CINXE.COM

Search results for: Ionic liquids structure

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Ionic liquids structure</title> <meta name="description" content="Search results for: Ionic liquids structure"> <meta name="keywords" content="Ionic liquids structure"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Ionic liquids structure" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Ionic liquids structure"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8187</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Ionic liquids structure</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7917</span> Structural, Vibrational, Magnetic, and Electronic Properties of La₂MMnO₆ Double Perovskites with M = Ni, Co, and Zn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Ouachtouk">Hamza Ouachtouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Amine%20Harbi"> Amine Harbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Azerblou"> Said Azerblou</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Naimi"> Youssef Naimi</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Mostafa%20Tace"> El Mostafa Tace</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study delves into the structural, vibrational, magnetic, and electronic properties of La₂MMnO₆ double perovskites, where M denotes Ni, Co, and Zn. Recognized for their versatile ionic configurations within the A and B sub-lattices, double perovskite oxides have attracted considerable interest due to their extensive array of physical properties, which include multiferroic behavior, colossal magnetoresistance, and ferroelectric/piezoelectric functionalities. These materials are pivotal for energy-related technologies like solid oxide fuel cells and water-splitting catalysis, attributed to their superior oxygen ion transport and storage capabilities. This research places particular emphasis on La₂NiMnO₆ and La₂CoMnO₆, known for their distinct magnetic, electric, and multiferroic properties, and extends the investigation to La₂ZnMnO₆, synthesized via high-temperature solid-state chemistry. This addition aims to ascertain the impact of zinc substitution on these properties. Structural analysis through X-ray diffraction has confirmed a monoclinic structure within the P2₁/n space group. Comprehensive vibrational studies utilizing infrared and Raman spectroscopy, alongside additional XRD assessments, provide a detailed examination of the dynamic and electronic behaviors of these compounds. The results underscore the significant role of chemical composition in modulating their functional properties. Comparatively, this study highlights that zinc substitution notably alters the electronic and magnetic responses, which could enhance the applicability of these materials in advanced energy technologies. This expanded analysis not only reinforces our understanding of La₂MMnO₆'s physical characteristics but also highlights its potential applications in the next generation of energy solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20perovskites" title="double perovskites">double perovskites</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrational%20spectroscopy" title=" vibrational spectroscopy"> vibrational spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20properties" title=" electronic properties"> electronic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20solid-state%20chemistry" title=" high-temperature solid-state chemistry"> high-temperature solid-state chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=La%E2%82%82MMnO%E2%82%86" title=" La₂MMnO₆"> La₂MMnO₆</a>, <a href="https://publications.waset.org/abstracts/search?q=monoclinic%20structure" title=" monoclinic structure"> monoclinic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20diffraction" title=" x-ray diffraction"> x-ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/186358/structural-vibrational-magnetic-and-electronic-properties-of-la2mmno6-double-perovskites-with-m-ni-co-and-zn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7916</span> Seismic Fragility of Weir Structure Considering Aging Degradation of Concrete Material </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=HoYoung%20Son">HoYoung Son</a>, <a href="https://publications.waset.org/abstracts/search?q=DongHoon%20Shin"> DongHoon Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=WooYoung%20Jung"> WooYoung Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presented the seismic fragility framework of concrete weir structure subjected to strong seismic ground motions and in particular, concrete aging condition of the weir structure was taken into account in this study. In order to understand the influence of concrete aging on the weir structure, by using probabilistic risk assessment, the analytical seismic fragility of the weir structure was derived for pre- and post-deterioration of concrete. The performance of concrete weir structure after five years was assumed for the concrete aging or deterioration, and according to after five years&rsquo; condition, the elastic modulus was simply reduced about one&ndash;tenth compared with initial condition of weir structures. A 2D nonlinear finite element analysis was performed considering the deterioration of concrete in weir structures using ABAQUS platform, a commercial structural analysis program. Simplified concrete degradation was resulted in the increase of almost 45% of the probability of failure at Limit State 3, in comparison to initial construction stage, by analyzing the seismic fragility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weir" title="weir">weir</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility" title=" fragility"> fragility</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a> </p> <a href="https://publications.waset.org/abstracts/72469/seismic-fragility-of-weir-structure-considering-aging-degradation-of-concrete-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7915</span> Seismic Behavior and Loss Assessment of High–Rise Buildings with Light Gauge Steel–Concrete Hybrid Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%20Lu">Bing Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuang%20Li"> Shuang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyuan%20Zhou"> Hongyuan Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steel–concrete hybrid structure has been extensively employed in high–rise buildings and super high–rise buildings. The light gauge steel–concrete hybrid structure, including light gauge steel structure and concrete hybrid structure, is a new–type steel–concrete hybrid structure, which possesses some advantages of light gauge steel structure and concrete hybrid structure. The seismic behavior and loss assessment of three high–rise buildings with three different concrete hybrid structures were investigated through finite element software, respectively. The three concrete hybrid structures are reinforced concrete column–steel beam (RC‒S) hybrid structure, concrete–filled steel tube column–steel beam (CFST‒S) hybrid structure, and tubed concrete column–steel beam (TC‒S) hybrid structure. The nonlinear time-history analysis of three high–rise buildings under 80 earthquakes was carried out. After simulation, it indicated that the seismic performances of three high–rise buildings were superior. Under extremely rare earthquakes, the maximum inter–storey drifts of three high–rise buildings are significantly lower than 1/50. The inter–storey drift and floor acceleration of high–rise building with CFST‒S hybrid structure were bigger than those of high–rise buildings with RC‒S hybrid structure, and smaller than those of high–rise building with TC‒S hybrid structure. Then, based on the time–history analysis results, the post-earthquake repair cost ratio and repair time of three high–rise buildings were predicted through an economic performance analysis method proposed in FEMA‒P58 report. Under frequent earthquakes, basic earthquakes and rare earthquakes, the repair cost ratio and repair time of three high-rise buildings were less than 5% and 15 days, respectively. Under extremely rare earthquakes, the repair cost ratio and repair time of high-rise buildings with TC‒S hybrid structure were the most among three high rise buildings. Due to the advantages of CFST-S hybrid structure, it could be extensively employed in high-rise buildings subjected to earthquake excitations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20behavior" title="seismic behavior">seismic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20assessment" title=" loss assessment"> loss assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20gauge%20steel%E2%80%93concrete%20hybrid%20structure" title=" light gauge steel–concrete hybrid structure"> light gauge steel–concrete hybrid structure</a>, <a href="https://publications.waset.org/abstracts/search?q=high%E2%80%93rise%20building" title=" high–rise building"> high–rise building</a>, <a href="https://publications.waset.org/abstracts/search?q=time%E2%80%93history%20analysis" title=" time–history analysis"> time–history analysis</a> </p> <a href="https://publications.waset.org/abstracts/133887/seismic-behavior-and-loss-assessment-of-high-rise-buildings-with-light-gauge-steel-concrete-hybrid-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7914</span> Testing Method of Soil Failure Pattern of Sand Type as an Effort to Minimize the Impact of the Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luthfi%20Assholam%20Solamat">Luthfi Assholam Solamat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays many people do not know the soil failure pattern as an important part in planning the under structure caused by the loading occurs. This is because the soil is located under the foundation, so it cannot be seen directly. Based on this study, the idea occurs to do a study for testing the soil failure pattern, especially the type of sand soil under the foundation. The necessity of doing this to the design of building structures on the land which is the initial part of the foundation structure that met with waves/vibrations during an earthquake. If the underground structure is not strong it is feared the building thereon more vulnerable to the risk of building damage. This research focuses on the search of soil failure pattern, which the most applicable in the field with the loading periodic re-testing of a particular time with the help of the integrated video visual observations performed. The results could be useful for planning under the structure in an effort to try the upper structure is minimal risk of the earthquake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20failure%20pattern" title="soil failure pattern">soil failure pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=under%20structure" title=" under structure"> under structure</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20soil%20testing%20method" title=" sand soil testing method"> sand soil testing method</a> </p> <a href="https://publications.waset.org/abstracts/50722/testing-method-of-soil-failure-pattern-of-sand-type-as-an-effort-to-minimize-the-impact-of-the-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7913</span> Behavior of Reinforced Concrete Structures Subjected to Multiple Floor Fire Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Narayana">Suresh Narayana</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20Akkannavar"> Chaitanya Akkannavar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assessment of behavior of reinforced concrete structures subjected to fire load, and its behavior for the multi-floor fire have been presented in this paper. This research is the part of the study to evaluate the performance of ten storied RC structure when it is subjected to fire loads at multiple floors and to evaluate the post-fire effects on structure such as deflection and stresses occurring due to combined effect of static and thermal loading. Thermal loading has been assigned to different floor levels to estimate the critical floors that initiate the collapse of the structure. The structure has been modeled and analyzed in Solid Works and commercially available Finite Element Software ABAQUS. Results are analyzed, and particular design solution has been suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collapse%20mechanism" title="collapse mechanism">collapse mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20analysis" title=" fire analysis"> fire analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20structure" title=" RC structure"> RC structure</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20vs%20temperature" title=" stress vs temperature"> stress vs temperature</a> </p> <a href="https://publications.waset.org/abstracts/51575/behavior-of-reinforced-concrete-structures-subjected-to-multiple-floor-fire-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7912</span> An Intensional Conceptualization Model for Ontology-Based Semantic Integration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fateh%20Adhnouss">Fateh Adhnouss</a>, <a href="https://publications.waset.org/abstracts/search?q=Husam%20El-Asfour"> Husam El-Asfour</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20McIsaac"> Kenneth McIsaac</a>, <a href="https://publications.waset.org/abstracts/search?q=AbdulMutalib%20Wahaishi"> AbdulMutalib Wahaishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Idris%20El-Feghia"> Idris El-Feghia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conceptualization is an essential component of semantic ontology-based approaches. There have been several approaches that rely on extensional structure and extensional reduction structure in order to construct conceptualization. In this paper, several limitations are highlighted relating to their applicability to the construction of conceptualizations in dynamic and open environments. These limitations arise from a number of strong assumptions that do not apply to such environments. An intensional structure is strongly argued to be a natural and adequate modeling approach. This paper presents a conceptualization structure based on property relations and propositions theory (PRP) to the model ontology that is suitable for open environments. The model extends the First-Order Logic (FOL) notation and defines the formal representation that enables interoperability between software systems and supports semantic integration for software systems in open, dynamic environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conceptualization" title="conceptualization">conceptualization</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=extensional%20structure" title=" extensional structure"> extensional structure</a>, <a href="https://publications.waset.org/abstracts/search?q=intensional%20structure" title=" intensional structure"> intensional structure</a> </p> <a href="https://publications.waset.org/abstracts/151398/an-intensional-conceptualization-model-for-ontology-based-semantic-integration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7911</span> CO2 Capture in Porous Silica Assisted by Lithium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucero%20Gonzalez">Lucero Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvador%20Alfaro"> Salvador Alfaro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide (CO2) and methane (CH4) are considered as the compounds with higher abundance among the greenhouse gases (CO2, NOx, SOx, CxHx, etc.), due to its higher concentration, this two gases have a greater impact in the environment pollution and provokes global warming. So, recovery, disposal and subsequent reuse, are of great interest, especially from the ecological and health perspective. By one hand, porous inorganic materials are good candidates to capture gases, because these type of materials are higher stability from the point view of thermal, chemical and mechanical under adsorption gas processes. By another hand, during the design and the synthetic preparation of the porous materials is possible add other intrinsic properties (physicochemical and structural) by adding chemical compounds as dopants or using structured directed agents or surfactants to improve the porous structure, the above features allow to have alternative materials for separation, capture and storage of greenhouse gases. In this work, ordered mesoporous materials base silica were prepared using Surfynol as surfactant. The surfactant micelles are commonly used as self-assembly templates for the development of new structure porous silica’s, adding a variety of textures and structures. By another hand, the Surfynol is a commercial surfactant, is non-ionic, for that is necessary determine its critical micelles concentration (cmc) by the pyrene I1/I3 ratio method, before to prepare silica particles. One time known the CMC, a precursor gel was prepared via sol-gel process at room temperature using TEOS as silica precursor, NH4OH as catalyst, Surfynol as template and H2O as solvent. Then, the gel precursor was treatment hydrothermally in a Teflon-lined stainless steel autoclave with a volume of 100 mL and kept at 100 ºC for 24 h under static conditions in a convection oven. After that, the porous silica particles obtained were impregnated with lithium to improve the CO2 adsorption capacity. Then the silica particles were characterized physicochemical, morphology and structurally, by XRD, FTIR, BET and SEM techniques. The thermal stability and the CO2 adsorption capacity was evaluated by thermogravimetric analysis (TGA). According the results, we found that the Surfynol is a good candidate to prepare silica particles with an ordered structure. Also the TGA analysis shown that the particles has a good thermal stability in the range of 250 °C and 800 °C. The best materials had, the capacity to adsorbing 70 and 90 mg per gram of silica particles and its CO2 adsorption capacity depends on the way to thermal pretreatment of the porous silica before of the adsorption experiments and of the concentration of surfactant used during the synthesis of silica particles. Acknowledgments: This work was supported by SIP-IPN through project SIP-20161862. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20adsorption" title="CO2 adsorption">CO2 adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20as%20dopant" title=" lithium as dopant"> lithium as dopant</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20silica" title=" porous silica"> porous silica</a>, <a href="https://publications.waset.org/abstracts/search?q=surfynol%20as%20surfactant" title=" surfynol as surfactant"> surfynol as surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetric%20analysis" title=" thermogravimetric analysis"> thermogravimetric analysis</a> </p> <a href="https://publications.waset.org/abstracts/58168/co2-capture-in-porous-silica-assisted-by-lithium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7910</span> Sentence Structure for Free Word Order Languages in Context with Anaphora Resolution: A Case Study of Hindi </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pardeep%20Singh">Pardeep Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamlesh%20Dutta"> Kamlesh Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many languages have fixed sentence structure and others are free word order. The accuracy of anaphora resolution of syntax based algorithm depends on structure of the sentence. So, it is important to analyze the structure of any language before implementing these algorithms. In this study, we analyzed the sentence structure exploiting the case marker in Hindi as well as some special tag for subject and object. We also investigated the word order for Hindi. Word order typology refers to the study of the order of the syntactic constituents of a language. We analyzed 165 news items of Ranchi Express from EMILEE corpus of plain text. It consisted of 1745 sentences. Eight file of dialogue based from the same corpus has been analyzed which will have 1521 sentences. The percentages of subject object verb structure (SOV) and object subject verb (OSV) are 66.90 and 33.10, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaphora%20resolution" title="anaphora resolution">anaphora resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20word%20order%20languages" title=" free word order languages"> free word order languages</a>, <a href="https://publications.waset.org/abstracts/search?q=SOV" title=" SOV"> SOV</a>, <a href="https://publications.waset.org/abstracts/search?q=OSV" title=" OSV"> OSV</a> </p> <a href="https://publications.waset.org/abstracts/9937/sentence-structure-for-free-word-order-languages-in-context-with-anaphora-resolution-a-case-study-of-hindi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7909</span> Improving the Performance of DBE Structure in Pressure Flushing Using Submerged Vanes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sepideh%20Beiramipour">Sepideh Beiramipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Haghjouei"> Hadi Haghjouei</a>, <a href="https://publications.waset.org/abstracts/search?q=Kourosh%20Qaderi"> Kourosh Qaderi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Rahimpour"> Majid Rahimpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20M.%20Ahmadi"> Mohammad M. Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameh%20A.%20Kantoush"> Sameh A. Kantoush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reservoir sedimentation is one of the main challenges by which the reservoir behind the dam is filled with sediments transferred through the river flow. Pressure flushing method is an effective way to drain the deposited sediments of the reservoirs through the bottom outlet. So far, several structural methods have been proposed to increase the efficiency of pressure flushing. The aim of this study is to increase the performance of Dendritic Bottomless Extended (DBE) structure on the efficiency of pressurized sediment flushing using submerged vanes. For this purpose, the physical model of the dam reservoir with dimensions of 7.5 m in length, 3.5 m in width, and 1.8 m in height in the hydraulic and water structures research laboratory of Shahid Bahonar University of Kerman was used. In order to investigate the influence of submerged vanes on the performance of DBE structure in pressure flushing, the best arrangement and geometric parameters of the vanes were selected and combined with the DBE structure. The results showed that the submerged vanes significantly increased the performance of the DBE structure so that the volume of the sediment flushing cone with the combination of two structures increased by 3.7 times compared to the DBE structure test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dendritic%20bottomless%20extended%20structure" title="dendritic bottomless extended structure">dendritic bottomless extended structure</a>, <a href="https://publications.waset.org/abstracts/search?q=flushing%20efficiency" title=" flushing efficiency"> flushing efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20flushing" title=" sediment flushing"> sediment flushing</a> </p> <a href="https://publications.waset.org/abstracts/141430/improving-the-performance-of-dbe-structure-in-pressure-flushing-using-submerged-vanes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7908</span> Estimation of Transition and Emission Probabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aakansha%20Gupta">Aakansha Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Vadnere"> Neha Vadnere</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapasvi%20Soni"> Tapasvi Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Anbarsi"> M. Anbarsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20parameters" title="model parameters">model parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=expectation%20maximization%20algorithm" title=" expectation maximization algorithm"> expectation maximization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20secondary%20structure%20prediction" title=" protein secondary structure prediction"> protein secondary structure prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a> </p> <a href="https://publications.waset.org/abstracts/24070/estimation-of-transition-and-emission-probabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7907</span> Lipid-Chitosan Hybrid Nanoparticles for Controlled Delivery of Cisplatin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Muzamil%20Khan">Muhammad Muzamil Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Asadullah%20Madni"> Asadullah Madni</a>, <a href="https://publications.waset.org/abstracts/search?q=Nina%20Filipczek"> Nina Filipczek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiayi%20Pan"> Jiayi Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nayab%20Tahir"> Nayab Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Shah"> Hassan Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Torchilin"> Vladimir Torchilin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipid-polymer hybrid nanoparticles (LPHNP) are delivery systems for controlled drug delivery at tumor sites. The superior biocompatible properties of lipid and structural advantages of polymer can be obtained via this system for controlled drug delivery. In the present study, cisplatin-loaded lipid-chitosan hybrid nanoparticles were formulated by the single step ionic gelation method based on ionic interaction of positively charged chitosan and negatively charged lipid. Formulations with various chitosan to lipid ratio were investigated to obtain the optimal particle size, encapsulation efficiency, and controlled release pattern. Transmission electron microscope and dynamic light scattering analysis demonstrated a size range of 181-245 nm and a zeta potential range of 20-30 mV. Compatibility among the components and the stability of formulation were demonstrated with FTIR analysis and thermal studies, respectively. The therapeutic efficacy and cellular interaction of cisplatin-loaded LPHNP were investigated using in vitro cell-based assays in A2780/ADR ovarian carcinoma cell line. Additionally, the cisplatin loaded LPHNP exhibited a low toxicity profile in rats. The in-vivo pharmacokinetics study also proved a controlled delivery of cisplatin with enhanced mean residual time and half-life. Our studies suggested that the cisplatin-loaded LPHNP being a promising platform for controlled delivery of cisplatin in cancer therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cisplatin" title="cisplatin">cisplatin</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid-polymer%20hybrid%20nanoparticle" title=" lipid-polymer hybrid nanoparticle"> lipid-polymer hybrid nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20cell%20line%20study" title=" in vitro cell line study"> in vitro cell line study</a> </p> <a href="https://publications.waset.org/abstracts/108442/lipid-chitosan-hybrid-nanoparticles-for-controlled-delivery-of-cisplatin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7906</span> Combination of Topology and Rough Set for Analysis of Power System Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamel%20El-Sayed">M. Kamel El-Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we have linked the concept of rough set and topological structure to the creation of a new topological structure that assists in the analysis of the information systems of some electrical engineering issues. We used non-specific information whose boundaries do not have an empty set in the top topological structure is rough set. It is characterized by the fact that it does not contain a large number of elements and facilitates the establishment of rules. We used this structure in reducing the specifications of electrical information systems. We have provided a detailed example of this method illustrating the steps used. This method opens the door to obtaining multiple topologies, each of which uses one of the non-defined groups (rough set) in the overall information system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20engineering" title="electrical engineering">electrical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20system" title=" information system"> information system</a>, <a href="https://publications.waset.org/abstracts/search?q=rough%20set" title=" rough set"> rough set</a>, <a href="https://publications.waset.org/abstracts/search?q=rough%20topology" title=" rough topology"> rough topology</a>, <a href="https://publications.waset.org/abstracts/search?q=topology" title=" topology"> topology</a> </p> <a href="https://publications.waset.org/abstracts/88084/combination-of-topology-and-rough-set-for-analysis-of-power-system-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7905</span> Sustainable Rehabilation of Ancient Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%20Narayan%20Khare">Ram Narayan Khare</a>, <a href="https://publications.waset.org/abstracts/search?q=Aradhna%20Shrivastava"> Aradhna Shrivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Adhyatma%20Khare"> Adhyatma Khare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the damage that has been occurred in the Ancient structures due to various factors such as rainfall, climate, insects, lifespan and also most important lack of technologies in the era of its construction. The structure is of lime surkhi masonry and is made a century ago. It has crossed its durability but is of historical importance for the area, that is the reason why it needs utmost importance for its Rehabilitation. The paper deals with the damage that has been occurred in the structure and how to repair and renovate the same keeping in mind that the material deviation could not take place because it shows how in ancient era structures are made of. The building has used lime surkhi mortar along with wood apple as fibrous material for providing adhesiveness in masonry binding. The paper helps in sustainable retrofitting of the structure without changing the integrity of the structure. This helps in maintaining the originality of structure in present era and also help in providing information to the upcoming generation how ancient civil construction has been carried out that withstand even more than a century. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lime%20Surkhi%20masonry" title="Lime Surkhi masonry">Lime Surkhi masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20building" title=" historical building"> historical building</a> </p> <a href="https://publications.waset.org/abstracts/188980/sustainable-rehabilation-of-ancient-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7904</span> Urban and Rural Population Pyramids in Georgia Since 1950’s</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shorena%20Tsiklauri">Shorena Tsiklauri</a>, <a href="https://publications.waset.org/abstracts/search?q=Avtandil%20Sulaberidze"> Avtandil Sulaberidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Nino%20Gomelauri"> Nino Gomelauri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the years followed independence, an economic crisis and some conflicts led to the displacement of many people inside Georgia. The growing poverty, unemployment, low income and its unequal distribution limited access to basic social service have had a clear direct impact on Georgian population dynamics and its age-sex structure. Factors influencing the changing population age structure and urbanization include mortality, fertility, migration and expansion of urban. In this paper presents the main factors of changing the distribution by urban and rural areas. How different are the urban and rural age and sex structures? Does Georgia have the same age-sex structure among their urban and rural populations since 1950s? <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age%20and%20sex%20structure%20of%20population" title="age and sex structure of population">age and sex structure of population</a>, <a href="https://publications.waset.org/abstracts/search?q=georgia" title=" georgia"> georgia</a>, <a href="https://publications.waset.org/abstracts/search?q=migration" title=" migration"> migration</a>, <a href="https://publications.waset.org/abstracts/search?q=urban-rural%20population" title=" urban-rural population"> urban-rural population</a> </p> <a href="https://publications.waset.org/abstracts/26885/urban-and-rural-population-pyramids-in-georgia-since-1950s" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7903</span> 2D Structured Non-Cyclic Fuzzy Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Pathinathan">T. Pathinathan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Peter"> M. Peter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuzzy graphs incorporate concepts from graph theory with fuzzy principles. In this paper, we make a study on the properties of fuzzy graphs which are non-cyclic and are of two-dimensional in structure. In particular, this paper presents 2D structure or the structure of double layer for a non-cyclic fuzzy graph whose underlying crisp graph is non-cyclic. In any graph structure, introducing 2D structure may lead to an inherent cycle. We propose relevant conditions for 2D structured non-cyclic fuzzy graphs. These conditions are extended even to fuzzy graphs of the 3D structure. General theoretical properties that are studied for any fuzzy graph are verified to 2D structured or double layered fuzzy graphs. Concepts like Order, Degree, Strong and Size for a fuzzy graph are studied for 2D structured or double layered non-cyclic fuzzy graphs. Using different types of fuzzy graphs, the proposed concepts relating to 2D structured fuzzy graphs are verified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20layered%20fuzzy%20graph" title="double layered fuzzy graph">double layered fuzzy graph</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20layered%20non%E2%80%93cyclic%20fuzzy%20graph" title=" double layered non–cyclic fuzzy graph"> double layered non–cyclic fuzzy graph</a>, <a href="https://publications.waset.org/abstracts/search?q=order" title=" order"> order</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20and%20size" title=" degree and size"> degree and size</a> </p> <a href="https://publications.waset.org/abstracts/80562/2d-structured-non-cyclic-fuzzy-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7902</span> Application of Strength Criteria for Cellular Pressure Vessels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antanas%20%C5%BDiliukas">Antanas Žiliukas</a>, <a href="https://publications.waset.org/abstracts/search?q=Mindaugas%20Kukis"> Mindaugas Kukis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work deals with cellular pressure vessels subjected to internal pressure. Their cellular insert can be used for placing liquids or gases, which is necessary to carry out technological processes, and the vessel itself has a good bearing capacity. Numerical calculations of the three core structures, which measure the influence of the inner cylinder thickness on maximum bearing capacity are presented. The calculations are compared using strength criteria and they show the different strength safety level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure" title="pressure">pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20criterion" title=" strength criterion"> strength criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20plate" title=" sandwich plate"> sandwich plate</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20vessel" title=" cellular vessel"> cellular vessel</a> </p> <a href="https://publications.waset.org/abstracts/6763/application-of-strength-criteria-for-cellular-pressure-vessels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7901</span> One-off Separation of Multiple Types of Oil-in-Water Emulsions with Surface-Engineered Graphene-Based Multilevel Structure Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Longxiang">Han Longxiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the process of treating industrial oil wastewater with complex components, the traditional treatment methods (flotation, coagulation, microwave heating, etc.) often produce high operating costs, secondary pollution, and other problems. In order to solve these problems, the materials with high flux and stability applied to surfactant-stabilized emulsions separation have gained huge attention in the treatment of oily wastewater. Nevertheless, four stable oil-in-water emulsions can be formed due to different surfactants (surfactant-free, anionic surfactant, cationic surfactant, and non-ionic surfactant), and the previous advanced materials can only separate one or several of them, cannot effectively separate in one step. Herein, a facile synthesis method of graphene-based multilevel filter materials (GMFM) can efficiently separate the oil-in-water emulsions stabilized with different surfactants only through its gravity. The prepared materials with high stability of 20 cycles show a high flux of ~ 5000 L m-2 h-1 with a high separation efficiency of > 99.9 %. GMFM can effectively separate the emulsion stabilized by mixed surfactants and oily wastewater from factories. The results indicate that the GMFM has a wide range of applications in oil-in-water emulsions separation in industry and environmental science. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emulsion" title="emulsion">emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=one-step" title=" one-step"> one-step</a> </p> <a href="https://publications.waset.org/abstracts/163175/one-off-separation-of-multiple-types-of-oil-in-water-emulsions-with-surface-engineered-graphene-based-multilevel-structure-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7900</span> Ice Load Measurements on Known Structures Using Image Processing Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azam%20Fazelpour">Azam Fazelpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20R.%20Dehghani"> Saeed R. Dehghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vlastimil%20Masek"> Vlastimil Masek</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20S.%20Muzychka"> Yuri S. Muzychka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camera%20calibration" title="camera calibration">camera calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=ice%20detection" title=" ice detection"> ice detection</a>, <a href="https://publications.waset.org/abstracts/search?q=ice%20load%20measurements" title=" ice load measurements"> ice load measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/74768/ice-load-measurements-on-known-structures-using-image-processing-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7899</span> One-off Separation of Multiple Types of Oil-In-Water Emulsions With Surface-Engineered Graphene-Based Multilevel Structure Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Longxiang">Han Longxiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the process of treating industrial oily wastewater with complex components, the traditional treatment methods (flotation, coagulation, microwave heating, etc.) often produce high operating costs, secondary pollution, and other problems. In order to solve these problems, the materials with high flux and stability applied to surfactant-stabilized emulsions separation have gained huge attention in the treatment of oily wastewater. Nevertheless, four stable oil-in-water emulsions can be formed due to different surfactants (surfactant-free, anionic surfactant, cationic surfactant, and non-ionic surfactant), and the previous advanced materials can only separate one or several of them, cannot effectively separate in one step. Herein, a facile synthesis method of graphene-based multilevel filter materials (GMFM) which can efficiently separate the oil-in-water emulsions stabilized with different surfactants only through its gravity. The prepared materials with high stability of 20 cycles show a high flux of ~ 5000 L m-2 h-1 with a high separation efficiency of > 99.9 %. GMFM can effectively separate the emulsion stabilized by mixed surfactants and oily wastewater from factories. The results indicate that the GMFM have a wide range of applications in oil-in-water emulsions separation in industry and environmental science. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emulsion" title="emulsion">emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=one-step" title=" one-step"> one-step</a> </p> <a href="https://publications.waset.org/abstracts/163186/one-off-separation-of-multiple-types-of-oil-in-water-emulsions-with-surface-engineered-graphene-based-multilevel-structure-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7898</span> The Market Structure Simulation of Heterogenous Firms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arunas%20Burinskas">Arunas Burinskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuela%20Tvaronavi%C4%8Dien%C4%97"> Manuela Tvaronavičienė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although the new trade theories, unlike the theories of an industrial organisation, see the structure of the market and competition between enterprises through their heterogeneity according to various parameters, they do not pay any particular attention to the analysis of the market structure and its development. In this article, although we relied mainly on models developed by the scholars of new trade theory, we proposed a different approach. In our simulation model, we model market demand according to normal distribution function, while on the supply side (as it is in the new trade theory models), productivity is modeled with the Pareto distribution function. The results of the simulation show that companies with higher productivity (lower marginal costs) do not pass on all the benefits of such economies to buyers. However, even with higher marginal costs, firms can choose to offer higher value-added goods to stay in the market. In general, the structure of the market is formed quickly enough and depends on the skills available to firms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=market" title="market">market</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogenous%20firms" title=" heterogenous firms"> heterogenous firms</a> </p> <a href="https://publications.waset.org/abstracts/144488/the-market-structure-simulation-of-heterogenous-firms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7897</span> Moderating Effects of Family Structure on College Achievement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Knudsen">Jennifer Knudsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study observes the moderating effects of family structure on College Achievement across cohorts. Over the past half-century, social stigmas surrounding non-traditional families have shifted, as they make up an increasing proportion of American families. Using the General Social Survey, this study employs a varying coefficient model to test if family structure moderates the effects of other background variables on respondents’ educational attainment. Initial analysis suggests that living in alternative family arrangements has an increasingly negative effect on college achievement, whereas living in an intact family with a mother and father has a positive effect on college achievement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=education" title="education">education</a>, <a href="https://publications.waset.org/abstracts/search?q=family" title=" family"> family</a>, <a href="https://publications.waset.org/abstracts/search?q=college" title=" college"> college</a>, <a href="https://publications.waset.org/abstracts/search?q=family%20structure" title=" family structure"> family structure</a> </p> <a href="https://publications.waset.org/abstracts/148449/moderating-effects-of-family-structure-on-college-achievement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7896</span> Statistical Mechanical Approach in Modeling of Hybrid Solar Cells for Photovoltaic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Kobryn">A. E. Kobryn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present both descriptive and predictive modeling of structural properties of blends of PCBM or organic-inorganic hybrid perovskites of the type CH3NH3PbX3 (X=Cl, Br, I) with P3HT, P3BT or squaraine SQ2 dye sensitizer, including adsorption on TiO2 clusters having rutile (110) surface. In our study, we use a methodology that allows computing the microscopic structure of blends on the nanometer scale and getting insight on miscibility of its components at various thermodynamic conditions. The methodology is based on the integral equation theory of molecular liquids in the reference interaction site representation/model (RISM) and uses the universal force field. Input parameters for RISM, such as optimized molecular geometries and charge distribution of interaction sites, are derived with the use of the density functional theory methods. To compare the diffusivity of the PCBM in binary blends with P3HT and P3BT, respectively, the study is complemented with MD simulation. A very good agreement with experiment and the reports of alternative modeling or simulation is observed for PCBM in P3HT system. The performance of P3BT with perovskites, however, seems as expected. The calculated nanoscale morphologies of blends of P3HT, P3BT or SQ2 with perovskites, including adsorption on TiO2, are all new and serve as an instrument in rational design of organic/hybrid photovoltaics. They are used in collaboration with experts who actually make prototypes or devices for practical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiscale%20theory%20and%20modeling" title="multiscale theory and modeling">multiscale theory and modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoscale%20morphology" title=" nanoscale morphology"> nanoscale morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=organic-inorganic%20halide%20perovskites" title=" organic-inorganic halide perovskites"> organic-inorganic halide perovskites</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20dimensional%20distribution" title=" three dimensional distribution"> three dimensional distribution</a> </p> <a href="https://publications.waset.org/abstracts/81016/statistical-mechanical-approach-in-modeling-of-hybrid-solar-cells-for-photovoltaic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7895</span> Split-Share Structure Reform and Statutory Audit Fees in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsiao-Wen%20Wang">Hsiao-Wen Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The split-share structure reform in China represents one of the most significant milestones in the evolution of the capital market. With the goal of converting non-tradable shares into tradable shares, the reform laid the foundation and supported the development of full-scale privatization. This study explores China’s split-share structure reform and its impact on statutory audit fees. This study finds that auditors earn a significant statutory audit fee premium after the split-share structure reform. The Big 4 auditors who provide better audit quality receive higher statutory audit fee premium than non-Big 4 auditors after the share reform, which is attributable to their brand reputation, rather than the relative market dominance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chinese%20split-share%20structure%20reform" title="chinese split-share structure reform">chinese split-share structure reform</a>, <a href="https://publications.waset.org/abstracts/search?q=statutory%20audit%20fees" title=" statutory audit fees"> statutory audit fees</a>, <a href="https://publications.waset.org/abstracts/search?q=big-4%20auditors" title=" big-4 auditors"> big-4 auditors</a>, <a href="https://publications.waset.org/abstracts/search?q=corporate%20governance" title=" corporate governance"> corporate governance</a> </p> <a href="https://publications.waset.org/abstracts/7767/split-share-structure-reform-and-statutory-audit-fees-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7894</span> Non-Linear Numerical Modeling of the Interaction of Twin Tunnels-Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bayoumi">A. Bayoumi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdallah"> M. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hage%20Chehade"> F. Hage Chehade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structures on the ground surface bear impact from the tunneling-induced settlement, especially when twin tunnels are constructed. The tunneling influence on the structure is considered as a critical issue based on the construction procedure and relative position of tunnels. Lebanon is suffering from a traffic phenomenon caused by the lack of transportation systems. After several traffic counts and geotechnical investigations in Beirut city, efforts aim for the construction of tunneling systems. In this paper, we present a non-linear numerical modeling of the effect of the twin tunnels constructions on the structures located at soil surface for a particular site in Beirut. A parametric study, which concerns the geometric configuration of tunnels, the distance between their centers, the construction order, and the position of the structure, is performed. The tunnel-soil-structure interaction is analyzed by using the non-linear finite element modeling software PLAXIS 2D. The results of the surface settlement and the bending moment of the structure reveal significant influence when the structure is moved away, especially in vertical aligned tunnels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20moment" title="bending moment">bending moment</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title=" elastic modulus"> elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20twin%20tunnels" title=" horizontal twin tunnels"> horizontal twin tunnels</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20location" title=" structure location"> structure location</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20settlement" title=" surface settlement"> surface settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20twin%20tunnels" title=" vertical twin tunnels"> vertical twin tunnels</a> </p> <a href="https://publications.waset.org/abstracts/53113/non-linear-numerical-modeling-of-the-interaction-of-twin-tunnels-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7893</span> Micro-Droplet Formation in a Microchannel under the Effect of an Electric Field: Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sercan%20Altundemir">Sercan Altundemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinar%20Eribol"> Pinar Eribol</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kerem%20Uguz"> A. Kerem Uguz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microfluidics systems allow many-large scale laboratory applications to be miniaturized on a single device in order to reduce cost and advance fluid control. Moreover, such systems enable to generate and control droplets which have a significant role on improved analysis for many chemical and biological applications. For example, they can be employed as the model for cells in microfluidic systems. In this work, the interfacial instability of two immiscible Newtonian liquids flowing in a microchannel is investigated. When two immiscible liquids are in laminar regime, a flat interface is formed between them. If a direct current electric field is applied, the interface may deform, i.e. may become unstable and it may be ruptured and form micro-droplets. First, the effect of thickness ratio, total flow rate, viscosity ratio of the silicone oil and ethylene glycol liquid couple on the critical voltage at which the interface starts to destabilize is investigated. Then the droplet sizes are measured under the effect of these parameters at various voltages. Moreover, the effect of total flow rate on the time elapsed for the interface to be ruptured to form droplets by hitting the wall of the channel is analyzed. It is observed that an increase in the viscosity or the thickness ratio of the silicone oil to the ethylene glycol has a stabilizing effect, i.e. a higher voltage is needed while the total flow rate has no effect on it. However, it is observed that an increase in the total flow rate results in shortening of the elapsed time for the interface to hit the wall. Moreover, the droplet size decreases down to 0.1 μL with an increase in the applied voltage, the viscosity ratio or the total flow rate or a decrease in the thickness ratio. In addition to these observations, two empirical models for determining the critical electric number, i.e., the dimensionless voltage and the droplet size and another model which is a combination of both models, for determining the droplet size at the critical voltage are established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplet%20formation" title="droplet formation">droplet formation</a>, <a href="https://publications.waset.org/abstracts/search?q=electrohydrodynamics" title=" electrohydrodynamics"> electrohydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a> </p> <a href="https://publications.waset.org/abstracts/89536/micro-droplet-formation-in-a-microchannel-under-the-effect-of-an-electric-field-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7892</span> Rising Velocity of a Non-Newtonian Liquids in Capillary Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Sabbagh">Reza Sabbagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Hasanovich"> Linda Hasanovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksey%20Baldygin"> Aleksey Baldygin</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20S.%20Nobes"> David S. Nobes</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20R.%20Waghmare"> Prashant R. Waghmare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The capillary filling process is significantly important to study for numerous applications such as the under filling of the material in electronic packaging or liquid hydrocarbons seepage through porous structure. The approximation of the fluid being Newtonian, i.e., linear relationship between the shear stress and deformation rate cannot be justified in cases where the extent of non-Newtonian behavior of liquid governs the surface driven transport, i.e., capillarity action. In this study, the capillary action of a non-Newtonian fluid is not only analyzed, but also the modified generalized theoretical analysis for the capillary transport is proposed. The commonly observed three regimes: surface forces dominant (travelling air-liquid interface), developing flow (viscous force dominant), and developed regimes (interfacial, inertial and viscous forces are comparable) are identified. The velocity field along each regime is quantified with Newtonian and non-Newtonian fluid in square shaped vertically oriented channel. Theoretical understanding of capillary imbibition process, particularly in the case of Newtonian fluids, is relied on the simplified assumption of a fully developed velocity profile which has been revisited for developing a modified theory for the capillary transport of non-Newtonian fluids. Furthermore, the development of the velocity profile from the entrance regime to the developed regime, for different power law fluids, is also investigated theoretically and experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capillary" title="capillary">capillary</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20flow" title=" non-Newtonian flow"> non-Newtonian flow</a>, <a href="https://publications.waset.org/abstracts/search?q=shadowgraphy" title=" shadowgraphy"> shadowgraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=rising%20velocity" title=" rising velocity"> rising velocity</a> </p> <a href="https://publications.waset.org/abstracts/59636/rising-velocity-of-a-non-newtonian-liquids-in-capillary-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7891</span> Translating Discourse Organization Structures Used in Chinese and English Scientific and Engineering Writings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming%20Qian">Ming Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Davis%20Qian"> Davis Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study compares the different organization structures of Chinese and English writing discourses in the engineering and scientific fields, and recommends approaches for translators to convert the organization structures properly. Based on existing intercultural communication literature, English authors tend to deductively give their main points at the beginning, following with detailed explanations or arguments afterwards while the Chinese authors tend to place their main points inductively towards the end. In this study, this hypothesis has been verified by the authors’ Chinese-to-English translation experiences in the fields of science and engineering (e.g. journal papers, conference papers and monographs). The basic methodology used is the comparison of writings by Chinese authors with writings of the same or similar topic written by English authors in terms of organization structures. Translators should be aware of this nuance, so that instead of limiting themselves to translating the contents of an article in its original structure, they can convert the structures to fill the cross-culture gap. This approach can be controversial because if a translator changes the structure organization of a paragraph (e.g. from a 'because-therefore' inductive structure by a Chinese author to a deductive structure in English), this change of sentence order could be questioned by the original authors. For this reason, translators need to properly inform the original authors on the intercultural differences of English and Chinese writing (e.g. inductive structure versus deductive structure), and work with the original authors to maintain accuracy while converting from one structure used in a source language to another structure in the target language. The authors have incorporated these methodologies into their translation practices and work closely with the authors on the inter-cultural organization structure mapping. Translating discourse organization structure should become a standard practice in the translation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discourse%20structure" title="discourse structure">discourse structure</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20structure" title=" information structure"> information structure</a>, <a href="https://publications.waset.org/abstracts/search?q=intercultural%20communication" title=" intercultural communication"> intercultural communication</a>, <a href="https://publications.waset.org/abstracts/search?q=translation%20practice" title=" translation practice"> translation practice</a> </p> <a href="https://publications.waset.org/abstracts/65483/translating-discourse-organization-structures-used-in-chinese-and-english-scientific-and-engineering-writings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7890</span> Ownership Structure and Portfolio Performance: Pre- and Post-Crisis Evidence from the Amman Stock Exchange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Q.%20M.%20Momani">Mohammad Q. M. Momani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to examine whether the value relevance of ownership structure changed as the Amman Stock Exchange market conditions changed. Using data from 2005 to 2014, the study finds that the performance of portfolios that contain firms with concentrated ownership structure declines significantly during the post-crisis period. These portfolios exhibit poor performance relative to portfolios that contain firms with dispersed ownership structure during the post-crisis period. The results argue that uninspired performance of the Amman Stock Exchange during the post-crisis period, increased the incentives for controlling shareholders to expropriate. Investors recognized these incentives and discounted firms that were more likely to expropriate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=value%20relevance" title="value relevance">value relevance</a>, <a href="https://publications.waset.org/abstracts/search?q=ownership%20structure" title=" ownership structure"> ownership structure</a>, <a href="https://publications.waset.org/abstracts/search?q=portfolio%20performance" title=" portfolio performance"> portfolio performance</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan"> Jordan</a>, <a href="https://publications.waset.org/abstracts/search?q=ASE" title=" ASE"> ASE</a> </p> <a href="https://publications.waset.org/abstracts/105233/ownership-structure-and-portfolio-performance-pre-and-post-crisis-evidence-from-the-amman-stock-exchange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7889</span> Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Tejasri">K. Tejasri</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Suvarna%20Vani"> K. Suvarna Vani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Prathyusha"> S. Prathyusha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ramya"> S. Ramya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proteins" title="proteins">proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20structure%20elements" title=" secondary structure elements"> secondary structure elements</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-sheets" title=" beta-sheets"> beta-sheets</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-strands" title=" beta-strands"> beta-strands</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha-helices" title=" alpha-helices"> alpha-helices</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20algorithms" title=" machine learning algorithms"> machine learning algorithms</a> </p> <a href="https://publications.waset.org/abstracts/158938/prediction-of-all-beta-protein-secondary-structure-using-garnier-osguthorpe-robson-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7888</span> Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Su%20Park">Jun Su Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Kwan%20Oh"> Byung Kwan Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Woo%20Hwang"> Jin Woo Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousok%20Kim"> Yousok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo%20Seon%20Park"> Hyo Seon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20sensing" title=" optimal sensing"> optimal sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimizing%20sensor%20placements" title=" optimizing sensor placements"> optimizing sensor placements</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frame%20structure" title=" steel frame structure"> steel frame structure</a> </p> <a href="https://publications.waset.org/abstracts/25426/optimal-sensing-technique-for-estimating-stress-distribution-of-2-d-steel-frame-structure-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ionic%20liquids%20structure&amp;page=9" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ionic%20liquids%20structure&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ionic%20liquids%20structure&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ionic%20liquids%20structure&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ionic%20liquids%20structure&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ionic%20liquids%20structure&amp;page=9">9</a></li> <li class="page-item active"><span class="page-link">10</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ionic%20liquids%20structure&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ionic%20liquids%20structure&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ionic%20liquids%20structure&amp;page=13">13</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ionic%20liquids%20structure&amp;page=272">272</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ionic%20liquids%20structure&amp;page=273">273</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ionic%20liquids%20structure&amp;page=11" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10