CINXE.COM

What is Data Analytics? - Big Data Analytics Explained - AWS

<!doctype html> <html class="no-js aws-lng-en_US aws-with-target" lang="en-US" data-static-assets="https://a0.awsstatic.com" data-js-version="1.0.597" data-css-version="1.0.508"> <head> <meta http-equiv="Content-Security-Policy" content="default-src 'self' data: https://a0.awsstatic.com https://prod.us-east-1.ui.gcr-chat.marketing.aws.dev; base-uri 'none'; connect-src 'self' https://*.analytics.console.aws.a2z.com https://*.harmony.a2z.com https://*.marketing.aws.dev https://*.panorama.console.api.aws https://*.prod.chc-features.uxplatform.aws.dev https://*.us-east-1.prod.mrc-sunrise.marketing.aws.dev https://112-tzm-766.mktoresp.com https://112-tzm-766.mktoutil.com https://a0.awsstatic.com https://a0.p.awsstatic.com https://a1.awsstatic.com https://amazonwebservices.d2.sc.omtrdc.net https://amazonwebservicesinc.tt.omtrdc.net https://api-v2.builderprofile.aws.dev https://api.regional-table.region-services.aws.a2z.com https://api.us-west-2.prod.pricing.aws.a2z.com https://auth.aws.amazon.com https://aws.amazon.com https://aws.amazon.com/p/sf/ https://aws.demdex.net https://b0.p.awsstatic.com https://c0.b0.p.awsstatic.com https://calculator.aws https://chatbot-api.us-east-1.prod.mrc-sunrise.marketing.aws.dev https://chatbot-stream-api.us-east-1.prod.mrc-sunrise.marketing.aws.dev https://cm.everesttech.net https://csml-plc-prod.us-west-2.api.aws/plc/csml/logging https://d0.awsstatic.com https://d1.awsstatic.com https://d1fgizr415o1r6.cloudfront.net https://d2c.aws.amazon.com https://d3borx6sfvnesb.cloudfront.net https://dftu77xade0tc.cloudfront.net https://dpm.demdex.net https://edge.adobedc.net https://fls-na.amazon.com https://i18n-string.us-west-2.prod.pricing.aws.a2z.com https://iad.staging.prod.tv.awsstatic.com https://infra-api.us-east-1.prod.mrc-sunrise.marketing.aws.dev https://ingestion.aperture-public-api.feedback.console.aws.dev https://livechat-api.us-east-1.prod.mrc-sunrise.marketing.aws.dev https://pricing-table.us-west-2.prod.site.p.awsstatic.com https://prod-us-west-2.csp-report.marketing.aws.dev https://prod.log.shortbread.aws.dev https://prod.tools.shortbread.aws.dev https://prod.us-east-1.api.gcr-chat.marketing.aws.dev https://prod.us-east-1.rest-bot.gcr-chat.marketing.aws.dev https://prod.us-east-1.ui.gcr-chat.marketing.aws.dev https://prod2.clientlogger.cn-northwest-1.marketplace.aws.a2z.org.cn https://public.lotus.awt.aws.a2z.com https://s0.awsstatic.com https://s3.amazonaws.com/aws-messaging-pricing-information/ https://s3.amazonaws.com/public-pricing-agc/ https://spot-bid-advisor.s3.amazonaws.com https://t0.m.awsstatic.com https://target.aws.amazon.com https://token.us-west-2.prod.site.p.awsstatic.com https://tv.awsstatic.com https://view-stage.us-west-2.prod.pricing.aws.a2z.com https://view-staging.us-east-1.prod.plc1-prod.pricing.aws.a2z.com https://vs.aws.amazon.com https://webchat-aws.clink.cn https://wrp.aws.amazon.com https://www.youtube-nocookie.com https://xcxrmtkxx5.execute-api.us-east-1.amazonaws.com/prod/ wss://*.transport.connect.us-east-1.amazonaws.com wss://prod.us-east-1.wss-bot.gcr-chat.marketing.aws.dev wss://webchat-aws.clink.cn; font-src 'self' data: https://a0.awsstatic.com https://f0.awsstatic.com https://fonts.gstatic.com https://prod.us-east-1.ui.gcr-chat.marketing.aws.dev; frame-src 'self' https://*.widget.console.aws.amazon.com https://aws.demdex.net https://c0.b0.p.awsstatic.com https://calculator.aws https://conversational-experience-worker.widget.console.aws.amazon.com/lotus/isolatedIFrame https://dpm.demdex.net https://pricing-table.us-west-2.prod.site.p.awsstatic.com https://token.us-west-2.prod.site.p.awsstatic.com https://www.youtube-nocookie.com; img-src 'self' blob: data: https://*.vidyard.com https://*.ytimg.com https://a0.awsstatic.com https://amazonwebservices.d2.sc.omtrdc.net https://avatars.builderprofile.aws.dev https://aws-clink2-resource.s3.cn-northwest-1.amazonaws.com.cn https://aws-quickstart.s3.amazonaws.com https://aws.amazon.com https://aws.demdex.net https://awsmedia.s3.amazonaws.com https://chat.us-east-1.prod.mrc-sunrise.marketing.aws.dev https://cm.everesttech.net https://d1.awsstatic.com https://d1d1et6laiqoh9.cloudfront.net https://d2908q01vomqb2.cloudfront.net https://d2c.aws.amazon.com https://d2cpw7vd6a2efr.cloudfront.net https://d36cz9buwru1tt.cloudfront.net https://d7umqicpi7263.cloudfront.net https://docs.aws.amazon.com https://dpm.demdex.net https://fls-na.amazon.com https://google.ca https://google.co.in https://google.co.jp https://google.co.th https://google.co.uk https://google.com https://google.com.ar https://google.com.au https://google.com.br https://google.com.hk https://google.com.mx https://google.com.tr https://google.com.tw https://google.de https://google.es https://google.fr https://google.it https://google.nl https://google.pl https://google.ru https://iad.staging.prod.tv.awsstatic.com https://img.youtube.com https://marketingplatform.google.com https://media.amazonwebservices.com https://p.adsymptotic.com https://pages.awscloud.com https://prod.us-east-1.ui.gcr-chat.marketing.aws.dev https://s3.amazonaws.com/aws-quickstart/ https://ssl-static.libsyn.com https://static-cdn.jtvnw.net https://tv.awsstatic.com https://webchat-aws.clink.cn https://www.google.com https://www.linkedin.com https://yt3.ggpht.com; media-src 'self' blob: https://*.libsyn.com https://a0.awsstatic.com https://anchor.fm https://awsmedia.s3.amazonaws.com https://awspodcastsiberiaent.s3.eu-west-3.amazonaws.com https://chat.us-east-1.prod.mrc-sunrise.marketing.aws.dev https://chtbl.com https://content.production.cdn.art19.com https://d1.awsstatic.com https://d1hemuljm71t2j.cloudfront.net https://d1le29qyzha1u4.cloudfront.net https://d1oqpvwii7b6rh.cloudfront.net https://d1vo51ubqkiilx.cloudfront.net https://d1yyh5dhdgifnx.cloudfront.net https://d2908q01vomqb2.cloudfront.net https://d2a6igt6jhaluh.cloudfront.net https://d3ctxlq1ktw2nl.cloudfront.net https://d3h2ozso0dirfl.cloudfront.net https://dgen8gghn3u86.cloudfront.net https://dk261l6wntthl.cloudfront.net https://download.stormacq.com/aws/podcast/ https://dts.podtrac.com https://iad.staging.prod.tv.awsstatic.com https://media.amazonwebservices.com https://mktg-apac.s3-ap-southeast-1.amazonaws.com https://rss.art19.com https://s3-ap-northeast-1.amazonaws.com/aws-china-media/ https://tv.awsstatic.com https://www.buzzsprout.com; object-src 'none'; script-src 'sha256-PbryX5lQWCdSR48qR4OIWj6swmfTYkeWtICo76LVZTI=' 'nonce-moIGMhaUxWZ4JHUGMXht5JjBCsR7nx1hLl4HqaVeqXM=' 'self' blob: https://*.cdn.console.awsstatic.com/ https://*.cdn.uis.awsstatic.com/ https://*.us-east-1.prod.mrc-sunrise.marketing.aws.dev https://a.b.cdn.console.awsstatic.com https://a0.awsstatic.com https://amazonwebservicesinc.tt.omtrdc.net https://cdn.builderprofile.aws.dev https://d2c.aws.amazon.com https://googleads.g.doubleclick.net https://loader.us-east-1.prod.mrc-sunrise.marketing.aws.dev https://prod.us-east-1.ui.gcr-chat.marketing.aws.dev https://spot-price.s3.amazonaws.com https://static.doubleclick.net https://t0.m.awsstatic.com https://token.us-west-2.prod.site.p.awsstatic.com https://website.spot.ec2.aws.a2z.com https://www.google.com https://www.gstatic.com https://www.youtube.com/iframe_api https://www.youtube.com/s/player/; style-src 'self' 'unsafe-inline' https://a0.awsstatic.com https://prod.us-east-1.ui.gcr-chat.marketing.aws.dev https://t0.m.awsstatic.com https://token.us-west-2.prod.site.p.awsstatic.com" data-report-uri="https://prod-us-west-2.csp-report.marketing.aws.dev/submit"> <meta http-equiv="content-type" content="text/html; charset=UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <link rel="preconnect" href="https://a0.awsstatic.com" crossorigin="anonymous"> <link rel="dns-prefetch" href="https://a0.awsstatic.com"> <link rel="dns-prefetch" href="https://d1.awsstatic.com"> <link rel="dns-prefetch" href="https://amazonwebservicesinc.tt.omtrdc.net"> <link rel="dns-prefetch" href="https://s0.awsstatic.com"> <link rel="dns-prefetch" href="https://t0.m.awsstatic.com"> <script type="application/json" data-eb-slot-start="true">{"ebSlot":"page-seo-metadata","ebSlotMeta":"{'renderMode':'noWrappers','version':'1.0','slotId':'page-seo-metadata','experienceId':'c7d0e857-6d10-4dc5-b5bd-5b48b7df3564','allowBlank':false,'hasAltExp':false,'isRTR':false,'filters':{'limit':1,'query':'id = \\'awsx2fwhat-isx2fdata-analytics\\''}}"}</script> <script type="application/json" data-eb-exp-start="true">{"ebTplN":"awsm-eb/page-seo-metadata","ebTplV":"1.0.0","ebCScope":"page-seo-metadata","ebDScope":"DIRECTORIES","ebSsrCe":""}</script> <title>What is Data Analytics? - Big Data Analytics Explained - AWS</title> <meta name="description" content="Find out what is What is Data Analytics and how to use Amazon Web Services for Data Analytics."> <meta property="twitter:title" content="What is Data Analytics? - Big Data Analytics Explained - AWS"> <meta property="twitter:description" content="Find out what is What is Data Analytics and how to use Amazon Web Services for Data Analytics."> <meta property="og:title" content="What is Data Analytics? - Big Data Analytics Explained - AWS"> <script type="application/json" data-eb-exp-end="true">{}</script> <script type="application/json" data-eb-slot-end="true">{}</script> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="canonical" href="https://aws.amazon.com/what-is/data-analytics/"> <link rel="alternate" href="https://aws.amazon.com/ar/what-is/data-analytics/" hreflang="ar-sa"> <link rel="alternate" href="https://aws.amazon.com/de/what-is/data-analytics/" hreflang="de-de"> <link rel="alternate" href="https://aws.amazon.com/es/what-is/data-analytics/" hreflang="es-es"> <link rel="alternate" href="https://aws.amazon.com/fr/what-is/data-analytics/" hreflang="fr-fr"> <link rel="alternate" href="https://aws.amazon.com/id/what-is/data-analytics/" hreflang="id-id"> <link rel="alternate" href="https://aws.amazon.com/it/what-is/data-analytics/" hreflang="it-it"> <link rel="alternate" href="https://aws.amazon.com/jp/what-is/data-analytics/" hreflang="ja-jp"> <link rel="alternate" href="https://aws.amazon.com/ko/what-is/data-analytics/" hreflang="ko-kr"> <link rel="alternate" href="https://aws.amazon.com/pt/what-is/data-analytics/" hreflang="pt-br"> <link rel="alternate" href="https://aws.amazon.com/ru/what-is/data-analytics/" hreflang="ru-ru"> <link rel="alternate" href="https://aws.amazon.com/th/what-is/data-analytics/" hreflang="th-th"> <link rel="alternate" href="https://aws.amazon.com/tr/what-is/data-analytics/" hreflang="tr-tr"> <link rel="alternate" href="https://aws.amazon.com/vi/what-is/data-analytics/" hreflang="vi-vn"> <link rel="alternate" href="https://aws.amazon.com/cn/what-is/data-analytics/" hreflang="zh-cn"> <link rel="alternate" href="https://aws.amazon.com/tw/what-is/data-analytics/" hreflang="zh-tw"> <script src="https://a0.awsstatic.com/libra/1.0.597/csp/csp-report.js" async="true"></script> <meta property="twitter:card" content="summary"> <meta property="twitter:image" content="https://a0.awsstatic.com/libra-css/images/logos/aws_logo_smile_179x109.png"> <meta property="twitter:site" content="@awscloud"> <meta property="fb:pages" content="153063591397681"> <meta name="baidu-site-verification" content="pjxJUyWxae"> <meta name="360-site-verification" content="cbe5c6f0249e273e71fffd6d6580ce09"> <meta name="shenma-site-verification" content="79b94bb338f010af876605819a332e19_1617844070"> <meta name="sogou_site_verification" content="Ow8cCy3Hgq"> <link rel="icon" type="image/ico" href="https://a0.awsstatic.com/libra-css/images/site/fav/favicon.ico"> <link rel="shortcut icon" type="image/ico" href="https://a0.awsstatic.com/libra-css/images/site/fav/favicon.ico"> <link rel="apple-touch-icon" sizes="57x57" href="https://a0.awsstatic.com/libra-css/images/site/touch-icon-iphone-114-smile.png"> <link rel="apple-touch-icon" sizes="72x72" href="https://a0.awsstatic.com/libra-css/images/site/touch-icon-ipad-144-smile.png"> <link rel="apple-touch-icon" sizes="114x114" href="https://a0.awsstatic.com/libra-css/images/site/touch-icon-iphone-114-smile.png"> <link rel="apple-touch-icon" sizes="144x144" href="https://a0.awsstatic.com/libra-css/images/site/touch-icon-ipad-144-smile.png"> <meta property="og:type" content="company"> <meta property="og:url" content="https://aws.amazon.com/what-is/data-analytics/"> <meta property="og:image" content="https://a0.awsstatic.com/libra-css/images/logos/aws_logo_smile_1200x630.png"> <meta property="og:site_name" content="Amazon Web Services, Inc."> <meta name="facebook-domain-verification" content="ucogvbvio3zpukhjxw4pcprci7qylr"> <meta name="google-site-verification" content="XHghG81ulgiW-3EylGcF48sG28tBW5EH0bNUhgo_DrU"> <meta name="msvalidate.01" content="6F92E52A288E266E30C2797ECB5FCCF3"> <link rel="stylesheet" href="https://a0.awsstatic.com/libra-css/css/1.0.508/style-awsm-base.css"> <link rel="stylesheet" href="https://a0.awsstatic.com/libra-css/css/1.0.508/style-awsm-components.css"> <script type="esms-options">{"noLoadEventRetriggers": true, "nonce":"moIGMhaUxWZ4JHUGMXht5JjBCsR7nx1hLl4HqaVeqXM="}</script> <script async src="https://a0.awsstatic.com/eb-csr/1.0.123/polyfills/es-module-shims/es-module-shims.js"></script> <script type="importmap">{"imports":{"react":"https://a0.awsstatic.com/eb-csr/1.0.123/react/react.js","react/jsx-runtime":"https://a0.awsstatic.com/eb-csr/1.0.123/react/jsx-runtime.js","react-dom":"https://a0.awsstatic.com/eb-csr/1.0.123/react/react-dom.js","react-dom/server":"https://a0.awsstatic.com/eb-csr/1.0.123/react/server-browser.js","react-dom-server-browser":"https://a0.awsstatic.com/eb-csr/1.0.123/react/react-dom-server-browser.js","sanitize-html":"https://a0.awsstatic.com/eb-csr/1.0.123/sanitize-html/index.js","video.js":"https://a0.awsstatic.com/eb-csr/1.0.123/videojs/video.js","videojs-event-tracking":"https://a0.awsstatic.com/eb-csr/1.0.123/videojs/videojs-event-tracking.js","videojs-hotkeys":"https://a0.awsstatic.com/eb-csr/1.0.123/videojs/videojs-hotkeys.js","@amzn/awsmcc":"https://a0.awsstatic.com/awsmcc/1.0.0/bundle/index.js"}}</script> <script type="application/json" id="aws-page-settings"> { "supportedLanguages": ["ar","cn","de","en","es","fr","id","it","jp","ko","pt","ru","th","tr","tw","vi"], "defaultLanguage": "en", "logDataSet": "LIVE:PROD", "logInstance": "PUB", "csdsEndpoint": "https://d2c.aws.amazon.com/", "framework": "v2", "g11nLibPath": "https://a0.awsstatic.com/g11n-lib/2.0.107", "i18nStringPath": "https://i18n-string.us-west-2.prod.pricing.aws.a2z.com", "libraCSSPath": "https://a0.awsstatic.com/libra-css/css/1.0.508", "libraCSSImagePath": "https://a0.awsstatic.com/libra-css/images", "isLoggingEnabled": true, "currentLanguage": "en-US", "currentStage": "Prod", "isBJS": false, "isMarketplace": false, "isRTL": false, "requireBaseUrl": "https://a0.awsstatic.com", "requirePackages":[ { "name": "libra", "location": "libra/1.0.597" } ], "requirePaths": { "directories": "https://a0.awsstatic.com/libra/1.0.597/directories", "libra-cardsui": "https://a0.awsstatic.com/libra/1.0.597/libra-cardsui", "librastandardlib": "https://a0.awsstatic.com/libra/1.0.597/librastandardlib", "aws-blog": "https://a0.awsstatic.com/aws-blog/1.0.80/js", "plc": "https://a0.awsstatic.com/plc/js/1.0.138/plc", "scripts": "libra/1.0.597/v1-polyfills/scripts", "libra-search": "https://a0.awsstatic.com/libra-search/1.0.19/js", "pricing-calculator": "https://a0.awsstatic.com/pricing-calculator/js/1.0.2", "pricing-savings-plan": "https://a0.awsstatic.com/pricing-savings-plan/js/1.0.23" }, "staticAssetPath": "https://a0.awsstatic.com", "jsAssetPath": "https://a0.awsstatic.com/libra/1.0.597", "awstvVideoAssetOrigin": "https://tv.awsstatic.com", "awstvVideoAPIOrigin": "//aws.amazon.com" } </script> <script src="https://a0.awsstatic.com/libra/1.0.597/libra-head.js"></script> <script src="https://a0.awsstatic.com/s_code/js/3.0/awshome_s_code.js"></script> <script src="https://d2c.aws.amazon.com/client/loader/v1/d2c-load.js"></script> <script async src="https://a0.awsstatic.com/da/js/1.0.51/aws-da.js"></script> <link rel="stylesheet" href="https://a0.awsstatic.com/eb-csr/1.0.123/orchestrate.css"> <script type="module" async="true" src="https://a0.awsstatic.com/eb-csr/1.0.123/orchestrate.js"></script> <script type="application/json" id="target-mediator">{"pageLanguage":"en","supportedLanguages":["ar","cn","de","en","es","fr","id","it","jp","ko","pt","ru","th","tr","tw","vi"],"offerOrigin":"https://s0.awsstatic.com"}</script> <script data-js-script="target-mediator" src="https://a0.awsstatic.com/target/1.0.123/aws-target-mediator.js" async="true"></script> </head> <body class="awsm"> <script id="awsc-panorama-bundle" type="text/javascript" src="https://prod.pa.cdn.uis.awsstatic.com/panorama-nav-init.js" data-config="{&quot;appEntity&quot;:&quot;aws-marketing&quot;,&quot;region&quot;:&quot;us-west-1&quot;,&quot;service&quot;:&quot;global-site&quot;,&quot;trackerConstants&quot;:{&quot;cookieDomain&quot;:&quot;aws.amazon.com&quot;}}" async="true"></script> <a id="aws-page-skip-to-main" class="lb-sr-only lb-sr-only-focusable lb-bold lb-skip-el" href="#aws-page-content-main"> Skip to main content</a> <header id="aws-page-header" class="awsm m-page-header lb-with-mobile-subrow" role="banner"> <div id="m-nav" class="m-nav" role="navigation" aria-label="Global Navigation"> <div class="m-nav-header lb-clearfix" data-menu-url="https://s0.awsstatic.com/en_US/nav/v3/panel-content/desktop/index.html"> <div class="m-nav-logo"> <div class="lb-bg-logo aws-amazon_web_services_smile-header-desktop-en"> <a href="https://aws.amazon.com/?nc2=h_lg"><span>Click here to return to Amazon Web Services homepage</span></a> </div> </div> <nav class="m-nav-secondary-links" style="min-width: 620px" aria-label="Secondary Global Navigation"> <a href="/about-aws/?nc2=h_header">About AWS</a> <a href="/contact-us/?nc2=h_header">Contact Us</a> <a class="lb-txt-none lb-tiny-iblock lb-txt-13 lb-txt lb-has-trigger-indicator" href="#" data-mbox-ignore="true" data-lb-popover-trigger="popover-support-selector" role="button" aria-expanded="false" aria-label="Explore support options" id="popover-popover-support-selector-trigger" aria-controls="popover-support-selector" aria-haspopup="true"> Support &nbsp; <svg viewbox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg" class="icon-chevron-down lb-trigger-mount"> <path d="M1 4.5L8 11.5L15 4.5" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" /> </svg> </a> <a id="m-nav-language-selector" class="lb-tiny-iblock lb-txt lb-has-trigger-indicator" href="#" data-lb-popover-trigger="popover-language-selector" data-language="en" aria-label="Set site language" role="button" aria-controls="popover-language-selector" aria-expanded="false" aria-haspopup="true"> English &nbsp; <svg viewbox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg" class="icon-chevron-down lb-trigger-mount"> <path d="M1 4.5L8 11.5L15 4.5" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" /> </svg> </a> <a class="lb-tiny-iblock lb-txt lb-has-trigger-indicator" href="#" data-lb-popover-trigger="popover-my-account" aria-label="Access account options" role="button" aria-controls="popover-my-account" aria-expanded="false" aria-haspopup="true"> My Account &nbsp; <svg viewbox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg" class="icon-chevron-down lb-trigger-mount"> <path d="M1 4.5L8 11.5L15 4.5" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" /> </svg> </a> <div class="m-nav-cta-btn"> <div class="lb-mbox js-mbox" data-lb-comp="mbox" data-lb-comp-ignore="true" data-mbox="en_header_nav_cta"> <div class="lb-data-attr-wrapper data-attr-wrapper" data-da-type="so" data-da-so-type="viewport" data-da-so-language="en" data-da-so-category="monitoring" data-da-so-name="nav-buttons" data-da-so-version="sign-up-sign-in-all" data-da-so-url="nav"> <div class="data-attr-wrapper lb-tiny-iblock lb-none-pad lb-box" data-da-type="so" data-da-so-type="viewport" data-da-so-language="en" data-da-so-category="monitoring" data-da-so-name="nav-buttons" data-da-so-version="prospect-sign-in" data-da-so-url="all"> <a class="lb-txt-none lb-tiny-iblock lb-txt-13 lb-txt" style="padding-top:8px; padding-right:13px;" href="https://console.aws.amazon.com/console/home?nc2=h_ct&amp;src=header-signin"> Sign In</a> </div> <div class="data-attr-wrapper lb-tiny-iblock lb-none-v-margin lb-btn" data-da-type="so" data-da-so-type="viewport" data-da-so-language="en" data-da-so-category="monitoring" data-da-so-name="nav-buttons" data-da-so-version="prospect-signup" data-da-so-url="all"> <a class="lb-btn-p-primary" href="https://portal.aws.amazon.com/gp/aws/developer/registration/index.html?nc2=h_ct&amp;src=header_signup" data-trk-params="{&quot;trkOverrideWithQs&quot;:true}" role="button"> <span> Create an AWS Account</span> </a> </div> </div> </div> <div class="lb-mbox js-mbox" data-lb-comp="mbox" data-lb-comp-ignore="true" data-mbox="en_header_desktop_nav_cta_test"> <div class="data-attr-wrapper lb-tiny-iblock lb-none-pad lb-box" style="padding-top:2px; padding-left:13px;" data-da-type="so" data-da-so-category="monitoring" data-da-so-language="en" data-da-so-name="builder-id-dropdown-button" data-da-so-type="viewport" data-da-so-version="main-button-clicks" data-da-so-url="desktop"> <div class="lb-tiny-iblock lb-box"> <div class="lb-tiny-iblock lb-micro-v-margin lb-btn lb-icon-only" data-myaws-auth-hidden-only="true"> <a class="lb-btn-da-primary-rounded" href="#" data-mbox-ignore="true" data-lb-popover-trigger="signed-out-options" role="button" aria-expanded="false" aria-label="AWS Builder Id options" id="popover-signed-out-options-trigger" aria-controls="signed-out-options" aria-haspopup="true"> <span> <i class="icon-user-o-aura lb-before"></i></span> </a> </div> <div class="lb-tiny-iblock lb-micro-v-margin m-no-auth lb-btn lb-icon-only" data-myaws-auth-only="true"> <a class="lb-btn-da-primary-rounded" href="#" data-mbox-ignore="true" data-lb-popover-trigger="signed-in-options" role="button" aria-expanded="false" aria-label="AWS Builder Id options" id="popover-signed-in-options-trigger" aria-controls="signed-in-options" aria-haspopup="true"> <span> <i class="icon-user-aura lb-before"></i></span> </a> </div> </div> <div class="lb-none-pad lb-popover lb-popover-rounded lb-popover-mid-small" style="padding-top:40px; padding-left:40px; padding-bottom:40px; padding-right:40px;" data-lb-comp="popover" data-id="signed-out-options" id="signed-out-options" aria-modal="false" aria-labelledby="popover-signed-out-options-trigger" data-action="hover" data-position="top"> <a class="lb-popover-close" role="button" tabindex="0" aria-label="Close" title="Close"> <span class="lb-sr-only">Close</span> </a> <div class="lb-tiny-align-center lb-txt-bold lb-txt-none lb-txt-20 lb-none-v-margin lb-txt"> Profile </div> <div class="lb-tiny-align-center lb-txt-none lb-none-v-margin lb-txt"> Your profile helps improve your interactions with select AWS experiences. </div> <div class="lb-none-pad lb-none-v-margin lb-box" style="margin-top:32px;"> <div class="lb-data-attr-wrapper data-attr-wrapper" data-da-type="so" data-da-so-category="monitoring" data-da-so-language="en" data-da-so-name="builder-id-dropdown-button" data-da-so-type="viewport" data-da-so-version="sign-in-button" data-da-so-url="desktop"> <div class="lb-xlarge-radius lb-border-p lb-none-pad lb-box" style="background-color:rgb(17,22,29); color:rgb(17,22,29); border-color:rgb(17,22,29);"> <a class="lb-tiny-align-center lb-txt-none lb-none-pad lb-none-v-margin lb-txt" style="padding-top:5px; color:#f5f5f5; padding-bottom:5px;" data-myaws-requested-url="true" href="https://auth.aws.amazon.com/sign-in"> Login</a> </div> </div> </div> </div> <div class="lb-none-pad lb-popover lb-popover-rounded lb-popover-mid-small" style="padding-top:40px; padding-left:40px; padding-bottom:40px; padding-right:40px;" data-lb-comp="popover" data-id="signed-in-options" id="signed-in-options" aria-modal="false" aria-labelledby="popover-signed-in-options-trigger" data-action="hover" data-position="top"> <a class="lb-popover-close" role="button" tabindex="0" aria-label="Close" title="Close"> <span class="lb-sr-only">Close</span> </a> <div class="lb-tiny-align-center lb-txt-bold lb-txt-none lb-txt-20 lb-none-v-margin lb-txt"> Profile </div> <div class="lb-tiny-align-center lb-txt-none lb-none-v-margin lb-txt"> Your profile helps improve your interactions with select AWS experiences. </div> <div class="lb-none-pad lb-none-v-margin lb-box" style="margin-top:32px;"> <div class="lb-data-attr-wrapper data-attr-wrapper" data-da-type="so" data-da-so-category="monitoring" data-da-so-language="en" data-da-so-name="builder-id-dropdown-button" data-da-so-type="viewport" data-da-so-version="view-profile" data-da-so-url="desktop"> <div class="lb-xlarge-radius lb-border-p lb-none-pad lb-box" style="color:rgb(17,22,29); border-color:rgb(17,22,29);"> <a class="lb-tiny-align-center lb-txt-none lb-none-v-margin lb-txt" style="padding-top:5px; color:rgb(17,22,29); padding-bottom:5px;" href="https://aws.amazon.com/profile"> View profile</a> </div> </div> <div class="lb-data-attr-wrapper data-attr-wrapper" data-da-type="so" data-da-so-category="monitoring" data-da-so-language="en" data-da-so-name="builder-id-dropdown-button" data-da-so-type="viewport" data-da-so-version="log-out" data-da-so-url="desktop"> <a class="lb-tiny-align-center lb-txt-none lb-none-v-margin lb-txt" style="color:rgb(17,22,29); margin-top:16px;" data-myaws-requested-url="true" href="https://auth.aws.amazon.com/sign-out"> Log out</a> </div> </div> </div> </div> </div> </div> </nav> <div class="m-nav-primary-group"> <nav class="m-nav-primary-links" aria-label="Primary Global Navigation"> <i class="m-nav-angle-left-icon" aria-hidden="true"></i> <ul> <li aria-expanded="false"><span><a href="https://aws.amazon.com/q/?nc2=h_ql_prod_l1_q" class="m-nav-featured">Amazon Q</a></span></li> <li aria-expanded="false"><span><a href="/products/?nc2=h_ql_prod" data-panel="m-nav-panel-products">Products</a></span></li> <li aria-expanded="false"><span><a href="/solutions/?nc2=h_ql_sol" data-panel="m-nav-panel-solutions">Solutions</a></span></li> <li aria-expanded="false"><span><a href="/pricing/?nc2=h_ql_pr" data-panel="m-nav-panel-pricing">Pricing</a></span></li> <li aria-expanded="false"><span><a href="https://aws.amazon.com/documentation-overview/?nc2=h_ql_doc_do" data-panel="m-nav-panel-documentation">Documentation</a></span></li> <li aria-expanded="false"><span><a href="/getting-started/?nc2=h_ql_le" data-panel="m-nav-panel-learn">Learn</a></span></li> <li aria-expanded="false"><span><a href="/partners/?nc2=h_ql_pn" data-panel="m-nav-panel-partner">Partner Network</a></span></li> <li aria-expanded="false"><span><a href="https://aws.amazon.com/marketplace/?nc2=h_ql_mp" data-panel="m-nav-panel-marketplace">AWS Marketplace</a></span></li> <li aria-expanded="false"><span><a href="/customer-enablement/?nc2=h_ql_ce" data-panel="m-nav-panel-customer">Customer Enablement</a></span></li> <li aria-expanded="false"><span><a href="/events/?nc2=h_ql_ev" data-panel="m-nav-panel-events">Events</a></span></li> <li aria-expanded="false"><span><a href="/contact-us/?nc2=h_ql_exm" data-panel="m-nav-panel-more">Explore More </a></span></li> </ul> <div class="m-nav-icon-group"> <i class="m-nav-angle-right-icon" aria-hidden="true"></i> <button class="m-nav-search-icon" tabindex="0" aria-expanded="false" aria-label="Search"> <svg viewbox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg" class="icon-magnify"> <path d="M10.5 10.5L14.5 14.5" stroke-width="2" stroke-linejoin="round" /> <path d="M7 12.5C10.0376 12.5 12.5 10.0376 12.5 7C12.5 3.96243 10.0376 1.5 7 1.5C3.96243 1.5 1.5 3.96243 1.5 7C1.5 10.0376 3.96243 12.5 7 12.5Z" stroke-width="2" stroke-linejoin="round" /> </svg> </button> </div> </nav> <div id="m-nav-desktop-search" class="m-nav-search"> <form action="https://aws.amazon.com/search/" role="search"> <div class="m-typeahead" data-directory-id="typeahead-suggestions" data-lb-comp="typeahead"> <input class="m-nav-search-field" placeholder="Search" autocomplete="off" spellcheck="false" dir="auto" type="text" name="searchQuery"> </div> </form> <i class="m-nav-close-icon" role="button" aria-label="Close"></i> </div> </div> </div> <div class="lb-popover lb-popover-aui lb-popover-tiny" data-lb-comp="popover" data-id="popover-language-selector" id="popover-language-selector" aria-modal="false" aria-labelledby="popover-popover-language-selector-trigger" data-action="hover" data-position="top"> <a class="lb-popover-close" role="button" tabindex="0" aria-label="Close" title="Close"> <span class="lb-sr-only">Close</span> </a> <div class="lb-grid lb-row lb-row-max-large lb-snap"> <div class="lb-col lb-tiny-24 lb-mid-12"> <ul class="lb-txt-none lb-ul lb-list-style-none lb-tiny-ul-block"> <li lang="ar-SA" translate="no" data-language="ar"><a href="https://aws.amazon.com/ar/?nc1=h_ls">عربي</a></li> <li lang="id-ID" translate="no" data-language="id"><a href="https://aws.amazon.com/id/?nc1=h_ls">Bahasa Indonesia</a></li> <li lang="de-DE" translate="no" data-language="de"><a href="https://aws.amazon.com/de/?nc1=h_ls">Deutsch</a></li> <li lang="en-US" translate="no" data-language="en"><a href="https://aws.amazon.com/?nc1=h_ls">English</a></li> <li lang="es-ES" translate="no" data-language="es"><a href="https://aws.amazon.com/es/?nc1=h_ls">Español</a></li> <li lang="fr-FR" translate="no" data-language="fr"><a href="https://aws.amazon.com/fr/?nc1=h_ls">Français</a></li> <li lang="it-IT" translate="no" data-language="it"><a href="https://aws.amazon.com/it/?nc1=h_ls">Italiano</a></li> <li lang="pt-BR" translate="no" data-language="pt"><a href="https://aws.amazon.com/pt/?nc1=h_ls">Português</a></li> </ul> </div> <div class="lb-col lb-tiny-24 lb-mid-12"> <ul class="lb-txt-none lb-ul lb-list-style-none lb-tiny-ul-block"> <li lang="vi-VN" translate="no" data-language="vi"><a href="https://aws.amazon.com/vi/?nc1=f_ls">Tiếng Việt</a></li> <li lang="tr-TR" translate="no" data-language="tr"><a href="https://aws.amazon.com/tr/?nc1=h_ls">Türkçe</a></li> <li lang="ru-RU" translate="no" data-language="ru"><a href="https://aws.amazon.com/ru/?nc1=h_ls">Ρусский</a></li> <li lang="th-TH" translate="no" data-language="th"><a href="https://aws.amazon.com/th/?nc1=f_ls">ไทย</a></li> <li lang="ja-JP" translate="no" data-language="jp"><a href="https://aws.amazon.com/jp/?nc1=h_ls">日本語</a></li> <li lang="ko-KR" translate="no" data-language="ko"><a href="https://aws.amazon.com/ko/?nc1=h_ls">한국어</a></li> <li lang="zh-CN" translate="no" data-language="cn"><a href="https://aws.amazon.com/cn/?nc1=h_ls">中文 (简体)</a></li> <li lang="zh-TW" translate="no" data-language="tw"><a href="https://aws.amazon.com/tw/?nc1=h_ls">中文 (繁體)</a></li> </ul> </div> </div> </div> <div class="lb-popover lb-popover-aui lb-popover-tiny" data-lb-comp="popover" data-id="popover-my-account" id="popover-my-account" aria-modal="false" aria-labelledby="popover-popover-my-account-trigger" data-action="hover" data-position="top"> <a class="lb-popover-close" role="button" tabindex="0" aria-label="Close" title="Close"> <span class="lb-sr-only">Close</span> </a> <ul class="lb-txt-none lb-ul lb-list-style-none lb-tiny-ul-block"> <li class="m-no-auth" data-myaws-auth-only="true"><a href="/profile/?nc2=h_m_mc">My Profile</a></li> <li class="m-no-auth" data-myaws-auth-only="true"><a href="https://auth.aws.amazon.com/sign-out/?nc2=h_m_mc">Sign out of AWS Builder ID</a></li> <li><a href="https://console.aws.amazon.com/?nc2=h_m_mc">AWS Management Console</a></li> <li><a href="https://console.aws.amazon.com/billing/home#/account?nc2=h_m_ma">Account Settings</a></li> <li><a href="https://console.aws.amazon.com/billing/home?nc2=h_m_bc">Billing &amp; Cost Management</a></li> <li><a href="https://console.aws.amazon.com/iam/home?nc2=h_m_sc#security_credential">Security Credentials</a></li> <li><a href="https://phd.aws.amazon.com/?nc2=h_m_sc">AWS Personal Health Dashboard</a></li> </ul> </div> <div class="lb-popover lb-popover-aui lb-popover-tiny" data-lb-comp="popover" data-id="popover-support-selector" id="popover-support-selector" aria-modal="false" aria-labelledby="popover-popover-support-selector-trigger" data-action="hover" data-position="top"> <a class="lb-popover-close" role="button" tabindex="0" aria-label="Close" title="Close"> <span class="lb-sr-only">Close</span> </a> <ul class="lb-txt-none lb-ul lb-list-style-none lb-tiny-ul-block"> <li><a href="https://console.aws.amazon.com/support/home/?nc2=h_ql_cu">Support Center</a></li> <li><a href="https://iq.aws.amazon.com/?utm=mkt.nav">Expert Help</a></li> <li><a href="https://repost.aws/knowledge-center/?nc2=h_m_ma">Knowledge Center</a></li> <li><a href="/premiumsupport/?nc2=h_m_bc">AWS Support Overview</a></li> <li><a href="https://repost.aws/">AWS re:Post</a></li> </ul> </div> <script type="text/x-handlebars-template" data-hbs-template-path="nav-desktop/suggestions" data-hbs-context="{&quot;pricingText&quot;:&quot;Pricing&quot;,&quot;documentationText&quot;:&quot;Documentation&quot;,&quot;calculatorText&quot;:&quot;Calculator&quot;}"></script> <script type="text/x-handlebars-template" data-hbs-template-path="nav-desktop/products-head" data-hbs-context="{&quot;productsText&quot;:&quot;Products&quot;}"></script> <script type="text/x-handlebars-template" data-hbs-template-path="nav-desktop/keypages-head" data-hbs-context="{&quot;relatedPagesText&quot;:&quot;Related Pages&quot;}"></script> <script type="text/x-handlebars-template" data-hbs-template-path="nav-desktop/tutorials-head" data-hbs-context="{&quot;tutorialsText&quot;:&quot;Tutorials&quot;}"></script> <script type="text/x-handlebars-template" data-hbs-template-path="nav-desktop/blogs-head" data-hbs-context="{&quot;blogsText&quot;:&quot;Blogs&quot;}"></script> <script type="text/x-handlebars-template" data-hbs-template-path="nav-desktop/see-all" data-hbs-context="{&quot;resultsText&quot;:&quot;See more results for&quot;}"></script> </div> <div id="m-nav-mobile" class="m-nav-mobile" role="navigation" aria-label="Global Navigation for Mobile"> <div id="m-nav-mobile-header" class="m-nav-mobile-header m-nav-mobile-with-sub-row" data-menu-url="https://s0.awsstatic.com/en_US/nav/v3/panel-content/mobile/index.html"> <div class="lb-bg-logo aws-amazon_web_services_smile-header-mobile-en"> <a href="https://aws.amazon.com/?nc2=h_lg"><span>Click here to return to Amazon Web Services homepage</span></a> </div> <div class="m-nav-mobile-button-group"> <button class="m-nav-mobile-button icon-search" tabindex="0" aria-expanded="false" aria-label="Search"> <svg viewbox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10.5 10.5L14.5 14.5" stroke-width="2" stroke-linejoin="round" /> <path d="M7 12.5C10.0376 12.5 12.5 10.0376 12.5 7C12.5 3.96243 10.0376 1.5 7 1.5C3.96243 1.5 1.5 3.96243 1.5 7C1.5 10.0376 3.96243 12.5 7 12.5Z" stroke-width="2" stroke-linejoin="round" /> </svg> </button> <button class="m-nav-mobile-button icon-reorder" tabindex="0" aria-expanded="false" aria-label="Menu"> <svg viewbox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M15 3H1" stroke-width="2" stroke-linejoin="round" /> <path d="M15 8H1" stroke-width="2" stroke-linejoin="round" /> <path d="M15 13H1" stroke-width="2" stroke-linejoin="round" /> </svg> </button> <div class="lb-mbox js-mbox" data-lb-comp="mbox" data-lb-comp-ignore="true" data-mbox="en_header_mobile_nav_cta_test"> <div class="data-attr-wrapper lb-none-pad lb-none-v-margin lb-box" style="padding-top:0px; padding-left:0px; padding-bottom:0px; margin-top:10px; padding-right:0px;" data-da-type="so" data-da-so-category="monitoring" data-da-so-language="en" data-da-so-name="builder-id-dropdown-button" data-da-so-type="viewport" data-da-so-version="main-button-clicks" data-da-so-url="mobile"> <div class="data-attr-wrapper lb-none-v-margin lb-box" style="padding-top:0px; padding-left:10px; padding-bottom:0px; margin-top:10px; padding-right:27px;" data-da-type="so" data-da-so-category="monitoring" data-da-so-language="en" data-da-so-name="builder-id-dropdown-button" data-da-so-type="viewport" data-da-so-version="main-button-clicks" data-da-so-url="mobile"> <div class="lb-none-v-margin lb-btn lb-icon-only" data-myaws-auth-hidden-only="true"> <a class="lb-btn-da-primary-rounded" href="#" data-mbox-ignore="true" data-lb-popover-trigger="signed-out-options-mobile" role="button" aria-expanded="false" aria-label="AWS Builder Id options" id="popover-signed-out-options-mobile-trigger" aria-controls="signed-out-options-mobile" aria-haspopup="true"> <span> <i class="icon-user-o-aura lb-before"></i></span> </a> </div> <div class="lb-none-v-margin m-no-auth lb-btn lb-icon-only" data-myaws-auth-only="true"> <a class="lb-btn-da-primary-rounded" href="#" data-mbox-ignore="true" data-lb-popover-trigger="signed-in-options-mobile" role="button" aria-expanded="false" aria-label="AWS Builder Id options" id="popover-signed-in-options-mobile-trigger" aria-controls="signed-in-options-mobile" aria-haspopup="true"> <span> <i class="icon-user-aura lb-before"></i></span> </a> </div> <div class="lb-none-pad lb-popover lb-popover-rounded lb-popover-small" style="padding-top:40px; padding-left:40px; padding-bottom:40px; padding-right:40px;" data-lb-comp="popover" data-id="signed-out-options-mobile" id="signed-out-options-mobile" aria-modal="false" aria-labelledby="popover-signed-out-options-mobile-trigger" data-action="clickOnly" data-position="top"> <a class="lb-popover-close" role="button" tabindex="0" aria-label="Close" title="Close"> <span class="lb-sr-only">Close</span> </a> <div class="lb-tiny-align-center lb-txt-bold lb-txt-none lb-txt-20 lb-none-v-margin lb-txt"> Profile </div> <div class="lb-tiny-align-center lb-txt-none lb-none-v-margin lb-txt"> Your profile helps improve your interactions with select AWS experiences. </div> <div class="lb-none-pad lb-none-v-margin lb-box" style="margin-top:32px;"> <div class="lb-data-attr-wrapper data-attr-wrapper" data-da-type="so" data-da-so-category="monitoring" data-da-so-language="en" data-da-so-name="builder-id-dropdown-button" data-da-so-type="viewport" data-da-so-version="sign-in-button" data-da-so-url="mobile"> <div class="lb-xlarge-radius lb-border-p lb-none-pad lb-box" style="background-color:rgb(17,22,29); color:rgb(17,22,29); border-color:rgb(17,22,29);"> <a class="lb-tiny-align-center lb-txt-none lb-none-pad lb-none-v-margin lb-txt" style="padding-top:5px; color:#f5f5f5; padding-bottom:5px;" data-myaws-requested-url="true" href="https://auth.aws.amazon.com/sign-in"> Login</a> </div> </div> </div> </div> <div class="lb-none-pad lb-popover lb-popover-rounded lb-popover-small" style="padding-top:40px; padding-left:40px; padding-bottom:40px; padding-right:40px;" data-lb-comp="popover" data-id="signed-in-options-mobile" id="signed-in-options-mobile" aria-modal="false" aria-labelledby="popover-signed-in-options-mobile-trigger" data-action="clickOnly" data-position="top"> <a class="lb-popover-close" role="button" tabindex="0" aria-label="Close" title="Close"> <span class="lb-sr-only">Close</span> </a> <div class="lb-tiny-align-center lb-txt-bold lb-txt-none lb-txt-20 lb-none-v-margin lb-txt"> Profile </div> <div class="lb-tiny-align-center lb-txt-none lb-none-v-margin lb-txt"> Your profile helps improve your interactions with select AWS experiences. </div> <div class="lb-none-pad lb-none-v-margin lb-box" style="margin-top:32px;"> <div class="lb-data-attr-wrapper data-attr-wrapper" data-da-type="so" data-da-so-category="monitoring" data-da-so-language="en" data-da-so-name="builder-id-dropdown-button" data-da-so-type="viewport" data-da-so-version="view-profile" data-da-so-url="mobile"> <div class="lb-xlarge-radius lb-border-p lb-none-pad lb-box" style="color:rgb(17,22,29); border-width:2px; border-color:rgb(17,22,29);"> <a class="lb-tiny-align-center lb-txt-none lb-none-v-margin lb-txt" style="padding-top:5px; color:rgb(17,22,29); padding-bottom:5px;" href="https://aws.amazon.com/profile"> View profile</a> </div> </div> <div class="lb-data-attr-wrapper data-attr-wrapper" data-da-type="so" data-da-so-category="monitoring" data-da-so-language="en" data-da-so-name="builder-id-dropdown-button" data-da-so-type="viewport" data-da-so-version="log-out" data-da-so-url="mobile"> <a class="lb-tiny-align-center lb-txt-none lb-none-v-margin lb-txt" style="color:rgb(17,22,29); margin-top:16px;" data-myaws-requested-url="true" href="https://auth.aws.amazon.com/sign-out"> Log out</a> </div> </div> </div> <div class="lb-none-pad lb-popover lb-popover-rounded lb-popover-small" style="padding-top:40px; padding-left:40px; padding-bottom:40px; padding-right:40px;" data-lb-comp="popover" data-id="signed-in-options-mobile" id="signed-in-options-mobile" aria-modal="false" aria-labelledby="popover-signed-in-options-mobile-trigger" data-action="clickOnly" data-position="top"> <a class="lb-popover-close" role="button" tabindex="0" aria-label="Close" title="Close"> <span class="lb-sr-only">Close</span> </a> <div class="lb-tiny-align-center lb-txt-bold lb-txt-none lb-txt-20 lb-none-v-margin lb-txt"> Profile </div> <div class="lb-tiny-align-center lb-txt-none lb-none-v-margin lb-txt"> Your profile helps improve your interactions with select AWS experiences. </div> <div class="lb-none-pad lb-none-v-margin lb-box" style="margin-top:32px;"> <div class="lb-data-attr-wrapper data-attr-wrapper" data-da-type="so" data-da-so-category="monitoring" data-da-so-language="en" data-da-so-name="builder-id-dropdown-button" data-da-so-type="viewport" data-da-so-version="view-profile" data-da-so-url="mobile"> <div class="lb-xlarge-radius lb-border-p lb-none-pad lb-box" style="color:rgb(17,22,29); border-width:2px; border-color:rgb(17,22,29);"> <a class="lb-tiny-align-center lb-txt-none lb-none-v-margin lb-txt" style="padding-top:5px; color:rgb(17,22,29); padding-bottom:5px;" href="https://aws.amazon.com/profile"> View profile</a> </div> </div> <div class="lb-data-attr-wrapper data-attr-wrapper" data-da-type="so" data-da-so-category="monitoring" data-da-so-language="en" data-da-so-name="builder-id-dropdown-button" data-da-so-type="viewport" data-da-so-version="log-out" data-da-so-url="mobile"> <a class="lb-tiny-align-center lb-txt-none lb-none-v-margin lb-txt" style="color:rgb(17,22,29); margin-top:16px;" data-myaws-requested-url="true" href="https://auth.aws.amazon.com/sign-out"> Log out</a> </div> </div> </div> </div> </div> </div> </div> <div id="m-nav-mobile-sub-row" class="m-nav-mobile-sub-row"> <div class="data-attr-wrapper lb-btn" data-da-type="so" data-da-so-category="monitoring" data-da-so-language="en" data-da-so-name="global-mobile-sticky-cta-buttons" data-da-so-type="viewport" data-da-so-version="get-started-for-free-cta" data-da-so-url="all"> <a class="lb-btn-p-primary" href="https://portal.aws.amazon.com/gp/aws/developer/registration/index.html?nc2=h_mobile" role="button"> <span> Get Started for Free</span> </a> </div> <div class="data-attr-wrapper lb-btn" data-da-type="so" data-da-so-category="monitoring" data-da-so-language="en" data-da-so-name="global-mobile-sticky-cta-buttons" data-da-so-type="viewport" data-da-so-version="contact-us"> <a class="lb-btn-p" href="https://aws.amazon.com/contact-us/?nc2=h_mobile" role="button"> <span> Contact Us</span> </a> </div> </div> </div> <div id="m-nav-mobile-search" class="m-nav-mobile-search"> <form action="https://aws.amazon.com/search" role="search"> <div class="m-typeahead"> <input class="m-nav-search-field" placeholder="Search" autocomplete="off" spellcheck="false" dir="auto" type="text" name="searchQuery"> </div> </form> </div> <nav id="m-nav-trimdown" aria-label="Condensed Global Navigation for Mobile"> <ul class="m-nav-mobile-menu-group"> <li> <a href="/products/?nc2=h_mo"> <span class="m-nav-link-title">Products</span> </a> </li> <li> <a href="/solutions/?nc2=h_mo"> <span class="m-nav-link-title">Solutions</span> </a> </li> <li> <a href="/pricing/?nc2=h_mo"> <span class="m-nav-link-title">Pricing</span> </a> </li> <li> <a href="/what-is-aws/?nc2=h_mo"> <span class="m-nav-link-title">Introduction to AWS</span> </a> </li> <li> <a href="/getting-started/?nc2=h_mo"> <span class="m-nav-link-title">Getting Started</span> </a> </li> <li> <a href="https://aws.amazon.com/documentation-overview/?nc2=h_mo"> <span class="m-nav-link-title">Documentation</span> </a> </li> <li> <a href="/training/?nc2=h_mo"> <span class="m-nav-link-title">Training and Certification</span> </a> </li> <li> <a href="/developer/?nc2=h_mo"> <span class="m-nav-link-title">Developer Center</span> </a> </li> <li> <a href="/solutions/case-studies/?nc2=h_mo"> <span class="m-nav-link-title">Customer Success</span> </a> </li> <li> <a href="/partners/?nc2=h_mo"> <span class="m-nav-link-title">Partner Network</span> </a> </li> <li> <a href="https://aws.amazon.com/marketplace/?nc2=h_mo"> <span class="m-nav-link-title">AWS Marketplace</span> </a> </li> <li> <a href="https://console.aws.amazon.com/support/home?nc2=h_ql_cu"> <span class="m-nav-link-title">Support</span> </a> </li> <li> <a href="https://repost.aws/"> <span class="m-nav-link-title">AWS re:Post</span> </a> </li> <li> <a href="https://console.aws.amazon.com/console/home"> <span class="m-nav-link-title">Log into Console</span> </a> </li> <li> <a href="/console/mobile/"> <span class="m-nav-link-title">Download the Mobile App</span> </a> </li> </ul> </nav> </div> </header> <div id="aws-page-content" class="lb-page-content" style="padding-top:0px; padding-bottom:0px;" data-page-alert-target="true"> <main id="aws-page-content-main" role="main" tabindex="-1"> <div data-eb-slot="what-is-header" data-eb-slot-meta="{'version':'1.0','slotId':'what-is-header','experienceId':'93f2c10b-57a0-4aac-a291-b4b33afe10b1','allowBlank':false,'hasAltExp':false,'isRTR':false,'filters':{'limit':1,'query':'id \u003d \'what-is-data-analytics\''}}"> <div data-eb-tpl-n="awsm-what-is/what-is-header" data-eb-tpl-v="1.0.1" data-eb-ce="" data-eb-c-scope="what-is-header" data-eb-d-scope="DIRECTORIES" data-eb-locale="en-US" data-eb-99e83dc4="" data-eb-ssr-ce="" data-eb-tpl-ns="awsmWhatIs"> <style>[data-eb-99e83dc4] .eb-what-is-header{background-color:#1e2832;background-image:url("//d1.awsstatic.com/r2018/h/QuickSight Q/Site Merch/SiteMerch-QuickSightQ_Hero-BG.c455f708c1d1da51ca3520e7678b415423fd06a5.png")}[data-eb-99e83dc4] .eb-what-is-header .eb-headline{color:#fff;margin-top:0;margin-bottom:0}[data-eb-99e83dc4] .eb-what-is-header .eb-breadcrumbs{position:relative;margin:0;padding:0;list-style:none;color:#d1d5db}[data-eb-99e83dc4] .eb-what-is-header .eb-breadcrumbs-link{position:relative;margin-right:6px;padding-left:11px;color:#539fe5}[data-eb-99e83dc4] .eb-what-is-header .eb-breadcrumbs-link:hover{color:#89bdee}[data-eb-99e83dc4] .eb-what-is-header .eb-breadcrumbs-link:focus{text-decoration:none;outline-offset:2px;outline:#0972d3 solid 2px;border-radius:2px}[data-eb-99e83dc4] .eb-what-is-header .eb-breadcrumbs-link:before{position:absolute;top:-2px;left:0;color:#d1d5db;content:"/"}[data-eb-99e83dc4] .eb-what-is-header .eb-breadcrumbs-item{margin-bottom:0;display:inline-block}[data-eb-99e83dc4] .eb-what-is-header .eb-breadcrumbs-item:first-of-type .eb-breadcrumbs-link{padding-left:0}[data-eb-99e83dc4] .eb-what-is-header .eb-breadcrumbs-item:first-of-type .eb-breadcrumbs-link:before{content:none}</style> <script type="application/json">{"data":{"items":[{"fields":{"primaryCTAText":"Create an AWS Account","description":"<p>Data analytics converts raw data into actionable insights. It includes a range of tools, technologies, and processes used to find trends and solve problems by using data. Data analytics can shape business processes, improve decision-making, and foster business growth.</p>","sortDate":"2022-06-10","headlineUrl":"https://aws.amazon.com/what-is/data-analytics/?trk=faq_card","id":"faq-hub#what-is-data-analytics","category":"Analytics","primaryCTA":"https://portal.aws.amazon.com/gp/aws/developer/registration/index.html?pg=what_is_header","headline":"What is Data Analytics?"},"metadata":{"tags":[{"id":"GLOBAL#tech-category#analytics","name":"Analytics","namespaceId":"GLOBAL#tech-category","description":"Analytics","metadata":{}}]}}]},"metadata":{"auth":{},"testAttributes":{}},"context":{"page":{"pageUrl":"https://aws.amazon.com/what-is/data-analytics/"},"environment":{"stage":"prod","region":"us-east-1"},"sdkVersion":"1.0.129"},"refMap":{"manifest.js":"289765ed09","what-is-header.js":"2e0d22c000","what-is-header.rtl.css":"ccf4035484","what-is-header.css":"ce47058367","what-is-header.css.js":"004a4704e8","what-is-header.rtl.css.js":"f687973e4f"},"settings":{"templateMappings":{"category":"category","headline":"headline","primaryCTA":"primaryCTA","primaryCTAText":"primaryCTAText","primaryBreadcrumbText":"primaryBreadcrumbText","primaryBreadcrumbURL":"primaryBreadcrumbURL"}}}</script> <div data-eb-tpl-root="" data-reactroot=""> <div class="eb-what-is-header lb-bg-left-top-cover lb-mid-pad lb-none-v-margin lb-grid" data-eb-item-id="faq-hub#what-is-data-analytics" data-eb-tags="[{&quot;id&quot;:&quot;GLOBAL#tech-category#analytics&quot;,&quot;name&quot;:&quot;Analytics&quot;,&quot;namespaceId&quot;:&quot;GLOBAL#tech-category&quot;,&quot;description&quot;:&quot;Analytics&quot;,&quot;metadata&quot;:{}}]"> <script type="application/ld+json">{"@context":"https://schema.org","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"name":"What is Cloud Computing?","item":"https://aws.amazon.com/what-is-cloud-computing/"},{"@type":"ListItem","position":2,"name":"Cloud Computing Concepts Hub","item":"https://aws.amazon.com/what-is/"},{"@type":"ListItem","position":3,"name":"Analytics","item":"https://aws.amazon.com/big-data/datalakes-and-analytics/"}]}</script> <div class="lb-row lb-row-max-large lb-snap"> <div class="lb-col lb-tiny-24 lb-mid-24"> <div class="lb-txt-p-cobalt lb-rtxt"> <ul class="eb-breadcrumbs"> <li class="eb-breadcrumbs-item"><a class="eb-breadcrumbs-link" title="What is Cloud Computing?" href="https://aws.amazon.com/what-is-cloud-computing/">What is Cloud Computing?</a></li> <li class="eb-breadcrumbs-item"><a class="eb-breadcrumbs-link" title="Cloud Computing Concepts Hub" href="https://aws.amazon.com/what-is/">Cloud Computing Concepts Hub</a></li> <li class="eb-breadcrumbs-item"><a class="eb-breadcrumbs-tags eb-breadcrumbs-link" href="/big-data/datalakes-and-analytics/">Analytics</a></li> </ul> </div> <h1 class="eb-headline lb-txt-none lb-h1 lb-title">What is Data Analytics?</h1> <br> <div class="lb-small-show lb-mid-iblock lb-large-iblock lb-xlarge-iblock lb-btn"> <a class="lb-btn-p-primary" href="https://portal.aws.amazon.com/gp/aws/developer/registration/index.html?pg=what_is_header" role="button" rel="noopener" target="_blank"><span>Create an AWS Account</span></a> </div> <div class="lb-none-pad lb-none-v-margin lb-grid lb-row lb-row-max-large lb-snap" style="margin-top:10px;margin-bottom:0px"> <div class="lb-col lb-tiny-24 lb-mid-8"></div> <div class="lb-col lb-tiny-24 lb-mid-8"></div> <div class="lb-col lb-tiny-24 lb-mid-8"></div> </div> </div> </div> </div> </div> </div> </div> <div class="lb-tiny-hide lb-small-show lb-mid-show lb-large-show lb-xlarge-show lb-none-pad lb-none-v-margin lb-box"> <div class="lb-none-pad lb-small-v-margin lb-xb-grid-wrap" style="margin-bottom:0px;"> <div class="lb-xb-grid lb-row-max-large lb-xb-equal-height lb-snap lb-tiny-xb-1 lb-small-xb-2 lb-large-xb-4"> <div class="lb-xbcol"> <div class="lb-border-p data-attr-wrapper lb-box lb-has-link" data-da-type="ha" data-da-channel="ha" data-da-language="en" data-da-placement="ed1" data-da-campaign="aware_what-is-seo-pages" data-da-content="awssm-11373_aware" data-da-trk="66718872-dffb-4b81-984b-020c7f38d305~ha_awssm-11373_aware"> <a href="/free/analytics/?sc_icampaign=aware_what-is-seo-pages&amp;sc_ichannel=ha&amp;sc_icontent=awssm-11373_aware&amp;sc_iplace=ed&amp;trk=66718872-dffb-4b81-984b-020c7f38d305~ha_awssm-11373_aware"> <figure class="lb-none-v-margin lb-img"> <div> <img src="https://d1.awsstatic.com/Free-Tier_64.f14d1a130811a363bbea22de4bb589f9ab801dfb.png" alt=" " title=" " class="cq-dd-image"> </div> </figure> <div class="lb-txt-bold lb-txt-none lb-txt-blue-600 lb-small-v-margin lb-txt" style="margin-bottom:0px;"> Explore Free Analytics Offers </div> <div class="lb-txt-none lb-txt-squid lb-txt-13 lb-txt"> View free offers for Analytics services in the cloud </div> </a> </div> </div> <div class="lb-xbcol"> <div class="lb-border-p data-attr-wrapper lb-box lb-has-link" data-da-type="ha" data-da-channel="ha" data-da-language="en" data-da-placement="ed2" data-da-campaign="aware_what-is-seo-pages" data-da-content="awssm-11373_aware" data-da-trk="edb040cb-3307-4428-90ec-83f484dc26bd~ha_awssm-11373_aware"> <a href="/big-data/datalakes-and-analytics/?sc_icampaign=aware_what-is-seo-pages&amp;sc_ichannel=ha&amp;sc_icontent=awssm-11373_aware&amp;sc_iplace=ed&amp;trk=edb040cb-3307-4428-90ec-83f484dc26bd~ha_awssm-11373_aware"> <figure class="lb-none-v-margin lb-img"> <div> <img src="https://d1.awsstatic.com/Analytics_64.d2ebfcc8f81fb8a9650aee52af1fad26ac2c42d8.png" alt=" " title=" " class="cq-dd-image"> </div> </figure> <div class="lb-txt-bold lb-txt-none lb-txt-blue-600 lb-small-v-margin lb-txt" style="margin-bottom:0px;"> Check out Analytics Services </div> <div class="lb-txt-none lb-txt-squid lb-txt-13 lb-txt"> Innovate faster with the most comprehensive set of Analytics services </div> </a> </div> </div> <div class="lb-xbcol"> <div class="lb-border-p data-attr-wrapper lb-box lb-has-link" data-da-type="ha" data-da-channel="ha" data-da-language="en" data-da-placement="ed3" data-da-campaign="aware_what-is-seo-pages" data-da-content="awssm-11373_aware" data-da-trk="e1ae19ca-c231-4042-ac7b-15af1f495bfe~ha_awssm-11373_aware"> <a href="/training/learn-about/data-analytics/?sc_icampaign=aware_what-is-seo-pages&amp;sc_ichannel=ha&amp;sc_icontent=awssm-11373_aware&amp;sc_iplace=ed&amp;trk=e1ae19ca-c231-4042-ac7b-15af1f495bfe~ha_awssm-11373_aware"> <figure class="lb-none-v-margin lb-img"> <div> <img src="https://d1.awsstatic.com/Learn-More_64.dc6d454a262eb880a9dd0d8cb283dca5bc00cb18.png" alt=" " title=" " class="cq-dd-image"> </div> </figure> <div class="lb-txt-bold lb-txt-none lb-txt-blue-600 lb-small-v-margin lb-txt" style="margin-bottom:0px;"> Browse Analytics Trainings </div> <div class="lb-txt-none lb-txt-squid lb-txt-13 lb-txt"> Get started on Analytics training with content built by AWS experts </div> </a> </div> </div> <div class="lb-xbcol"> <div class="lb-border-p data-attr-wrapper lb-box lb-has-link" data-da-type="ha" data-da-channel="ha" data-da-language="en" data-da-placement="ed4" data-da-campaign="aware_what-is-seo-pages" data-da-content="awssm-11373_aware" data-da-trk="e11c65a7-7ed5-412a-9acb-7172728db26b~ha_awssm-11373_aware"> <a href="/blogs/?awsf.blog-master-category=category%2523analytics&amp;sc_icampaign=aware_what-is-seo-pages&amp;sc_ichannel=ha&amp;sc_icontent=awssm-11373_aware&amp;sc_iplace=ed&amp;trk=e11c65a7-7ed5-412a-9acb-7172728db26b~ha_awssm-11373_aware"> <figure class="lb-none-v-margin lb-img"> <div> <img src="https://d1.awsstatic.com/All-Products_64.78a4c2cdfdd82b7abc3fda6b44371491bdf5963e.png" alt=" " title=" " class="cq-dd-image"> </div> </figure> <div class="lb-txt-bold lb-txt-none lb-txt-blue-600 lb-small-v-margin lb-txt" style="margin-bottom:0px;"> Read Analytics Blogs </div> <div class="lb-txt-none lb-txt-squid lb-txt-13 lb-txt"> Read about the latest AWS Analytics product news and best practices </div> </a> </div> </div> </div> </div> </div> <div data-eb-slot="what-is-faq" data-eb-slot-meta="{'version':'1.0','slotId':'what-is-faq','experienceId':'6e591111-42de-4afc-8fa8-a8dab062f66f','allowBlank':false,'hasAltExp':false,'isRTR':false,'filters':{'limit':25,'query':'tag \u003d \'faq-collections#data-analytics\''}}"> <div data-eb-tpl-n="awsm-rt/rt-faq" data-eb-tpl-v="1.0.0" data-eb-ce="" data-eb-c-scope="what-is-faq" data-eb-d-scope="DIRECTORIES" data-eb-locale="en-US" data-eb-73154b46="" data-eb-ssr-ce="" data-eb-tpl-ns="awsmRT" data-eb-hydrated="pending"> <style>[data-eb-73154b46] .eb-faq{display:grid;justify-content:center;grid-template-columns:100%;grid-gap:20px}@media only screen and (min-width:769px){[data-eb-73154b46] .eb-faq{grid-template-columns:250px 518px}}@media only screen and (min-width:980px){[data-eb-73154b46] .eb-faq{grid-template-columns:250px 650px}}@media only screen and (min-width:1200px){[data-eb-73154b46] .eb-faq{grid-template-columns:250px 870px}}[data-eb-73154b46] .eb-faq .eb-bg-dark{background-color:#fbfbfb}[data-eb-73154b46] .eb-faq .eb-sticky-sidebar{height:100%;display:none}@media only screen and (min-width:769px){[data-eb-73154b46] .eb-faq .eb-sticky-sidebar{display:block}}[data-eb-73154b46] .eb-faq .eb-sidebar-wrapper{position:sticky;top:130px;margin-top:30px;margin-bottom:30px}[data-eb-73154b46] .eb-faq .eb-sidebar-content{transition:opacity .2s ease-in .1s;opacity:1;padding:0 15px}[data-eb-73154b46] .eb-faq .eb-sidebar-link{font-family:AmazonEmberBold,Helvetica Neue Bold,Helvetica Neue,Helvetica,Arial,sans-serif;position:relative;color:#333;text-decoration:none;user-select:none;line-height:1.3;margin-top:15px;padding-left:30px;width:250px}[data-eb-73154b46] .eb-faq .eb-sidebar-link.eb-active{color:#0972d3}</style> <script type="application/json">{"data":{"items":[{"fields":{"faqQuestion":"What is data analytics?","faqAnswer":"<p>Data analytics converts raw data into actionable insights. It includes a range of tools, technologies, and processes used to find trends and solve problems by using data. Data analytics can shape business processes, improve decision-making, and foster business growth.</p>","id":"seo-faq-pairs#what-is-data-analytics","customSort":"1"},"metadata":{"tags":[{"id":"seo-faq-pairs#faq-collections#data-analytics","name":"data-analytics","namespaceId":"seo-faq-pairs#faq-collections","description":"<p>data analytics</p>","metadata":{}}]}},{"fields":{"faqQuestion":"Why is data analytics important?","faqAnswer":"<p>Data analytics helps companies gain more visibility and a deeper understanding of their processes and services. It gives them detailed insights into the customer experience and customer problems. By shifting the paradigm beyond data to connect insights with action, companies can create personalized customer experiences, build related digital products, optimize operations, and increase employee productivity.</p>","id":"seo-faq-pairs#why-is-data-analytics-important","customSort":"2"},"metadata":{"tags":[{"id":"seo-faq-pairs#faq-collections#data-analytics","name":"data-analytics","namespaceId":"seo-faq-pairs#faq-collections","description":"<p>data analytics</p>","metadata":{}}]}},{"fields":{"faqQuestion":"What is big data analytics?","faqAnswer":"<p>Big data describes large sets of diverse data—structured, unstructured, and semi-structured—that are continuously generated at high speed and in high volumes. Big data is typically measured in terabytes or petabytes. One petabyte is equal to 1,000,000 gigabytes. To put this in perspective, consider that a single HD movie contains around 4 gigabytes of data. One petabyte is the equivalent of 250,000 films. Large datasets measure anywhere from hundreds to thousands to millions of petabytes.</p> \n<p>Big data analytics is the process of finding patterns, trends, and relationships in massive datasets. These complex analytics require specific tools and technologies, computational power, and data storage that support the scale.</p>","id":"seo-faq-pairs#what-is-big-data-analytics","customSort":"3"},"metadata":{"tags":[{"id":"seo-faq-pairs#faq-collections#data-analytics","name":"data-analytics","namespaceId":"seo-faq-pairs#faq-collections","description":"<p>data analytics</p>","metadata":{}}]}},{"fields":{"faqQuestion":"How does big data analytics work?","faqAnswer":"<div> \n <p style=\"margin-left:0in; margin-right:0in\">Big data analytics follows five steps to analyze any large datasets:&nbsp;</p> \n <ol> \n <li>Data collection</li> \n <li>Data storage</li> \n <li>Data processing</li> \n <li>Data cleansing</li> \n <li>Data analysis</li> \n </ol> \n <h3 style=\"margin-left:0in; margin-right:0in\">Data collection</h3> \n <p style=\"margin-left:0in; margin-right:0in\">This includes identifying data sources and collecting data from them. Data collection follows ETL or ELT processes.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">ETL – Extract Transform Load</h4> \n <p style=\"margin-left:0in; margin-right:0in\">In ETL, the data generated is first transformed into a standard format and then loaded into storage.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">ELT – Extract Load Transform</h4> \n <p style=\"margin-left:0in; margin-right:0in\">In ELT, the data is first loaded into storage and then transformed into the required format.</p> \n <h3 style=\"margin-left:0in; margin-right:0in\">Data storage</h3> \n <p style=\"margin-left:0in; margin-right:0in\">Based on the complexity of data, data can be moved to storage such as cloud data warehouses or data lakes. Business intelligence tools can access it when needed.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">Comparison of data lakes with data warehouses</h4> \n <p style=\"margin-left:0in; margin-right:0in\">A <em>data warehouse</em> is a database optimized to analyze relational data coming from transactional systems and business applications. The data structure and schema are defined in advance to optimize for fast searching and reporting. Data is cleaned, enriched, and transformed to act as the “single source of truth” that users can trust. Data examples include customer profiles and product information.</p> \n <p style=\"margin-left:0in; margin-right:0in\">A <em>data lake</em> is different because it can store both structured and unstructured data without any further processing. The structure of the data or schema is not defined when data is captured; this means that you can store all of your data without careful design, which is particularly useful when the future use of the data is unknown. Data examples include social media content, IoT device data, and nonrelational data from mobile apps.</p> \n <p style=\"margin-left:0in; margin-right:0in\">Organizations typically require both data lakes and <a href=\"https://aws.amazon.com/data-warehouse/\" style=\"color:#0563c1; text-decoration:underline\">data warehouses</a> for data analytics. <a href=\"https://aws.amazon.com/lake-formation/\" style=\"color:#0563c1; text-decoration:underline\">AWS Lake Formation</a> and <a href=\"https://aws.amazon.com/redshift/\" style=\"color:#0563c1; text-decoration:underline\">Amazon Redshift</a> can take care of your data needs.</p> \n <h3 style=\"margin-left:0in; margin-right:0in\">Data processing</h3> \n <p style=\"margin-left:0in; margin-right:0in\">When data is in place, it has to be converted and organized to obtain accurate results from analytical queries. Different data processing options exist to do this. The choice of approach depends on the computational and analytical resources available for data processing.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">Centralized processing&nbsp;</h4> \n <p style=\"margin-left:0in; margin-right:0in\">All processing happens on a dedicated central server that hosts all the data.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">Distributed processing&nbsp;</h4> \n <p style=\"margin-left:0in; margin-right:0in\">Data is distributed and stored on different servers.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">Batch processing&nbsp;</h4> \n <p style=\"margin-left:0in; margin-right:0in\">Pieces of data accumulate over time and are processed in batches.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">Real-time processing<em>&nbsp;</em></h4> \n <p style=\"margin-left:0in; margin-right:0in\">Data is processed continually, with computational tasks finishing in seconds.&nbsp;</p> \n <h3 style=\"margin-left:0in; margin-right:0in\">Data cleansing</h3> \n <p style=\"margin-left:0in; margin-right:0in\">Data cleansing involves scrubbing for any errors such as duplications, inconsistencies, redundancies, or wrong formats.&nbsp; It’s also used to filter out any unwanted data for analytics.</p> \n <h3 style=\"margin-left:0in; margin-right:0in\">Data analysis</h3> \n <p style=\"margin-left:0in; margin-right:0in\">This is the step in which raw data is converted to actionable insights. The following are four types of data analytics:</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">1. Descriptive analytics</h4> \n <p style=\"margin-left:0in; margin-right:0in\">Data scientists analyze data to understand what happened or what is happening in the data environment. It is characterized by data visualization such as pie charts, bar charts, line graphs, tables, or generated narratives.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">2. Diagnostic analytics</h4> \n <p style=\"margin-left:0in; margin-right:0in\">Diagnostic analytics is a deep-dive or detailed data analytics process to understand why something happened. It is characterized by techniques such as drill-down, data discovery, data mining, and correlations. In each of these techniques, multiple data operations and transformations are used for analyzing raw data.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">3. Predictive analytics</h4> \n <p style=\"margin-left:0in; margin-right:0in\">Predictive analytics uses historical data to make accurate forecasts about future trends. It is characterized by techniques such as <a href=\"https://aws.amazon.com/what-is/machine-learning/\">machine learning</a>, forecasting, pattern matching, and predictive modeling. In each of these techniques, computers are trained to reverse engineer causality connections in the data.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">4. Prescriptive analytics</h4> \n <p style=\"margin-left:0in; margin-right:0in\">Prescriptive analytics takes predictive data to the next level. It not only predicts what is likely to happen but also suggests an optimum response to that outcome. It can analyze the potential implications of different choices and recommend the best course of action. It is characterized by graph analysis, simulation, complex event processing, neural networks, and recommendation engines.</p> \n</div>","id":"seo-faq-pairs#how-does-big-data-analytics-work","customSort":"4"},"metadata":{"tags":[{"id":"seo-faq-pairs#faq-collections#data-analytics","name":"data-analytics","namespaceId":"seo-faq-pairs#faq-collections","description":"<p>data analytics</p>","metadata":{}}]}},{"fields":{"faqQuestion":"What are the different data analytics techniques?","faqAnswer":"<div> \n <div>\n Many computing techniques are used in data analytics. The following are some of the most common ones:\n </div> \n <h3>Natural language processing</h3> \n <div>\n Natural language processing is the technology used to make computers understand and respond to spoken and written human language. Data analysts use this technique to process data like dictated notes, voice commands, and chat messages.\n </div> \n <h3>Text mining</h3> \n <div>\n Data analysts use text mining to identify trends in text data such as emails, tweets, researches, and blog posts. It can be used for sorting news content, customer feedback, and client emails.\n </div> \n <h3>Sensor data analysis</h3> \n <div>\n Sensor data analysis is the examination of the data generated by different sensors. It is used for predictive machine maintenance, shipment tracking, and other business processes where machines generate data.\n </div> \n <h3>Outlier analysis</h3> \n <div>\n Outlier analysis or anomaly detection identifies data points and events that deviate from the rest of the data.\n </div> \n</div>","id":"seo-faq-pairs#what-are-the-different-data-analytics-techniques","customSort":"5"},"metadata":{"tags":[{"id":"seo-faq-pairs#faq-collections#data-analytics","name":"data-analytics","namespaceId":"seo-faq-pairs#faq-collections","description":"<p>data analytics</p>","metadata":{}}]}},{"fields":{"faqQuestion":"Can data analytics be automated?","faqAnswer":"<div> \n <p>Yes, data analysts can automate and optimize processes. Automated data analytics is the practice of using computer systems to perform analytical tasks with little or no human intervention. These mechanisms vary in complexity; they range from simple scripts or lines of code to data analytics tools that perform data modeling, feature discovery, and statistical analysis.</p> \n <p>For example, a cybersecurity firm might use automation to gather data from large swathes of web activity, conduct further analysis, and then use data visualization to showcase results and support business decisions.</p> \n</div>","id":"seo-faq-pairs#can-data-analytics-be-automated","customSort":"6"},"metadata":{"tags":[{"id":"seo-faq-pairs#faq-collections#data-analytics","name":"data-analytics","namespaceId":"seo-faq-pairs#faq-collections","description":"<p>data analytics</p>","metadata":{}}]}},{"fields":{"faqQuestion":"Can data analytics be outsourced?","faqAnswer":"<div> \n <p>Yes, companies can bring in outside help to analyze data. Outsourcing data analytics allows the management and executive team to focus on other core operations of the business. Dedicated business analytics teams are experts in their field; they know the latest data analytics techniques and are experts in data management. This means that they can perform data analysis more efficiently, identify patterns, and successfully predict future trends. However, knowledge transfer and data confidentiality could present business challenges in outsourcing.</p> \n</div> \n<h3>Data analytics improves customer insight</h3> \n<div> \n <p>Data analytics can be conducted on datasets from various customer data sources such as the following:</p> \n <p>• Third-party customer surveys<br> • Customer purchase logs<br> • Social media activity<br> • Computer cookies<br> • Website or application statistics</p> \n <p>Analytics can reveal hidden information such as customer preferences, popular pages on a website, the length of time customers spend browsing, customer feedback, and interaction with website forms. This enables businesses to respond efficiently to customer needs and increase customer satisfaction.</p> \n <p><strong>Case study: How Nextdoor used data analytics to improve customer experience</strong></p> \n <p>Nextdoor&nbsp;is the neighborhood hub for trusted connections and the exchange of helpful information, goods, and services. Using the power of the local community, Nextdoor helps people lead happier and more meaningful lives. Nextdoor used Amazon analytics solutions to measure customer engagement and the efficacy of their recommendations. Data analytics enabled them to help customers build better connections and view more relevant content in real time.</p> \n</div> \n<h3>Data analytics informs effective marketing campaigns</h3> \n<div> \n <p>Data analytics eliminates guesswork from marketing, product development, content creation, and customer service. It allows companies to roll out targeted content and fine-tune it by analyzing real-time data. Data analytics also provides valuable insights into how marketing campaigns are performing. Targeting, message, and creatives can all be tweaked based on real-time analysis. Analytics can optimize marketing for more conversions and less ad waste.</p> \n <p><strong>Case study: How Zynga used data analytics to enhance marketing campaigns</strong></p> \n <p>Zynga&nbsp;is one of the world’s most successful mobile game companies, with hit games including <em>Words With Friends, Zynga Poker, and FarmVille</em>. These games have been installed by more than one billion players worldwide. Zynga’s revenue comes from in-app purchases, so they analyze real-time, in-game player action by using <a href=\"https://aws.amazon.com/managed-service-apache-flink/\">Amazon Managed Service for Apache Flink</a> to plan more effective in-game marketing campaigns.</p> \n</div> \n<h3>Data analytics increases operational efficiency</h3> \n<div> \n <p>Data analytics can help companies streamline their processes, reduce losses, and increase revenue. Predictive maintenance schedules, optimized staff rosters, and efficient supply chain management can exponentially improve business performance.</p> \n <p><strong>Case study: How BT Group used data analytics to streamline operations</strong></p> \n <p><a href=\"https://aws.amazon.com/managed-service-apache-flink/customers/\">BT Group</a> is the UK’s leading telecommunications and network, serving customers in 180 countries. BT Group’s network support team used <a href=\"https://aws.amazon.com/managed-service-apache-flink/\">Amazon Managed Service for Apache Flink</a> to obtain a real-time view of calls made across the UK on their network. Network support engineers and fault analysts use the system to spot, react, and successfully resolve problems in the network.</p> \n <p><strong>Case study: How Flutter used data analytics to accelerate gaming operations</strong></p> \n <p>Flutter Entertainment&nbsp;is one of the world's largest online sports and gaming providers. Their mission is to bring entertainment to over 14 million customers in a safe, responsible, and sustainable way. Over the last several years, Flutter has acquired more and more data from most source systems. The combination of volume and latency creates an ongoing challenge. <a href=\"https://aws.amazon.com/redshift/\">Amazon Redshift</a> helps Flutter scale with growing needs yet consistent end-user experience.</p> \n</div> \n<h3>Data analytics informs product development</h3> \n<div> \n <p>Organizations use data analytics to identify and prioritize new features for product development. They can analyze customer requirements, deliver more features in less time, and launch new products faster.</p> \n <p><strong>Case study: How GE used data analytics to accelerate product delivery</strong></p> \n <p>GE Digital is a subsidiary of General Electric. GE Digital has many software products and services in several different verticals. One product is called Proficy Manufacturing Data Cloud. Amazon Redshift empowers them to improve data transformation and data latency tremendously so that they are able to deliver more features to their customers.&nbsp;</p> \n</div> \n<h3>Data analytics supports the scaling of data operations</h3> \n<div> \n <p>Data analytics introduces automation in several data tasks such as migration, preparation, reporting, and integration. It removes manual inefficiencies and reduces the time and man hours required to complete data operations. This supports scaling and lets you expand new ideas quickly.</p> \n <p><strong>Case study: How FactSet used data analytics to streamline client integration processes</strong></p> \n <p>FactSet's mission is to be the leading open platform for both content and analytics. Moving data involves large processes, a number of different team members on the client side, and a number of individuals on the FactSet side. Any time there was an issue, it was hard to figure out at what part of the process the data movement went wrong. Amazon Redshift helped streamline the process and empower FactSet's clients to scale faster, and bring on more data to meet their needs.</p> \n</div>","id":"seo-faq-pairs#can-data-analytics-be-outsourced","customSort":"7"},"metadata":{"tags":[{"id":"seo-faq-pairs#faq-collections#data-analytics","name":"data-analytics","namespaceId":"seo-faq-pairs#faq-collections","description":"<p>data analytics</p>","metadata":{}}]}},{"fields":{"faqQuestion":"How is data analytics used in business?","faqAnswer":"<p style=\"margin-left:0in; margin-right:0in\">Businesses capture statistics, quantitative data, and information from multiple customer-facing and internal channels. But finding key insights takes careful analysis of a staggering amount of data. This is no small feat. Look at some examples of how data analytics and data science can add value to a business.</p> \n<h3 style=\"margin-left:0in; margin-right:0in\">Data analytics improves customer insight</h3> \n<p style=\"margin-left:0in; margin-right:0in\">Data analytics can be conducted on datasets from various customer data sources such as the following:</p> \n<ul> \n <li>Third-party customer surveys</li> \n <li>Customer purchase logs</li> \n <li>Social media activity</li> \n <li>Computer cookies</li> \n <li>Website or application statistics</li> \n</ul> \n<p style=\"margin-left:0in; margin-right:0in\">Analytics can reveal hidden information such as customer preferences, popular pages on a website, the length of time customers spend browsing, customer feedback, and interaction with website forms. This enables businesses to respond efficiently to customer needs and increase customer satisfaction.</p> \n<h4 style=\"margin-left:0in; margin-right:0in\">Case study: How Nextdoor used data analytics to improve customer experience</h4> \n<p style=\"margin-left:0in; margin-right:0in\"><a href=\"https://www.youtube.com/watch?v=xmZTPoiK_YA\" style=\"color:#0563c1; text-decoration:underline\">Nextdoor</a> is the neighborhood hub for trusted connections and the exchange of helpful information, goods, and services. Using the power of the local community, Nextdoor helps people lead happier and more meaningful lives.&nbsp;Nextdoor used <a href=\"https://aws.amazon.com/big-data/datalakes-and-analytics/\" style=\"color:#0563c1; text-decoration:underline\">Amazon analytics solutions</a> to measure customer engagement and the efficacy of their recommendations. Data analytics enabled them to help customers build better connections and view more relevant content in real time.</p> \n<h3 style=\"margin-left:0in; margin-right:0in\">Data analytics informs effective marketing campaigns&nbsp;</h3> \n<p style=\"margin-left:0in; margin-right:0in\">Data analytics eliminates guesswork from marketing, product development, content creation, and customer service. It allows companies to roll out targeted content and fine-tune it by analyzing real-time data.&nbsp;Data analytics also provides valuable insights into how marketing campaigns are performing. Targeting, message, and creatives can all be tweaked based on real-time analysis. Analytics can optimize marketing for more conversions and less ad waste.</p> \n<h4 style=\"margin-left:0in; margin-right:0in\">Case study: How Zynga used data analytics to enhance marketing campaigns</h4> \n<p style=\"margin-left:0in; margin-right:0in\"><a href=\"https://www.youtube.com/watch?v=PvxlF3A-Res\" style=\"color:#0563c1; text-decoration:underline\">Zynga</a> is one of the world’s most successful mobile game companies, with hit games including <em>Words With Friends</em>, <em>Zynga Poker</em>, and <em>FarmVille</em>. These games have been installed by more than one billion players worldwide.&nbsp;Zynga’s revenue comes from in-app purchases, so they analyze real-time, in-game player action by using <a href=\"https://aws.amazon.com/managed-service-apache-flink/\">Amazon Managed Service for Apache Flink</a> to plan more effective in-game marketing campaigns.</p> \n<h3 style=\"margin-left:0in; margin-right:0in\">Data analytics increases operational efficiency</h3> \n<p style=\"margin-left:0in; margin-right:0in\">Data analytics can help companies streamline their processes, reduce losses, and increase revenue. Predictive maintenance schedules, optimized staff rosters, and efficient supply chain management can exponentially improve business performance.</p> \n<h4 style=\"margin-left:0in; margin-right:0in\">Case study: How BT Group used data analytics to streamline operations</h4> \n<p style=\"margin-left:0in; margin-right:0in\"><a href=\"https://aws.amazon.com/managed-service-apache-flink/customers/\" style=\"color:#0563c1; text-decoration:underline\">BT Group</a> is the UK’s leading telecommunications and network, serving customers in 180 countries. BT Group’s network support team used <a href=\"https://aws.amazon.com/managed-service-apache-flink/\">Amazon Managed Service for Apache Flink</a> to obtain a real-time view of calls made across the UK on their network. Network support engineers and fault analysts use the system to spot, react, and successfully resolve problems in the network.</p> \n<h4 style=\"margin-left:0in; margin-right:0in\">Case study: How Flutter used data analytics to accelerate gaming operations</h4> \n<p style=\"margin-left:0in; margin-right:0in\"><a href=\"https://www.youtube.com/watch?v=7hkZ9mMfV2E\" style=\"color:#0563c1; text-decoration:underline\">Flutter Entertainment</a> is one of the world's largest online sports and gaming providers. Their mission is to bring entertainment to over 14 million customers in a safe, responsible, and sustainable way. Over the last several years, Flutter has acquired more and more data from most source systems. The combination of volume and latency creates an ongoing challenge. <a href=\"https://aws.amazon.com/redshift/\" style=\"color:#0563c1; text-decoration:underline\">Amazon Redshift</a> helps Flutter scale with growing needs yet consistent end-user experience.</p> \n<h3 style=\"margin-left:0in; margin-right:0in\">Data analytics informs product development</h3> \n<p style=\"margin-left:0in; margin-right:0in\">Organizations use data analytics to identify and prioritize new features for product development. They can analyze customer requirements, deliver more features in less time, and launch new products faster.</p> \n<h4 style=\"margin-left:0in; margin-right:0in\">Case study: How GE used data analytics to accelerate product delivery</h4> \n<p style=\"margin-left:0in; margin-right:0in\"><a href=\"https://www.youtube.com/watch?v=-AwJVDJy_T8\" style=\"color:#0563c1; text-decoration:underline\">GE Digital</a> is a subsidiary of General Electric. GE Digital has many software products and services in several different verticals. One product is called Proficy Manufacturing Data Cloud.</p> \n<p style=\"margin-left:0in; margin-right:0in\">Amazon Redshift empowers them to improve data transformation and data latency tremendously so that they are able to deliver more features to their customers.</p> \n<h3 style=\"margin-left:0in; margin-right:0in\">Data analytics supports the scaling of data operations</h3> \n<p style=\"margin-left:0in; margin-right:0in\">Data analytics introduces automation in several data tasks such as migration, preparation, reporting, and integration. It removes manual inefficiencies and reduces the time and man hours required to complete data operations. This supports scaling and lets you expand new ideas quickly.</p> \n<h4 style=\"margin-left:0in; margin-right:0in\">Case study: How FactSet used data analytics to streamline client integration processes</h4> \n<p style=\"margin-left:0in; margin-right:0in\"><a href=\"https://www.youtube.com/watch?v=Wb-jODpZEMk\" style=\"color:#0563c1; text-decoration:underline\">FactSet's</a> mission is to be the leading open platform for both content and analytics. Moving data involves large processes, a number of different team members on the client side, and a number of individuals on the FactSet side. Any time there was an issue, it was hard to figure out at what part of the process the data movement went wrong. Amazon Redshift helped streamline the process and empower FactSet's clients to scale faster, and bring on more data to meet their needs.</p>","id":"seo-faq-pairs#how-is-data-analytics-used-in-business","customSort":"8"},"metadata":{"tags":[{"id":"seo-faq-pairs#faq-collections#data-analytics","name":"data-analytics","namespaceId":"seo-faq-pairs#faq-collections","description":"<p>data analytics</p>","metadata":{}}]}},{"fields":{"faqQuestion":"How can AWS help with data analytics?","faqAnswer":"<p style=\"margin-left:0in; margin-right:0in\">AWS offers comprehensive, secure, scalable, and cost-effective data analytics services. AWS analytics services fit all data analytics needs and enable organizations of all sizes and industries to reinvent their business with data. AWS offers purpose-built services that provide the best price-performance: data movement, data storage, data lakes, big data analytics, machine learning, and everything in between.&nbsp;</p> \n<ul> \n <li><a href=\"https://aws.amazon.com/managed-service-apache-flink/\">Amazon Managed Service for Apache Flink</a> is the streamlined way to transform and analyze streaming data in real time with Apache Flink. It provides built-in functions to filter, aggregate, and transform streaming data for advanced analytics.</li> \n <li><a href=\"https://aws.amazon.com/redshift/\" style=\"color:#0563c1; text-decoration:underline\">Amazon Redshift</a> lets you query and combine exabytes of structured and semi-structured data across your data warehouse, operational database, and data lake.</li> \n <li><a href=\"https://aws.amazon.com/quicksight/\" style=\"color:#0563c1; text-decoration:underline\">Amazon QuickSight</a> is a scalable, serverless, embeddable, machine learning-powered business intelligence (BI) service built for the cloud. By using QuickSight, you can easily create and publish interactive BI dashboards that include machine learning-powered insights.</li> \n <li><a href=\"https://aws.amazon.com/opensearch-service/\" style=\"color:#0563c1; text-decoration:underline\">Amazon OpenSearch Service</a> makes it easy to perform interactive log analytics, real-time application monitoring, website search, and more.</li> \n</ul> \n<p style=\"margin-left:0in; margin-right:0in\">You can start your digital transformation journey with us using the following:</p> \n<ul> \n <li><a href=\"https://aws.amazon.com/executive-insights/content/becoming-a-data-driven-organization/\" style=\"color:#0563c1; text-decoration:underline\">AWS D2E program</a> – A partnership with AWS to move faster, with greater precision, and a far more ambitious scope.</li> \n</ul> \n<p style=\"margin-left:0in; margin-right:0in\"><a href=\"https://portal.aws.amazon.com/gp/aws/developer/registration/index.html\" style=\"color:#0563c1; text-decoration:underline\">Sign up</a> for a free account, or <a href=\"https://aws.amazon.com/contact-us/\" style=\"color:#0563c1; text-decoration:underline\">contact us</a> to learn more.</p>","id":"seo-faq-pairs#how-can-aws-help-with-data-analytics","customSort":"9"},"metadata":{"tags":[{"id":"seo-faq-pairs#faq-collections#data-analytics","name":"data-analytics","namespaceId":"seo-faq-pairs#faq-collections","description":"<p>data analytics</p>","metadata":{}}]}}]},"metadata":{"auth":{},"pagination":{"empty":false,"present":true},"testAttributes":{}},"context":{"page":{"pageUrl":"https://aws.amazon.com/what-is/data-analytics/"},"environment":{"stage":"prod","region":"us-east-1"},"sdkVersion":"1.0.129"},"refMap":{"manifest.js":"3dea65b485","rt-faq.js":"003db38f04","rt-faq.css":"b00bda11a1","rt-faq.css.js":"0af1d62724","rt-faq.rtl.css":"f26a77ea1d","rt-faq.rtl.css.js":"efb444c1ed"},"settings":{"templateMappings":{"question":"faqQuestion","answer":"faqAnswer"}}}</script> <div data-eb-tpl-root="" data-reactroot=""> <div class="eb-faq"> <script type="application/ld+json">{"@context":"https://schema.org","@type":"FAQPage","mainEntity":[[{"@type":"Question","name":"What is data analytics?","acceptedAnswer":{"@type":"Answer","text":"<p>Data analytics converts raw data into actionable insights. It includes a range of tools, technologies, and processes used to find trends and solve problems by using data. Data analytics can shape business processes, improve decision-making, and foster business growth.</p>"}},{"@type":"Question","name":"Why is data analytics important?","acceptedAnswer":{"@type":"Answer","text":"<p>Data analytics helps companies gain more visibility and a deeper understanding of their processes and services. It gives them detailed insights into the customer experience and customer problems. By shifting the paradigm beyond data to connect insights with action, companies can create personalized customer experiences, build related digital products, optimize operations, and increase employee productivity.</p>"}},{"@type":"Question","name":"What is big data analytics?","acceptedAnswer":{"@type":"Answer","text":"<p>Big data describes large sets of diverse data—structured, unstructured, and semi-structured—that are continuously generated at high speed and in high volumes. Big data is typically measured in terabytes or petabytes. One petabyte is equal to 1,000,000 gigabytes. To put this in perspective, consider that a single HD movie contains around 4 gigabytes of data. One petabyte is the equivalent of 250,000 films. Large datasets measure anywhere from hundreds to thousands to millions of petabytes.</p> \n<p>Big data analytics is the process of finding patterns, trends, and relationships in massive datasets. These complex analytics require specific tools and technologies, computational power, and data storage that support the scale.</p>"}},{"@type":"Question","name":"How does big data analytics work?","acceptedAnswer":{"@type":"Answer","text":"<div> \n <p style=\"margin-left:0in; margin-right:0in\">Big data analytics follows five steps to analyze any large datasets:&nbsp;</p> \n <ol> \n <li>Data collection</li> \n <li>Data storage</li> \n <li>Data processing</li> \n <li>Data cleansing</li> \n <li>Data analysis</li> \n </ol> \n <h3 style=\"margin-left:0in; margin-right:0in\">Data collection</h3> \n <p style=\"margin-left:0in; margin-right:0in\">This includes identifying data sources and collecting data from them. Data collection follows ETL or ELT processes.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">ETL – Extract Transform Load</h4> \n <p style=\"margin-left:0in; margin-right:0in\">In ETL, the data generated is first transformed into a standard format and then loaded into storage.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">ELT – Extract Load Transform</h4> \n <p style=\"margin-left:0in; margin-right:0in\">In ELT, the data is first loaded into storage and then transformed into the required format.</p> \n <h3 style=\"margin-left:0in; margin-right:0in\">Data storage</h3> \n <p style=\"margin-left:0in; margin-right:0in\">Based on the complexity of data, data can be moved to storage such as cloud data warehouses or data lakes. Business intelligence tools can access it when needed.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">Comparison of data lakes with data warehouses</h4> \n <p style=\"margin-left:0in; margin-right:0in\">A <em>data warehouse</em> is a database optimized to analyze relational data coming from transactional systems and business applications. The data structure and schema are defined in advance to optimize for fast searching and reporting. Data is cleaned, enriched, and transformed to act as the “single source of truth” that users can trust. Data examples include customer profiles and product information.</p> \n <p style=\"margin-left:0in; margin-right:0in\">A <em>data lake</em> is different because it can store both structured and unstructured data without any further processing. The structure of the data or schema is not defined when data is captured; this means that you can store all of your data without careful design, which is particularly useful when the future use of the data is unknown. Data examples include social media content, IoT device data, and nonrelational data from mobile apps.</p> \n <p style=\"margin-left:0in; margin-right:0in\">Organizations typically require both data lakes and <a href=\"https://aws.amazon.com/data-warehouse/\" style=\"color:#0563c1; text-decoration:underline\">data warehouses</a> for data analytics. <a href=\"https://aws.amazon.com/lake-formation/\" style=\"color:#0563c1; text-decoration:underline\">AWS Lake Formation</a> and <a href=\"https://aws.amazon.com/redshift/\" style=\"color:#0563c1; text-decoration:underline\">Amazon Redshift</a> can take care of your data needs.</p> \n <h3 style=\"margin-left:0in; margin-right:0in\">Data processing</h3> \n <p style=\"margin-left:0in; margin-right:0in\">When data is in place, it has to be converted and organized to obtain accurate results from analytical queries. Different data processing options exist to do this. The choice of approach depends on the computational and analytical resources available for data processing.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">Centralized processing&nbsp;</h4> \n <p style=\"margin-left:0in; margin-right:0in\">All processing happens on a dedicated central server that hosts all the data.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">Distributed processing&nbsp;</h4> \n <p style=\"margin-left:0in; margin-right:0in\">Data is distributed and stored on different servers.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">Batch processing&nbsp;</h4> \n <p style=\"margin-left:0in; margin-right:0in\">Pieces of data accumulate over time and are processed in batches.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">Real-time processing<em>&nbsp;</em></h4> \n <p style=\"margin-left:0in; margin-right:0in\">Data is processed continually, with computational tasks finishing in seconds.&nbsp;</p> \n <h3 style=\"margin-left:0in; margin-right:0in\">Data cleansing</h3> \n <p style=\"margin-left:0in; margin-right:0in\">Data cleansing involves scrubbing for any errors such as duplications, inconsistencies, redundancies, or wrong formats.&nbsp; It’s also used to filter out any unwanted data for analytics.</p> \n <h3 style=\"margin-left:0in; margin-right:0in\">Data analysis</h3> \n <p style=\"margin-left:0in; margin-right:0in\">This is the step in which raw data is converted to actionable insights. The following are four types of data analytics:</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">1. Descriptive analytics</h4> \n <p style=\"margin-left:0in; margin-right:0in\">Data scientists analyze data to understand what happened or what is happening in the data environment. It is characterized by data visualization such as pie charts, bar charts, line graphs, tables, or generated narratives.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">2. Diagnostic analytics</h4> \n <p style=\"margin-left:0in; margin-right:0in\">Diagnostic analytics is a deep-dive or detailed data analytics process to understand why something happened. It is characterized by techniques such as drill-down, data discovery, data mining, and correlations. In each of these techniques, multiple data operations and transformations are used for analyzing raw data.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">3. Predictive analytics</h4> \n <p style=\"margin-left:0in; margin-right:0in\">Predictive analytics uses historical data to make accurate forecasts about future trends. It is characterized by techniques such as <a href=\"https://aws.amazon.com/what-is/machine-learning/\">machine learning</a>, forecasting, pattern matching, and predictive modeling. In each of these techniques, computers are trained to reverse engineer causality connections in the data.</p> \n <h4 style=\"margin-left:0in; margin-right:0in\">4. Prescriptive analytics</h4> \n <p style=\"margin-left:0in; margin-right:0in\">Prescriptive analytics takes predictive data to the next level. It not only predicts what is likely to happen but also suggests an optimum response to that outcome. It can analyze the potential implications of different choices and recommend the best course of action. It is characterized by graph analysis, simulation, complex event processing, neural networks, and recommendation engines.</p> \n</div>"}},{"@type":"Question","name":"What are the different data analytics techniques?","acceptedAnswer":{"@type":"Answer","text":"<div> \n <div>\n Many computing techniques are used in data analytics. The following are some of the most common ones:\n </div> \n <h3>Natural language processing</h3> \n <div>\n Natural language processing is the technology used to make computers understand and respond to spoken and written human language. Data analysts use this technique to process data like dictated notes, voice commands, and chat messages.\n </div> \n <h3>Text mining</h3> \n <div>\n Data analysts use text mining to identify trends in text data such as emails, tweets, researches, and blog posts. It can be used for sorting news content, customer feedback, and client emails.\n </div> \n <h3>Sensor data analysis</h3> \n <div>\n Sensor data analysis is the examination of the data generated by different sensors. It is used for predictive machine maintenance, shipment tracking, and other business processes where machines generate data.\n </div> \n <h3>Outlier analysis</h3> \n <div>\n Outlier analysis or anomaly detection identifies data points and events that deviate from the rest of the data.\n </div> \n</div>"}},{"@type":"Question","name":"Can data analytics be automated?","acceptedAnswer":{"@type":"Answer","text":"<div> \n <p>Yes, data analysts can automate and optimize processes. Automated data analytics is the practice of using computer systems to perform analytical tasks with little or no human intervention. These mechanisms vary in complexity; they range from simple scripts or lines of code to data analytics tools that perform data modeling, feature discovery, and statistical analysis.</p> \n <p>For example, a cybersecurity firm might use automation to gather data from large swathes of web activity, conduct further analysis, and then use data visualization to showcase results and support business decisions.</p> \n</div>"}},{"@type":"Question","name":"Can data analytics be outsourced?","acceptedAnswer":{"@type":"Answer","text":"<div> \n <p>Yes, companies can bring in outside help to analyze data. Outsourcing data analytics allows the management and executive team to focus on other core operations of the business. Dedicated business analytics teams are experts in their field; they know the latest data analytics techniques and are experts in data management. This means that they can perform data analysis more efficiently, identify patterns, and successfully predict future trends. However, knowledge transfer and data confidentiality could present business challenges in outsourcing.</p> \n</div> \n<h3>Data analytics improves customer insight</h3> \n<div> \n <p>Data analytics can be conducted on datasets from various customer data sources such as the following:</p> \n <p>• Third-party customer surveys<br> • Customer purchase logs<br> • Social media activity<br> • Computer cookies<br> • Website or application statistics</p> \n <p>Analytics can reveal hidden information such as customer preferences, popular pages on a website, the length of time customers spend browsing, customer feedback, and interaction with website forms. This enables businesses to respond efficiently to customer needs and increase customer satisfaction.</p> \n <p><strong>Case study: How Nextdoor used data analytics to improve customer experience</strong></p> \n <p>Nextdoor&nbsp;is the neighborhood hub for trusted connections and the exchange of helpful information, goods, and services. Using the power of the local community, Nextdoor helps people lead happier and more meaningful lives. Nextdoor used Amazon analytics solutions to measure customer engagement and the efficacy of their recommendations. Data analytics enabled them to help customers build better connections and view more relevant content in real time.</p> \n</div> \n<h3>Data analytics informs effective marketing campaigns</h3> \n<div> \n <p>Data analytics eliminates guesswork from marketing, product development, content creation, and customer service. It allows companies to roll out targeted content and fine-tune it by analyzing real-time data. Data analytics also provides valuable insights into how marketing campaigns are performing. Targeting, message, and creatives can all be tweaked based on real-time analysis. Analytics can optimize marketing for more conversions and less ad waste.</p> \n <p><strong>Case study: How Zynga used data analytics to enhance marketing campaigns</strong></p> \n <p>Zynga&nbsp;is one of the world’s most successful mobile game companies, with hit games including <em>Words With Friends, Zynga Poker, and FarmVille</em>. These games have been installed by more than one billion players worldwide. Zynga’s revenue comes from in-app purchases, so they analyze real-time, in-game player action by using <a href=\"https://aws.amazon.com/managed-service-apache-flink/\">Amazon Managed Service for Apache Flink</a> to plan more effective in-game marketing campaigns.</p> \n</div> \n<h3>Data analytics increases operational efficiency</h3> \n<div> \n <p>Data analytics can help companies streamline their processes, reduce losses, and increase revenue. Predictive maintenance schedules, optimized staff rosters, and efficient supply chain management can exponentially improve business performance.</p> \n <p><strong>Case study: How BT Group used data analytics to streamline operations</strong></p> \n <p><a href=\"https://aws.amazon.com/managed-service-apache-flink/customers/\">BT Group</a> is the UK’s leading telecommunications and network, serving customers in 180 countries. BT Group’s network support team used <a href=\"https://aws.amazon.com/managed-service-apache-flink/\">Amazon Managed Service for Apache Flink</a> to obtain a real-time view of calls made across the UK on their network. Network support engineers and fault analysts use the system to spot, react, and successfully resolve problems in the network.</p> \n <p><strong>Case study: How Flutter used data analytics to accelerate gaming operations</strong></p> \n <p>Flutter Entertainment&nbsp;is one of the world's largest online sports and gaming providers. Their mission is to bring entertainment to over 14 million customers in a safe, responsible, and sustainable way. Over the last several years, Flutter has acquired more and more data from most source systems. The combination of volume and latency creates an ongoing challenge. <a href=\"https://aws.amazon.com/redshift/\">Amazon Redshift</a> helps Flutter scale with growing needs yet consistent end-user experience.</p> \n</div> \n<h3>Data analytics informs product development</h3> \n<div> \n <p>Organizations use data analytics to identify and prioritize new features for product development. They can analyze customer requirements, deliver more features in less time, and launch new products faster.</p> \n <p><strong>Case study: How GE used data analytics to accelerate product delivery</strong></p> \n <p>GE Digital is a subsidiary of General Electric. GE Digital has many software products and services in several different verticals. One product is called Proficy Manufacturing Data Cloud. Amazon Redshift empowers them to improve data transformation and data latency tremendously so that they are able to deliver more features to their customers.&nbsp;</p> \n</div> \n<h3>Data analytics supports the scaling of data operations</h3> \n<div> \n <p>Data analytics introduces automation in several data tasks such as migration, preparation, reporting, and integration. It removes manual inefficiencies and reduces the time and man hours required to complete data operations. This supports scaling and lets you expand new ideas quickly.</p> \n <p><strong>Case study: How FactSet used data analytics to streamline client integration processes</strong></p> \n <p>FactSet's mission is to be the leading open platform for both content and analytics. Moving data involves large processes, a number of different team members on the client side, and a number of individuals on the FactSet side. Any time there was an issue, it was hard to figure out at what part of the process the data movement went wrong. Amazon Redshift helped streamline the process and empower FactSet's clients to scale faster, and bring on more data to meet their needs.</p> \n</div>"}},{"@type":"Question","name":"How is data analytics used in business?","acceptedAnswer":{"@type":"Answer","text":"<p style=\"margin-left:0in; margin-right:0in\">Businesses capture statistics, quantitative data, and information from multiple customer-facing and internal channels. But finding key insights takes careful analysis of a staggering amount of data. This is no small feat. Look at some examples of how data analytics and data science can add value to a business.</p> \n<h3 style=\"margin-left:0in; margin-right:0in\">Data analytics improves customer insight</h3> \n<p style=\"margin-left:0in; margin-right:0in\">Data analytics can be conducted on datasets from various customer data sources such as the following:</p> \n<ul> \n <li>Third-party customer surveys</li> \n <li>Customer purchase logs</li> \n <li>Social media activity</li> \n <li>Computer cookies</li> \n <li>Website or application statistics</li> \n</ul> \n<p style=\"margin-left:0in; margin-right:0in\">Analytics can reveal hidden information such as customer preferences, popular pages on a website, the length of time customers spend browsing, customer feedback, and interaction with website forms. This enables businesses to respond efficiently to customer needs and increase customer satisfaction.</p> \n<h4 style=\"margin-left:0in; margin-right:0in\">Case study: How Nextdoor used data analytics to improve customer experience</h4> \n<p style=\"margin-left:0in; margin-right:0in\"><a href=\"https://www.youtube.com/watch?v=xmZTPoiK_YA\" style=\"color:#0563c1; text-decoration:underline\">Nextdoor</a> is the neighborhood hub for trusted connections and the exchange of helpful information, goods, and services. Using the power of the local community, Nextdoor helps people lead happier and more meaningful lives.&nbsp;Nextdoor used <a href=\"https://aws.amazon.com/big-data/datalakes-and-analytics/\" style=\"color:#0563c1; text-decoration:underline\">Amazon analytics solutions</a> to measure customer engagement and the efficacy of their recommendations. Data analytics enabled them to help customers build better connections and view more relevant content in real time.</p> \n<h3 style=\"margin-left:0in; margin-right:0in\">Data analytics informs effective marketing campaigns&nbsp;</h3> \n<p style=\"margin-left:0in; margin-right:0in\">Data analytics eliminates guesswork from marketing, product development, content creation, and customer service. It allows companies to roll out targeted content and fine-tune it by analyzing real-time data.&nbsp;Data analytics also provides valuable insights into how marketing campaigns are performing. Targeting, message, and creatives can all be tweaked based on real-time analysis. Analytics can optimize marketing for more conversions and less ad waste.</p> \n<h4 style=\"margin-left:0in; margin-right:0in\">Case study: How Zynga used data analytics to enhance marketing campaigns</h4> \n<p style=\"margin-left:0in; margin-right:0in\"><a href=\"https://www.youtube.com/watch?v=PvxlF3A-Res\" style=\"color:#0563c1; text-decoration:underline\">Zynga</a> is one of the world’s most successful mobile game companies, with hit games including <em>Words With Friends</em>, <em>Zynga Poker</em>, and <em>FarmVille</em>. These games have been installed by more than one billion players worldwide.&nbsp;Zynga’s revenue comes from in-app purchases, so they analyze real-time, in-game player action by using <a href=\"https://aws.amazon.com/managed-service-apache-flink/\">Amazon Managed Service for Apache Flink</a> to plan more effective in-game marketing campaigns.</p> \n<h3 style=\"margin-left:0in; margin-right:0in\">Data analytics increases operational efficiency</h3> \n<p style=\"margin-left:0in; margin-right:0in\">Data analytics can help companies streamline their processes, reduce losses, and increase revenue. Predictive maintenance schedules, optimized staff rosters, and efficient supply chain management can exponentially improve business performance.</p> \n<h4 style=\"margin-left:0in; margin-right:0in\">Case study: How BT Group used data analytics to streamline operations</h4> \n<p style=\"margin-left:0in; margin-right:0in\"><a href=\"https://aws.amazon.com/managed-service-apache-flink/customers/\" style=\"color:#0563c1; text-decoration:underline\">BT Group</a> is the UK’s leading telecommunications and network, serving customers in 180 countries. BT Group’s network support team used <a href=\"https://aws.amazon.com/managed-service-apache-flink/\">Amazon Managed Service for Apache Flink</a> to obtain a real-time view of calls made across the UK on their network. Network support engineers and fault analysts use the system to spot, react, and successfully resolve problems in the network.</p> \n<h4 style=\"margin-left:0in; margin-right:0in\">Case study: How Flutter used data analytics to accelerate gaming operations</h4> \n<p style=\"margin-left:0in; margin-right:0in\"><a href=\"https://www.youtube.com/watch?v=7hkZ9mMfV2E\" style=\"color:#0563c1; text-decoration:underline\">Flutter Entertainment</a> is one of the world's largest online sports and gaming providers. Their mission is to bring entertainment to over 14 million customers in a safe, responsible, and sustainable way. Over the last several years, Flutter has acquired more and more data from most source systems. The combination of volume and latency creates an ongoing challenge. <a href=\"https://aws.amazon.com/redshift/\" style=\"color:#0563c1; text-decoration:underline\">Amazon Redshift</a> helps Flutter scale with growing needs yet consistent end-user experience.</p> \n<h3 style=\"margin-left:0in; margin-right:0in\">Data analytics informs product development</h3> \n<p style=\"margin-left:0in; margin-right:0in\">Organizations use data analytics to identify and prioritize new features for product development. They can analyze customer requirements, deliver more features in less time, and launch new products faster.</p> \n<h4 style=\"margin-left:0in; margin-right:0in\">Case study: How GE used data analytics to accelerate product delivery</h4> \n<p style=\"margin-left:0in; margin-right:0in\"><a href=\"https://www.youtube.com/watch?v=-AwJVDJy_T8\" style=\"color:#0563c1; text-decoration:underline\">GE Digital</a> is a subsidiary of General Electric. GE Digital has many software products and services in several different verticals. One product is called Proficy Manufacturing Data Cloud.</p> \n<p style=\"margin-left:0in; margin-right:0in\">Amazon Redshift empowers them to improve data transformation and data latency tremendously so that they are able to deliver more features to their customers.</p> \n<h3 style=\"margin-left:0in; margin-right:0in\">Data analytics supports the scaling of data operations</h3> \n<p style=\"margin-left:0in; margin-right:0in\">Data analytics introduces automation in several data tasks such as migration, preparation, reporting, and integration. It removes manual inefficiencies and reduces the time and man hours required to complete data operations. This supports scaling and lets you expand new ideas quickly.</p> \n<h4 style=\"margin-left:0in; margin-right:0in\">Case study: How FactSet used data analytics to streamline client integration processes</h4> \n<p style=\"margin-left:0in; margin-right:0in\"><a href=\"https://www.youtube.com/watch?v=Wb-jODpZEMk\" style=\"color:#0563c1; text-decoration:underline\">FactSet's</a> mission is to be the leading open platform for both content and analytics. Moving data involves large processes, a number of different team members on the client side, and a number of individuals on the FactSet side. Any time there was an issue, it was hard to figure out at what part of the process the data movement went wrong. Amazon Redshift helped streamline the process and empower FactSet's clients to scale faster, and bring on more data to meet their needs.</p>"}},{"@type":"Question","name":"How can AWS help with data analytics?","acceptedAnswer":{"@type":"Answer","text":"<p style=\"margin-left:0in; margin-right:0in\">AWS offers comprehensive, secure, scalable, and cost-effective data analytics services. AWS analytics services fit all data analytics needs and enable organizations of all sizes and industries to reinvent their business with data. AWS offers purpose-built services that provide the best price-performance: data movement, data storage, data lakes, big data analytics, machine learning, and everything in between.&nbsp;</p> \n<ul> \n <li><a href=\"https://aws.amazon.com/managed-service-apache-flink/\">Amazon Managed Service for Apache Flink</a> is the streamlined way to transform and analyze streaming data in real time with Apache Flink. It provides built-in functions to filter, aggregate, and transform streaming data for advanced analytics.</li> \n <li><a href=\"https://aws.amazon.com/redshift/\" style=\"color:#0563c1; text-decoration:underline\">Amazon Redshift</a> lets you query and combine exabytes of structured and semi-structured data across your data warehouse, operational database, and data lake.</li> \n <li><a href=\"https://aws.amazon.com/quicksight/\" style=\"color:#0563c1; text-decoration:underline\">Amazon QuickSight</a> is a scalable, serverless, embeddable, machine learning-powered business intelligence (BI) service built for the cloud. By using QuickSight, you can easily create and publish interactive BI dashboards that include machine learning-powered insights.</li> \n <li><a href=\"https://aws.amazon.com/opensearch-service/\" style=\"color:#0563c1; text-decoration:underline\">Amazon OpenSearch Service</a> makes it easy to perform interactive log analytics, real-time application monitoring, website search, and more.</li> \n</ul> \n<p style=\"margin-left:0in; margin-right:0in\">You can start your digital transformation journey with us using the following:</p> \n<ul> \n <li><a href=\"https://aws.amazon.com/executive-insights/content/becoming-a-data-driven-organization/\" style=\"color:#0563c1; text-decoration:underline\">AWS D2E program</a> – A partnership with AWS to move faster, with greater precision, and a far more ambitious scope.</li> \n</ul> \n<p style=\"margin-left:0in; margin-right:0in\"><a href=\"https://portal.aws.amazon.com/gp/aws/developer/registration/index.html\" style=\"color:#0563c1; text-decoration:underline\">Sign up</a> for a free account, or <a href=\"https://aws.amazon.com/contact-us/\" style=\"color:#0563c1; text-decoration:underline\">contact us</a> to learn more.</p>"}}]]}</script> <div class="eb-sticky-sidebar"> <div class="eb-sidebar-wrapper"> <div class="eb-sidebar-content"> <span data-eb-item-id="seo-faq-pairs#what-is-data-analytics"><a class="eb-sidebar-link lb-txt-bold lb-txt-none lb-txt-16 lb-txt eb-active" href="#seo-faq-pairs#what-is-data-analytics">What is data analytics?</a></span> <span data-eb-item-id="seo-faq-pairs#why-is-data-analytics-important"><a class="eb-sidebar-link lb-txt-bold lb-txt-none lb-txt-16 lb-txt" href="#seo-faq-pairs#why-is-data-analytics-important">Why is data analytics important?</a></span> <span data-eb-item-id="seo-faq-pairs#what-is-big-data-analytics"><a class="eb-sidebar-link lb-txt-bold lb-txt-none lb-txt-16 lb-txt" href="#seo-faq-pairs#what-is-big-data-analytics">What is big data analytics?</a></span> <span data-eb-item-id="seo-faq-pairs#how-does-big-data-analytics-work"><a class="eb-sidebar-link lb-txt-bold lb-txt-none lb-txt-16 lb-txt" href="#seo-faq-pairs#how-does-big-data-analytics-work">How does big data analytics work?</a></span> <span data-eb-item-id="seo-faq-pairs#what-are-the-different-data-analytics-techniques"><a class="eb-sidebar-link lb-txt-bold lb-txt-none lb-txt-16 lb-txt" href="#seo-faq-pairs#what-are-the-different-data-analytics-techniques">What are the different data analytics techniques?</a></span> <span data-eb-item-id="seo-faq-pairs#can-data-analytics-be-automated"><a class="eb-sidebar-link lb-txt-bold lb-txt-none lb-txt-16 lb-txt" href="#seo-faq-pairs#can-data-analytics-be-automated">Can data analytics be automated?</a></span> <span data-eb-item-id="seo-faq-pairs#can-data-analytics-be-outsourced"><a class="eb-sidebar-link lb-txt-bold lb-txt-none lb-txt-16 lb-txt" href="#seo-faq-pairs#can-data-analytics-be-outsourced">Can data analytics be outsourced?</a></span> <span data-eb-item-id="seo-faq-pairs#how-is-data-analytics-used-in-business"><a class="eb-sidebar-link lb-txt-bold lb-txt-none lb-txt-16 lb-txt" href="#seo-faq-pairs#how-is-data-analytics-used-in-business">How is data analytics used in business?</a></span> <span data-eb-item-id="seo-faq-pairs#how-can-aws-help-with-data-analytics"><a class="eb-sidebar-link lb-txt-bold lb-txt-none lb-txt-16 lb-txt" href="#seo-faq-pairs#how-can-aws-help-with-data-analytics">How can AWS help with data analytics?</a></span> </div> </div> </div> <div class="eb-faq-content"> <div class="lb-none-v-margin lb-grid lb-small-pad lb-grid" data-eb-item-id="seo-faq-pairs#what-is-data-analytics"> <div class="lb-row lb-row-max-large lb-snap eb-active"> <div class="lb-col lb-tiny-24 lb-mid-24"> <h2 class="lb-txt-bold lb-txt-none lb-txt-28 lb-h2 lb-title" id="seo-faq-pairs#what-is-data-analytics">What is data analytics?</h2> <div class="lb-txt-14 lb-rtxt"> <p>Data analytics converts raw data into actionable insights. It includes a range of tools, technologies, and processes used to find trends and solve problems by using data. Data analytics can shape business processes, improve decision-making, and foster business growth.</p> </div> </div> </div> </div> <div class="lb-none-v-margin lb-grid lb-small-pad eb-bg-dark" data-eb-item-id="seo-faq-pairs#why-is-data-analytics-important"> <div class="lb-row lb-row-max-large lb-snap"> <div class="lb-col lb-tiny-24 lb-mid-24"> <h2 class="lb-txt-bold lb-txt-none lb-txt-28 lb-h2 lb-title" id="seo-faq-pairs#why-is-data-analytics-important">Why is data analytics important?</h2> <div class="lb-txt-14 lb-rtxt"> <p>Data analytics helps companies gain more visibility and a deeper understanding of their processes and services. It gives them detailed insights into the customer experience and customer problems. By shifting the paradigm beyond data to connect insights with action, companies can create personalized customer experiences, build related digital products, optimize operations, and increase employee productivity.</p> </div> </div> </div> </div> <div class="lb-none-v-margin lb-grid lb-small-pad lb-grid" data-eb-item-id="seo-faq-pairs#what-is-big-data-analytics"> <div class="lb-row lb-row-max-large lb-snap"> <div class="lb-col lb-tiny-24 lb-mid-24"> <h2 class="lb-txt-bold lb-txt-none lb-txt-28 lb-h2 lb-title" id="seo-faq-pairs#what-is-big-data-analytics">What is big data analytics?</h2> <div class="lb-txt-14 lb-rtxt"> <p>Big data describes large sets of diverse data—structured, unstructured, and semi-structured—that are continuously generated at high speed and in high volumes. Big data is typically measured in terabytes or petabytes. One petabyte is equal to 1,000,000 gigabytes. To put this in perspective, consider that a single HD movie contains around 4 gigabytes of data. One petabyte is the equivalent of 250,000 films. Large datasets measure anywhere from hundreds to thousands to millions of petabytes.</p> <p>Big data analytics is the process of finding patterns, trends, and relationships in massive datasets. These complex analytics require specific tools and technologies, computational power, and data storage that support the scale.</p> </div> </div> </div> </div> <div class="lb-none-v-margin lb-grid lb-small-pad eb-bg-dark" data-eb-item-id="seo-faq-pairs#how-does-big-data-analytics-work"> <div class="lb-row lb-row-max-large lb-snap"> <div class="lb-col lb-tiny-24 lb-mid-24"> <h2 class="lb-txt-bold lb-txt-none lb-txt-28 lb-h2 lb-title" id="seo-faq-pairs#how-does-big-data-analytics-work">How does big data analytics work?</h2> <div class="lb-txt-14 lb-rtxt"> <div> <p>Big data analytics follows five steps to analyze any large datasets:&nbsp;</p> <ol> <li>Data collection</li> <li>Data storage</li> <li>Data processing</li> <li>Data cleansing</li> <li>Data analysis</li> </ol> <h3>Data collection</h3> <p>This includes identifying data sources and collecting data from them. Data collection follows ETL or ELT processes.</p> <h4>ETL – Extract Transform Load</h4> <p>In ETL, the data generated is first transformed into a standard format and then loaded into storage.</p> <h4>ELT – Extract Load Transform</h4> <p>In ELT, the data is first loaded into storage and then transformed into the required format.</p> <h3>Data storage</h3> <p>Based on the complexity of data, data can be moved to storage such as cloud data warehouses or data lakes. Business intelligence tools can access it when needed.</p> <h4>Comparison of data lakes with data warehouses</h4> <p>A <em>data warehouse</em> is a database optimized to analyze relational data coming from transactional systems and business applications. The data structure and schema are defined in advance to optimize for fast searching and reporting. Data is cleaned, enriched, and transformed to act as the “single source of truth” that users can trust. Data examples include customer profiles and product information.</p> <p>A <em>data lake</em> is different because it can store both structured and unstructured data without any further processing. The structure of the data or schema is not defined when data is captured; this means that you can store all of your data without careful design, which is particularly useful when the future use of the data is unknown. Data examples include social media content, IoT device data, and nonrelational data from mobile apps.</p> <p>Organizations typically require both data lakes and <a href="https://aws.amazon.com/data-warehouse/">data warehouses</a> for data analytics. <a href="https://aws.amazon.com/lake-formation/">AWS Lake Formation</a> and <a href="https://aws.amazon.com/redshift/">Amazon Redshift</a> can take care of your data needs.</p> <h3>Data processing</h3> <p>When data is in place, it has to be converted and organized to obtain accurate results from analytical queries. Different data processing options exist to do this. The choice of approach depends on the computational and analytical resources available for data processing.</p> <h4>Centralized processing&nbsp;</h4> <p>All processing happens on a dedicated central server that hosts all the data.</p> <h4>Distributed processing&nbsp;</h4> <p>Data is distributed and stored on different servers.</p> <h4>Batch processing&nbsp;</h4> <p>Pieces of data accumulate over time and are processed in batches.</p> <h4>Real-time processing<em>&nbsp;</em></h4> <p>Data is processed continually, with computational tasks finishing in seconds.&nbsp;</p> <h3>Data cleansing</h3> <p>Data cleansing involves scrubbing for any errors such as duplications, inconsistencies, redundancies, or wrong formats.&nbsp; It’s also used to filter out any unwanted data for analytics.</p> <h3>Data analysis</h3> <p>This is the step in which raw data is converted to actionable insights. The following are four types of data analytics:</p> <h4>1. Descriptive analytics</h4> <p>Data scientists analyze data to understand what happened or what is happening in the data environment. It is characterized by data visualization such as pie charts, bar charts, line graphs, tables, or generated narratives.</p> <h4>2. Diagnostic analytics</h4> <p>Diagnostic analytics is a deep-dive or detailed data analytics process to understand why something happened. It is characterized by techniques such as drill-down, data discovery, data mining, and correlations. In each of these techniques, multiple data operations and transformations are used for analyzing raw data.</p> <h4>3. Predictive analytics</h4> <p>Predictive analytics uses historical data to make accurate forecasts about future trends. It is characterized by techniques such as <a href="https://aws.amazon.com/what-is/machine-learning/">machine learning</a>, forecasting, pattern matching, and predictive modeling. In each of these techniques, computers are trained to reverse engineer causality connections in the data.</p> <h4>4. Prescriptive analytics</h4> <p>Prescriptive analytics takes predictive data to the next level. It not only predicts what is likely to happen but also suggests an optimum response to that outcome. It can analyze the potential implications of different choices and recommend the best course of action. It is characterized by graph analysis, simulation, complex event processing, neural networks, and recommendation engines.</p> </div> </div> </div> </div> </div> <div class="lb-none-v-margin lb-grid lb-small-pad lb-grid" data-eb-item-id="seo-faq-pairs#what-are-the-different-data-analytics-techniques"> <div class="lb-row lb-row-max-large lb-snap"> <div class="lb-col lb-tiny-24 lb-mid-24"> <h2 class="lb-txt-bold lb-txt-none lb-txt-28 lb-h2 lb-title" id="seo-faq-pairs#what-are-the-different-data-analytics-techniques">What are the different data analytics techniques?</h2> <div class="lb-txt-14 lb-rtxt"> <div> <div> Many computing techniques are used in data analytics. The following are some of the most common ones: </div> <h3>Natural language processing</h3> <div> Natural language processing is the technology used to make computers understand and respond to spoken and written human language. Data analysts use this technique to process data like dictated notes, voice commands, and chat messages. </div> <h3>Text mining</h3> <div> Data analysts use text mining to identify trends in text data such as emails, tweets, researches, and blog posts. It can be used for sorting news content, customer feedback, and client emails. </div> <h3>Sensor data analysis</h3> <div> Sensor data analysis is the examination of the data generated by different sensors. It is used for predictive machine maintenance, shipment tracking, and other business processes where machines generate data. </div> <h3>Outlier analysis</h3> <div> Outlier analysis or anomaly detection identifies data points and events that deviate from the rest of the data. </div> </div> </div> </div> </div> </div> <div class="lb-none-v-margin lb-grid lb-small-pad eb-bg-dark" data-eb-item-id="seo-faq-pairs#can-data-analytics-be-automated"> <div class="lb-row lb-row-max-large lb-snap"> <div class="lb-col lb-tiny-24 lb-mid-24"> <h2 class="lb-txt-bold lb-txt-none lb-txt-28 lb-h2 lb-title" id="seo-faq-pairs#can-data-analytics-be-automated">Can data analytics be automated?</h2> <div class="lb-txt-14 lb-rtxt"> <div> <p>Yes, data analysts can automate and optimize processes. Automated data analytics is the practice of using computer systems to perform analytical tasks with little or no human intervention. These mechanisms vary in complexity; they range from simple scripts or lines of code to data analytics tools that perform data modeling, feature discovery, and statistical analysis.</p> <p>For example, a cybersecurity firm might use automation to gather data from large swathes of web activity, conduct further analysis, and then use data visualization to showcase results and support business decisions.</p> </div> </div> </div> </div> </div> <div class="lb-none-v-margin lb-grid lb-small-pad lb-grid" data-eb-item-id="seo-faq-pairs#can-data-analytics-be-outsourced"> <div class="lb-row lb-row-max-large lb-snap"> <div class="lb-col lb-tiny-24 lb-mid-24"> <h2 class="lb-txt-bold lb-txt-none lb-txt-28 lb-h2 lb-title" id="seo-faq-pairs#can-data-analytics-be-outsourced">Can data analytics be outsourced?</h2> <div class="lb-txt-14 lb-rtxt"> <div> <p>Yes, companies can bring in outside help to analyze data. Outsourcing data analytics allows the management and executive team to focus on other core operations of the business. Dedicated business analytics teams are experts in their field; they know the latest data analytics techniques and are experts in data management. This means that they can perform data analysis more efficiently, identify patterns, and successfully predict future trends. However, knowledge transfer and data confidentiality could present business challenges in outsourcing.</p> </div> <h3>Data analytics improves customer insight</h3> <div> <p>Data analytics can be conducted on datasets from various customer data sources such as the following:</p> <p>• Third-party customer surveys<br> • Customer purchase logs<br> • Social media activity<br> • Computer cookies<br> • Website or application statistics</p> <p>Analytics can reveal hidden information such as customer preferences, popular pages on a website, the length of time customers spend browsing, customer feedback, and interaction with website forms. This enables businesses to respond efficiently to customer needs and increase customer satisfaction.</p> <p><strong>Case study: How Nextdoor used data analytics to improve customer experience</strong></p> <p>Nextdoor&nbsp;is the neighborhood hub for trusted connections and the exchange of helpful information, goods, and services. Using the power of the local community, Nextdoor helps people lead happier and more meaningful lives. Nextdoor used Amazon analytics solutions to measure customer engagement and the efficacy of their recommendations. Data analytics enabled them to help customers build better connections and view more relevant content in real time.</p> </div> <h3>Data analytics informs effective marketing campaigns</h3> <div> <p>Data analytics eliminates guesswork from marketing, product development, content creation, and customer service. It allows companies to roll out targeted content and fine-tune it by analyzing real-time data. Data analytics also provides valuable insights into how marketing campaigns are performing. Targeting, message, and creatives can all be tweaked based on real-time analysis. Analytics can optimize marketing for more conversions and less ad waste.</p> <p><strong>Case study: How Zynga used data analytics to enhance marketing campaigns</strong></p> <p>Zynga&nbsp;is one of the world’s most successful mobile game companies, with hit games including <em>Words With Friends, Zynga Poker, and FarmVille</em>. These games have been installed by more than one billion players worldwide. Zynga’s revenue comes from in-app purchases, so they analyze real-time, in-game player action by using <a href="https://aws.amazon.com/managed-service-apache-flink/">Amazon Managed Service for Apache Flink</a> to plan more effective in-game marketing campaigns.</p> </div> <h3>Data analytics increases operational efficiency</h3> <div> <p>Data analytics can help companies streamline their processes, reduce losses, and increase revenue. Predictive maintenance schedules, optimized staff rosters, and efficient supply chain management can exponentially improve business performance.</p> <p><strong>Case study: How BT Group used data analytics to streamline operations</strong></p> <p><a href="https://aws.amazon.com/managed-service-apache-flink/customers/">BT Group</a> is the UK’s leading telecommunications and network, serving customers in 180 countries. BT Group’s network support team used <a href="https://aws.amazon.com/managed-service-apache-flink/">Amazon Managed Service for Apache Flink</a> to obtain a real-time view of calls made across the UK on their network. Network support engineers and fault analysts use the system to spot, react, and successfully resolve problems in the network.</p> <p><strong>Case study: How Flutter used data analytics to accelerate gaming operations</strong></p> <p>Flutter Entertainment&nbsp;is one of the world's largest online sports and gaming providers. Their mission is to bring entertainment to over 14 million customers in a safe, responsible, and sustainable way. Over the last several years, Flutter has acquired more and more data from most source systems. The combination of volume and latency creates an ongoing challenge. <a href="https://aws.amazon.com/redshift/">Amazon Redshift</a> helps Flutter scale with growing needs yet consistent end-user experience.</p> </div> <h3>Data analytics informs product development</h3> <div> <p>Organizations use data analytics to identify and prioritize new features for product development. They can analyze customer requirements, deliver more features in less time, and launch new products faster.</p> <p><strong>Case study: How GE used data analytics to accelerate product delivery</strong></p> <p>GE Digital is a subsidiary of General Electric. GE Digital has many software products and services in several different verticals. One product is called Proficy Manufacturing Data Cloud. Amazon Redshift empowers them to improve data transformation and data latency tremendously so that they are able to deliver more features to their customers.&nbsp;</p> </div> <h3>Data analytics supports the scaling of data operations</h3> <div> <p>Data analytics introduces automation in several data tasks such as migration, preparation, reporting, and integration. It removes manual inefficiencies and reduces the time and man hours required to complete data operations. This supports scaling and lets you expand new ideas quickly.</p> <p><strong>Case study: How FactSet used data analytics to streamline client integration processes</strong></p> <p>FactSet's mission is to be the leading open platform for both content and analytics. Moving data involves large processes, a number of different team members on the client side, and a number of individuals on the FactSet side. Any time there was an issue, it was hard to figure out at what part of the process the data movement went wrong. Amazon Redshift helped streamline the process and empower FactSet's clients to scale faster, and bring on more data to meet their needs.</p> </div> </div> </div> </div> </div> <div class="lb-none-v-margin lb-grid lb-small-pad eb-bg-dark" data-eb-item-id="seo-faq-pairs#how-is-data-analytics-used-in-business"> <div class="lb-row lb-row-max-large lb-snap"> <div class="lb-col lb-tiny-24 lb-mid-24"> <h2 class="lb-txt-bold lb-txt-none lb-txt-28 lb-h2 lb-title" id="seo-faq-pairs#how-is-data-analytics-used-in-business">How is data analytics used in business?</h2> <div class="lb-txt-14 lb-rtxt"> <p>Businesses capture statistics, quantitative data, and information from multiple customer-facing and internal channels. But finding key insights takes careful analysis of a staggering amount of data. This is no small feat. Look at some examples of how data analytics and data science can add value to a business.</p> <h3>Data analytics improves customer insight</h3> <p>Data analytics can be conducted on datasets from various customer data sources such as the following:</p> <ul> <li>Third-party customer surveys</li> <li>Customer purchase logs</li> <li>Social media activity</li> <li>Computer cookies</li> <li>Website or application statistics</li> </ul> <p>Analytics can reveal hidden information such as customer preferences, popular pages on a website, the length of time customers spend browsing, customer feedback, and interaction with website forms. This enables businesses to respond efficiently to customer needs and increase customer satisfaction.</p> <h4>Case study: How Nextdoor used data analytics to improve customer experience</h4> <p><a href="https://www.youtube.com/watch?v=xmZTPoiK_YA">Nextdoor</a> is the neighborhood hub for trusted connections and the exchange of helpful information, goods, and services. Using the power of the local community, Nextdoor helps people lead happier and more meaningful lives.&nbsp;Nextdoor used <a href="https://aws.amazon.com/big-data/datalakes-and-analytics/">Amazon analytics solutions</a> to measure customer engagement and the efficacy of their recommendations. Data analytics enabled them to help customers build better connections and view more relevant content in real time.</p> <h3>Data analytics informs effective marketing campaigns&nbsp;</h3> <p>Data analytics eliminates guesswork from marketing, product development, content creation, and customer service. It allows companies to roll out targeted content and fine-tune it by analyzing real-time data.&nbsp;Data analytics also provides valuable insights into how marketing campaigns are performing. Targeting, message, and creatives can all be tweaked based on real-time analysis. Analytics can optimize marketing for more conversions and less ad waste.</p> <h4>Case study: How Zynga used data analytics to enhance marketing campaigns</h4> <p><a href="https://www.youtube.com/watch?v=PvxlF3A-Res">Zynga</a> is one of the world’s most successful mobile game companies, with hit games including <em>Words With Friends</em>, <em>Zynga Poker</em>, and <em>FarmVille</em>. These games have been installed by more than one billion players worldwide.&nbsp;Zynga’s revenue comes from in-app purchases, so they analyze real-time, in-game player action by using <a href="https://aws.amazon.com/managed-service-apache-flink/">Amazon Managed Service for Apache Flink</a> to plan more effective in-game marketing campaigns.</p> <h3>Data analytics increases operational efficiency</h3> <p>Data analytics can help companies streamline their processes, reduce losses, and increase revenue. Predictive maintenance schedules, optimized staff rosters, and efficient supply chain management can exponentially improve business performance.</p> <h4>Case study: How BT Group used data analytics to streamline operations</h4> <p><a href="https://aws.amazon.com/managed-service-apache-flink/customers/">BT Group</a> is the UK’s leading telecommunications and network, serving customers in 180 countries. BT Group’s network support team used <a href="https://aws.amazon.com/managed-service-apache-flink/">Amazon Managed Service for Apache Flink</a> to obtain a real-time view of calls made across the UK on their network. Network support engineers and fault analysts use the system to spot, react, and successfully resolve problems in the network.</p> <h4>Case study: How Flutter used data analytics to accelerate gaming operations</h4> <p><a href="https://www.youtube.com/watch?v=7hkZ9mMfV2E">Flutter Entertainment</a> is one of the world's largest online sports and gaming providers. Their mission is to bring entertainment to over 14 million customers in a safe, responsible, and sustainable way. Over the last several years, Flutter has acquired more and more data from most source systems. The combination of volume and latency creates an ongoing challenge. <a href="https://aws.amazon.com/redshift/">Amazon Redshift</a> helps Flutter scale with growing needs yet consistent end-user experience.</p> <h3>Data analytics informs product development</h3> <p>Organizations use data analytics to identify and prioritize new features for product development. They can analyze customer requirements, deliver more features in less time, and launch new products faster.</p> <h4>Case study: How GE used data analytics to accelerate product delivery</h4> <p><a href="https://www.youtube.com/watch?v=-AwJVDJy_T8">GE Digital</a> is a subsidiary of General Electric. GE Digital has many software products and services in several different verticals. One product is called Proficy Manufacturing Data Cloud.</p> <p>Amazon Redshift empowers them to improve data transformation and data latency tremendously so that they are able to deliver more features to their customers.</p> <h3>Data analytics supports the scaling of data operations</h3> <p>Data analytics introduces automation in several data tasks such as migration, preparation, reporting, and integration. It removes manual inefficiencies and reduces the time and man hours required to complete data operations. This supports scaling and lets you expand new ideas quickly.</p> <h4>Case study: How FactSet used data analytics to streamline client integration processes</h4> <p><a href="https://www.youtube.com/watch?v=Wb-jODpZEMk">FactSet's</a> mission is to be the leading open platform for both content and analytics. Moving data involves large processes, a number of different team members on the client side, and a number of individuals on the FactSet side. Any time there was an issue, it was hard to figure out at what part of the process the data movement went wrong. Amazon Redshift helped streamline the process and empower FactSet's clients to scale faster, and bring on more data to meet their needs.</p> </div> </div> </div> </div> <div class="lb-none-v-margin lb-grid lb-small-pad lb-grid" data-eb-item-id="seo-faq-pairs#how-can-aws-help-with-data-analytics"> <div class="lb-row lb-row-max-large lb-snap"> <div class="lb-col lb-tiny-24 lb-mid-24"> <h2 class="lb-txt-bold lb-txt-none lb-txt-28 lb-h2 lb-title" id="seo-faq-pairs#how-can-aws-help-with-data-analytics">How can AWS help with data analytics?</h2> <div class="lb-txt-14 lb-rtxt"> <p>AWS offers comprehensive, secure, scalable, and cost-effective data analytics services. AWS analytics services fit all data analytics needs and enable organizations of all sizes and industries to reinvent their business with data. AWS offers purpose-built services that provide the best price-performance: data movement, data storage, data lakes, big data analytics, machine learning, and everything in between.&nbsp;</p> <ul> <li><a href="https://aws.amazon.com/managed-service-apache-flink/">Amazon Managed Service for Apache Flink</a> is the streamlined way to transform and analyze streaming data in real time with Apache Flink. It provides built-in functions to filter, aggregate, and transform streaming data for advanced analytics.</li> <li><a href="https://aws.amazon.com/redshift/">Amazon Redshift</a> lets you query and combine exabytes of structured and semi-structured data across your data warehouse, operational database, and data lake.</li> <li><a href="https://aws.amazon.com/quicksight/">Amazon QuickSight</a> is a scalable, serverless, embeddable, machine learning-powered business intelligence (BI) service built for the cloud. By using QuickSight, you can easily create and publish interactive BI dashboards that include machine learning-powered insights.</li> <li><a href="https://aws.amazon.com/opensearch-service/">Amazon OpenSearch Service</a> makes it easy to perform interactive log analytics, real-time application monitoring, website search, and more.</li> </ul> <p>You can start your digital transformation journey with us using the following:</p> <ul> <li><a href="https://aws.amazon.com/executive-insights/content/becoming-a-data-driven-organization/">AWS D2E program</a> – A partnership with AWS to move faster, with greater precision, and a far more ambitious scope.</li> </ul> <p><a href="https://portal.aws.amazon.com/gp/aws/developer/registration/index.html">Sign up</a> for a free account, or <a href="https://aws.amazon.com/contact-us/">contact us</a> to learn more.</p> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div class="lb-grid" style="margin-top:0px; margin-bottom:20px;"> <div class="lb-row lb-row-max-large lb-snap"> <div class="lb-col lb-tiny-24 lb-mid-24"> <h2 id="Next_steps_on_AWS" class="lb-txt-bold lb-txt-none lb-txt-28 lb-small-v-margin lb-h2 lb-title" style="margin-top:30px; margin-bottom:0px;"> Next steps on AWS</h2> <div class="lb-none-pad lb-none-v-margin lb-grid lb-row lb-row-max-large lb-snap"> <div class="lb-col lb-tiny-24 lb-mid-8"> <figure class="lb-img"> <div style="padding-right:60px;"> <img src="https://d1.awsstatic.com/webteam/product-pages/Product-Page_Standard-Icons_01_Product-Features_SqInk.a8d5666758afc5121b4eb818ae18126031c4b61e.png" alt="" title="" class="cq-dd-image"> </div> </figure> <div class="lb-txt-bold lb-txt-none lb-txt-18 lb-txt"> Check out additional product-related resources </div> <a class="lb-txt-bold lb-txt-none lb-txt-blue-600 lb-txt" style="margin-bottom:15px;" href="/free/analytics/" target="_blank" rel="noopener noreferrer" data-trk-params="{&quot;trkOverrideWithQs&quot;:true}"> View Free Analytics Services&nbsp;<i class="icon-angle-double-right lb-after"></i></a> </div> <div class="lb-col lb-tiny-24 lb-mid-8"> <figure class="lb-img"> <div style="padding-right:60px;"> <img src="https://d1.awsstatic.com/webteam/product-pages/Product-Page_Standard-Icons_02_Sign-Up_SqInk.f43d5ddc9c43883eec6187f34c68155402b13312.png" alt="" title="" class="cq-dd-image"> </div> </figure> <div class="lb-tiny-align-left lb-txt-bold lb-txt-none lb-txt-18 lb-txt"> Sign up for a free account </div> <div class="lb-tiny-align-left lb-none-v-margin lb-rtxt"> <p style="text-align: left;">Instantly get access to the AWS free tier.&nbsp;<br> </p> </div> <a class="lb-txt-bold lb-txt-none lb-txt-blue-600 lb-txt" style="margin-bottom:15px;" href="https://portal.aws.amazon.com/gp/aws/developer/registration/index.html" target="_blank" rel="noopener noreferrer" data-trk-params="{&quot;trkOverrideWithQs&quot;:true}"> Sign up&nbsp;<i class="icon-angle-double-right lb-after"></i></a> </div> <div class="lb-col lb-tiny-24 lb-mid-8"> <figure class="lb-img"> <div style="padding-right:60px;"> <img src="https://d1.awsstatic.com/webteam/product-pages/Product-Page_Standard-Icons_03_Start-Building_SqInk.6a1ef4429a6604cda9b0857084aa13e2ee4eebca.png" alt="" title="" class="cq-dd-image"> </div> </figure> <div class="lb-tiny-align-left lb-txt-bold lb-txt-none lb-txt-18 lb-txt"> Start building in the console </div> <div class="lb-none-v-margin lb-rtxt"> <p style="text-align: left;">Get started building with AWS in the AWS Management Console.<br> </p> </div> <a class="lb-txt-bold lb-txt-none lb-txt-blue-600 lb-txt" style="margin-bottom:15px;" href="https://console.aws.amazon.com/" target="_blank" rel="noopener noreferrer" data-trk-params="{&quot;trkOverrideWithQs&quot;:true}"> Sign in&nbsp;<i class="icon-angle-double-right lb-after"></i></a> </div> </div> </div> </div> </div> </main> </div> <footer id="aws-page-footer" class="m-page-footer" role="contentinfo"> <div class="data-attr-wrapper lb-none-v-margin lb-xb-grid-wrap" style="background-color:#141f2e;" data-da-type="so" data-da-so-type="viewport" data-da-so-language="en" data-da-so-category="monitoring" data-da-so-name="footer" data-da-so-version="a"> <div class="lb-xb-grid lb-row-max-large lb-snap lb-tiny-xb-1 lb-small-xb-3 lb-large-xb-5"> <div class="lb-xbcol"> <div class="data-attr-wrapper lb-small-hide lb-btn" data-da-type="so" data-da-so-type="viewport" data-da-so-language="en" data-da-so-category="monitoring" data-da-so-name="footer_buttons" data-da-so-url="all" data-da-so-version="footer_signin-mobile-default"> <a class="lb-btn-p-primary" href="https://console.aws.amazon.com/console/home?nc1=f_ct&amp;src=footer-signin-mobile" role="button"> <span> Sign In to the Console</span> </a> </div> <h3 class="lb-txt-none lb-txt-white lb-tiny-v-margin lb-h3 lb-title"> Learn About AWS</h3> <ul class="lb-txt-white lb-ul lb-list-style-none lb-li-micro-v-margin lb-tiny-ul-block" style="margin-bottom:0px;"> <li><a href="/what-is-aws/?nc1=f_cc" target="_blank" rel="noopener noreferrer">What Is AWS?</a></li> <li><a href="/what-is-cloud-computing/?nc1=f_cc" target="_blank" rel="noopener noreferrer">What Is Cloud Computing?</a></li> <li><a href="/accessibility/?nc1=f_cc" target="_blank" rel="noopener noreferrer">AWS Accessibility</a></li> <li><a href="/devops/what-is-devops/?nc1=f_cc" target="_blank" rel="noopener noreferrer">What Is DevOps?</a></li> <li><a href="/containers/?nc1=f_cc" target="_blank" rel="noopener noreferrer">What Is a Container?</a></li> <li><a href="/what-is/data-lake/?nc1=f_cc" target="_blank" rel="noopener noreferrer">What Is a Data Lake?</a></li> <li><a href="/what-is/artificial-intelligence/?nc1=f_cc" target="_blank" rel="noopener noreferrer">What is Artificial Intelligence (AI)?</a></li> <li><a href="/what-is/generative-ai/?nc1=f_cc" target="_blank" rel="noopener noreferrer">What is Generative AI?</a></li> <li><a href="/what-is/machine-learning/?nc1=f_cc" target="_blank" rel="noopener noreferrer">What is Machine Learning (ML)?</a></li> <li><a href="/security/?nc1=f_cc" target="_blank" rel="noopener noreferrer">AWS Cloud Security</a></li> <li><a href="/new/?nc1=f_cc" target="_blank" rel="noopener noreferrer">What's New</a></li> <li><a href="/blogs/?nc1=f_cc" target="_blank" rel="noopener noreferrer">Blogs</a></li> <li><a href="https://press.aboutamazon.com/press-releases/aws" target="_blank" rel="noopener noreferrer" title="Press Releases" alt="Press Releases">Press Releases</a></li> </ul> </div> <div class="lb-xbcol"> <h3 class="lb-txt-none lb-txt-white lb-tiny-v-margin lb-h3 lb-title"> Resources for AWS</h3> <ul class="lb-txt-white lb-ul lb-list-style-none lb-li-micro-v-margin lb-tiny-ul-block" style="margin-bottom:0px;"> <li><a href="/getting-started/?nc1=f_cc" target="_blank" rel="noopener noreferrer">Getting Started</a></li> <li><a href="/training/?nc1=f_cc" target="_blank" rel="noopener noreferrer">Training and Certification</a></li> <li><a href="/trust-center/?nc1=f_cc" target="_blank" rel="noopener noreferrer">AWS Trust Center</a></li> <li><a href="/solutions/?nc1=f_cc" target="_blank" rel="noopener noreferrer">AWS Solutions Library</a></li> <li><a href="/architecture/?nc1=f_cc" target="_blank" rel="noopener noreferrer">Architecture Center</a></li> <li><a href="/faqs/?nc1=f_dr" target="_blank" rel="noopener noreferrer">Product and Technical FAQs</a></li> <li><a href="/resources/analyst-reports/?nc1=f_cc" target="_blank" rel="noopener noreferrer">Analyst Reports</a></li> <li><a href="/partners/work-with-partners/?nc1=f_dr" target="_blank" rel="noopener noreferrer">AWS Partners</a></li> </ul> </div> <div class="lb-xbcol"> <h3 class="lb-txt-none lb-txt-white lb-tiny-v-margin lb-h3 lb-title"> Developers on AWS</h3> <ul class="lb-txt-white lb-ul lb-list-style-none lb-li-micro-v-margin lb-tiny-ul-block" style="margin-bottom:0px;"> <li><a href="/developer/?nc1=f_dr" target="_blank" rel="noopener noreferrer">Developer Center</a></li> <li><a href="/developer/tools/?nc1=f_dr" target="_blank" rel="noopener noreferrer">SDKs &amp; Tools</a></li> <li><a href="/developer/language/net/?nc1=f_dr" target="_blank" rel="noopener noreferrer">.NET on AWS</a></li> <li><a href="/developer/language/python/?nc1=f_dr" target="_blank" rel="noopener noreferrer">Python on AWS</a></li> <li><a href="/developer/language/java/?nc1=f_dr" target="_blank" rel="noopener noreferrer">Java on AWS</a></li> <li><a href="/developer/language/php/?nc1=f_cc" target="_blank" rel="noopener noreferrer">PHP on AWS</a></li> <li><a href="/developer/language/javascript/?nc1=f_dr" target="_blank" rel="noopener noreferrer">JavaScript on AWS</a></li> </ul> </div> <div class="lb-xbcol"> <h3 class="lb-txt-none lb-txt-white lb-tiny-v-margin lb-h3 lb-title"> Help</h3> <ul class="lb-txt-white lb-ul lb-list-style-none lb-li-micro-v-margin lb-tiny-ul-block" style="margin-bottom:0px;"> <li><a href="/contact-us/?nc1=f_m" target="_blank" rel="noopener noreferrer">Contact Us</a></li> <li><a href="https://iq.aws.amazon.com/?utm=mkt.foot/?nc1=f_m" target="_blank" rel="noopener noreferrer">Get Expert Help</a></li> <li><a href="https://console.aws.amazon.com/support/home/?nc1=f_dr" target="_blank" rel="noopener noreferrer">File a Support Ticket</a></li> <li><a href="https://repost.aws/?nc1=f_dr" target="_blank" rel="noopener noreferrer">AWS re:Post</a></li> <li><a href="https://repost.aws/knowledge-center/?nc1=f_dr" target="_blank" rel="noopener noreferrer">Knowledge Center</a></li> <li><a href="/premiumsupport/?nc1=f_dr" target="_blank" rel="noopener noreferrer">AWS Support Overview</a></li> <li><a href="/legal/?nc1=f_cc" target="_blank" rel="noopener noreferrer">Legal</a></li> <li><a href="/careers/">AWS Careers</a></li> </ul> <div class="lb-mbox js-mbox" data-lb-comp="mbox" data-lb-comp-ignore="true" data-mbox="en_footer-v3_addl-help"> </div> </div> <div class="lb-xbcol"> <div class="lb-mbox js-mbox" data-lb-comp="mbox" data-lb-comp-ignore="true" data-mbox="en_footer-v3_cta"> <div class="data-attr-wrapper lb-tiny-hide lb-small-show lb-btn" data-da-type="so" data-da-so-type="viewport" data-da-so-language="en" data-da-so-category="monitoring" data-da-so-name="footer_buttons" data-da-so-url="all" data-da-so-version="footer_signup-default"> <a class="lb-btn-p-primary" href="https://portal.aws.amazon.com/gp/aws/developer/registration/index.html?nc1=f_ct&amp;src=default" role="button"> <span> Create an AWS Account</span> </a> </div> </div> <div class="lb-xb-grid-wrap" style="padding-left:0px; margin-top:20px; margin-bottom:0px;"> <div class="lb-xb-grid lb-row-max-large lb-xb-equal-height lb-snap lb-gutter-collapse lb-vgutter-collapse lb-tiny-xb-4"> <div class="lb-xbcol"> <a class="lb-txt-none lb-txt-white lb-none-pad lb-txt" style="padding-left:0px; padding-right:5px;" href="https://twitter.com/awscloud" target="_blank" rel="noopener noreferrer" title="Twitter" alt="Twitter"> <i class="icon-twitter lb-before"></i></a> </div> <div class="lb-xbcol"> <a class="lb-txt-none lb-txt-white lb-none-pad lb-none-v-margin lb-txt" style="padding-right:5px;" href="https://www.facebook.com/amazonwebservices" target="_blank" rel="noopener noreferrer" title="Facebook" alt="Facebook"> <i class="icon-facebook lb-before"></i></a> </div> <div class="lb-xbcol"> <a class="lb-txt-none lb-txt-white lb-none-pad lb-txt" style="padding-right:5px;" href="https://www.linkedin.com/company/amazon-web-services/" target="_blank" rel="noopener noreferrer" title="Linkedin" alt="Linkedin"> <i class="icon-linkedin lb-before"></i></a> </div> <div class="lb-xbcol"> <a class="lb-txt-none lb-txt-white lb-none-pad lb-txt" style="padding-right:5px;" href="https://www.instagram.com/amazonwebservices/" target="_blank" rel="noopener noreferrer" title="Instagram" alt="Instagram"> <i class="icon-instagram lb-before"></i></a> </div> </div> </div> <div class="lb-xb-grid-wrap" style="padding-left:0px; margin-top:10px;"> <div class="lb-xb-grid lb-row-max-large lb-xb-equal-height lb-snap lb-gutter-collapse lb-vgutter-collapse lb-tiny-xb-4"> <div class="lb-xbcol"> <a class="lb-txt-none lb-txt-white lb-none-pad lb-txt" style="padding-right:5px;" href="https://www.twitch.tv/aws" target="_blank" rel="noopener noreferrer" title="Twitch" alt="Twitch"> <i class="icon-twitch lb-before"></i></a> </div> <div class="lb-xbcol"> <a class="lb-txt-none lb-txt-white lb-none-pad lb-txt" style="padding-right:5px;" href="https://www.youtube.com/user/AmazonWebServices/Cloud/" target="_blank" rel="noopener noreferrer" title="YouTube" alt="YouTube"> <i class="icon-youtube lb-before"></i></a> </div> <div class="lb-xbcol"> <a class="lb-txt-none lb-txt-white lb-none-pad lb-txt" style="padding-right:5px;" href="/podcasts/" target="_blank" rel="noopener noreferrer" title="Podcast" alt="Podcast"> <i class="icon-podcast lb-before"></i></a> </div> <div class="lb-xbcol"> <a class="lb-txt-none lb-txt-white lb-none-pad lb-txt" style="padding-right:5px;" href="https://pages.awscloud.com/communication-preferences?trk=homepage" target="_blank" rel="noopener noreferrer" title="Email" alt="Email"> <i class="icon-envelope-o lb-before"></i></a> </div> </div> </div> <div class="lb-txt-normal lb-txt-white lb-txt-14 lb-rtxt" style="color:#eaeded; margin-top:0px;"> <div> Amazon is an Equal Opportunity Employer: <i> Minority / Women / Disability / Veteran / Gender Identity / Sexual Orientation / Age.</i> </div> </div> </div> </div> </div> <div class="lb-none-pad lb-none-v-margin lb-xb-grid-wrap" style="background-color:#141f2e;"> <div class="lb-xb-grid lb-row-max-large lb-snap lb-tiny-xb-1"> <div class="lb-xbcol"> <ul class="lb-txt-white lb-tiny-iblock lb-none-v-margin lb-ul lb-list-style-none lb-li-micro-v-margin lb-tiny-ul-iblock"> <li class="lb-txt-bold">Language</li> <li data-language="ar" lang="ar-SA" translate="no"><a href="https://aws.amazon.com/ar/?nc1=h_ls">عربي</a></li> <li data-language="id" lang="id-ID" translate="no"><a href="https://aws.amazon.com/id/?nc1=h_ls">Bahasa Indonesia</a></li> <li data-language="de" lang="de-DE" translate="no"><a href="https://aws.amazon.com/de/?nc1=h_ls">Deutsch</a></li> <li data-language="en" lang="en-US" translate="no"><a href="https://aws.amazon.com/?nc1=h_ls">English</a></li> <li data-language="es" lang="es-ES" translate="no"><a href="https://aws.amazon.com/es/?nc1=h_ls">Español</a></li> <li data-language="fr" lang="fr-FR" translate="no"><a href="https://aws.amazon.com/fr/?nc1=h_ls">Français</a></li> <li data-language="it" lang="it-IT" translate="no"><a href="https://aws.amazon.com/it/?nc1=h_ls">Italiano</a></li> <li data-language="pt" lang="pt-BR" translate="no"><a href="https://aws.amazon.com/pt/?nc1=h_ls">Português</a></li> <li data-language="vi" lang="vi-VN" translate="no"><a href="https://aws.amazon.com/vi/?nc1=f_ls">Tiếng Việt</a></li> <li data-language="tr" lang="tr-TR" translate="no"><a href="https://aws.amazon.com/tr/?nc1=h_ls">Türkçe</a></li> <li data-language="ru" lang="ru-RU" translate="no"><a href="https://aws.amazon.com/ru/?nc1=h_ls">Ρусский</a></li> <li data-language="th" lang="th-TH" translate="no"><a href="https://aws.amazon.com/th/?nc1=f_ls">ไทย</a></li> <li data-language="jp" lang="ja-JP" translate="no"><a href="https://aws.amazon.com/jp/?nc1=h_ls">日本語</a></li> <li data-language="ko" lang="ko-KR" translate="no"><a href="https://aws.amazon.com/ko/?nc1=h_ls">한국어</a></li> <li data-language="cn" lang="zh-CN" translate="no"><a href="https://aws.amazon.com/cn/?nc1=h_ls">中文 (简体)</a></li> <li data-language="tw" lang="zh-TW" translate="no"><a href="https://aws.amazon.com/tw/?nc1=h_ls">中文 (繁體)</a></li> </ul> </div> </div> </div> <div class="lb-none-pad lb-none-v-margin lb-xb-grid-wrap" style="background-color:#EAEDED; padding-top:5px;"> <div class="lb-xb-grid lb-row-max-large lb-snap lb-tiny-xb-1"> <div class="lb-xbcol"> <div class="lb-mbox js-mbox" data-lb-comp="mbox" data-lb-comp-ignore="true" data-mbox="en_footer-legal-links"> <ul class="lb-txt-squid lb-none-v-margin lb-ul lb-list-style-none lb-li-none-v-margin lb-tiny-ul-iblock"> <li><a href="https://aws.amazon.com/privacy/?nc1=f_pr">Privacy</a></li> <li>|</li> <li><a href="https://aws.amazon.com/accessibility/?nc1=f_acc">Accessibility</a></li> <li>|</li> <li><a href="https://aws.amazon.com/terms/?nc1=f_pr">Site Terms</a></li> <li>|</li> <li data-cookie-consent-modal="1"><a href="#"> Cookie Preferences </a></li> <li>|</li> <li>© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.</li> </ul> </div> </div> </div> </div> </footer> <div id="aws-page-end"></div> <div id="lb-page-end"></div> <div id="mrc-sunrise-chat"></div> <script defer id="mrc-sunrise-chat-loader" src="https://loader.us-east-1.prod.mrc-sunrise.marketing.aws.dev/loader.js"></script> <!--[if lte IE 9]> <p class="deprecated-browser-support-message"> You are using an outdated browser. Please upgrade to a modern browser to improve your experience.<img src="https://fls-na.amazon.com/1/action-impressions/1/OE/aws-mktg/action/awsm_:comp_DeprecatedBrowser@v=1:u=c?dataset=LIVE:PROD&instance=PUB&client=dsk&marketplaceId=A12QK8IU0H0XW5&requestId=ABCDEFGHIJKLMNOPQRST&session=123-1234567-1234567" alt="deprecated-browser pixel tag" /> </p> <![endif]--> <div class="lb-skt-overlay lb-modal lb-comp-content-container" data-lb-comp="modal" data-lb-modal-id="ie-deprecation-msg" data-ie10-deprecation-msg="You are using an outdated browser. Please upgrade to a modern browser to improve your experience."> <div class="lb-modal-dialog"> <div class="lb-modal-content"> <div class="lb-modal-header"> <h4 class="lb-h4"> Ending Support for Internet Explorer</h4> <a class="lb-modal-close" role="button" href="#" title="Close"> <span class="lb-sr-only">Got it</span> </a> </div> <div class="lb-modal-body"> AWS support for Internet Explorer ends on 07/31/2022. Supported browsers are Chrome, Firefox, Edge, and Safari. <a href="https://aws.amazon.com/blogs/aws/heads-up-aws-support-for-internet-explorer-11-is-ending/" rel="noopener">Learn more »</a> </div> <div class="lb-modal-footer"> <a class="lb-btn-p-primary lb-modal-close lb-modal-action" role="button">Got it</a> </div> </div> </div> </div> <a data-lb-modal-trigger="ie-deprecation-msg" style="display: none;"></a> <!-- cms_updated_at: 2025-02-13T16:56:45.787-0800 --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10