CINXE.COM
Search results for: skin panel
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: skin panel</title> <meta name="description" content="Search results for: skin panel"> <meta name="keywords" content="skin panel"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="skin panel" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="skin panel"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1964</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: skin panel</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1964</span> Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viriyavudh%20Sim">Viriyavudh Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=SeungHyun%20Kim"> SeungHyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=JungKyu%20Choi"> JungKyu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=WooYoung%20Jung"> WooYoung Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling%20resistance" title="buckling resistance">buckling resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=GFRP%20infill%20panel" title=" GFRP infill panel"> GFRP infill panel</a>, <a href="https://publications.waset.org/abstracts/search?q=stacking%20sequence" title=" stacking sequence"> stacking sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20dependent" title=" temperature dependent"> temperature dependent</a> </p> <a href="https://publications.waset.org/abstracts/47887/influence-of-stacking-sequence-and-temperature-on-buckling-resistance-of-gfrp-infill-panel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1963</span> Improved Skin Detection Using Colour Space and Texture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medjram%20Sofiane">Medjram Sofiane</a>, <a href="https://publications.waset.org/abstracts/search?q=Babahenini%20Mohamed%20Chaouki"> Babahenini Mohamed Chaouki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benali%20Yamina"> Mohamed Benali Yamina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin detection is an important task for computer vision systems. A good method for skin detection means a good and successful result of the system. The colour is a good descriptor that allows us to detect skin colour in the images, but because of lightings effects and objects that have a similar colour skin, skin detection becomes difficult. In this paper, we proposed a method using the YCbCr colour space for skin detection and lighting effects elimination, then we use the information of texture to eliminate the false regions detected by the YCbCr colour skin model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skin%20detection" title="skin detection">skin detection</a>, <a href="https://publications.waset.org/abstracts/search?q=YCbCr" title=" YCbCr"> YCbCr</a>, <a href="https://publications.waset.org/abstracts/search?q=GLCM" title=" GLCM"> GLCM</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20skin" title=" human skin"> human skin</a> </p> <a href="https://publications.waset.org/abstracts/19039/improved-skin-detection-using-colour-space-and-texture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1962</span> Analysis of Tactile Perception of Textiles by Fingertip Skin Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Izabela%20L.%20Ciesielska-Wr%CF%8Cbel">Izabela L. Ciesielska-Wrόbel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents finite element models of the fingertip skin which have been created to simulate the contact of textile objects with the skin to gain a better understanding of the perception of textiles through the skin, so-called Hand of Textiles (HoT). Many objective and subjective techniques have been developed to analyze HoT, however none of them provide exact overall information concerning the sensation of textiles through the skin. As the human skin is a complex heterogeneous hyperelastic body composed of many particles, some simplifications had to be made at the stage of building the models. The same concerns models of woven structures, however their utilitarian value was maintained. The models reflect only friction between skin and woven textiles, deformation of the skin and fabrics when “touching” textiles and heat transfer from the surface of the skin into direction of textiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fingertip%20skin%20models" title="fingertip skin models">fingertip skin models</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20models" title=" finite element models"> finite element models</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20of%20textiles" title=" modelling of textiles"> modelling of textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=sensation%20of%20textiles%20through%20the%20skin" title=" sensation of textiles through the skin"> sensation of textiles through the skin</a> </p> <a href="https://publications.waset.org/abstracts/26064/analysis-of-tactile-perception-of-textiles-by-fingertip-skin-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1961</span> Penetration Depth Study of Linear Siloxanes through Human Skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Szymkowska">K. Szymkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mojsiewicz-%20Pie%C5%84kowska"> K. Mojsiewicz- Pieńkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Siloxanes are a common ingredients in medicinal products used on the skin, as well as cosmetics. It is widely believed that the silicones are not capable of overcoming the skin barrier. The aim of the study was to verify the possibility of penetration and permeation of linear siloxanes through human skin and determine depth penetration limit of these compounds. Based on the results it was found that human skin is not a barrier for linear siloxanes. PDMS 50 cSt was not identified in the dermis suggests that this molecular size of silicones (3780Da) is safe when it is used in the skin formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20siloxanes" title="linear siloxanes">linear siloxanes</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes" title=" methyl siloxanes"> methyl siloxanes</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20penetration" title=" skin penetration"> skin penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20permeation" title=" skin permeation"> skin permeation</a> </p> <a href="https://publications.waset.org/abstracts/47996/penetration-depth-study-of-linear-siloxanes-through-human-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1960</span> Skin Care through Ayurveda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20L.%20Virupaksha%20Gupta">K. L. Virupaksha Gupta </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ayurveda offers a holistic outlook regarding skin care. Most Initial step in Ayurveda is to identify the skin type and care accordingly which is highly personalized. Though dermatologically there are various skin type classifications such Baumann skin types (based on 4 parameters i) Oily Vs Dry ii) Sensitive Vs Resistant iii) Pigmented Vs Non-Pigmented iv) Wrinkled Vs Tight (Unwrinkled) etc but Skin typing in Ayurveda is mainly determined by the prakriti (constitution) of the individual as well as the status of Doshas (Humors) which are basically of 3 types – i.e Vata Pitta and Kapha,. Difference between them is mainly attributed to the qualities of each dosha (humor). All the above said skin types can be incorporated under these three types. The skin care modalities in each of the constitution vary greatly. Skin of an individual of Vata constitution would be lustreless, having rough texture and cracks due to dryness and thus should be given warm and unctuous therapies and oil massage for lubrication and natural moisturizers for hydration. Skin of an individual of Pitta constitution would look more vascular (pinkish), delicate and sensitive with a fair complexion, unctuous and tendency for wrinkles and greying of hair at an early age and hence should be given cooling and nurturing therapies and should avoid tanning treatments. Skin of an individual of kapha constitution will have oily skin, they are delicate and look beautiful and radiant and hence these individuals would require therapies to mainly combat oily skin. Hence, the skin typing and skin care in Ayurveda is highly rational and scientific. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayurveda" title="Ayurveda">Ayurveda</a>, <a href="https://publications.waset.org/abstracts/search?q=dermatology" title=" dermatology"> dermatology</a>, <a href="https://publications.waset.org/abstracts/search?q=Dosha" title=" Dosha"> Dosha</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20types" title=" skin types"> skin types</a> </p> <a href="https://publications.waset.org/abstracts/19790/skin-care-through-ayurveda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1959</span> Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Duarte">Fernando Duarte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the aquisition of the sample images ended being very unreliable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=segmentation" title="segmentation">segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20space" title=" color space"> color space</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20tone" title=" skin tone"> skin tone</a>, <a href="https://publications.waset.org/abstracts/search?q=Fitzpatrick" title=" Fitzpatrick"> Fitzpatrick</a> </p> <a href="https://publications.waset.org/abstracts/188975/use-of-segmentation-and-color-adjustment-for-skin-tone-classification-in-dermatological-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1958</span> Towards Integrating Statistical Color Features for Human Skin Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zamri%20Osman">Mohd Zamri Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Aizaini%20Maarof"> Mohd Aizaini Maarof</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Foad%20Rohani"> Mohd Foad Rohani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20space" title="color space">color space</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20detection" title=" skin detection"> skin detection</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20feature" title=" statistical feature"> statistical feature</a> </p> <a href="https://publications.waset.org/abstracts/43485/towards-integrating-statistical-color-features-for-human-skin-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1957</span> Fabrication of Optical Tissue Phantoms Simulating Human Skin and Their Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihoon%20Park">Jihoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungkon%20Yu"> Sungkon Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungjo%20Jung"> Byungjo Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although various optical tissue phantoms (OTPs) simulating human skin have been actively studied, their completeness is unclear because skin tissue has the intricate optical property and complicated structure disturbing the optical simulation. In this study, we designed multilayer OTP mimicking skin structure, and fabricated OTP models simulating skin-blood vessel and skin pigmentation in the skin, which are useful in Biomedical optics filed. The OTPs were characterized with the optical property and the cross-sectional structure, and analyzed by using various optical tools such as a laser speckle imaging system, OCT and a digital microscope to show the practicality. The measured optical property was within 5% error, and the thickness of each layer was uniform within 10% error in micrometer scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20vessel" title="blood vessel">blood vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom" title=" optical tissue phantom"> optical tissue phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20property" title=" optical property"> optical property</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20tissue" title=" skin tissue"> skin tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=pigmentation" title=" pigmentation"> pigmentation</a> </p> <a href="https://publications.waset.org/abstracts/68389/fabrication-of-optical-tissue-phantoms-simulating-human-skin-and-their-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1956</span> Experimental Study of the Sound Absorption of a Geopolymer Panel with a Textile Component Designed for a Railway Corridor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ludmila%20Fridrichov%C3%A1">Ludmila Fridrichová</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Kn%C3%AD%C5%BEek"> Roman Knížek</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20N%C4%9Bme%C4%8Dek"> Pavel Němeček</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Ewa%20Buczkowska"> Katarzyna Ewa Buczkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of the sound absorption panel, which consists of three layers, is presented in this study. The first layer of the panel is perforated and provides sound transmission to the inner part of the panel. The second layer is composed of a bulk material whose purpose is to absorb as much noise as possible. The third layer of the panel has two functions: the first function is to ensure the strength of the panel, and the second function is to reflect the sound back into the bulk layer. Experimental results have shown that the size of the holes in the perforated panel affects the sound absorption of the required frequency. The percentage of filling of the perforated area affects the quantity of sound absorbed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption" title="sound absorption">sound absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20corridor" title=" railway corridor"> railway corridor</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20waste" title=" textile waste"> textile waste</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibres" title=" natural fibres"> natural fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/193093/experimental-study-of-the-sound-absorption-of-a-geopolymer-panel-with-a-textile-component-designed-for-a-railway-corridor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">16</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1955</span> Classification of Red, Green and Blue Values from Face Images Using k-NN Classifier to Predict the Skin or Non-Skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Polat">Kemal Polat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, it has been estimated whether there is skin by using RBG values obtained from the camera and k-nearest neighbor (k-NN) classifier. The dataset used in this study has an unbalanced distribution and a linearly non-separable structure. This problem can also be called a big data problem. The Skin dataset was taken from UCI machine learning repository. As the classifier, we have used the k-NN method to handle this big data problem. For k value of k-NN classifier, we have used as 1. To train and test the k-NN classifier, 50-50% training-testing partition has been used. As the performance metrics, TP rate, FP Rate, Precision, recall, f-measure and AUC values have been used to evaluate the performance of k-NN classifier. These obtained results are as follows: 0.999, 0.001, 0.999, 0.999, 0.999, and 1,00. As can be seen from the obtained results, this proposed method could be used to predict whether the image is skin or not. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=k-NN%20classifier" title="k-NN classifier">k-NN classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20or%20non-skin%20classification" title=" skin or non-skin classification"> skin or non-skin classification</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB%20values" title=" RGB values"> RGB values</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/86538/classification-of-red-green-and-blue-values-from-face-images-using-k-nn-classifier-to-predict-the-skin-or-non-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1954</span> Optimal Analysis of Structures by Large Wing Panel Using FEM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byeong-Sam%20Kim">Byeong-Sam Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyeongwoo%20Park"> Kyeongwoo Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, induced structural optimization is performed to compare the trade-off between wing weight and induced drag for wing panel extensions, construction of wing panel and winglets. The aerostructural optimization problem consists of parameters with strength condition, and two maneuver conditions using residual stresses in panel production. The results of kinematic motion analysis presented a homogenization based theory for 3D beams and 3D shells for wing panel. This theory uses a kinematic description of the beam based on normalized displacement moments. The displacement of the wing is a significant design consideration as large deflections lead to large stresses and increased fatigue of components cause residual stresses. The stresses in the wing panel are small compared to the yield stress of aluminum alloy. This study describes the implementation of a large wing panel, aerostructural analysis and structural parameters optimization framework that couples a three-dimensional panel method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wing%20panel" title="wing panel">wing panel</a>, <a href="https://publications.waset.org/abstracts/search?q=aerostructural%20optimization" title=" aerostructural optimization"> aerostructural optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a> </p> <a href="https://publications.waset.org/abstracts/10361/optimal-analysis-of-structures-by-large-wing-panel-using-fem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1953</span> The Effect of Skin to Skin Contact Immediately to Maternal Breastfeeding Self-Efficacy after Cesarean Section</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Triana">D. Triana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20N.%20Rachmawati"> I. N. Rachmawati</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Sabri"> L. Sabri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maternal breastfeeding self-efficacy is positively associated with increased duration of breastfeeding in different cultures and age groups. This study aims to determine the effect of skin-to-skin contact immediately after the cesarean section on maternal breastfeeding self-efficacy. The research design is Posttest quasi-experimental research design only with control groups involving 52 women with consecutive sampling in Langsa-Aceh. The data collected through breastfeeding Self-Efficacy Scale-Short Form. The results of Independent t-test showed a significant difference in the mean values of maternal breastfeeding self-efficacy in the intervention group and the control group (59.00 ± 6.54; 49.62 ± 7.78; p= 0.001). Skin to skin contact is proven to affect the maternal breastfeeding self-efficacy after cesarean section significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breastfeeding%20self-efficacy" title="breastfeeding self-efficacy">breastfeeding self-efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=cesarean%20section" title=" cesarean section"> cesarean section</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20to%20skin%20contact" title=" skin to skin contact"> skin to skin contact</a>, <a href="https://publications.waset.org/abstracts/search?q=immediately" title=" immediately"> immediately</a> </p> <a href="https://publications.waset.org/abstracts/32533/the-effect-of-skin-to-skin-contact-immediately-to-maternal-breastfeeding-self-efficacy-after-cesarean-section" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1952</span> A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Firas%20Gerges">Firas Gerges</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Y.%20Shih"> Frank Y. Shih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20cancer" title=" skin cancer"> skin cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a> </p> <a href="https://publications.waset.org/abstracts/134720/a-convolutional-deep-neural-network-approach-for-skin-cancer-detection-using-skin-lesion-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1951</span> STC Parameters versus Real Time Measured Parameters to Determine Cost Effectiveness of PV Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20E.%20Selaule">V. E. Selaule</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Schoeman%20H.%20C.%20Z.%20Pienaar"> R. M. Schoeman H. C. Z. Pienaar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research has shown that solar energy is a renewable energy resource with the most potential when compared to other renewable energy resources in South Africa. There are many makes of Photovoltaic (PV) panels on the market and it is difficult to assess which to use. PV panel manufacturers use Standard Test Conditions (STC) to rate their PV panels. STC conditions are different from the actual operating environmental conditions were the PV panels are used. This paper describes a practical method to determine the most cost effective available PV panel. The method shows that PV panel manufacturer STC ratings cannot be used to select a cost effective PV panel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV%20orientation" title="PV orientation">PV orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20panel" title=" PV panel"> PV panel</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20STC" title=" PV STC"> PV STC</a>, <a href="https://publications.waset.org/abstracts/search?q=Solar%20energy" title=" Solar energy"> Solar energy</a> </p> <a href="https://publications.waset.org/abstracts/15551/stc-parameters-versus-real-time-measured-parameters-to-determine-cost-effectiveness-of-pv-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1950</span> Quality Rabbit Skin Gelatin with Acetic Acid Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wehandaka%20Pancapalaga">Wehandaka Pancapalaga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to analyze the water content, yield, fat content, protein content, viscosity, gel strength, pH, melting and organoleptic rabbit skin gelatin with acetic acid extraction levels are different. The materials used in this study were Rex rabbit skin male. Treatments that P1 = the extraction of acetic acid 2% (v / v); P2 = the extraction of acetic acid 3% (v / v); P3 = the extraction of acetic acid 4 % (v / v). P5 = the extraction of acetic acid 5% (v / v). The results showed that the greater the concentration of acetic acid as the extraction of rabbit skin can reduce the water content and fat content of rabbit skin gelatin but increase the protein content, viscosity, pH, gel strength, yield and melting point rabbit skin gelatin. texture, color and smell of gelatin rabbits there were no differences with cow skin gelatin. The results showed that the quality of rabbit skin gelatin accordance Indonesian National Standard (SNI). Conclusion 5% acetic acid extraction produces the best quality gelatin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gelatin" title="gelatin">gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20rabbit" title=" skin rabbit"> skin rabbit</a>, <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid%20extraction" title=" acetic acid extraction"> acetic acid extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/61347/quality-rabbit-skin-gelatin-with-acetic-acid-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1949</span> Transparent Photovoltaic Skin for Artificial Thermoreceptor and Nociceptor Memory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Bhatnagar">Priyanka Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=Malkeshkumar%20Patel"> Malkeshkumar Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Joondong%20Kim"> Joondong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Joonpyo%20Hong"> Joonpyo Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial skin and sensory memory platforms are produced using a flexible, transparent photovoltaic (TPV) device. The TPV device is composed of a metal oxide heterojunction (nZnO/p-NiO) and transmits visible light (> 50%) while producing substantial electric power (0.5 V and 200 μA cm-2 ). This TPV device is a transparent energy interface that can be used to detect signals and propagate information without an external energy supply. The TPV artificial skin offers a temperature detection range (0 C75 C) that is wider than that of natural skin (5 C48 °C) due to the temperature-sensitive pyrocurrent from the ZnO layer. Moreover, the TPV thermoreceptor offers sensory memory of extreme thermal stimuli. Much like natural skin, artificial skin uses the nociceptor mechanism to protect tissue from harmful damage via signal amplification (hyperalgesia) and early adaption (allodynia). This demonstrates the many features of TPV artificial skin, which can sense and transmit signals and memorize information under self-operation mode. This transparent photovoltaic skin can provide sustainable energy for use in human electronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transparent" title="transparent">transparent</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaics" title=" photovoltaics"> photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20memory" title=" thermal memory"> thermal memory</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20skin" title=" artificial skin"> artificial skin</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoreceptor" title=" thermoreceptor"> thermoreceptor</a> </p> <a href="https://publications.waset.org/abstracts/149259/transparent-photovoltaic-skin-for-artificial-thermoreceptor-and-nociceptor-memory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1948</span> Dermatological Study on Risk Factors for Pruritic Skin: Skin Properties of Elderly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dianis%20Wulan%20Sari">Dianis Wulan Sari</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeo%20Minematsu"> Takeo Minematsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikako%20Yoshida"> Mikako Yoshida</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiromi%20Sanada"> Hiromi Sanada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Pruritus is diagnosed as itching without macroscopic abnormalities on skin. It is the most skin complaint of elderly people. In the present study, we conducted a dermatological study to examine the risk factors of pruritic skin and predicted how to prevent pruritus especially in the elderly population. Pruritus is caused several types of inflammation, including epidermal innate immunity based on keratinocyte responses and acquired immunity regulated by type 1 or 2 helper T (Th) cells. The triggers of pruritus differ among inflammation types, therefore we did separately assess the pruritus-associated factors of each inflammation type in an effort to contribute to the identification of intervention targets for preventing pruritus. Therefore, this study aimed to investigate the factors related with actual condition of pruritic skin by examine the skin properties. Method: This study was conducted in elderly population of Indonesian nursing home. Basic characteristics and behaviors were obtained by interview. The properties of pruritic skin were collected by examination of skin biomarker using skin blotting as novel method of non-invasive skin assessment method and examination of skin barrier function using stratum corneum hydration and skin pH. Result: The average age of participants was 74 years with independent status was 66.8%. Age (β = -0.130, p = 0.044), cumulative lifetime sun exposure (β = 0.145, p = 0.026), bathing duration (β = 0.151, p = 0.022), clothing change frequency (β = 0.135, p = 0.029), and clothing type (β = -0.139, p = 0.021) were risk factors of pruritic skin in multivariate analysis. Conclusion: Risk factors of pruritic skin in elderly population were caused by internal factors such as skin senescence and external factors such as sun exposure, hygiene care and skin care behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aging" title="aging">aging</a>, <a href="https://publications.waset.org/abstracts/search?q=hygiene%20care" title=" hygiene care"> hygiene care</a>, <a href="https://publications.waset.org/abstracts/search?q=pruritus" title=" pruritus"> pruritus</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20care" title=" skin care"> skin care</a>, <a href="https://publications.waset.org/abstracts/search?q=sun%20exposure" title=" sun exposure"> sun exposure</a> </p> <a href="https://publications.waset.org/abstracts/77905/dermatological-study-on-risk-factors-for-pruritic-skin-skin-properties-of-elderly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1947</span> Efficiency Enhancement in Solar Panel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Arun%20Raj">R. S. Arun Raj </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today's climate of growing energy needs and increasing environmental issues, alternatives to the use of non-renewable and polluting fossil fuels have to be investigated. One such alternative is the solar energy. The SUN provides every hour as much energy as mankind consumes in one year. This paper clearly explains about the solar panel design and new models and methodologies that can be implemented for better utilization of solar energy. Minimisation of losses in solar panel as heat is my innovative idea revolves around. The pay back calculations by implementation of solar panels is also quoted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=on-grid%20and%20off-grid%20systems" title="on-grid and off-grid systems">on-grid and off-grid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=pyro-electric%20effect" title=" pyro-electric effect"> pyro-electric effect</a>, <a href="https://publications.waset.org/abstracts/search?q=pay-back%20calculations" title=" pay-back calculations"> pay-back calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20panel" title=" solar panel"> solar panel</a> </p> <a href="https://publications.waset.org/abstracts/20431/efficiency-enhancement-in-solar-panel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">594</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1946</span> Skin Diseases in the Rural Areas in Nepal; Impact on Quality of Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dwarika%20P.%20Shrestha">Dwarika P. Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipendra%20Gurung"> Dipendra Gurung</a>, <a href="https://publications.waset.org/abstracts/search?q=Rushma%20Shrestha"> Rushma Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=Inger%20Rosdahl"> Inger Rosdahl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Skin diseases are one of the most common health problems in Nepal. The objectives of this study are to determine the prevalence of skin diseases and impact on quality of life in rural areas in Nepal. Materials and methods: A house-to-house survey was conducted, to obtain socio-demographic data and identify individuals with skin diseases, followed by health camps, where the villagers were examined. A pilot study was conducted in one village, which was then extended to 10 villages in 4 districts. To assess the impact on quality of life, the villagers were interviewed with Skin Disease Disability Index. This is a questionnaire developed and validated by the authors for use in Nepal. Results: In the pilot study, the overall prevalence of skin diseases was 20.1% (645/3207). In the additional 10 villages with 7348 (3651/3787 m/f) inhabitants, 1862 (721/1141 m/f, mean age 31.4 years) had one or more skin diseases. The overall prevalence of skin diseases was 25%. The most common skin disease categories were eczemas (13.7%, percentage among all inhabitants) pigment disorders (6.8%), fungal infections (4.9%), nevi (3.7%) and urticaria (2.9%). These five most common skin disease categories comprise 71% of all skin diseases seen in the study. The mean skin disease disability index score was 13.7, indicating very large impact on the quality of life. Conclusions: This population-based study shows that skin diseases are very common in the rural areas of Nepal and have significant impact on quality of life. Targeted intervention at the primary health care level should help to reduce the health burden due to skin diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prevalence%20and%20pattern%20of%20skin%20diseases" title="prevalence and pattern of skin diseases">prevalence and pattern of skin diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20on%20quality%20of%20life" title=" impact on quality of life"> impact on quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20Nepal" title=" rural Nepal"> rural Nepal</a>, <a href="https://publications.waset.org/abstracts/search?q=interventions" title=" interventions"> interventions</a> </p> <a href="https://publications.waset.org/abstracts/36188/skin-diseases-in-the-rural-areas-in-nepal-impact-on-quality-of-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1945</span> A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20George">Joseph George</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Kotteswara%20Roa"> Anne Kotteswara Roa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skin%20cancer" title="skin cancer">skin cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20measures" title=" performance measures"> performance measures</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=datasets" title=" datasets"> datasets</a> </p> <a href="https://publications.waset.org/abstracts/151256/a-survey-of-skin-cancer-detection-and-classification-from-skin-lesion-images-using-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1944</span> Prevalence and Potential Risk Factors Associated with Skin Affection in Donkeys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Z.%20Sayed-Ahmed">Mohamed Z. Sayed-Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Ahdy"> Ahmed M. Ahdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Emad%20E.%20Younis"> Emad E. Younis</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabry%20A.%20El-Khodary"> Sabry A. El-Khodary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Little research information is available on the prevalence of diseases of donkeys in Egypt. Across sectional study was undertaken between March 2009 and February 2010 to verify the prevalence of skin affection of donkeys. A total of 1134 donkeys in northern Egypt were investigated. A questionnaire was constructed to verify the number of infected contact animals as well as the associated factors. Physical examination was carried out, and the distribution of skin lesions was recorded. Skin scraping and biopsy were obtained to perform bacteriological, mycological, and histopathological examinations. Thirty-five (3.09%) out of 1134 noticed donkeys had skin affections including mange (18/35), dermatophytosis (6/35), bacterial dermatitis (6/35) urticaria (2/35) and allergic dermatitis (3/35). The present results indicate that mange and dermatophytosis are the prevalent skin diseases in donkeys. Contact with other animal species of contaminated environment may contribute to the occurrence of the diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=donkeys" title="donkeys">donkeys</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=prevalence" title=" prevalence"> prevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20affection" title=" skin affection"> skin affection</a> </p> <a href="https://publications.waset.org/abstracts/124209/prevalence-and-potential-risk-factors-associated-with-skin-affection-in-donkeys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1943</span> Pufferfish Skin Collagens and Their Role in Inflation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirti">Kirti</a>, <a href="https://publications.waset.org/abstracts/search?q=Samanta%20Sekhar%20Khora"> Samanta Sekhar Khora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inflation serves different purposes in different organisms and adds beauty to their behavioral attributes. Pufferfishes are also known as blowfish, swellfish, and globefish due to their remarkable ability to puff themselves up like a balloon when threatened. This ability to inflate can be correlated with anatomical features that are unique to pufferfishes. Pufferfish skin provides a rigid framework to support the body contents and a flexible covering to allow whatever changes are necessary for remarkable inflation mechanism. Skin, the outer covering of animals is made up of collagen fibers arranged in more or less ordered arrays. The ventral skin of pufferfish stretches more than dorsal skin during inflation. So, this study is of much of the interest in comparing the structure and mechanical properties of these two skin regions. The collagen fibers were found to be arranged in different ordered arrays for ventral and dorsal skin and concentration of fibers were also found to be different for these two skin parts. Scanning electron microscopy studies of the ventral skin showed a unidirectional arrangement of the collagen fibers, which provide more stretching capacity. Dorsal skin, on the other hand, has an orthogonal arrangement of fibers. This provides more stiffness to the ventral skin at the time of inflation. In this study, the possible role of collagen fibers was determined which significantly contributed to the remarkable inflation mechanism of pufferfishes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collagen" title="collagen">collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=histology" title=" histology"> histology</a>, <a href="https://publications.waset.org/abstracts/search?q=inflation" title=" inflation"> inflation</a>, <a href="https://publications.waset.org/abstracts/search?q=pufferfish" title=" pufferfish"> pufferfish</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=Small-Angle%20X-Ray%20Scattering%20%28SAXS%29" title=" Small-Angle X-Ray Scattering (SAXS)"> Small-Angle X-Ray Scattering (SAXS)</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20electron%20microscopy" title=" transmission electron microscopy"> transmission electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/85346/pufferfish-skin-collagens-and-their-role-in-inflation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1942</span> Statistical Analysis of Parameters Effects on Maximum Strain and Torsion Angle of FRP Honeycomb Sandwich Panels Subjected to Torsion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Modabberifar">Mehdi Modabberifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Milad%20Roodi"> Milad Roodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Souri"> Ehsan Souri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, honeycomb fiber reinforced plastic (FRP) sandwich panels have been increasingly used in various industries. Low weight, low price, and high mechanical strength are the benefits of these structures. However, their mechanical properties and behavior have not been fully explored. The objective of this study is to conduct a combined numerical-statistical investigation of honeycomb FRP sandwich beams subject to torsion load. In this paper, the effect of geometric parameters of the sandwich panel on the maximum shear strain in both face and core and angle of torsion in a honeycomb FRP sandwich structures in torsion is investigated. The effect of Parameters including core thickness, face skin thickness, cell shape, cell size, and cell thickness on mechanical behavior of the structure were numerically investigated. Main effects of factors were considered in this paper and regression equations were derived. Taguchi method was employed as experimental design and an optimum parameter combination for the maximum structure stiffness has been obtained. The results showed that cell size and face skin thickness have the most significant impacts on torsion angle, maximum shear strain in face and core. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb%20FRP%20sandwich%20panel" title=" honeycomb FRP sandwich panel"> honeycomb FRP sandwich panel</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion" title=" torsion"> torsion</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering"> civil engineering</a> </p> <a href="https://publications.waset.org/abstracts/27895/statistical-analysis-of-parameters-effects-on-maximum-strain-and-torsion-angle-of-frp-honeycomb-sandwich-panels-subjected-to-torsion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1941</span> Preparation and Characterization of Water-in-Oil Nanoemulsion of 5-Fluorouracil to Enhance Skin Permeation for Treatment of Skin Diseases.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Rajinikanth">P. S. Rajinikanth</a>, <a href="https://publications.waset.org/abstracts/search?q=Shobana%20Mariappan"> Shobana Mariappan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jestin%20Chellian"> Jestin Chellian </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the study was to prepare and characterize a water-in-oil nano emulsion of 5-Fluorouracil (5FU) to enhance the skin penetration. The present study describes a nano emulsion of 5FU using Capyrol PGMC, Transcutol HP and PEG 400 as oil, surfactant and co-surfactant, respectively. The optimized formulations were further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential in order to confirm the stability of the optimized nano emulsions. The in-vitro characterization results showed that the droplets of prepared formulation were ~100 nm with ± 15 zeta potential. In vitro skin permeation studies was conducted in albino mice skin. Significant increase in permeability parameters was also observed in nano emulsion formulations (P<0.05). The steady-state flux (Jss), enhancement ration and permeability coefficient (Kp) for optimized nano emulsion formulation (FU2, FU1, 1:1 S mix were found to be 24.21 ±2.45 μg/cm2/h, 3.28±0.87 & 19.52±1.87 cm/h, respectively), which were significant compared with conventional gel. The in vitro and in vivo skin deposition studies in rat indicated that the amount of drug deposited from the nano emulsion (292.45 µg/cm2) in skin was significant (P<0.05) an increased as compared to a conventional 5FU gel (121.42 µg/cm2). The skin irritation study using rat skin showed that the mean irritation index of the nano emulsion reduced significantly (P<0.05) as compared with conventional gel contain 1% 5FU. The results from this study suggest that a water-in-oil nano emulsion could be safely used to promote skin penetration of 5FU following topical application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20emulsion" title="nano emulsion">nano emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20release" title=" controlled release"> controlled release</a>, <a href="https://publications.waset.org/abstracts/search?q=5%20fluorouracil" title=" 5 fluorouracil"> 5 fluorouracil</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20penetration" title=" skin penetration"> skin penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20irritation" title=" skin irritation "> skin irritation </a> </p> <a href="https://publications.waset.org/abstracts/11646/preparation-and-characterization-of-water-in-oil-nanoemulsion-of-5-fluorouracil-to-enhance-skin-permeation-for-treatment-of-skin-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1940</span> Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indunil%20Jayatilake">Indunil Jayatilake</a>, <a href="https://publications.waset.org/abstracts/search?q=Warna%20Karunasena"> Warna Karunasena</a>, <a href="https://publications.waset.org/abstracts/search?q=Weena%20Lokuge"> Weena Lokuge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally, it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore, it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three-dimensional finite element models in assessing debonding damage in composite sandwich panels <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=debonding" title="debonding">debonding</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration%20behaviour" title=" free vibration behaviour"> free vibration behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=GFRP%20sandwich%20panels" title=" GFRP sandwich panels"> GFRP sandwich panels</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20dimensional%20finite%20element%20modelling" title=" three dimensional finite element modelling"> three dimensional finite element modelling</a> </p> <a href="https://publications.waset.org/abstracts/23042/influence-of-single-and-multiple-skin-core-debonding-on-free-vibration-characteristics-of-innovative-gfrp-sandwich-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1939</span> The Effects of Topically-Applied Skin Moisturizer on Striae Gravidarum in East Indian Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipanshu%20Sur">Dipanshu Sur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratnabali%20Chakravorty"> Ratnabali Chakravorty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Striae result from rapid expansion of the underlying tissue, e.g. during puberty, pregnancy or rapid weight gain. Prior data indicate that the incidence of stretch marks in Indian women is 77%.The hormonal and genetic factors are associated with their appearance. Recently that has been found skin extensibility, elasticity and rupture were strongly influenced by the water content of dermis and epidermis cells. Objective: The objectives were to assess the effects of topical treatments applied during pregnancy on the later development of stretch marks. Materials and methods: An open, prospective, randomized study was done on 120 pregnant women in whom skin elasticity and hydration as well as striae presence or apparition were measured at baseline and periodically until delivery. Patients were randomly assigned to application in wet skin cream, or in dry skin conditions. Results: The average basal hydration was 42 ±13 IU and the final was 46 ± 6 IU (P = 0.0325; 95% CI: -7.66 to -0.34), which difference was statistically significant. By measuring the moisture in the control region (forearm) a basal reading of 40 ± 9 IU and end of study of 38 ± 6; (p = 0.1547; 95% CI: -0.77 to 4.77) and this difference was considered to be not statistically significant. It was observed that at the end of the study, 55% women without ridges; mild ridges 5%; 36% moderate, and 4%, severe ridges. The proportion of women without grooves was 54% when the cream was applied studied wet skin and 45% when the cream was applied on dry skin. Conclusion: It was shown that cream under study increased hydration and elasticity of abdominal skin consequently in all subjects. This effect is more significant (54%) when the cream is applied to damp skin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=striae%20gravidarum" title="striae gravidarum">striae gravidarum</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20moisturizer" title=" skin moisturizer"> skin moisturizer</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20hydration" title=" skin hydration"> skin hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20elasticity" title=" skin elasticity"> skin elasticity</a> </p> <a href="https://publications.waset.org/abstracts/36646/the-effects-of-topically-applied-skin-moisturizer-on-striae-gravidarum-in-east-indian-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1938</span> Analysis of Sound Absorption Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakiul%20Fuady">Zakiul Fuady</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20AB"> Ismail AB</a>, <a href="https://publications.waset.org/abstracts/search?q=Fauzi"> Fauzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulfian"> Zulfian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was conducted to analyze the absorption coefficients of sound at several types of materials as well as its combinations. The aim of this research was to find the value of sound absorption coefficients on the materials and its combinations. The materials used in this research were gypsum panel, gypsum-fibre palm, fibre palm-gypsum, and foamed concrete-fibre palm. The test was conducted by using a method of reverberation chamber based on the ISO 354-1985 with the types of the sound source: white noise and pink noise at the frequency of 125 Hz - 8000 Hz. Based on the test results of white noise, it was found that the panel of gypsum-fibre palm has α = 0.93 at low frequency; the panel of fibre palm has α = 0.97 at a medium frequency; and the panel of foamed concrete-fibre palm has α = 0.89 at high frequency. Further, for the sound source of pink noise, it was found that the panel of gypsum-fibre palm has α = 0.99 at low level; the panel of fibre palm-gypsum has α = 0.86 at medium level; and the panel of fibre palm-gypsum has α = 0.64 at high level. The fibre palm panel could absorb the sounds well since this material has bigger airspace (pore) than the foamed concrete and gypsum. Consequently, when the sounds wave enters to this material it will be trapped in the space. The panel of fibre palm affected an increasing of sound absorption coefficient value at the combination materials when the panel of fibre palm was placed under another panel. However, the absorption coefficient values of both fibre palm and fibre palm-gypsum panels are about the same. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20sound%20absorption" title="coefficient of sound absorption">coefficient of sound absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=pink%20noise" title=" pink noise"> pink noise</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20noise" title=" white noise"> white noise</a>, <a href="https://publications.waset.org/abstracts/search?q=palm" title=" palm"> palm</a> </p> <a href="https://publications.waset.org/abstracts/86576/analysis-of-sound-absorption-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1937</span> Clinical Factors of Quality Switched Ruby Laser Therapy for Lentigo Depigmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=SunWoo%20Lee">SunWoo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=TaeBum%20Lee"> TaeBum Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=YoonHwa%20Park"> YoonHwa Park</a>, <a href="https://publications.waset.org/abstracts/search?q=YooJeong%20Kim"> YooJeong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar lentigines appear predominantly on chronically sun-exposed areas of skin, such as the face and the back of the hands. Among the several ways to lentigines treatment, quality-switched lasers are well-known effective treatment for removing solar lentigines. The present pilot study was therefore designed to assess the efficacy of quality-switched ruby laser treatment of such lentigines compare between pretreatment and posttreatment of skin brightness. Twenty-two adults with chronic sun-damaged skin (mean age 52.8 years, range 37–74 years) were treated at the Korean site. A 694 nm Q-switched ruby laser was used, with the energy density set from 1.4 to 12.5 J/cm2, to treat solar lentigines. Average brightness of skin color before ruby laser treatment was 137.3 and its skin color was brightened after ruby laser treatment by 150.5. Also, standard deviation of skin color was decreased from 17.8 to 16.4. Regarding the multivariate model, age and energy were identified as significant factors for skin color brightness change in lentigo depigmentation by ruby laser treatment. Their respective odds ratios were 1.082 (95% CI, 1.007–1.163), and 1.431 (95% CI, 1.051–1.946). Lentigo depigmentation treatment using ruby lasers resulted in a high performance in skin color brightness. Among the relative factors involve with ruby laser treatment, age and energy were the most effective factors which skin color change to brighter than pretreatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depigmentation" title="depigmentation">depigmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=lentigine" title=" lentigine"> lentigine</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20switched%20ruby%20laser" title=" quality switched ruby laser"> quality switched ruby laser</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20color" title=" skin color"> skin color</a> </p> <a href="https://publications.waset.org/abstracts/48368/clinical-factors-of-quality-switched-ruby-laser-therapy-for-lentigo-depigmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1936</span> Dynamic Response of Doubly Curved Composite Shell with Embedded Shape Memory Alloys Wires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Ardali">Amin Ardali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Khalili"> Mohammadreza Khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Rezai"> Mohammadreza Rezai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, dynamic response of thin smart composite panel subjected to low-velocity transverse impact is investigated. Shape memory wires are used to reinforced curved composite panel in a smart way. One-dimensional thermodynamic constitutive model by Liang and Rogers is used for estimating the structural recovery stress. The two degrees-of-freedom mass-spring model is used for evaluation of the contact force between the curved composite panel and the impactor. This work is benefited from the Hertzian linear contact model which is linearized for the impact analysis of curved composite panel. The governing equations of curved panel are provided by first-order shear theory and solved by Fourier series related to simply supported boundary condition. For this purpose, the equation of doubly curved panel motion included the uniform in-plane forces is obtained. By the present analysis, the curved panel behavior under low-velocity impact, and also the effect of the impact parameters, the shape memory wire and the curved panel dimensions are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doubly%20curved%20shell" title="doubly curved shell">doubly curved shell</a>, <a href="https://publications.waset.org/abstracts/search?q=SMA%20wire" title=" SMA wire"> SMA wire</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20response" title=" impact response"> impact response</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20material" title=" smart material"> smart material</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a> </p> <a href="https://publications.waset.org/abstracts/49593/dynamic-response-of-doubly-curved-composite-shell-with-embedded-shape-memory-alloys-wires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1935</span> Investigating and Comparing the Performance of Baseboard and Panel Radiators by Calculating the Thermal Comfort Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Erfan%20Doraki">Mohammad Erfan Doraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Salehi"> Mohammad Salehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, to evaluate the performance of Baseboard and Panel radiators with thermal comfort coefficient, A room with specific dimensions was modeled with Ansys fluent and DesignBuilder, then calculated the speed and temperature parameters in different parts of the room in two modes of using Panel and Baseboard radiators and it turned out that use of Baseboard radiators has a more uniform temperature and speed distribution, but in a Panel radiator, the room is warmer. Then, by calculating the thermal comfort indices, It was shown that using a Panel radiator is a more favorable environment and using a Baseboard radiator is a more uniform environment in terms of thermal comfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radiator" title="Radiator">Radiator</a>, <a href="https://publications.waset.org/abstracts/search?q=Baseboard" title=" Baseboard"> Baseboard</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal" title=" optimal"> optimal</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort%20coefficient" title=" comfort coefficient"> comfort coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat "> heat </a> </p> <a href="https://publications.waset.org/abstracts/134114/investigating-and-comparing-the-performance-of-baseboard-and-panel-radiators-by-calculating-the-thermal-comfort-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20panel&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20panel&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20panel&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20panel&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20panel&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20panel&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20panel&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20panel&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20panel&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20panel&page=65">65</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20panel&page=66">66</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20panel&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>