CINXE.COM

Search results for: microgrids

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: microgrids</title> <meta name="description" content="Search results for: microgrids"> <meta name="keywords" content="microgrids"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="microgrids" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="microgrids"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 41</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: microgrids</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Comparative Studies of Distributed and Aggregated Energy Storage Configurations in Direct Current Microgrids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frimpong%20Kyeremeh">Frimpong Kyeremeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Albert%20Y.%20Appiah"> Albert Y. Appiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20B.%20K.%20Ayawli"> Ben B. K. Ayawli </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy storage system (ESS) is an essential part of a microgrid (MG) because of its immense benefits to the economics and the stability of MG. For a direct current (DC) MG (DCMG) in which the generating units are mostly variable renewable energy generators, DC bus voltage fluctuation is inevitable; hence ESS is vital in managing the mismatch between load demand and generation. Besides, to accrue the maximum benefits of ESS in the microgrid, there is the need for proper sizing and location of the ESSs. In this paper, a performance comparison is made between two configurations of ESS; distributed battery energy storage system (D-BESS) and an aggregated (centralized) battery energy storage system (A-BESS), on the basis of stability and operational cost for a DCMG. The configuration consists of four households with rooftop PV panels and a wind turbine. The objective is to evaluate and analyze the technical efficiencies, cost effectiveness as well as controllability of each configuration. The MG is first modelled with MATLAB Simulink then, a mathematical model is used to determine the optimal size of the BESS that minimizes the total operational cost of the MG. The performance of the two configurations would be tested with simulations. The two configurations are expected to reduce DC bus voltage fluctuations, but in the cases of voltage stability and optimal cost, the best configuration performance will be determined at the end of the research. The work is in progress, and the result would help MG designers and operators to make the best decision on the use of BESS for DCMG configurations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregated%20energy%20storage%20system" title="aggregated energy storage system">aggregated energy storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20bus%20voltage" title=" DC bus voltage"> DC bus voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20microgrid" title=" DC microgrid"> DC microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20battery%20energy%20storage" title=" distributed battery energy storage"> distributed battery energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/95239/comparative-studies-of-distributed-and-aggregated-energy-storage-configurations-in-direct-current-microgrids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Data-Driven Simulations Tools for Der and Battery Rich Power Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Moradiamani">Ali Moradiamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Sadat%20Sajjadi"> Samaneh Sadat Sajjadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Jalili"> Mahdi Jalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power system analysis has been a major research topic in the generation and distribution sections, in both industry and academia, for a long time. Several load flow and fault analysis scenarios have been normally performed to study the performance of different parts of the grid in the context of, for example, voltage and frequency control. Software tools, such as PSCAD, PSSE, and PowerFactory DIgSILENT, have been developed to perform these analyses accurately. Distribution grid had been the passive part of the grid and had been known as the grid of consumers. However, a significant paradigm shift has happened with the emergence of Distributed Energy Resources (DERs) in the distribution level. It means that the concept of power system analysis needs to be extended to the distribution grid, especially considering self sufficient technologies such as microgrids. Compared to the generation and transmission levels, the distribution level includes significantly more generation/consumption nodes thanks to PV rooftop solar generation and battery energy storage systems. In addition, different consumption profile is expected from household residents resulting in a diverse set of scenarios. Emergence of electric vehicles will absolutely make the environment more complicated considering their charging (and possibly discharging) requirements. These complexities, as well as the large size of distribution grids, create challenges for the available power system analysis software. In this paper, we study the requirements of simulation tools in the distribution grid and how data-driven algorithms are required to increase the accuracy of the simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20grids" title="smart grids">smart grids</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20energy%20resources" title=" distributed energy resources"> distributed energy resources</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title=" electric vehicles"> electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20storage%20systsms" title=" battery storage systsms"> battery storage systsms</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20tools" title=" simulation tools"> simulation tools</a> </p> <a href="https://publications.waset.org/abstracts/155397/data-driven-simulations-tools-for-der-and-battery-rich-power-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Frequency Control of Self-Excited Induction Generator Based Microgrid during Transition from Grid Connected to Island Mode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azhar%20Ulhaq">Azhar Ulhaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Zubair%20Yameen"> Zubair Yameen</a>, <a href="https://publications.waset.org/abstracts/search?q=Almas%20Anjum"> Almas Anjum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequency behaviour of self-excited induction generator (SEIG) wind turbines during control mode transition from grid connected to islanded mode is studied in detail. A robust control scheme for frequency regulation based on combined action of STATCOM, energy storage system (ESS) and pitch angle control for wind powered microgrid (MG) is proposed. Suggested STATCOM controller comprises a 3-phase voltage source converter (VSC) that contains insulated gate bipolar transistors (IGBTs) based pulse width modulation (PWM) inverters along with a capacitor bank. Energy storage system control consists of current controlled voltage source converter and battery bank. Both of them acting simultaneously after detection of island compensates for reactive and active power demands, thus regulating frequency at point of common coupling (PCC) and also improves load stability. STATCOM integrates at point of common coupling and ESS is connected to microgrids main bus. Results reveal that proposed control not only stabilizes frequency during transition duration but also minimizes sudden frequency imbalance caused by load variation or wind intermittencies in islanded operation. System is investigated with and without suggested control scheme. The efficacy of proposed strategy has been verified by simulation in MATLAB/Simulink. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system" title="energy storage system">energy storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=island" title=" island"> island</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a>, <a href="https://publications.waset.org/abstracts/search?q=STATCOM" title=" STATCOM"> STATCOM</a>, <a href="https://publications.waset.org/abstracts/search?q=self-excited%20induction%20generator" title=" self-excited induction generator"> self-excited induction generator</a>, <a href="https://publications.waset.org/abstracts/search?q=SEIG" title=" SEIG"> SEIG</a>, <a href="https://publications.waset.org/abstracts/search?q=transient" title=" transient"> transient</a> </p> <a href="https://publications.waset.org/abstracts/114339/frequency-control-of-self-excited-induction-generator-based-microgrid-during-transition-from-grid-connected-to-island-mode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Sustainable Energy Supply through the Microgrid Concept: A Case Study of University of Nigeria, Nsukka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20Ndubisi%20Madu">Christian Ndubisi Madu</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20C.%20Ozumba"> Benjamin C. Ozumba</a>, <a href="https://publications.waset.org/abstracts/search?q=Ifeanyi%20E.%20Madu"> Ifeanyi E. Madu</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentine%20E.%20Nnadi"> Valentine E. Nnadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikenna%20C.%20Ezeasor"> Ikenna C. Ezeasor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ability to generate power and achieve energy security is one of the driving forces behind the emerging ‘microgrid’ concept. Traditional power supply often operates with centralized infrastructure for generating, transmitting and distributing electricity. The inefficiency and the incessant power outages associated with the centralized power supply system in Nigeria has alienated many users who frequently turn to electric power generator sets to power their homes and offices. Such acts are unsustainable and lead to increase in the use of fossil fuels, generation of carbon dioxide emissions and other gases, and noise pollution. They also pose significant risks as they entail random purchases and storage of gasolines which are fire hazards. It is therefore important that organizations rethink their relationships to centralized power suppliers in other to improve energy accessibility and security. This study explores the energy planning processes and learning taking place at the University of Nigeria Enugu Campus as the school lead microgrid feasibility studies in its community. There is need to develop community partners to deal with the issue of energy efficiency and also to create a strategic alliance to confront political, regulatory and economic barriers to locally-based energy planning. Community-based microgrid can help to reduce the cost of adoption and diversify risks. This study offers insights into the ways in which microgrids can further democratize energy planning, procurement, and access, while simultaneously promoting efficiency and sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microgrid" title="microgrid">microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20security" title=" energy security"> energy security</a> </p> <a href="https://publications.waset.org/abstracts/69211/sustainable-energy-supply-through-the-microgrid-concept-a-case-study-of-university-of-nigeria-nsukka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> A Multicriteria Analysis of Energy Poverty Index: A Case Study of Non-interconnected Zones in Colombia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angelica%20Gonzalez%20O">Angelica Gonzalez O</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20Rivera%20Cadavid"> Leonardo Rivera Cadavid</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Fernando%20Manotas"> Diego Fernando Manotas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy poverty considers a population that does not have access to modern energy service. In particular, an area of a country that is not connected to the national electricity grid is known as a Non-Interconnected Zone (NIZ). Access to electricity has a significant impact on the welfare and development opportunities of the population. Different studies have shown that most health problems have an empirical cause and effect relationship with multidimensional energy poverty. Likewise, research has been carried out to review the consequences of not having access to electricity, and its results have concluded a statistically significant relationship between energy poverty and sources of drinking water, access to clean water, risks of mosquito bites, obesity, sterilization, marital status, occupation, and residence. Therefore, extensive research has been conducted in the construction of an energy poverty measure based on an index. Some of these studies introduce a Multidimensional Energy Poverty Index (MEPI), Compose Energy Poverty Index (CEPI), Low Income High Costs indicator (LIHC), among others. For this purpose, this study analyzes the energy poverty index using a multicriteria analysis determining the set of feasible alternatives - for which Colombia's ZNI will be used as a case study - to be considered in the problem and the set of relevant criteria in the characterization of the ZNI, from which the prioritization is obtained to determine the level of adjustment of each alternative with respect to the performance in each criterion. Additionally, this study considers the installation of Micro-Grids (MG). This is considered a straightforward solution to this problem because an MG is a local electrical grid, able to operate in grid-connected and island mode. Drawing on those insights, this study compares an energy poverty index considering an MG installation and calculates the impacts of different criterias in an energy poverty index in NIZ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multicirteria" title="multicirteria">multicirteria</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20poverty" title=" energy poverty"> energy poverty</a>, <a href="https://publications.waset.org/abstracts/search?q=rural" title=" rural"> rural</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrids" title=" microgrids"> microgrids</a>, <a href="https://publications.waset.org/abstracts/search?q=non-interconnect%20zones" title=" non-interconnect zones"> non-interconnect zones</a> </p> <a href="https://publications.waset.org/abstracts/154952/a-multicriteria-analysis-of-energy-poverty-index-a-case-study-of-non-interconnected-zones-in-colombia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Accuracy of Peak Demand Estimates for Office Buildings Using Quick Energy Simulation Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdiyeh%20Zafaranchi">Mahdiyeh Zafaranchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethan%20S.%20Cantor"> Ethan S. Cantor</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20T.%20Riddell"> William T. Riddell</a>, <a href="https://publications.waset.org/abstracts/search?q=Jess%20W.%20Everett"> Jess W. Everett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The New Jersey Department of Military and Veteran’s Affairs (NJ DMAVA) operates over 50 facilities throughout the state of New Jersey, U.S. NJDMAVA is under a mandate to move toward decarbonization, which will eventually include eliminating the use of natural gas and other fossil fuels for heating. At the same time, the organization requires increased resiliency regarding electric grid disruption. These competing goals necessitate adopting the use of on-site renewables such as photovoltaic and geothermal power, as well as implementing power control strategies through microgrids. Planning for these changes requires a detailed understanding of current and future electricity use on yearly, monthly, and shorter time scales, as well as a breakdown of consumption by heating, ventilation, and air conditioning (HVAC) equipment. This paper discusses case studies of two buildings that were simulated using the QUick Energy Simulation Tool (eQUEST). Both buildings use electricity from the grid and photovoltaics. One building also uses natural gas. While electricity use data are available in hourly intervals and natural gas data are available in monthly intervals, the simulations were developed using monthly and yearly totals. This approach was chosen to reflect the information available for most NJ DMAVA facilities. Once completed, simulation results are compared to metrics recommended by several organizations to validate energy use simulations. In addition to yearly and monthly totals, the simulated peak demands are compared to actual monthly peak demand values. The simulations resulted in monthly peak demand values that were within 30% of the measured values. These benchmarks will help to assess future energy planning efforts for NJ DMAVA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20modeling" title="building energy modeling">building energy modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=eQUEST" title=" eQUEST"> eQUEST</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20demand" title=" peak demand"> peak demand</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20meters" title=" smart meters"> smart meters</a> </p> <a href="https://publications.waset.org/abstracts/165986/accuracy-of-peak-demand-estimates-for-office-buildings-using-quick-energy-simulation-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Sequence Component-Based Adaptive Protection for Microgrids Connected Power Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isabelle%20Snyder">Isabelle Snyder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microgrid protection presents challenges to conventional protection techniques due to the low induced fault current. Protection relays present in microgrid applications require a combination of settings groups to adjust based on the architecture of the microgrid in islanded and grid-connected mode. In a radial system where the microgrid is at the other end of the feeder, directional elements can be used to identify the direction of the fault current and switch settings groups accordingly (grid connected or microgrid connected). However, with multiple microgrid connections, this concept becomes more challenging, and the direction of the current alone is not sufficient to identify the source of the fault current contribution. ORNL has previously developed adaptive relaying schemes through other DOE-funded research projects that will be evaluated and used as a baseline for this research. The four protection techniques in this study are the following: (1) Adaptive Current only Protection System (ACPS), Intentional (2) Unbalanced Control for Protection Control (IUCPC), (3) Adaptive Protection System with Communication Controller (APSCC) (4) Adaptive Model-Driven Protective Relay (AMDPR). The first two methods focus on identifying the islanded mode without communication by monitoring the current sequence component generated by the system (ACPS) or induced with inverter control during islanded mode (IUCPC) to identify the islanding condition without communication at the relay to adjust the settings. These two methods are used as a backup to the APSCC, which relies on a communication network to communicate the islanded configuration to the system components. The fourth method relies on a short circuit model inside the relay that is used in conjunction with communication to adjust the system configuration and computes the fault current and adjusts the settings accordingly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20relaying" title="adaptive relaying">adaptive relaying</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrid%20protection" title=" microgrid protection"> microgrid protection</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20components" title=" sequence components"> sequence components</a>, <a href="https://publications.waset.org/abstracts/search?q=islanding%20detection" title=" islanding detection"> islanding detection</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20controlled%20protection" title=" communication controlled protection"> communication controlled protection</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20short%20circuit%20model" title=" integrated short circuit model"> integrated short circuit model</a> </p> <a href="https://publications.waset.org/abstracts/155921/sequence-component-based-adaptive-protection-for-microgrids-connected-power-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Energy Trading for Cooperative Microgrids with Renewable Energy Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziaullah">Ziaullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Wahab%20Ali"> Shah Wahab Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-grid equipped with heterogeneous energy resources present the idea of small scale distributed energy management (DEM). DEM helps in minimizing the transmission and operation costs, power management and peak load demands. Micro-grids are collections of small, independent controllable power-generating units and renewable energy resources. Micro-grids also motivate to enable active customer participation by giving accessibility of real-time information and control to the customer. The capability of fast restoration against faulty situation, integration of renewable energy resources and Information and Communication Technologies (ICT) make micro-grid as an ideal system for distributed power systems. Micro-grids can have a bank of energy storage devices. The energy management system of micro-grid can perform real-time energy forecasting of renewable resources, energy storage elements and controllable loads in making proper short-term scheduling to minimize total operating costs. We present a review of existing micro-grids optimization objectives/goals, constraints, solution approaches and tools used in micro-grids for energy management. Cost-benefit analysis of micro-grid reveals that cooperation among different micro-grids can play a vital role in the reduction of import energy cost and system stability. Cooperative micro-grids energy trading is an approach to electrical distribution energy resources that allows local energy demands more control over the optimization of power resources and uses. Cooperation among different micro-grids brings the interconnectivity and power trading issues. According to the literature, it shows that open area of research is available for cooperative micro-grids energy trading. In this paper, we proposed and formulated the efficient energy management/trading module for interconnected micro-grids. It is believed that this research will open new directions in future for energy trading in cooperative micro-grids/interconnected micro-grids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20energy%20management" title="distributed energy management">distributed energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20and%20communication%20technologies" title=" information and communication technologies"> information and communication technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrid" title=" microgrid"> microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title=" energy management"> energy management</a> </p> <a href="https://publications.waset.org/abstracts/81024/energy-trading-for-cooperative-microgrids-with-renewable-energy-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Hierarchical Operation Strategies for Grid Connected Building Microgrid with Energy Storage and Photovoltatic Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seon-Ho%20Yoon">Seon-Ho Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Young%20Choi"> Jin-Young Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jun%20Won"> Dong-Jun Won </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents hierarchical operation strategies which are minimizing operation error between day ahead operation plan and real time operation. Operating power systems between centralized and decentralized approaches can be represented as hierarchical control scheme, featured as primary control, secondary control and tertiary control. Primary control is known as local control, featuring fast response. Secondary control is referred to as microgrid Energy Management System (EMS). Tertiary control is responsible of coordinating the operations of multi-microgrids. In this paper, we formulated 3 stage microgrid operation strategies which are similar to hierarchical control scheme. First stage is to set a day ahead scheduled output power of Battery Energy Storage System (BESS) which is only controllable source in microgrid and it is optimized to minimize cost of exchanged power with main grid using Particle Swarm Optimization (PSO) method. Second stage is to control the active and reactive power of BESS to be operated in day ahead scheduled plan in case that State of Charge (SOC) error occurs between real time and scheduled plan. The third is rescheduling the system when the predicted error is over the limited value. The first stage can be compared with the secondary control in that it adjusts the active power. The second stage is comparable to the primary control in that it controls the error in local manner. The third stage is compared with the secondary control in that it manages power balancing. The proposed strategies will be applied to one of the buildings in Electronics and Telecommunication Research Institute (ETRI). The building microgrid is composed of Photovoltaic (PV) generation, BESS and load and it will be interconnected with the main grid. Main purpose of that is minimizing operation cost and to be operated in scheduled plan. Simulation results support validation of proposed strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Battery%20Energy%20Storage%20System%20%28BESS%29" title="Battery Energy Storage System (BESS)">Battery Energy Storage System (BESS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Energy%20Management%20System%20%28EMS%29" title=" Energy Management System (EMS)"> Energy Management System (EMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Microgrid%20%28MG%29" title=" Microgrid (MG)"> Microgrid (MG)</a>, <a href="https://publications.waset.org/abstracts/search?q=Particle%20Swarm%20Optimization%20%28PSO%29" title=" Particle Swarm Optimization (PSO)"> Particle Swarm Optimization (PSO)</a> </p> <a href="https://publications.waset.org/abstracts/55127/hierarchical-operation-strategies-for-grid-connected-building-microgrid-with-energy-storage-and-photovoltatic-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Voltage and Frequency Regulation Using the Third-Party Mid-Size Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roghieh%20A.%20Biroon">Roghieh A. Biroon</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoleikha%20Abdollahi"> Zoleikha Abdollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent growth of renewables, e.g., solar panels, batteries, and electric vehicles (EVs) in residential and small commercial sectors, has potential impacts on the stability and operation of power grids. Considering approximately 50 percent share of the residential and the commercial sectors in the electricity demand market, the significance of these impacts, and the necessity of addressing them are more highlighted. Utilities and power system operators should manage the renewable electricity sources integration with power systems in such a way to extract the most possible advantages for the power systems. The most common effect of high penetration level of the renewables is the reverse power flow in the distribution feeders when the customers generate more power than their needs. The reverse power flow causes voltage rise and thermal issues in the power grids. To overcome the voltage rise issues in the distribution system, several techniques have been proposed including reducing transformers short circuit resistance and feeder impedance, installing autotransformers/voltage regulators along the line, absorbing the reactive power by distributed generators (DGs), and limiting the PV and battery sizes. In this study, we consider a medium-scale battery energy storage to manage the power energy and address the aforementioned issues on voltage deviation and power loss increase. We propose an optimization algorithm to find the optimum size and location for the battery. The optimization for the battery location and size is so that the battery maintains the feeder voltage deviation and power loss at a certain desired level. Moreover, the proposed optimization algorithm controls the charging/discharging profile of the battery to absorb the negative power flow from residential and commercial customers in the feeder during the peak time and sell the power back to the system during the off-peak time. The proposed battery regulates the voltage problem in the distribution system while it also can play frequency regulation role in islanded microgrids. This battery can be regulated and controlled by the utilities or a third-party ancillary service provider for the utilities to reduce the power system loss and regulate the distribution feeder voltage and frequency in standard level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancillary%20services" title="ancillary services">ancillary services</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20system%20and%20optimization" title=" distribution system and optimization"> distribution system and optimization</a> </p> <a href="https://publications.waset.org/abstracts/110651/voltage-and-frequency-regulation-using-the-third-party-mid-size-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Economic Evaluation of Degradation by Corrosion of an On-Grid Battery Energy Storage System: A Case Study in Algeria Territory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fouzia%20Brihmat">Fouzia Brihmat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Economic planning models, which are used to build microgrids and distributed energy resources, are the current norm for expressing such confidence (DER). These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation. The trade-off is that the model is more accurate, but it took longer to compute. As a consequence, the model is more precise, but the computation takes longer. We initially utilized the Optimizer to run the model without MultiYear in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower COE of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated. The technological optimization of the same system has been finished and is being reviewed in a recent paper study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery" title="battery">battery</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20planning%20optimization" title=" economic planning optimization"> economic planning optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20energy%20system" title=" hybrid energy system"> hybrid energy system</a>, <a href="https://publications.waset.org/abstracts/search?q=lead-acid%20battery" title=" lead-acid battery"> lead-acid battery</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-year%20planning" title=" multi-year planning"> multi-year planning</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrid" title=" microgrid"> microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=price%20forecast" title=" price forecast"> price forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=PV" title=" PV"> PV</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20net%20present%20cost" title=" total net present cost"> total net present cost</a> </p> <a href="https://publications.waset.org/abstracts/157731/economic-evaluation-of-degradation-by-corrosion-of-an-on-grid-battery-energy-storage-system-a-case-study-in-algeria-territory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microgrids&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microgrids&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item disabled"><span class="page-link">&rsaquo;</span></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10