CINXE.COM
Zernike aberrations
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns="http://www.w3.org/TR/REC-html40"> <head><meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"> <meta http-equiv="Content-Language" content="en-us"> <title>Zernike aberrations</title> <meta name="keywords" content="Zernike aberrations, Zernike circle aberrations, Zernike aberration polynomials, orthogonal aberrations, Zernike coefficients"> <meta name="description" content="Telescope aberrations expressed as Zernike polynomials; basic explanation, illustration and relation to the classical aberration forms."> <style fprolloverstyle>A:hover {color: #FF8204} </style> </head> <body link="#0000FF" vlink="#993399" alink="#FF0000" style="font-family: Verdana; font-size: 10px" bgcolor="#F4F4DF"> <div align="center"> <table border="0" cellpadding="0" cellspacing="0" width="800" height="770" bgcolor="#FFE066"> <!-- MSTableType="layout" --> <tr> <td valign="top" height="704" style="text-indent: 21; padding-left:21px; padding-right:21px; padding-top:21px; padding-bottom:3px; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-top-style:solid; border-top-width:0px"> <!-- MSCellType="ContentBody" --> <p style="text-indent: 0" align="center"> <b><font size="3" color="#518FBD" face="Verdana">telescope</font></b><font face="Microsoft Sans Serif" size="5" color="#518FBD">Ѳ</font><b><font size="3" face="Verdana" color="#518FBD">ptics.net</font><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font color="#95AAA6"><b> </b> </font><b><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font> <font size="1" color="#95AAA6">▪</font><font face="Verdana" color="#95AAA6"><b><font size="2"> </font></b><font size="1"> </font></font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪▪▪▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font face="Verdana" color="#518FBD"><b><font size="2"> </font></b></font><font face="Verdana"><span style="font-weight: 400"><font size="2"><a href="index.htm#TABLE_OF_CONTENTS">CONTENTS</a></font></span></font><font size="2"><span style="font-weight: 400"><font size="2" face="Arial"><br> </font></span></p> <p align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">◄</font></span><font face="Verdana" size="2"> <a href="Seidel_aberrations.htm">3.5. Aberration function</a> </font><font size="2" face="Arial"><font color="#C0C0C0"> ▐</font> </font><font face="Verdana" size="2"> <a href="zernike_coefficients.htm">3.5.2. Zernike aberration coefficients</a> </font> <font face="Arial" size="2" color="#336699">►</font><font face="Arial" size="2" color="#4383B1"><br> </font></h4> <h1 align="center" style="text-indent: 0"><b> <font face="Trebuchet MS" size="3" color="#336699"><b>3.5.2. Zernike aberration polynomials</b></font></b></h1> <div style="background-color: #FFFFCC"> <p align="center" style="text-indent: 0">PAGE HIGHLIGHTS<br> • <a href="#polynomials">Zernike polynomials, basic properties</a> • <a href="#ahead">Zernike polynomials and wavefront</a><br> • <a href="#mean">Zernike term for primary spherical aberration (example)</a></p> </div> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">An alternative way of describing best focus telescope aberrations are Zernike circle polynomials. These polynomials, introduced by the Dutch scientist Fritz Zernike (Nobel prize laureate for the invention of phase-contrast microscope) in 1934, can be applied to describe mathematically 3-D wavefront deviation from what can be constructed as a plane - i.e. unit circle - of its <i>zero mean</i>, defined as a surface for which the sum of deviations on either side - opposite in sign one to another - equals zero. Each polynomial describes specific form of surface deviation; their combined sum can produce a large number of more complex surface shapes, that can be fit to specific forms of wavefront deviations (aberrations). In principle, by including sufficient number of Zernike polynomials (commonly referred to as <i>terms</i>), any wavefront deformation can be described to a desired degree of accuracy. </font> <p align="justify" style="line-height: 150%"> The usual way of applying Zernike terms is to the specific wavefront shape, which is "decomposed" to a needed number of terms in order to determine: (1) the main forms of contributing deviations, and (2) the overall magnitude of deformation.<p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">For simple aberration forms, such as pure Siedel aberrations, a single polynomial suffices. Describing more complex aberrations, such as, for instance, <a href="induced.htm#Being">seeing error</a>, as well as wavefronts formed by actual (i.e. imperfect) surfaces, requires an expanded set of Zernike <a name="polynomials">polynomials</a>. </font> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2"> Zernike polynomials define deviations from zero mean as a function of the radial point height <b>ρ</b> in the unit-radius circle and its angular circle coordinate <b>θ</b>, which is the setting of a telescope <a href="terms_and_conventions.htm#conveniently,">exit pupil</a>, in which the wavefront form is evaluated (<b>FIG. 30</b>, 1). In polar and Cartesian coordinates, respectively, the radial component is ρ</font><font size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">=x</font><font size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">+y</font><font size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">, with 0≤ρ,x,y≤1. The common convention for the angular coordinate <b>θ</b> varies with the field; in ophthalmology, it is counterclockwise from <b>x</b>+ toward <b>y</b>+ axis (OSA recommended), thus ρ=x/cosθ=y/sinθ. In general optics, it is often different. Malacara's convention is clockwise from <b>y</b>+ to <b>x</b>+ axis, thus ρ=x/sinθ=y/cosθ, and Mahajan's convention (<i>Optical imaging and aberrations</i>) applied here to the conventional aberration functions is counterclockwise from <b>y</b>+ to <b>x</b>-, hence with the same radial-to-angular relations as Malacara's. The polynomials are orthogonal (i.e. their values change independently, as illustrated on <b>FIG. 30</b>, 1) over the circle of unit radius. Due to this attribute, these aberration forms are termed <i>orthogonal</i>, or <i>Zernike <a name="aberrations">aberrations</a></i>.<br> </font><div style="padding-left: 3px; padding-right: 3px; padding-top: 4px; background-color: #FFFFFF"> <p align="center"> <img border="0" src="images/Zernike_circle.PNG" width="737" height="474"><br> <b><br> <font face="Tahoma">FIGURE 30</font></b><font face="Tahoma">: <span style="background-color: #FFFF99">(1)</span> The unit circle based expansion of Zernike polynomials can be applied directly to wavefront evaluation in the telescope pupil. Orthogonal attribute of the polynomials can be graphically presented as two orthogonal lines for which changes in the value along one do not affect values along the other one. <span style="background-color: #FFFF99">(2)</span> wavefront deviations as a function of the radial and angular polynomial variable are defined with respect to zero mean circle, which may and may not coincide with the best reference sphere; with Siedel aberrations, zero mean plane splits the wavefront in two halves, the exception being spherical aberration, where the split is in proportion 1:2. <span style="background-color: #FFFF99">(3)</span> Angular variable cos(m</font><font face="Tahoma" size="2">θ</font><font face="Tahoma" size="2">)</font><font face="Tahoma">, or sin(m</font><font face="Tahoma" size="2">θ</font><font face="Tahoma" size="2">)</font><font face="Tahoma">, determines frequency of meridional peaks and valleys, their even or odd number, and orientation of the particular Zernike mode. Shown is OSA-recommended convention of measuring </font><b><font face="Tahoma" size="2">θ</font></b><font face="Tahoma">, which indicates cosine for wavefronts oriented with the meridional peak toward 3PM, and sine for wavefronts oriented with meridional zero in that direction (the former indicated with a "plus" sign in the superscript, and the latter with a "minus" sign). Radially symmetrical aberrations, like spherical (top) do not have angular variable; primary coma wavefront error (middle) changes meridionally with sin or cos</font><font face="Tahoma" size="2">θ</font><font face="Tahoma" size="2"> (with the former for the pattern shown)</font><font face="Tahoma">, and primary astigmatism with sin or cos(2</font><font face="Tahoma" size="2">θ</font><font face="Tahoma">) - the latter with this specific pattern. The cosine term is called <i>symmetric</i> function, the term originating from <a href="zernike_expansion_schemes.htm#table">Noll's expansion scheme</a>, were the cosine function alone is used to describe pure conic surface aberrations, like coma and astigmatism, which are radially symmetric in the sense that |cos</font>θ<font face="Tahoma">|=|cos(</font>θ<font face="Tahoma">+180)|, i.e. the function over two opposite radii on any meridian have identical form, although can be opposite in sign (as illustrated with white meridians over the wavefront maps for coma and astigmatism on <b>FIG. 30</b>, 3). The sine function is called <i>asymmetric</i>, or <i>antisymmetric</i>, not because it itself lacks this symmetry, but because it is combined with the cosine function in order to describe wavefront shapes lacking this symmetry form. <span style="background-color: #FFFF99">(4)</span> Different forms of aberrations require different power integers over the radial pupil variable </font> <font face="Tahoma" size="2"> <b>ρ</b></font><font face="Tahoma"> and angular pupil variable </font><b><font face="Tahoma" size="2">θ</font></b><font face="Tahoma">. In general, the former is denoted by <b>n</b> (the highest power), and the latter by <b>m</b>. Numerically, <b>n</b> and <b>m</b> equal the power over radial coordinate and image point height coordinate in the standard aberration function, respectively. In one of the three common Zernike ordering schemes, <a href="monochromatic_eye_aberrations.htm">ANSI standard</a>, the aberration term is denoted by </font> <font face="Arial" size="2"> <b>Z<img border="0" src="images/zgw.PNG" width="7" height="11">, </b> with the sign of<b> m </b></font><font face="Tahoma">determining the trigonometric function used (- indicates sine and + cosine function, which in turn determine the orientation of wavefront deformation in the coordinate system), while the integer itself determines the frequency of meridional peaks and valleys.</font></div> <p align="justify" style="line-height: 150%"> As mentioned, z<font face="Verdana" size="2">ero mean is defined as a surface for which the sum of wavefront deviations to either side is zero. That is important conceptual difference vs. standard wavefront error, which expresses deviations from a reference sphere (also commonly constructed as a circle). Hence the polynomial, which is a product of its radial variable in <b>ρ</b> and angular variable in <b>θ</b>, has zero value at the intersection of the wavefront and its zero mean. Zero mean differs from the reference sphere for balanced primary spherical aberration and defocus, while coinciding with it for balanced primary astigmatism. coma and balanced 6th/4th order spherical (<b>FIG. A</b>, 2). As a result, the form of polynomial is different from the classical aberration function for the former three, while identical (except for the normalization factor) for the latter two.</font><p align="justify" style="line-height: 150%"> The polynomial normalization factor fulfils the formal requirement that the radial polynomial portion equals 1 for <font face="Verdana" size="2"> ρ</font>=1. For instance, the deviation from zero mean for primary spherical aberration - whose polynomial only has the radial component - is given by <font face="Verdana" size="2">ρ</font><font face="Verdana" size="1"><span style="vertical-align: super">4</span></font><font face="Verdana" size="2">-ρ</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">+1/6</font>; thus, its normalization factor is 6, and the corresponding Zernike circle polynomial is <font face="Verdana" size="2">6ρ</font><font face="Verdana" size="1"><span style="vertical-align: super">4</span></font><font face="Verdana" size="2">-6ρ</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">+1 (this normalization to unit radius shouldn't be confused with normalization to unit variance, described <a name="ahead">ahead</a>)</font>.<p align="justify" style="line-height: 150%"> Orthogonality of Zernike polynomials creates the possibility to combine as many different surfaces as needed to approximate the form of wavefront deviation with desired accuracy. It allows expressing separate contributions of various forms of aberrations - including any chosen extent of the higher order forms - and obtaining the combined variance as the sum of individual aberration variances. Also, the polynomials can be - and routinely are - scaled to unit variance over the circle radius for all aberration forms, so that their combined form can be determined directly by adding up their expansion coefficients, which determine the specific <a name="magnitude">magnitude</a> for each aberration form. Wavefront is described as a sum of Zernike aberration terms (<b>FIG. 31</b>).<div style="padding-left: 3px; padding-right: 3px; background-color: #FFFFFF"> <p align="center"> <img border="0" src="images/zernike_sum.PNG" width="711" height="166"> <br> <font face="Tahoma"> <b>FIGURE 31</b>: Structure of the Zernike aberration term describing wavefront profile as the deviation from <i>zero mean</i>, the imaginary surface splitting wavefront deviation in two halves of identical aggregate deviation. Any wavefront form can be described as a sum of specific Zernike wavefront terms (or <i>modes</i>), each represented by a product of its specific Zernike orthonormal polynomial and specific value of its Zernike expansion coefficient. Each Zernike term consists of:<br> <b>(1)</b> specific Zernike <b>orthogonal circle polynomial</b>, describing that particular form of deviation from zero mean, <br> <b>(2)</b> <b>normalization factor</b> for scaling different Zernike modes to unit variance which, multiplied with the corresponding orthogonal polynomial defines the <br> <b>(3) orthonormal Zernike circle polynomial</b>, and<br> <b>(4)</b> <b>Zernike expansion coefficient</b>, which in its absolute value equals the RMS wavefront error for the particular Zernike mode, and determines the actual value of the Zernike term, as a product of the coefficient, the normalization factor, and a sum of two two extreme (absolute) values of the polynomial for 0≤</font>ρ<font face="Tahoma">≤1, i.e. its P-V wavefront error in units of the maximum polynomial value, which is 1 for ρ=1 and </font><font face="Tahoma" size="2">θ</font><font face="Tahoma">=0 (unlike the RMS wavefront error, which is always numerically positive, Zernike coefficient can be both, positive and negative, depending on the orientation of deformation)<br> Zernike orthogonal circle polynomial, as shown above, consists from the radial and angular variable, determining relative (in terms of radial and angular coordinate of unit circle) location of any point of the specific surface it describes with respect to zero mean. As the description of the Zernike aberration term implies, the RMS wavefront error corresponding to a specific Zernike term - the latter being the numerical value put out by ray tracing programs to quantify Zernike wavefront analysis (and often erroneously called "Zernike coefficient") - is obtained by dividing the term by its normalization factor. As it is shown ahead, the normalization factor always has the form of a square root, except for tilt aberration, where it equals 2. </font></div> <p align="justify" style="text-indent: 22px; line-height:150%"> In the nutshell, the normalization factor <b>N</b> is chosen so that a product of the sum of two extreme values of the polynomial (absolute values, determining the relative magnitude of P-V deviation) and normalization factor equals the P-V-to-RMS wavefront error ratio for the aberration. Hence, multiplying this product with the expansion coefficient - which equals the RMS error for given aberration - yields the P-V wavefront error corresponding to the coefficient. For any value of the polynomial for given pupil coordinate <font face="Verdana" size="2"> <b>ρ</b></font>, a product with the normalization factor and expansion coefficient yields, as already mentioned, the wavefront deviation from zero mean for that particular pupil coordinate.<div style="background-color: #FFFFFF"> <p align="center" style="text-indent: 22px; "> <font face="Tahoma"><b>EXAMPLE</b>: Plots for orthogonal and orthonormal Zernike polynomials vs. those of the standard aberration function for primary spherical aberration and coma. All plots for either aberration represent the same type of function - i.e. form of deviation - the only difference being in their nominal maxima or position vs. abscissa (horizontal scale), which represents the pupil, with the pupil radius </font><b>ρ </b><font face="Tahoma">normalized to unit ranging from -1 to 1. Function </font><b> <font face="Verdana" size="2">f</font><font size="1"><font face="Tahoma">(</font>ρ</font></b><font face="Tahoma"><b><font size="1">)</font></b> - which is the wavefront deviation over pupil (with </font> <font face="Tahoma" size="2"> θ</font><font face="Tahoma">=0 for coma) - shows how the aberration changes over the pupil. In general, plots for Zernike terms have significantly greater amplitude than the corresponding standard functions, due to the coefficients (integer multiplier assigned to the variable) being larger.<br> <img border="0" src="images/zernike_poly.png" width="736" height="507"><br> For spherical aberration, the standard aberration function relates to the abscissa as the reference sphere; adding numerical constant shifts this function so that the deviation is split equally around the abscissa, which makes the abscissa zero mean for the function. Both, orthogonal and orthonormal Zernike polynomial are constructed around zero mean. The aberration is radially symmetrical, which means that its 3-D shape is formed by rotation of this curve around its center. Orthonormal polynomial is scaled for unit variance by a specific square root multiplier, which further expands its amplitude. The standard function for primary coma is symmetrical with respect to the reference sphere, which in such case coincides with zero mean (as with spherical aberration, the thick darker line is the orthogonal polynomial, thick lighter line the orthonormal, and thin line the standard function). Since coma is not radially symmetrical, its 3-D cross-sections vary with the pupil angle <b>θ</b> (as usual,, it is shown along the axis of aberration, i.e. maximum deviation, for θ=0 and cosθ=1). The unit-variance scaled polynomial (shaded blue, as a side projection of the wavefront deviation from this particular angle) defines coma-shape with the same RMS error as that defined by the unit-variance scaled polynomial (shaded) for primary spherical (coma deviation appears larger due to it showing its maximum, while as the angle in the horizontal plane changes the curve gradually reduce to the straight line (dotted) on both sides of its 3-D shape. For either, spherical aberration and coma, the actual magnitude of deviation is determined by adding the final multiplier to form the Zernike term - the Zernike aberration coefficient. </font></div> <p align="justify" style="text-indent: 22px; line-height:150%"> As with the standard aberrations, the wavefront error, either P-V (as a direct optical path difference) or RMS, is directly related - although not necessarily identical - to the phase error. The absolute value of Zernike expansion coefficient <b>z</b><font face="Terminal" size="1"><span style="vertical-align: sub">nm</span></font> is identical to the RMS wavefront error; since the coefficient does express positive and negative deviations, the sum of coefficients for all Zernike terms used to fit particular wavefront gives its overall RMS wavefront error (i.e. standard deviation), and its square equals the wavefront variance.<p align="justify" style="text-indent: 22px; line-height:150%"> <font face="Verdana" size="2">The two integers identifying Zernike aberration form are <b>n</b>, the highest order (exponent) in the polynomial's radial variable <b>V</b> (analog to the pupil height factor <b>ρ</b></font><b><font face="Verdana" size="1"><span style="vertical-align: super">n</span></font></b><font face="Verdana" size="2"> in the standard aberration functions) and <b>m</b>, the angular frequency of meridional variance (nominally identical to the exponent in the image height factor <b>h</b></font><b><font face="Verdana" size="1"><span style="vertical-align: super">m</span></font></b> in the standard aberration functions). <font face="Verdana" size="2">For radially symmetric aberrations, like <a href="spherical1.htm">spherical</a>, the angular variable cos(mθ) or sin(mθ) is absent, thus m=0 (alternately, since it is independent of the height <b>h</b> in the image space, m=0); and, since the aberration changes with <b>ρ</b></font><b><font face="Verdana" size="1"><span style="vertical-align: super">4</span></font></b><font face="Verdana" size="2">, n=4. For <a href="coma.htm">primary coma</a>, which changes with <b>ρ</b></font><b><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font></b><font face="Verdana" size="2"> and <b>h</b>, n=3 and m=1; since it varies with the point pupil angle <b>θ</b>, it also includes the angular coordinate factor, in the form cos(mθ). </font> <p align="justify" style="text-indent: 22px; line-height:150%"> Consequently, Zernike aberration terms for primary spherical aberration and coma are denoted as <b>Z</b><img border="0" src="images/0zs.PNG" width="6" height="13" align="absbottom" vspace="2"> and <b>Z</b><img border="0" src="images/0zco.PNG" width="6" height="13" align="absbottom" vspace="2">, and Zernike expansion coefficients as <b>z<font face="Terminal" size="1"><span style="vertical-align: sub">40</span></font></b> and <b>z<font face="Terminal" size="1"><span style="vertical-align: sub">31</span></font></b>, respectively (note that according to the above convention, m=1 indicates cosine function, i.e. coma peaks are positioned at a horizontal line; for the vertical orientation, m=-1). Likewise, Zernike aberration term and expansion coefficient for primary astigmatism, which changes with the 2nd power in both, pupil and image space (the latter is not formally the basis for indexing, but is numerically correct and convenient), thus with n=2 and m=2 or -2, are <b>Z</b><img border="0" src="images/0za.PNG" width="6" height="13" align="absbottom" vspace="3">, or <b>Z</b><img border="0" src="images/0za2.PNG" width="9" height="13" align="absbottom" vspace="2">, and <b>z</b><font face="Terminal" size="1"><span style="vertical-align: sub">22</span></font> (which, as any Zernike expansion coefficient, can be numerically positive, or negative, depending on the orientation of deformation). For defocus, which is radially symmetrical like spherical aberration, but changes with the square of pupil height, n=2 and m=0, hence its Zernike term is <b>Z</b><img border="0" src="images/0zd.PNG" width="6" height="13" align="absbottom" vspace="2"> and its expansion coefficient is <b>z</b><font face="Terminal" size="1"><span style="vertical-align: sub">20</span></font>.<p align="justify" style="text-indent: 22px; line-height:150%"> <font face="Verdana" size="2">As mentioned, every Zernike aberration term (or <i>mode</i>) describes specific orthogonal wavefront deviation from its zero mean, that is, deviations from zero value of the polynomial as a function of change in radial coordinate <b>ρ </b> and angular coordinate <b>θ</b>.<b> </b></font>How Zernike aberration term - i.e. orthonormal polynomial - specifically describes an aberrated wavefront is illustrated on primary spherical aberration (<b>FIG. 32</b>). For simplicity, the polynomial <b>Z</b><img border="0" src="images/0zs.PNG" width="6" height="13" align="absbottom"> is denoted by <b>Z</b><font face="Terminal" size="1"><span style="vertical-align: sub">S</span></font> and the expansion coefficient <b>z</b><font face="Terminal" size="1"><span style="vertical-align: sub">40</span></font> as <b>z</b><font face="Terminal" size="1"><span style="vertical-align: sub">S</span></font>; the relative linear wavefront deviation from zero mean as <b>W</b></font><font size="1">(ρ)</font><font size="2">, with the corresponding phase deviation <font face="Georgia"><b>Φ</b></font></font><font size="1">(ρ)</font><font size="2">; as usual, the RMS wavefront error is <b>ω</b>, with the corresponding phase RMS error analog <b> <font face="Lucida Sans Unicode">φ</font></b>, and standard phase deviation <b>φ</b>=2<font face="Arial" size="2">π</font><font face="Lucida Sans Unicode">φ</font> (the error variance is, by definition, the standard deviation squared).<p align="justify" style="text-indent: 22px; line-height:150%"> <font face="Verdana" size="2">Zernike aberration term, either for the phase (<b>Φ</b></font><font size="1" face="MS Serif"><span style="vertical-align: sub">S</span></font><font face="Verdana" size="2">) or wavefront (<b>Z</b></font><font size="1" face="MS Serif"><span style="vertical-align: sub">S</span></font>, identical<font face="Verdana" size="2"> to <b>W</b></font><font size="1">(ρ)</font><font face="Verdana" size="2">, the latter being used to relate the nature of it more directly) deviation for lower-order spherical is zero when the sum in brackets is zero. This occurs for ρ</font><font size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">=0.5</font><font face="Microsoft Sans Serif" size="2">±</font><font face="Verdana" size="2">1/<b>√</b><span style="text-decoration: overline">12</span>, regardless of the size of aberration, since the sum of deviations between these two zonal heights is identical to the sum of deviations over the rest of the wavefront (which are of opposite sign relative to the plane of zero <a name="mean">mean</a>).</font><p align="justify" style="line-height: 150%"> <img border="0" src="images/zernike_SA.PNG" width="336" height="677" align="left" hspace="0" vspace="8"><div style="padding-left: 3px; padding-right: 3px; background-color:#FFFFFF"> <p align="center" style="text-indent:0"> <font face="Arial" size="2"><b>FIGURE 32</b>: Zernike circle polynomials can be used to express the two main aspects of wavefront aberrations: linear deviations away from the reference sphere on one side, and closely related to it phase error on the other. The former is described by the wavefront aberration term <b>Z<img border="0" src="images/zgw.PNG" width="7" height="11"></b> (here written simply as <b>Z</b></font><font size="1" face="Terminal"><span style="vertical-align: sub">S</span></font><font face="Arial" size="2"> for spherical aberration), and the latter by the phase error term <b>Φ</b></font><font face="Arial" size="1"><b>(ρ)</b>.</font><font face="Arial" size="2"> The latter expresses orthogonal phase deviation, in radians, from zero mean plane (<b>Φ</b></font><b><font face="Arial" size="1">(ρ)</font></b><font face="Arial" size="2">=0), over a circle of unit radius <b>ρ</b>. Unlike the standard wavefront error, which is measured with respect to a reference sphere, Zernike polynomials express the deviation from <b><font color="#000080"> zero mean</font></b>. Shown to the left is the primary, <a href="spherical1.htm">4th order spherical aberration</a> at the best focus, for which zero mean coincides with the plane containing ρ</font><font face="Arial" size="1"><span style="vertical-align: super">2</span></font><font face="Arial" size="2">=0.5-1/<b>√</b><span style="text-decoration: overline">12</span> and ρ</font><font face="Arial" size="1"><span style="vertical-align: super">2</span></font><font face="Arial" size="2">=0.5+1/<b>√</b><span style="text-decoration: overline">12</span> zones. The two phase deviation sums - one to the left, the other to the right of the zero mean plane - are equal and of opposite signs (the polynomial itself is zero for these <b>ρ</b> values). The base polynomial - without the <a href="aberrations.htm#The_extent">standard (phase) deviation</a> value </font><b><font face="Arial">φ</font></b><font face="Arial" size="2"> - defines relative phase deviation over the pupil. The standard deviation value </font><b><font face="Arial">φ</font></b><font face="Arial" size="2"> determines its actual nominal value. It is related to the expansion coefficient <b>z</b></font><font size="1" face="Terminal"><span style="vertical-align: sub">s</span></font><font face="Arial" size="1"><span> </span> </font> <font face="Arial" size="2">and the RMS wavefront error <b>ω </b>as </font> <b><font face="Arial">φ</font></b><font face="Arial" size="2">=2π</font><font face="Lucida Sans Unicode" size="2">φ</font><font face="Arial" size="2">=2π</font><font face="Georgia" size="2">z</font><font size="1" face="Terminal"><span style="vertical-align: sub">s</span></font><font face="Arial" size="2">=2πω (valid for P-V error <0.5λ), with </font><b><font face="Lucida Console" size="2">φ</font></b><font face="Arial" size="2"> being the phase analog to RMS wavefront error (note that unlike the RMS error <b>ω</b>, Zernike coefficient <b>z</b></font><font size="1" face="Terminal"><span style="vertical-align: sub">s</span></font><font face="Arial" size="2"> can be numerically negative; if the wavefront shown converges to the left - in which case it represents so called "<a href="spherical1.htm#strongly_curved">undercorrection</a>" - the deviation adds to the optical path length of reference sphere, with the coefficient value being positive, and vice versa). Since the phase error Φ</font><b><font face="Arial" size="1">(ρ)</font></b><font face="Arial" size="2"> is directly caused by linear wavefront deviations away from the reference sphere, after replacing </font><b><font face="Lucida Console" size="2">φ</font></b><font face="Arial" size="2"> with </font><b><font face="Arial" size="2">z</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">s</span></font><font face="Arial" size="2"> or <b>ω</b>, the polynomial expresses linear wavefront deviation from its zero mean, which coincides with the zero mean of the corresponding phase error. Hence, the two aberration terms relate as Φ</font><font face="Arial" size="1">(ρ)</font><font face="Arial" size="2">=2πZ</font><font size="1" face="Terminal"><span style="vertical-align: sub">s</span></font><font face="Arial" size="2">=2πW</font><font face="Arial" size="1">(ρ)</font><font face="Arial" size="2">, with the term <b>W</b> being used to denote linear wavefront error in this site (note that here it is relative to zero mean, not the reference sphere). It implies that the P-V wavefront error is given by a sum of the absolute values of two opposite maximum deviations from zero mean. In the case of lower-order spherical aberration, as can be seen from the plot, these two maximum deviations are for ρ=0 or ρ=1, and for ρ=<b>√</b><span style="text-decoration: overline">0.5</span>. So, for the RMS wavefront error ω=1/<b>√</b><span style="text-decoration: overline">180</span>, in units of the wavelength, the corresponding P-V wavefront error, given by the sum of either<b> |W</b></font><b><font face="Arial" size="1">(0)</font></b><font face="Arial" size="2">| or <b>|W</b></font><b><font face="Arial" size="1">(1)</font></b><font face="Arial" size="2">| and <b>|W</b></font><font face="Arial" size="1"><b>(√<span style="text-decoration: overline">0.5</span>)</b></font><font face="Arial">| is,</font><font face="Arial" size="2"> as expected, W</font><font size="1" face="Terminal"><span style="vertical-align: sub">PV</span></font><font face="Arial" size="2">=1.5<b>√</b><span style="text-decoration: overline">5</span>ω=0.25, also in units of the wavelength. The corresponding standard phase deviation<b> </b>over the pupil<b> </b>for this RMS error is<b> </b></font><b><font face="Arial">φ</font></b><font face="Arial" size="2">=2π/<b>√</b><span style="text-decoration: overline">180</span>, and the resulting phase error <b><br> Φ</b></font><b><font face="Arial" size="1">(ρ)</font></b><font face="Arial" size="2">=π/2, both in radians (conversion from the linear to phase error, <br> and vice versa, is rather direct, with 1 wave of optical path difference corresponding to 2π radians phase difference).</font></div> </div> <p align="justify" style="text-indent: 22px; line-height:150%"> Here, l<font face="Verdana" size="2">inear wavefront deviation <b>W</b></font><font size="1">(ρ)</font><font face="Verdana" size="2">, specified by, and equal to the Zernike aberration term, is different form the peak, or P-V value given by the standard aberration form, because zero mean does not coincide with the reference sphere. However, for aberrations where the two coincide - such as primary coma and astigmatism - Zernike aberration term equals the wavefront peak, or P-V error corresponding to the absolute value of Zernike expansion coefficient, i.e. the wavefront RMS error (Zernike coefficient, unlike RMS wavefront error, can be negative, since its sign identifies the spatial orientation of deformation; the sign is determined by the direction of wavefront deviation from reference sphere, along the axis of aberration: if it adds to the OPL, coefficient is positive, and vice versa - on the above illustration, for wavefront converging to the left, the deviation adds to the OPL, and the sign of coefficient is positive). </font> <p align="justify" style="text-indent: 22px; line-height:150%"> <font face="Verdana" size="2">For instance, Zernike term for primary coma, </font><b>Z</b><img border="0" src="images/0zco.PNG" width="6" height="13" align="absbottom" vspace="1"><font face="Verdana" size="2">=z</font><font face="Terminal" size="1"><span style="vertical-align: sub">31</span></font><font face="Verdana" size="2"><b>√</b><span style="text-decoration: overline">8</span>(3ρ</font><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font><font face="Verdana" size="2">-2ρ)cos</font>θ<font face="Verdana" size="2">, has the maximum value of <b>√</b><span style="text-decoration: overline">8</span></font><b>z</b><font face="Terminal" size="1"><span style="vertical-align: sub">31</span></font><font face="Verdana" size="2"> for ρ=1 and </font>θ<font face="Verdana" size="2">=0, cos</font>θ<font face="Verdana" size="2">=1 (i.e. along the axis of aberration). For the diffraction limited RMS value of the expansion coefficient, z</font><font face="Terminal" size="1"><span style="vertical-align: sub">31</span></font><font face="Verdana" size="2">=1/<b>√</b><span style="text-decoration: overline">180</span> in units of wavelength, it gives </font><b>Z</b><img border="0" src="images/0zco.PNG" width="6" height="13" align="middle"><font face="Verdana" size="2">=1/<b>√</b><span style="text-decoration: overline">22.5</span>, equaling the peak wavefront error, also in units of wavelength (if the coefficient is quoted in linear units, for instance microns, the term expresses the peak wavefront error in microns). The P-V error is doubled, since the other, opposite in sign extreme value of the polynomial is identical in its relative magnitude, for </font>θ<font face="Verdana" size="2">=180°, cos</font>θ<font face="Verdana" size="2">=-1. </font> <p align="justify" style="text-indent: 22px; line-height:150%"> <font face="Verdana" size="2">Likewise, Zernike term for primary astigmatism </font><b>Z</b><img border="0" src="images/0za.PNG" width="6" height="13" align="absbottom" vspace="3"><font face="Verdana" size="2">=z</font><font face="Terminal" size="1"><span style="vertical-align: sub">22</span></font><font face="Verdana" size="2"><b>√</b><span style="text-decoration: overline">6</span>ρ</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">cos2</font>θ<font face="Verdana" size="2">, with the maximum value of <b>√</b><span style="text-decoration: overline">6</span>z</font><font face="Terminal" size="1"><span style="vertical-align: sub">22</span></font><font face="Verdana" size="2">, also equals the peak wavefront error for any given expansion coefficient (i.e. RMS). Even for defocus, where zero mean and reference sphere do not coincide (<b>FIG. 30</b>, 2), Zernike aberration term <b>Z</b><img border="0" src="images/0zd.PNG" width="6" height="13" align="absbottom" vspace="2">=z</font><font face="Terminal" size="1"><span style="vertical-align: sub">20</span></font><font face="Verdana" size="2"><b>√</b><span style="text-decoration: overline">3</span>(2ρ</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">-1) will equal the peak wavefront error (for ρ=1), because the zero mean splits the maximum wavefront deviation in two halves.</font><p align="justify" style="text-indent: 22px; line-height:150%"> <font face="Verdana" size="2">As another example, Zernike aberration term for <a href="higher_order_spherical_aberration.htm#order">6th order spherical aberration</a> - the form that is optimally balanced with 4th order spherical - is given by the polynomial Z</font><font size="1" face="Terminal"><span style="vertical-align: sub">S</span></font><font face="Verdana" size="2"> = <b>√</b><span style="text-decoration: overline">7</span>(20ρ</font><font face="Verdana" size="1"><span style="vertical-align: super">6</span></font><font face="Verdana" size="2">-30ρ</font><font face="Verdana" size="1"><span style="vertical-align: super">4</span></font><font face="Verdana" size="2">+12ρ</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">-1)</font><font face="Georgia" size="2">z</font><font size="1" face="Terminal"><span style="vertical-align: sub">S</span></font><font face="Verdana" size="2">. The zero mean is at the plane containing <b>√</b><span style="text-decoration: overline">0.5</span> zone (for pupil radius normalized to 1) - as well as two others for which the polynomial is zero - on the wavefront deviation plot. The P-V wavefront error is determined by a sum of the absolute values of maximum deviations from the zero mean, which occur for ρ=0 and ρ=1. With Z</font><font size="1" face="Terminal"><span style="vertical-align: sub">S</span></font><font face="Verdana" size="2">=</font>W<font size="1">(ρ)</font><font face="Verdana" size="2">, and </font><font face="Georgia" size="2">z</font><font size="1" face="Terminal"><span style="vertical-align: sub">S</span></font><font face="Verdana" size="2">=ω (the RMS wavefront error), this gives the P-V wavefront error as W=2<b>√</b><span style="text-decoration: overline">7</span>ω. Since the P-V wavefront error for lower-order spherical aberration, as already mentioned above, is a sum of the deviations for ρ=1 or ρ=0, and ρ=<b>√</b><span style="text-decoration: overline">0.5</span>, it is given by W=1.5<b>√</b><span style="text-decoration: overline">5</span>ω, and its P-V error for given (identical) RMS wavefront error relates to that of the balanced 6th order aberration as 1.5<b>√</b><span style="text-decoration: overline">5</span>/2<b>√</b><span style="text-decoration: overline">7</span>.</font><p align="justify" style="text-indent: 22px; line-height:150%"> Another interesting property of Zernike aberration terms implicated by <b>FIG. 32</b> is that the P-V/RMS ratio can be expressed as (1+<i>d</i>)N, where <i> <b>d</b></i> is the maximum relative wavefront deviation from zero mean (as an absolute value) to the side opposite to the reference sphere - which is always in the plane containing the vertex - in units of the deviation from zero mean toward reference sphere, and <b>N</b> is the term's normalization (square root) factor. For most aberrations (all primary aberrations except spherical, as well as all secondary aberrations, including trefoil and spherical), |<i>d</i>|=1 and the P-V/RMS ratio is given by 2N. So for coma, with the normalization factor equaling <font face="Verdana" size="2"><b>√</b></font><span style="text-decoration: overline">8</span>, the P-V/RMS ratio is 2<font face="Verdana" size="2"><b>√</b></font><span style="text-decoration: overline">8</span>, and for astigmatism, with normalization factor <font face="Verdana" size="2"><b>√</b></font><span style="text-decoration: overline">6</span>, the P-V/RMS ratio is 2<font face="Verdana" size="2"><b>√</b></font><span style="text-decoration: overline">6</span>. For primary spherical aberration, as shown on <b>FIG. 32</b>, |<i>d</i>|=0.5 and the P-V/RMS=1.5N=1.5<font face="Verdana" size="2"><b>√</b><span style="text-decoration: overline">5</span></font>.<p align="justify" style="line-height: 150%"> As already mentioned, most common conic aberrations can be described with a single Zernike aberration term, with either cosine or sine angular function (the choice only affect wavefront orientation). However, in order to describe wavefronts generated by irregular surfaces - with this qualification applying to some degree to all actual optical surfaces - or random aberrations (for instance, wavefront error caused by atmospheric turbulence), multiple Zernike terms, with both sine and cosine orientations, need to be included. Following page presents in more detail the properties of Zernike aberrations for common lower-order aberrations, as well as expanded list of Zernike terms - often inappropriately referred to as "Zernike coefficients" - that includes higher-order aberrations as well.<p align="center"> <font face="Verdana" size="2"> <br> </font><span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">◄</font></span><font face="Verdana" size="2"> <a href="Seidel_aberrations.htm">3.5. Aberration function</a> </font><font size="2" face="Arial"><font color="#C0C0C0"> ▐</font> </font><font face="Verdana" size="2"> <a href="zernike_coefficients.htm">3.5.2. Zernike aberration coefficients</a> </font> <font face="Arial" size="2" color="#336699">►</font><br> <p align="center" style="text-indent: 0"> <a href="index.htm">Home</a> | <a href="mailto:webpub@fastmail.com">Comments</a><br> </font></td> </tr> </table> </div> </body> </html>