CINXE.COM

Search results for: travertine

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: travertine</title> <meta name="description" content="Search results for: travertine"> <meta name="keywords" content="travertine"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="travertine" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="travertine"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: travertine</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Determination of Geotechnical Properties of Travertine Lithotypes in Van-Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ozvan">Ali Ozvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Akkaya"> Ismail Akkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Mucip%20Tapan"> Mucip Tapan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Travertine is generally a weak or medium strong rock, and physical, mechanical and structural properties of travertines are direct impacts on geotechnical studies. New settlement areas were determined on travertine units after two destructive earthquakes which occurred on October 23rd, 2011 (M=7.1) and November 9th, 2011 (M=5.6) in Tabanlı and Edremit districts of Van province in Turkey, respectively. In the study area, the travertines have different lithotype and engineering properties such as strong crystalline crust, medium strong shrub, and weak reed which can affect mechanical and engineering properties of travertine and each level have different handicaps. Travertine has a higher strength when compared to the soil ground; however, it can have different handicaps such as having poor rock mass, karst caves and weathering alteration. Physico-mechanical properties of travertine in the study area are determined by laboratory tests and field observations. Uniaxial compressive strength (UCS) values were detected by indirect methods, and the strength map of different lithotype of Edremit travertine was created in order to define suitable settlement areas. Also, rock mass properties and underground structure were determined by bore holes, field studies, and geophysical method. The reason of this study is to investigate the relationship between lithotype and physicomechanical properties of travertines. According to the results, lithotype has an effect on physical, mechanical and rock mass properties of travertine levels. It is detected by several research methods that various handicaps may occur on such areas when the active tectonic structure of the area is evaluated along with the karstic cavities within the travertine and different lithotype qualities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=travertine" title="travertine">travertine</a>, <a href="https://publications.waset.org/abstracts/search?q=lithotype" title=" lithotype"> lithotype</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20parameters" title=" geotechnical parameters"> geotechnical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20earthquake" title=" Van earthquake"> Van earthquake</a> </p> <a href="https://publications.waset.org/abstracts/58578/determination-of-geotechnical-properties-of-travertine-lithotypes-in-van-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Determination of the Optimum Size of Building Stone Blocks: Case Study of Delichai Travertine Mine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hesam%20Sedaghat%20Nejad">Hesam Sedaghat Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Hosseini"> Navid Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Nikvar%20Hassani"> Arash Nikvar Hassani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determination of the optimum block size with high profitability is one of the significant parameters in designation of the building stone mines. The aim of this study was to determine the optimum dimensions of building stone blocks in Delichai travertine mine of Damavand in Tehran province through combining the effective parameters proven in determination of the optimum dimensions in building stones such as the spacing of joints and gaps, extraction tools constraints with the help of modeling by Gemcom software. To this end, following simulation of the topography of the mine, the block model was prepared and then in order to use spacing joints and discontinuities as a limiting factor, the existing joints set was added to the model. Since only one almost horizontal joint set with a slope of 5 degrees was available, this factor was effective only in determining the optimum height of the block, and thus to determine the longitudinal and transverse optimum dimensions of the extracted block, the power of available loader in the mine was considered as the secondary limiting factor. According to the aforementioned factors, the optimal block size in this mine was measured as 3.4&times;4&times;7 meter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20stone" title="building stone">building stone</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20block%20size" title=" optimum block size"> optimum block size</a>, <a href="https://publications.waset.org/abstracts/search?q=Delichay%20travertine%20mine" title=" Delichay travertine mine"> Delichay travertine mine</a>, <a href="https://publications.waset.org/abstracts/search?q=loader%20power" title=" loader power"> loader power</a> </p> <a href="https://publications.waset.org/abstracts/49660/determination-of-the-optimum-size-of-building-stone-blocks-case-study-of-delichai-travertine-mine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> The Effect of Fly Ash in Dewatering of Marble Processing Wastewaters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Taner">H. A. Taner</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20%C3%96nen"> V. Önen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the thermal power plants established to meet the energy need, lignite with low calorie and high ash content is used. Burning of these coals results in wastes such as fly ash, slag and flue gas. This constitutes a significant economic and environmental problems. However, fly ash can find evaluation opportunities in various sectors. In this study, the effectiveness of fly ash on suspended solid removal from marble processing wastewater containing high concentration of suspended solids was examined. Experiments were carried out for two different suspensions, marble and travertine. In the experiments, FeCl<sub>3</sub>, Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and anionic polymer A130 were used also to compare with fly ash. Coagulant/flocculant type/dosage, mixing time/speed and pH were the experimental parameters. The performances in the experimental studies were assessed with the change in the interface height during sedimentation resultant and turbidity values of treated water. The highest sedimentation efficiency was achieved with anionic flocculant. However, it was determined that fly ash can be used instead of FeCl<sub>3</sub> and Al<sub>2</sub>(SO<sub>4</sub>)<sub>3 </sub>in the travertine plant as a coagulant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dewatering" title="dewatering">dewatering</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculant" title=" flocculant"> flocculant</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=marble%20plant%20wastewater" title=" marble plant wastewater"> marble plant wastewater</a> </p> <a href="https://publications.waset.org/abstracts/91052/the-effect-of-fly-ash-in-dewatering-of-marble-processing-wastewaters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> The Relationship between the Epithermal Mineralization, Thermalism, and Basement Faults in the Region of Guelma: NE of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Merdas">B. Merdas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Guelma region constitutes a vast geothermal field whose local geothermal gradient is very high. Indeed, various thermal and thermo sources emerging in the region, including some at relatively high temperatures. In the mio Pliocene Hammam N'bails, basin emerges a hot spring that leaves develop a thick series of thermal travertine linked to it. Near the thermal emergences has settled a very special mineralization antimony and zinc and lead. The results of analyses of the thermal waters of the source of Hammam N'bails and the associated travertine, show abnormal values in Pb, Sb, Zn, As, and other metals, demonstrating the genetic link between those waters and mineralization. Hammam N'bails mineralizations by their mineral assembling represented and their association with the hot springs, are very similar to epithermal deposits with precious metals (gold and silver) like Senator mine in Turkey or ‘Carlin-type’ in Nevada (USA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20springs" title="hot springs">hot springs</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization%3B%20basement%20faults" title=" mineralization; basement faults"> mineralization; basement faults</a>, <a href="https://publications.waset.org/abstracts/search?q=Guelma" title=" Guelma"> Guelma</a>, <a href="https://publications.waset.org/abstracts/search?q=NE%20Algeria" title=" NE Algeria"> NE Algeria</a> </p> <a href="https://publications.waset.org/abstracts/33560/the-relationship-between-the-epithermal-mineralization-thermalism-and-basement-faults-in-the-region-of-guelma-ne-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Role of Fracturing, Brecciation and Calcite Veining in Fluids Flow and Permeability Enhancement in Low-Porosity Rock Masses: Case Study of Boulaaba Aptian Dolostones, Kasserine, Central Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Khali%20Zidi">Mohamed Khali Zidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Henchiri"> Mohsen Henchiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20Ben%20Ahmed"> Walid Ben Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of a hypogene hydrothermal travertine system, including low-porosity brittle bedrock and rock-mass permeability in Aptian dolostone of Boulaaba, Kasserine is enhanced through faulting and fracturing. This permeability enhancement related to the deformation modes along faults and fractures is likely to be in competition with permeability reduction when microcracks, fractures, and faults all become infilled with breccias and low-permeability hydrothermal precipitates. So that, fault continual or intermittent reactivation is probably necessary for them to keep their potential as structural high-permeability conduits. Dilational normal faults in strong mechanical stratigraphy associated with fault segments with dip changes are sites for porosity and permeability in groundwater infiltration and flow, hydrocarbon reservoirs, and also may be important sources of mineralization. The brecciation mechanism through dilational faulting and gravitational collapse originates according to hosting lithologies chaotic clast-supported breccia in strong lithologies such as sandstones, limestones, and dolostones, and matrix-supported cataclastic in weaker lithologies such as marls and shales. Breccias contribute to controlling fluid flow when the porosity is sealed either by low-permeability hydrothermal precipitates or by fine matrix materials. All these mechanisms of fault-related rock-mass permeability enhancement and reduction can be observed and analyzed in the region of Sidi Boulaaba, Kasserine, central Tunisia, where dilational normal faulting occurs in mechanical strong dolostone layering alternating with more weak marl and shale lithologies, has originated a variety of fault voids (fluid conduits) breccias (chaotic, crackle and mosaic breccias) and carbonate cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=travertine" title="travertine">travertine</a>, <a href="https://publications.waset.org/abstracts/search?q=Aptian%20dolostone" title=" Aptian dolostone"> Aptian dolostone</a>, <a href="https://publications.waset.org/abstracts/search?q=Boulaaba" title=" Boulaaba"> Boulaaba</a>, <a href="https://publications.waset.org/abstracts/search?q=fracturing" title=" fracturing"> fracturing</a> </p> <a href="https://publications.waset.org/abstracts/182430/role-of-fracturing-brecciation-and-calcite-veining-in-fluids-flow-and-permeability-enhancement-in-low-porosity-rock-masses-case-study-of-boulaaba-aptian-dolostones-kasserine-central-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Analytical Characterization of TiO2-Based Nanocoatings for the Protection and Preservation of Architectural Calcareous Stone Monuments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20M.%20Ahmed">Sayed M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20S.%20Darwish"> Sawsan S. Darwish</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A.%20Adam"> Mahmoud A. Adam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagib%20A.%20Elmarzugi"> Nagib A. Elmarzugi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Al-Dosari"> Mohammad A. Al-Dosari</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20A.%20Al-Mouallimi"> Nadia A. Al-Mouallimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Historical stone surfaces and architectural heritage especially which located in open areas may undergo unwanted changes due to the exposure to many physical and chemical deterioration factors, air pollution, soluble salts, Rh/temperature, and biodeterioration are the main causes of decay of stone building materials. The development and application of self-cleaning treatments on historical and architectural stone surfaces could be a significant improvement in conservation, protection, and maintenance of cultural heritage. In this paper, nanometric titanium dioxide has become a promising photocatalytic material owing to its ability to catalyze the complete degradation of many organic contaminants and represent an appealing way to create self-cleaning surfaces, thus limiting maintenance costs, and to promote the degradation of polluting agents. The obtained nano-TiO2 coatings were applied on travertine (Marble and limestone often used in historical and monumental buildings). The efficacy of the treatments has been evaluated after coating and artificial thermal aging, through capillary water absorption, Ultraviolet-light exposure to evaluate photo-induced and the hydrophobic effects of the coated surface, while the surface morphology before and after treatment was examined by scanning electron microscopy (SEM). The changes of molecular structure occurring in treated samples were spectroscopy studied by FTIR-ATR, and Colorimetric measurements have been performed to evaluate the optical appearance. All the results get together with the apparent effect that coated TiO2 nanoparticles is an innovative method, which enhanced the durability of stone surfaces toward UV aging, improved their resistance to relative humidity and temperature, self-cleaning photo-induced effects are well evident, and no alteration of the original features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architectural%20calcareous%20stone%20monuments" title="architectural calcareous stone monuments">architectural calcareous stone monuments</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis%20TiO2" title=" photocatalysis TiO2"> photocatalysis TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20aging" title=" thermal aging"> thermal aging</a> </p> <a href="https://publications.waset.org/abstracts/48269/analytical-characterization-of-tio2-based-nanocoatings-for-the-protection-and-preservation-of-architectural-calcareous-stone-monuments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Nanotechnology in Conservation of Artworks: TiO2-Based Nanocoatings for the Protection and Preservation of Stone Monuments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20M.%20Ahmed">Sayed M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20S.%20Darwish"> Sawsan S. Darwish</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagib%20A.%20Elmarzugi"> Nagib A. Elmarzugi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Al-Dosari"> Mohammad A. Al-Dosari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A.%20Adam"> Mahmoud A. Adam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20A.%20Al-Mouallimi"> Nadia A. Al-Mouallimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preservation of cultural heritage is a worldwide problem. Stone monuments represent an important part of this heritage, but due to their prevalently outdoor location, they are generally subject to a complex series of weathering and decay processes, in addition to physical and chemical factors, also biological agents usually play an important role in deterioration phenomena. The aim of this paper is to experimentally verify applicability and feasibility of titanium dioxide (TiO2) nanoparticles for the preservation of historical (architectural, monumental, archaeological) stone surfaces which enables to reduce the deterioration behaviors mentioned above. TiO2 nanoparticles dispersed in an aqueous colloidal suspension were applied directly on travertine (Marble and limestone often used in historical and monumental buildings) by spray-coating in order to obtain a nanometric film on stone samples. SEM, coupled with EDX microanalysis. (SEM-EDX), in order to obtain information oncoating homogeneity, surface morphology before and after aging and penetration depth of the TiO2 within the samples. Activity of the coated surface was evaluated with UV accelerated aging test. Capillary water absorption, thermal aging and colorimetric measurements have been performed on on coated and uncoated samples to evaluate their properties and estimate change of appearance with colour variation. Results show Tio2 nanoparticles good candidate for coating applications on calcareous stone, good water-repellence was observed on the samples after treatment; analyses were carried out on both untreated and freshly treated samples as well as after artificial aging. Colour change showed negligible variations on the coated or uncoated stone as well as after aging. Results showed that treated stone surfaces seem to be not affected after 1000 hours of exposure to UV radiation, no alteration of the original features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architectural%20and%20archaeological%20heritage" title="architectural and archaeological heritage">architectural and archaeological heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=calcareous%20stone" title=" calcareous stone"> calcareous stone</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis%20TiO2" title=" photocatalysis TiO2"> photocatalysis TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20aging" title=" thermal aging"> thermal aging</a> </p> <a href="https://publications.waset.org/abstracts/47907/nanotechnology-in-conservation-of-artworks-tio2-based-nanocoatings-for-the-protection-and-preservation-of-stone-monuments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Impacts of Present and Future Climate Variability on Forest Ecosystem in Mediterranean Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orkan%20Ozcan">Orkan Ozcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nebiye%20Musaoglu"> Nebiye Musaoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Turkes"> Murat Turkes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is largely recognized as one of the real, pressing and significant global problems. The concept of ‘climate change vulnerability’ helps us to better comprehend the cause/effect relationships behind climate change and its impact on human societies, socioeconomic sectors, physiographical and ecological systems. In this study, multifactorial spatial modeling was applied to evaluate the vulnerability of a Mediterranean forest ecosystem to climate change. As a result, the geographical distribution of the final Environmental Vulnerability Areas (EVAs) of the forest ecosystem is based on the estimated final Environmental Vulnerability Index (EVI) values. This revealed that at current levels of environmental degradation, physical, geographical, policy enforcement and socioeconomic conditions, the area with a ‘very low’ vulnerability degree covered mainly the town, its surrounding settlements and the agricultural lands found mainly over the low and flat travertine plateau and the plains at the east and southeast of the district. The spatial magnitude of the EVAs over the forest ecosystem under the current environmental degradation was also determined. This revealed that the EVAs classed as ‘very low’ account for 21% of the total area of the forest ecosystem, those classed as ‘low’ account for 36%, those classed as ‘medium’ account for 20%, and those classed as ‘high’ account for 24%. Based on regionally averaged future climate assessments and projected future climate indicators, both the study site and the western Mediterranean sub-region of Turkey will probably become associated with a drier, hotter, more continental and more water-deficient climate. This analysis holds true for all future scenarios, with the exception of RCP4.5 for the period from 2015 to 2030. However, the present dry-sub humid climate dominating this sub-region and the study area shows a potential for change towards more dry climatology and for it to become a semiarid climate in the period between 2031 and 2050 according to the RCP8.5 high emission scenario. All the observed and estimated results and assessments summarized in the study show clearly that the densest forest ecosystem in the southern part of the study site, which is characterized by mainly Mediterranean coniferous and some mixed forest and the maquis vegetation, will very likely be influenced by medium and high degrees of vulnerability to future environmental degradation, climate change and variability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest%20ecosystem" title="forest ecosystem">forest ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mediterranean%20climate" title=" Mediterranean climate"> Mediterranean climate</a>, <a href="https://publications.waset.org/abstracts/search?q=RCP%20scenarios" title=" RCP scenarios"> RCP scenarios</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20analysis" title=" vulnerability analysis"> vulnerability analysis</a> </p> <a href="https://publications.waset.org/abstracts/63742/impacts-of-present-and-future-climate-variability-on-forest-ecosystem-in-mediterranean-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> 3D Seismic Acquisition Challenges in the NW Ghadames Basin Libya, an Integrated Geophysical Sedimentological and Subsurface Studies Approach as a Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sharma">S. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaballa%20Aqeelah"> Gaballa Aqeelah</a>, <a href="https://publications.waset.org/abstracts/search?q=Tawfig%20Alghbaili"> Tawfig Alghbaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Elmessmari"> Ali Elmessmari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There were abrupt discontinuities in the Brute Stack in the northernmost locations during the acquisition of 2D (2007) and 3D (2021) seismic data in the northwest region of the Ghadames Basin, Libya. In both campaigns, complete fluid circulation loss was seen in these regions during up-hole drilling. Geophysics, sedimentology and shallow subsurface geology were all integrated to look into what was causing the seismic signal to disappear at shallow depths. The Upper Cretaceous Nalut Formation is the near-surface or surface formation in the studied area. It is distinguished by abnormally high resistivity in all the neighboring wells. The Nalut Formation in all the nearby wells from the present study and previous outcrop study suggests lithology of dolomite and chert/flint in nodular or layered forms. There are also reports of karstic caverns, vugs, and thick cracks, which all work together to produce the high resistivity. Four up-hole samples that were analyzed for microfacies revealed a near-coastal to tidal environment. Algal (Chara) infested deposits up to 30 feet thick and monotonous, very porous, are seen in two up-hole sediments; these deposits are interpreted to be scattered, continental algal travertine mounds. Chert/flint, dolomite, and calcite in varying amounts are confirmed by XRD analysis. Regional tracking of the high resistivity of the Nalut Formation, which is thought to be connected to the sea level drop that created the paleokarst layer, is possible. It is abruptly overlain by a blanket marine transgressive deposit caused by rapid sea level rise, which is a regional, relatively high radioactive layer of argillaceous limestone. The examined area's close proximity to the mountainous, E-W trending ridges of northern Libya made it easier for recent freshwater circulation, which later enhanced cavern development and mineralization in the paleokarst layer. Seismic signal loss at shallow depth is caused by extremely heterogeneous mineralogy of pore- filling or lack thereof. Scattering effect of shallow karstic layer on seismic signal has been well documented. Higher velocity inflection points at shallower depths in the northern part and deeper intervals in the southern part, in both cases at Nalut level, demonstrate the layer's influence on the seismic signal. During the Permian-Carboniferous, the Ghadames Basin underwent uplift and extensive erosion, which resulted in this karstic layer of the Nalut Formation uplifted to a shallow depth in the northern part of the studied area weakening the acoustic signal, whereas in the southern part of the 3D acquisition area the Nalut Formation remained at the deeper interval without affecting the seismic signal. Results from actions taken during seismic processing to deal with this signal loss are visible and have improved. This study recommends using denser spacing or dynamite to circumvent the karst layer in a comparable geographic area in order to prevent signal loss at lesser depths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=well%20logging" title="well logging">well logging</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20data%20acquisition" title=" seismic data acquisition"> seismic data acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=sesimic%20data%20processing" title=" sesimic data processing"> sesimic data processing</a>, <a href="https://publications.waset.org/abstracts/search?q=up-holes" title=" up-holes"> up-holes</a> </p> <a href="https://publications.waset.org/abstracts/172457/3d-seismic-acquisition-challenges-in-the-nw-ghadames-basin-libya-an-integrated-geophysical-sedimentological-and-subsurface-studies-approach-as-a-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10