CINXE.COM
ERIC - ED596350 - Assessing Computer Literacy of Adults with Low Literacy Skills, Grantee Submission, 2017-Jun
<!DOCTYPE html> <html> <head> <script async src="https://www.googletagmanager.com/gtag/js?id=G-Q61Y5YWXL4"></script><script>window.dataLayer=window.dataLayer || [];function gtag(){dataLayer.push(arguments);}gtag('js',new Date());gtag('config','G-Q61Y5YWXL4',{'ericID':'ED596350'});</script><title>ERIC - ED596350 - Assessing Computer Literacy of Adults with Low Literacy Skills, Grantee Submission, 2017-Jun</title><meta name="description" content="Adaptive learning technologies hold great promise for improving the reading skills of adults with low literacy, but adults with low literacy skills typically have low computer literacy skills. In order to determine whether adults with low literacy skills would be able to use an intelligent tutoring system for reading comprehension, we adapted a 44 task computer literacy assessment and delivered it to 114 adults with reading skills between 3rd and 8th grade levels. This paper presents four analyses on these data. First, we report the pass/fail data natively exported by the assessment for particular computer-based tasks. Second, we undertook a GOMS [Goals, Operators, Methods, & Selection rules] analysis of each computer-based task, to predict the task completion time for a skilled user, and found that it negatively correlated with proportion correct for each item, r(42) = -0.4, p = 0.01. Third, we used the GOMS task decomposition to develop a Q-matrix of component computer skills"><meta name="citation_abstract" content="Adaptive learning technologies hold great promise for improving the reading skills of adults with low literacy, but adults with low literacy skills typically have low computer literacy skills. In order to determine whether adults with low literacy skills would be able to use an intelligent tutoring system for reading comprehension, we adapted a 44 task computer literacy assessment and delivered it to 114 adults with reading skills between 3rd and 8th grade levels. This paper presents four analyses on these data. First, we report the pass/fail data natively exported by the assessment for particular computer-based tasks. Second, we undertook a GOMS [Goals, Operators, Methods, & Selection rules] analysis of each computer-based task, to predict the task completion time for a skilled user, and found that it negatively correlated with proportion correct for each item, r(42) = -0.4, p = 0.01. Third, we used the GOMS task decomposition to develop a Q-matrix of component computer skills"> <meta name="eric #" content="ED596350" /> <meta name="citation_title" content="Assessing Computer Literacy of Adults with Low Literacy Skills." /> <meta name="citation_author" content="Olney, Andrew M." /> <meta name="citation_author" content="Bakhtiari, Dariush" /> <meta name="citation_author" content="Greenberg, Daphne" /> <meta name="citation_author" content="Graesser, Art" /> <meta name="citation_pdf_url" content="http://files.eric.ed.gov/fulltext/ED596350.pdf" /> <meta name="descriptors" content="Computer Literacy; Adults; Reading Skills; Adult Literacy; Foreign Countries; Correlation; Intervention" /> <meta name="citation_keywords" content="Computer Literacy; Adults; Reading Skills; Adult Literacy; Foreign Countries; Correlation; Intervention" /> <meta name="citation_journal_title" content="Grantee Submission" /> <meta name="journal citation" content="Paper presented at the International Conference on Educational Data Mining (10th, Wuhan, China, Jun 25-28, 2017)" /> <meta name="citation_publication_date" content="2017/06/00" /> <meta name="citation_issn" content="EISSN-" /> <meta name="citation_language" content="en" /> <meta name="languages" content="English" /> <meta name="source" content="Non-Journal" /> <meta name="sponsors" content="Institute of Education Sciences (ED)" /> <meta name="grant_or_contract_number" content="R305C120001" /> <meta name="page-topic" content="Computer Literacy; Adults; Reading Skills; Adult Literacy; Foreign Countries; Correlation; Intervention" /> <meta name="page-type" content="" /> <meta name="rating" content="All" /><link rel="shortcut icon" href="favicon.ico" type="image/x-icon" /><link rel="stylesheet" href="css/eric.css?v=0.9" media="all"><link rel="image_src" href="img/icon_fbshare.png"><script type="text/javascript" src="js/jquery-3.5.1.min.js"></script><script type="text/javascript" src="js/respond.min.js"></script><script type="text/javascript" src="js/eric.js?v=0.8"></script> <script type="text/javascript">$(function() {dser();});</script> </head> <body id="bdyMain"> <div id="main"> <div id="actionbar"><a href="?note">Notes</a><a href="?faq">FAQ</a><a href="?contact">Contact Us</a></div><div id="logo"><a href="?" id="aHome" title="ERIC Home"><img src="img/eric_results.png" id="imgLogo" alt="ERIC - Institute of Education Sciences" /></a></div> <div id="sbar"> <form id="f"> <div> <div id="tab1" class="sTab"><span>Collection</span></div> <div id="tab1b" class="sTab"><a href="#thesaurus">Thesaurus</a></div> <a id="atips" href="?advanced">Advanced<br />Search Tips</a> <input id="s" type="text" name="q" placeholder="Search education resources" /> <input type="submit" value="Search" /> </div> <div id="sopt"> <label><input type="checkbox" name="pr" /> Peer reviewed only</label> <label><input type="checkbox" name="ft" /> Full text available on ERIC</label> </div> </form> <form id="ft" style="display:none"> <div> <div id="tab2b" class="sTab"><a href="#collection">Collection</a></div> <div id="tab2" class="sTab"><span>Thesaurus</span></div> <a id="attips" href="?ti=all">Browse<br />Thesaurus</a> <input id="st" type="text" name="qt" placeholder="Search thesaurus descriptors" /> <input type="submit" value="Search" /> </div> <div id="soptt"> <label><input type="checkbox" name="ts" /> Include Synonyms</label> <label><input type="checkbox" name="td" /> Include Dead terms</label> </div> </form> </div> <div id="i"><div id="details" class="record"><div></div><div id="r_colR"><div class="r_f"><img src="img/reviewed_large.png" alt="Peer reviewed" /> Peer reviewed<br /><a href="http://files.eric.ed.gov/fulltext/ED596350.pdf" target="_blank"><img src="img/pdficon_large.png" alt="PDF on ERIC" /> Download full text</a><br /></div><div style="font-size:0.8em;padding-top:4px;padding-left:8px"><div><strong>ERIC Number:</strong> ED596350</div><div><strong>Record Type:</strong> Non-Journal</div><div><strong>Publication Date:</strong> 2017-Jun</div><div><strong>Pages:</strong> 7</div><div><strong>Abstractor:</strong> As Provided</div><div><strong>ISBN:</strong> N/A</div><div><strong>ISSN:</strong> EISSN-</div><div><strong>EISSN:</strong> N/A</div></div></div><div class="title">Assessing Computer Literacy of Adults with Low Literacy Skills</div><div class="r_a"><div style="margin:0;padding:4px 0">Olney, Andrew M.; Bakhtiari, Dariush; Greenberg, Daphne; Graesser, Art</div><div style="margin:0;color:#222;"><cite>Grantee Submission</cite>, Paper presented at the International Conference on Educational Data Mining (10th, Wuhan, China, Jun 25-28, 2017)</div></div><div><div style="margin-right:232px"><div class="abstract">Adaptive learning technologies hold great promise for improving the reading skills of adults with low literacy, but adults with low literacy skills typically have low computer literacy skills. In order to determine whether adults with low literacy skills would be able to use an intelligent tutoring system for reading comprehension, we adapted a 44 task computer literacy assessment and delivered it to 114 adults with reading skills between 3rd and 8th grade levels. This paper presents four analyses on these data. First, we report the pass/fail data natively exported by the assessment for particular computer-based tasks. Second, we undertook a GOMS [Goals, Operators, Methods, & Selection rules] analysis of each computer-based task, to predict the task completion time for a skilled user, and found that it negatively correlated with proportion correct for each item, r(42) = -0.4, p = 0.01. Third, we used the GOMS task decomposition to develop a Q-matrix of component computer skills for each task, and using logistic mixed effects models on this matrix identified five component skills highly predictive of the success or failure of an individual on a computer task: function keys, typing, using icons, right clicking, and mouse dragging. And finally, we assessed the predictive value of all component skills using logistic lasso. [This paper was published in: "Proceedings of the 10th International Conference on Educational Data Mining" (p128-134).]</div><div class="keywords">Descriptors: <a href="?ti=Computer+Literacy">Computer Literacy</a>, <a href="?ti=Adults">Adults</a>, <a href="?ti=Reading+Skills">Reading Skills</a>, <a href="?ti=Adult+Literacy">Adult Literacy</a>, <a href="?ti=Foreign+Countries">Foreign Countries</a>, <a href="?ti=Correlation">Correlation</a>, <a href="?ti=Intervention">Intervention</a></div><div style="font-style:italic;font-size:0.9em"></div></div></div><div class="clear"></div><div class="sInfo"><div><div><strong>Publication Type:</strong> Speeches/Meeting Papers; Reports - Research</div><div><strong>Education Level:</strong> N/A</div><div><strong>Audience:</strong> N/A</div><div><strong>Language:</strong> English</div><div><strong>Sponsor:</strong> Institute of Education Sciences (ED)</div><div><strong>Authoring Institution:</strong> N/A</div><div><strong>Identifiers - Location:</strong> Georgia (Atlanta); Canada (Toronto)</div><div><strong>IES Funded:</strong> Yes</div><div><strong>Grant or Contract Numbers:</strong> <a target="_blank" title="https://ies.ed.gov/funding/grantsearch/details.asp?ID=1343" href="https://ies.ed.gov/funding/grantsearch/details.asp?ID=1343">R305C120001</a></div></div></div><div class="clear" style="margin:0"></div></div></div> <div id="divFooter"><div id="ftrPadding"><div id="ftr"><div id="ftrSocial"> <a href="http://www.facebook.com/SearchEduResources" id="facebook" style="padding-bottom:5px"><img src="img/icon_facebook.gif" alt="Facebook" width="16" height="16" border="0"></a> <a href="http://www.twitter.com/ERICinfo" id="twitter"><img src="img/icon_twitter.gif" alt="Twitter" width="16" height="16" border="0"></a></div><div id="ftrLogos"><a href="http://www.ed.gov"><img src="img/logo_ed.gif" alt="Department of Education"></a><a href="http://ies.ed.gov"><img src="img/logo_ies.gif" alt="Institute of Education Statistics"></a></div><div id="centerLinks"><a href="?privacy">Privacy</a> | <a href="?copyright">Copyright</a> | <a href="?contact">Contact Us</a> | <a href="?selection">Selection Policy</a> | <a href="?api">API</a> | <a href="metrics">Metrics</a><div><a href="?journals">Journals</a> | <a href="?nonjournals">Non-Journals</a> | <a href="?download">Download</a> | <a href="submit">Submit</a> | <a href="?multimedia">Multimedia</a> | <a href="?widget">Widget</a></div></div></div><script id="_fed_an_ua_tag" language="javascript" type="text/javascript" src="/js/Universal-Federated-Analytics-Min.js?pga4=55622235&agency=ED&subagency=ERIC"></script></div></div> </div> <script type="text/javascript">//<![CDATA[ if(self!=top) {top.location=self.location;} //]]></script> </body> </html>