at the WwTW had a significant impact on overall load reduction. The wider catchment impact, however, was seven times greater than the initial target when wider catchment interventions were also established. While it is unlikely that all the Phosphorus load reduction was delivered exclusively from the interventions implemented though this project, this trial evidenced the enhanced benefits that can be achieved with an integrated approach, that engages all sources of pollution within the catchment - rather than focusing on a one-size-fits-all solution. Primarily, the CNB approach and the act of collaboratively engaging others, particularly the agriculture sector is likely to yield improved farm and land management performance and better compliance, which can lead to improved river quality as well as wider benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=catchment%20nutrient%20balancing" title=" catchment nutrient balancing"> catchment nutrient balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20pollution" title=" phosphorus pollution"> phosphorus pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/176542/catchment-nutrient-balancing-approach-to-improve-river-water-quality-a-case-study-at-the-river-petteril-cumbria-united-kingdom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9719</span> Challenges in Environmental Governance: A Case Study of Risk Perceptions of Environmental Agencies Involved in Flood Management in the Hawkesbury-Nepean Region, Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Masud">S. Masud</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Merson"> J. Merson</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20F.%20Robinson"> D. F. Robinson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The management of environmental resources requires engagement of a range of stakeholders including public/private agencies and different community groups to implement sustainable conservation practices. The challenge which is often ignored is the analysis of agencies involved and their power relations. One of the barriers identified is the difference in risk perceptions among the agencies involved that leads to disjointed efforts of assessing and managing risks. Wood et al 2012, explains that it is important to have an integrated approach to risk management where decision makers address stakeholder perspectives. This is critical for an effective risk management policy. This abstract is part of a PhD research that looks into barriers to flood management under a changing climate and intends to identify bottlenecks that create maladaptation. Experiences are drawn from international practices in the UK and examined in the context of Australia through exploring the flood governance in a highly flood-prone region in Australia: the Hawkesbury Ne-pean catchment as a case study. In this research study several aspects of governance and management are explored: (i) the complexities created by the way different agencies are involved in assessing flood risks (ii) different perceptions on acceptable flood risk level; (iii) perceptions on community engagement in defining acceptable flood risk level; (iv) Views on a holistic flood risk management approach; and, (v) challenges of centralised information system. The study concludes that the complexity of managing a large catchment is exacerbated by the difference in the way professionals perceive the problem. This has led to: (a) different standards for acceptable risks; (b) inconsistent attempt to set-up a regional scale flood management plan beyond the jurisdictional boundaries: (c) absence of a regional scale agency with license to share and update information (d) Lack of forums for dialogue with insurance companies to ensure an integrated approach to flood management. The research takes the Hawkesbury-Nepean catchment as case example and draws from literary evidence from around the world. In addition, conclusions were extrapolated from eighteen semi-structured interviews from agencies involved in flood risk management in the Hawkesbury-Nepean catchment of NSW, Australia. The outcome of this research is to provide a better understanding of complexity in assessing risks against a rapidly changing climate and contribute towards developing effective risk communication strategies thus enabling better management of floods and achieving increased level of support from insurance companies, real-estate agencies, state and regional risk managers and the affected communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20governance" title="adaptive governance">adaptive governance</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20management" title=" flood management"> flood management</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20risk%20communication" title=" flood risk communication"> flood risk communication</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholder%20risk%20perceptions" title=" stakeholder risk perceptions"> stakeholder risk perceptions</a> </p> <a href="https://publications.waset.org/abstracts/30186/challenges-in-environmental-governance-a-case-study-of-risk-perceptions-of-environmental-agencies-involved-in-flood-management-in-the-hawkesbury-nepean-region-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9718</span> Effect of Solid Waste on the Sustainability of the Water Resource Quality in the Gbarain Catchment of the Niger Delta Region of Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davidson%20E.%20Egirani">Davidson E. Egirani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanfe%20R.%20Poyi"> Nanfe R. Poyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Napoleon%20Wessey"> Napoleon Wessey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper would report on the effect of solid waste on water resource quality in the Gbarain catchment of the Niger Delta Region of Nigeria. The Gbarain catchment presently hosts two waste-dump sites located along the flanks of a seasonal flow stream and perennially waterlogged terrain. The anthropogenic activity has significantly affected the quality of surface and groundwater in the Gbarain catchment. These wastes have made the water resource environment toxic leading to the poisoning of aquatic life. The contaminated water resources could lead to serious environmental and human health challenges such as low agricultural yields to loss of vital human organs. The contamination is via geological processes such as seepage and direct infiltration of contaminants into watercourses. The results obtained from field and experimental investigations followed by modeling, and graphical interpretation indicate heavy metal load and fecal pollution in some of the groundwater. The metal load, Escherichia coli, and total coliforms counts exceed the international and regional recommended limits. The contaminate values include Lead (> 0.01 mg/L), Mercury (> 0.006 mg/L), Manganese (> 0.4 mg/L and Escherichia coli (> 0 per 100ml) of the samples. Land use planning, enactment, and implementation of environmental laws are necessary for this region, for effective surface water and groundwater resource management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20life" title="aquatic life">aquatic life</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title=" solid waste"> solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20health" title=" environmental health"> environmental health</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20health" title=" human health"> human health</a>, <a href="https://publications.waset.org/abstracts/search?q=waste-dump%20site" title=" waste-dump site"> waste-dump site</a>, <a href="https://publications.waset.org/abstracts/search?q=water-resource%20environment" title=" water-resource environment"> water-resource environment</a> </p> <a href="https://publications.waset.org/abstracts/99355/effect-of-solid-waste-on-the-sustainability-of-the-water-resource-quality-in-the-gbarain-catchment-of-the-niger-delta-region-of-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9717</span> Estimation of the Parameters of Muskingum Methods for the Prediction of the Flood Depth in the Moudjar River Catchment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fares%20Laouacheria">Fares Laouacheria</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Kechida"> Said Kechida</a>, <a href="https://publications.waset.org/abstracts/search?q=Moncef%20Chabi"> Moncef Chabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the study was based on the hydrological routing modelling for the continuous monitoring of the hydrological situation in the Moudjar river catchment, especially during floods with Hydrologic Engineering Center–Hydrologic Modelling Systems (HEC-HMS). The HEC-GeoHMS was used to transform data from geographic information system (GIS) to HEC-HMS for delineating and modelling the catchment river in order to estimate the runoff volume, which is used as inputs to the hydrological routing model. Two hydrological routing models were used, namely Muskingum and Muskingum routing models, for conducting this study. In this study, a comparison between the parameters of the Muskingum and Muskingum-Cunge routing models in HEC-HMS was used for modelling flood routing in the Moudjar river catchment and determining the relationship between these parameters and the physical characteristics of the river. The results indicate that the effects of input parameters such as the weighting factor "X" and travel time "K" on the output results are more significant, where the Muskingum routing model was more sensitive to input parameters than the Muskingum-Cunge routing model. This study can contribute to understand and improve the knowledge of the mechanisms of river floods, especially in ungauged river catchments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEC-HMS" title="HEC-HMS">HEC-HMS</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20modelling" title=" hydrological modelling"> hydrological modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Muskingum%20routing%20model" title=" Muskingum routing model"> Muskingum routing model</a>, <a href="https://publications.waset.org/abstracts/search?q=Muskingum-Cunge%20routing%20model" title=" Muskingum-Cunge routing model"> Muskingum-Cunge routing model</a> </p> <a href="https://publications.waset.org/abstracts/93598/estimation-of-the-parameters-of-muskingum-methods-for-the-prediction-of-the-flood-depth-in-the-moudjar-river-catchment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9716</span> Mathematical Model for Flow and Sediment Yield Estimation on Tel River Basin, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Kumar%20Biswal">Santosh Kumar Biswal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramakar%20Jha"> Ramakar Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil erosion is a slow and continuous process and one of the prominent problems across the world leading to many serious problems like loss of soil fertility, loss of soil structure, poor internal drainage, sedimentation deposits etc. In this paper remote sensing and GIS based methods have been applied for the determination of soil erosion and sediment yield. Tel River basin which is the second largest tributary of the river Mahanadi laying between latitude 19° 15' 32.4"N and, 20° 45' 0"N and longitude 82° 3' 36"E and 84° 18' 18"E chosen for the present study. The catchment was discretized into approximately homogeneous sub-areas (grid cells) to overcome the catchment heterogeneity. The gross soil erosion in each cell was computed using Universal Soil Loss Equation (USLE). Various parameters for USLE was determined as a function of land topography, soil texture, land use/land cover, rainfall, erosivity and crop management and practice in the watershed. The concept of transport limited accumulation was formulated and the transport capacity maps were generated. The gross soil erosion was routed to the catchment outlet. This study can help in recognizing critical erosion prone areas of the study basin so that suitable control measures can be implemented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Universal%20Soil%20Loss%20Equation%20%28USLE%29" title="Universal Soil Loss Equation (USLE)">Universal Soil Loss Equation (USLE)</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/21566/mathematical-model-for-flow-and-sediment-yield-estimation-on-tel-river-basin-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9715</span> The Monitoring of Surface Water Bodies from Tisa Catchment Area, Maramureş County in 2014</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriela-Andreea%20Despescu">Gabriela-Andreea Despescu</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C4%83d%C4%83lina%20Mavrodin"> Mădălina Mavrodin</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheorghe%20L%C4%83z%C4%83roiu"> Gheorghe Lăzăroiu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nacu"> S. Nacu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20B%C4%83stina%C5%9F"> R. Băstinaş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Monitoring of Surface Water Bodies (Rivers) from Tisa Catchment Area - Maramureş County in 2014. This study is focused on the monitoring and evaluation of river’s water bodies from Maramureş County, using the methodology associated with the EU Water Framework Directive 60/2000. Thus, in the first part are defined the theoretical terms of monitoring activities related to the water bodies’ quality and the specific features of those we can find in the studied area. There are presented the water bodies’ features, quality indicators and the monitoring frequencies for the rivers situated in the Tisa catchment area. The results have shown the actual ecological and chemical state of those water bodies, in relation with the standard values mentioned through the Water Framework Directive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monitoring" title="monitoring">monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=surveillance" title=" surveillance"> surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20bodies" title=" water bodies"> water bodies</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/50140/the-monitoring-of-surface-water-bodies-from-tisa-catchment-area-maramures-county-in-2014" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9714</span> Assessment of Mountain Hydrological Processes in the Gumera Catchment, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tewele%20Gebretsadkan%20Haile">Tewele Gebretsadkan Haile</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mountain terrains are essential to regional water resources by regulating hydrological processes that use downstream water supplies. Nevertheless, limited observed earth data in complex topography poses challenges for water resources regulation. That's why satellite product is implemented in this study. This study evaluates hydrological processes on mountain catchment of Gumera, Ethiopia using HBV-light model with satellite precipitation products (CHIRPS) for the temporal scale of 1996 to 2010 and area coverage of 1289 km2. The catchment is characterized by cultivation dominant and elevation ranges from 1788 to 3606 m above sea level. Three meteorological stations have been used for downscaling of the satellite data and one stream flow for calibration and validation. The result shows total annual water balance showed that precipitation 1410 mm, simulated 828 mm surface runoff compared to 1042 mm observed stream flow with actual evapotranspiration estimate 586mm and 1495mm potential evapotranspiration. The temperature range is 9°C in winter to 21°C. The catchment contributes 74% as quack runoff to the total runoff and 26% as lower groundwater storage, which sustains stream flow during low periods. The model uncertainty was measured using different metrics such as coefficient of determination, model efficiency, efficiency for log(Q) and flow weighted efficiency 0.76, 0.74, 0.66 and 0.70 respectively. The research result highlights that HBV model captures the mountain hydrology simulation and the result indicates quack runoff due to the traditional agricultural system, slope factor of the topography and adaptation measure for water resource management is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mountain%20hydrology" title="mountain hydrology">mountain hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=CHIRPS" title=" CHIRPS"> CHIRPS</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumera" title=" Gumera"> Gumera</a>, <a href="https://publications.waset.org/abstracts/search?q=HBV%20model" title=" HBV model"> HBV model</a> </p> <a href="https://publications.waset.org/abstracts/193453/assessment-of-mountain-hydrological-processes-in-the-gumera-catchment-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9713</span> Quantification of the Gumera Catchment's Mountain Hydrological Processes in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tewele%20Gebretsadkan%20Haile">Tewele Gebretsadkan Haile</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mountain terrains are essential to regional water resources by regulating hydrological processes that use downstream water supplies. Nevertheless, limited observed earth data in complex topography poses challenges for water resources regulation. That's why satellite product is implemented in this study. This study evaluates hydrological processes on mountain catchment of Gumera, Ethiopia using HBV-light model with satellite precipitation products (CHIRPS) for the temporal scale of 1996 to 2010 and area coverage of 1289 km2. The catchment is characterized by cultivation dominant and elevation ranges from 1788 to 3606 m above sea level. Three meteorological stations have been used for downscaling of the satellite data and one stream flow for calibration and validation. The result shows total annual water balance showed that precipitation 1410 mm, simulated 828 mm surface runoff compared to 1042 mm observed stream flow with actual evapotranspiration estimate 586mm and 1495mm potential evapotranspiration. The temperature range is 9°C in winter to 21°C. The catchment contributes 74% as quack runoff to the total runoff and 26% as lower groundwater storage, which sustains stream flow during low periods. The model uncertainty was measured using different metrics such as coefficient of determination, model efficiency, efficiency for log(Q) and flow weighted efficiency 0.76, 0.74, 0.66 and 0.70 respectively. The research result highlights that HBV model captures the mountain hydrology simulation and the result indicates quack runoff due to the traditional agricultural system, slope factor of the topography and adaptation measure for water resource management is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mountain%20hydrology" title="mountain hydrology">mountain hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=CHIRPS" title=" CHIRPS"> CHIRPS</a>, <a href="https://publications.waset.org/abstracts/search?q=HBV%20model" title=" HBV model"> HBV model</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumera" title=" Gumera"> Gumera</a> </p> <a href="https://publications.waset.org/abstracts/194007/quantification-of-the-gumera-catchments-mountain-hydrological-processes-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9712</span> The South African Polycentric Water Resource Governance-Management Nexus: Parlaying an Institutional Agent and Structured Social Engagement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Boonzaaier">J. H. Boonzaaier</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Brent"> A. C. Brent</a> </p> <p class="card-text"><strong>Abstract:</strong></p> South Africa, a water scarce country, experiences the phenomenon that its life supporting natural water resources is seriously threatened by the users that are totally dependent on it. South Africa is globally applauded to have of the best and most progressive water laws and policies. There are however growing concerns regarding natural water resource quality deterioration and a critical void in the management of natural resources and compliance to policies due to increasing institutional uncertainties and failures. These are in accordance with concerns of many South African researchers and practitioners that call for a change in paradigm from talk to practice and a more constructive, practical approach to governance challenges in the management of water resources. A qualitative theory-building case study through longitudinal action research was conducted from 2014 to 2017. The research assessed whether a strategic positioned institutional agent can be parlayed to facilitate and execute WRM on catchment level by engaging multiple stakeholders in a polycentric setting. Through a critical realist approach a distinction was made between <em>ex ante</em> self-deterministic human behaviour in the realist realm, and <em>ex post </em>governance-management in the constructivist realm. A congruence analysis, including Toulmin’s method of argumentation analysis, was utilised. The study evaluated the unique case of a self-steering local water management institution, the Impala Water Users Association (WUA) in the Pongola River catchment in the northern part of the KwaZulu-Natal Province of South Africa. Exploiting prevailing water resource threats, it expanded its ancillary functions from 20,000 to 300,000 ha. Embarking on WRM activities, it addressed natural water system quality assessments, social awareness, knowledge support, and threats, such as: soil erosion, waste and effluent into water systems, coal mining, and water security dimensions; through structured engagement with 21 different catchment stakeholders. By implementing a proposed polycentric governance-management model on a catchment scale, the WUA achieved to fill the void. It developed a foundation and capacity to protect the resilience of the natural environment that is critical for freshwater resources to ensure long-term water security of the Pongola River basin. Further work is recommended on appropriate statutory delegations, mechanisms of sustainable funding, sufficient penetration of knowledge to local levels to catalyse behaviour change, incentivised support from professionals, back-to-back expansion of WUAs to alleviate scale and cost burdens, and the creation of catchment data monitoring and compilation centres. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=institutional%20agent" title="institutional agent">institutional agent</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20governance" title=" water governance"> water governance</a>, <a href="https://publications.waset.org/abstracts/search?q=polycentric%20water%20resource%20management" title=" polycentric water resource management"> polycentric water resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resource%20management" title=" water resource management"> water resource management</a> </p> <a href="https://publications.waset.org/abstracts/90363/the-south-african-polycentric-water-resource-governance-management-nexus-parlaying-an-institutional-agent-and-structured-social-engagement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9711</span> The Impact of Land Cover Change on Stream Discharges and Water Resources in Luvuvhu River Catchment, Vhembe District, Limpopo Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Kundu">P. M. Kundu</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20R.%20Singo"> L. R. Singo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Odiyo"> J. O. Odiyo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Luvuvhu River catchment in South Africa experiences floods resulting from heavy rainfall of intensities exceeding 15 mm per hour associated with the Inter-tropical Convergence Zone (ITCZ). The generation of runoff is triggered by the rainfall intensity and soil moisture status. In this study, remote sensing and GIS techniques were used to analyze the hydrologic response to land cover changes. Runoff was calculated as a product of the net precipitation and a curve number coefficient. It was then routed using the Muskingum-Cunge method using a diffusive wave transfer model that enabled the calculation of response functions between start and end point. Flood frequency analysis was determined using theoretical probability distributions. Spatial data on land cover was obtained from multi-temporal Landsat images while data on rainfall, soil type, runoff and stream discharges was obtained by direct measurements in the field and from the Department of Water. A digital elevation model was generated from contour maps available at http://www.ngi.gov.za. The results showed that land cover changes had impacted negatively to the hydrology of the catchment. Peak discharges in the whole catchment were noted to have increased by at least 17% over the period while flood volumes were noted to have increased by at least 11% over the same period. The flood time to peak indicated a decreasing trend, in the range of 0.5 to 1 hour within the years. The synergism between remotely sensed digital data and GIS for land surface analysis and modeling was realized, and it was therefore concluded that hydrologic modeling has potential for determining the influence of changes in land cover on the hydrologic response of the catchment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catchment" title="catchment">catchment</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model" title=" digital elevation model"> digital elevation model</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20model" title=" hydrological model"> hydrological model</a>, <a href="https://publications.waset.org/abstracts/search?q=routing" title=" routing"> routing</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a> </p> <a href="https://publications.waset.org/abstracts/23083/the-impact-of-land-cover-change-on-stream-discharges-and-water-resources-in-luvuvhu-river-catchment-vhembe-district-limpopo-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9710</span> Smart Laboratory for Clean Rivers in India - An Indo-Danish Collaboration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhilesh%20Singh">Nikhilesh Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shishir%20Gaur"> Shishir Gaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Anitha%20K.%20Sharma"> Anitha K. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change and anthropogenic stress have severely affected ecosystems all over the globe. Indian rivers are under immense pressure, facing challenges like pollution, encroachment, extreme fluctuation in the flow regime, local ignorance and lack of coordination between stakeholders. To counter all these issues a holistic river rejuvenation plan is needed that tests, innovates and implements sustainable solutions in the river space for sustainable river management. Smart Laboratory for Clean Rivers (SLCR) an Indo-Danish collaboration project, provides a living lab setup that brings all the stakeholders (government agencies, academic and industrial partners and locals) together to engage, learn, co-creating and experiment for a clean and sustainable river that last for ages. Just like every mega project requires piloting, SLCR has opted for a small catchment of the Varuna River, located in the Middle Ganga Basin in India. Considering the integrated approach of river rejuvenation, SLCR embraces various techniques and upgrades for rejuvenation. Likely, maintaining flow in the channel in the lean period, Managed Aquifer Recharge (MAR) is a proven technology. In SLCR, Floa-TEM high-resolution lithological data is used in MAR models to have better decision-making for MAR structures nearby of the river to enhance the river aquifer exchanges. Furthermore, the concerns of quality in the river are a big issue. A city like Varanasi which is located in the last stretch of the river, generates almost 260 MLD of domestic waste in the catchment. The existing STP system is working at full efficiency. Instead of installing a new STP for the future, SLCR is upgrading those STPs with an IoT-based system that optimizes according to the nutrient load and energy consumption. SLCR also advocate nature-based solutions like a reed bed for the drains having less flow. In search of micropollutants, SLCR uses fingerprint analysis involves employing advanced techniques like chromatography and mass spectrometry to create unique chemical profiles. However, rejuvenation attempts cannot be possible without involving the entire catchment. A holistic water management plan that includes storm management, water harvesting structure to efficiently manage the flow of water in the catchment and installation of several buffer zones to restrict pollutants entering into the river. Similarly, carbon (emission and sequestration) is also an important parameter for the catchment. By adopting eco-friendly practices, a ripple effect positively influences the catchment's water dynamics and aids in the revival of river systems. SLCR has adopted 4 villages to make them carbon-neutral and water-positive. Moreover, for the 24×7 monitoring of the river and the catchment, robust IoT devices are going to be installed to observe, river and groundwater quality, groundwater level, river discharge and carbon emission in the catchment and ultimately provide fuel for the data analytics. In its completion, SLCR will provide a river restoration manual, which will strategise the detailed plan and way of implementation for stakeholders. Lastly, the entire process is planned in such a way that will be managed by local administrations and stakeholders equipped with capacity-building activity. This holistic approach makes SLCR unique in the field of river rejuvenation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20management" title="sustainable management">sustainable management</a>, <a href="https://publications.waset.org/abstracts/search?q=holistic%20approach" title=" holistic approach"> holistic approach</a>, <a href="https://publications.waset.org/abstracts/search?q=living%20lab" title=" living lab"> living lab</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20river%20management" title=" integrated river management"> integrated river management</a> </p> <a href="https://publications.waset.org/abstracts/182283/smart-laboratory-for-clean-rivers-in-india-an-indo-danish-collaboration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=catchment%20management&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=catchment%20management&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=catchment%20management&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=catchment%20management&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=catchment%20management&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=catchment%20management&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=catchment%20management&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=catchment%20management&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=catchment%20management&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=catchment%20management&page=324">324</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=catchment%20management&page=325">325</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=catchment%20management&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>