CINXE.COM
Search results for: shape memory alloy
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: shape memory alloy</title> <meta name="description" content="Search results for: shape memory alloy"> <meta name="keywords" content="shape memory alloy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="shape memory alloy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="shape memory alloy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3961</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: shape memory alloy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3961</span> Thermomechanical Processing of a CuZnAl Shape-Memory Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Henrique%20Alves%20Martins">Pedro Henrique Alves Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Guilherme%20%20Ferreira%20De%20Siqueira"> Paulo Guilherme Ferreira De Siqueira</a>, <a href="https://publications.waset.org/abstracts/search?q=Franco%20De%20Castro%20Bubani"> Franco De Castro Bubani</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Teresa%20Paulino%20Aguilar"> Maria Teresa Paulino Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Roberto%20%20Cetlin"> Paulo Roberto Cetlin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cu-base shape-memory alloys (CuZnAl, CuAlNi, CuAlBe, etc.) are promising engineering materials for several unconventional devices, such as sensors, actuators, and mechanical vibration dampers. Brittleness is one of the factors that limit the commercial use of these alloys, as it makes thermomechanical processing difficult. In this work, a method for the hot extrusion of a 75.50% Cu, 16,74% Zn, 7,76% Al (weight %) alloy is presented. The effects of the thermomechanical processing in the microstructure and the pseudoelastic behavior of the alloy are assessed by optical metallography, compression and hardness tests. Results show that hot extrusion is a suitable method to obtain severe cross-section reductions in the CuZnAl shape-memory alloy studied. The alloy maintained its pseudoelastic effect after the extrusion and the modifications in the mechanical behavior caused by precipitation during hot extrusion can be minimized by a suitable precipitate dissolution heat treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20extrusion" title="hot extrusion">hot extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudoelastic" title=" pseudoelastic"> pseudoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=shape-memory%20alloy" title=" shape-memory alloy"> shape-memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20processing" title=" thermomechanical processing"> thermomechanical processing</a> </p> <a href="https://publications.waset.org/abstracts/70427/thermomechanical-processing-of-a-cuznal-shape-memory-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3960</span> Study of Energy Dissipation in Shape Memory Alloys: A Comparison between Austenite and Martensite Phase of SMAs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirmozafar%20Benshams">Amirmozafar Benshams</a>, <a href="https://publications.waset.org/abstracts/search?q=Khatere%20Kashmari"> Khatere Kashmari</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Hatami"> Farzad Hatami</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesbah%20Saybani"> Mesbah Saybani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shape memory alloys with high capability of energy dissipation and large deformation bearing with return ability to their original shape without too much hysteresis strain have opened their place among the other damping systems as smart materials. Ninitol which is the most well-known and most used alloy material from the shape memory alloys family, has high resistance and fatigue and is coverage for large deformations. Shape memory effect and super-elasticity by shape alloys like Nitinol, are the reasons of the high power of these materials in energy depreciation. Thus, these materials are suitable for use in reciprocating dynamic loading conditions. The experiments results showed that Nitinol wires with small diameter have greater energy dissipation capability and by increase of diameter and thickness the damping capability and energy dissipation increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloys" title="shape memory alloys">shape memory alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20effect" title=" shape memory effect"> shape memory effect</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20elastic%20effect" title=" super elastic effect"> super elastic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=nitinol" title=" nitinol"> nitinol</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a> </p> <a href="https://publications.waset.org/abstracts/55075/study-of-energy-dissipation-in-shape-memory-alloys-a-comparison-between-austenite-and-martensite-phase-of-smas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3959</span> Investigate the Performance of SMA-FRP Composite Bars in Seismic Regions under Corrosion Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirmozafar%20Benshams">Amirmozafar Benshams</a>, <a href="https://publications.waset.org/abstracts/search?q=Saman%20Shafeinejad"> Saman Shafeinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zaman%20Kabir"> Mohammad Zaman Kabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Hatami"> Farzad Hatami</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Khedmati"> Mohammadreza Khedmati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesbah%20Saybani"> Mesbah Saybani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel bars has been used in concrete structures for more than one hundred years but lack of corrosion resistance of steel reinforcement has resulted in many structural failures. Fiber Reinforced Polymer (FRP) bar is an acceptable solution to replace steel to mitigate corrosion problem. Since FRP is a brittle material its use in seismic region has been a concern. FRP RC structures can be made ductile by employing a ductile material such as Shape Memory Alloy (SMA) at the plastic hinge region and FRP at the other regions on the other hand SMA is highly resistant to corrosion. Shape Memory Alloy has the unique ability to undergo large inelastic deformation and regain its initial shape through stress removal therefore utilizing composite SMA-FRP bars not only have good corrosion resistance but also have good performance in seismic region. The result show indicate that such composite SMA-FRP bars can substantially reduce the residual drift with adequate energy dissipation capacity during earthquake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20bar" title="steel bar">steel bar</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP" title=" FRP"> FRP</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a> </p> <a href="https://publications.waset.org/abstracts/47187/investigate-the-performance-of-sma-frp-composite-bars-in-seismic-regions-under-corrosion-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3958</span> Rheological Modeling for Shape-Memory Thermoplastic Polymers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hosseini">H. Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Berdyshev"> B. V. Berdyshev</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Iskopintsev"> I. Iskopintsev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of heat-shrinkable products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20deformation" title="elastic deformation">elastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=shape-memory%20polymers" title=" shape-memory polymers"> shape-memory polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain%20behavior" title=" stress-strain behavior"> stress-strain behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20model" title=" viscoelastic model"> viscoelastic model</a> </p> <a href="https://publications.waset.org/abstracts/34080/rheological-modeling-for-shape-memory-thermoplastic-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3957</span> Direct Laser Fabrication and Characterization of Cu-Al-Ni Shape Memory Alloy for Seismic Damping Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gonzalo%20Reyes">Gonzalo Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Walczak"> Magdalena Walczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Esteban%20Ramos-Moore"> Esteban Ramos-Moore</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Ramos-Grez"> Jorge Ramos-Grez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal additive manufacture technologies have gained strong support and acceptance as a promising and alternative method to manufacture high performance complex geometry products. The main purpose of the present work is to study the microstructure and phase transformation temperatures of Cu-Al-Ni shape memory alloys fabricated from a direct laser additive process using metallic powders as precursors. The potential application is to manufacture self-centering seismic dampers for earthquake protection of buildings out of a copper based alloy by an additive process. In this process, the Cu-Al-Ni alloy is melted, inside of a high temperature and vacuum chamber with the aid of a high power fiber laser under inert atmosphere. The laser provides the energy to melt the alloy powder layer. The process allows fabricating fully dense, oxygen-free Cu-Al-Ni specimens using different laser power levels, laser powder interaction times, furnace ambient temperatures, and cooling rates as well as modifying concentration of the alloying elements. Two sets of specimens were fabricated with a nominal composition of Cu-13Al-3Ni and Cu-13Al-4Ni in wt.%, however, semi-quantitative chemical analysis using EDX examination showed that the specimens’ resulting composition was closer to Cu-12Al-5Ni and Cu-11Al-8Ni, respectively. In spite of that fact, it is expected that the specimens should still possess shape memory behavior. To confirm this hypothesis, phase transformation temperatures will be measured using DSC technique, to look for martensitic and austenitic phase transformations at 150°C. So far, metallographic analysis of the specimens showed defined martensitic microstructures. Moreover, XRD technique revealed diffraction peaks corresponding to (0 0 18) and (1 2 8) planes, which are too associated with the presence of martensitic phase. We conclude that it would be possible to obtain fully dense Cu-Al-Ni alloys having shape memory effect behavior by direct laser fabrication process, and to advance into fabrication of self centering seismic dampers by a controllable metal additive manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Al-Ni%20alloys" title="Cu-Al-Ni alloys">Cu-Al-Ni alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20laser%20fabrication" title=" direct laser fabrication"> direct laser fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=self-centering%20seismic%20dampers" title=" self-centering seismic dampers"> self-centering seismic dampers</a> </p> <a href="https://publications.waset.org/abstracts/26623/direct-laser-fabrication-and-characterization-of-cu-al-ni-shape-memory-alloy-for-seismic-damping-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3956</span> Finite Element Analysis of Shape Memory Alloy Stents in Coronary Arteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amatulraheem%20Al-Abassi">Amatulraheem Al-Abassi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Khanafer"> K. Khanafer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Deiab"> Ibrahim Deiab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coronary artery stent is a promising technology that can treat various coronary diseases. Materials used for manufacturing medical stents should have high biocompatible properties. Stent alloys, in particular, are remarkably promising good clinical outcomes, however, there is threaten of restenosis (reoccurring of artery narrowing due to fatty plaque), stent recoiling, or in long-term the occurrence of stent fracture. However, stents that are made of Nickel-titanium (Nitinol) can bare extensive plastic deformation and resist restenosis. This shape memory alloy has outstanding mechanical properties. Nitinol is a unique shape memory alloy as it has unique mechanical properties such as; biocompatibility, super-elasticity, and recovery to original shape under certain loads. Stent failure may cause complications in vascular diseases and possibly blockage of blood flow. Thus, studying the behaviors of the stent under different medical conditions will help the doctors and cardiologists to predict when it is necessary to change the stent in order to prevent any severe morbidity outcomes. To the best of our knowledge, there are limited published papers that analyze the stent behavior with regards to the contact surfaces of plaque layer and blood vessel. Thus, stent material properties will be discussed in this investigation to highlight the mechanical and clinical differences between various stents. This research analyzes the performance of Nitinol stent in well-known stent design to determine its bearing with stress and its dislocation in blood vessels, in comparison to stents made of different biocompatible materials. In addition, a study of its performance will be represented in the system. Finite Element Analysis is the core of this study. Thus, a physical representative model will be discussed to show the distribution of stress and strain along the interaction surface between the stent and the artery. The reaction of vascular tissue to the stent will be evaluated to predict the possibility of restenosis within the treated area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title="shape memory alloy">shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=stent" title=" stent"> stent</a>, <a href="https://publications.waset.org/abstracts/search?q=coronary%20artery" title=" coronary artery"> coronary artery</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/53927/finite-element-analysis-of-shape-memory-alloy-stents-in-coronary-arteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3955</span> Application of Shape Memory Alloy as Shear Connector in Composite Bridges: Overview of State-of-the-Art</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apurwa%20Rastogi">Apurwa Rastogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anant%20Parghi"> Anant Parghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shape memory alloys (SMAs) are memory metals with a high calibre to outperform as a civil construction material. They showcase novel functionality of undergoing large deformations and self-healing capability (pseudoelasticity) that leads to its emerging applications in a variety of areas. In the existing literature, most of the studies focused on the behaviour of SMA when used in critical regions of the smart buildings/bridges designed to withstand severe earthquakes without collapse and also its various applications in retrofitting works. However, despite having high ductility, their uses as construction joints and shear connectors in composite bridges are still unexplored in the research domain. This article presents to gain a broad outlook on whether SMAs can be partially used as shear connectors in composite bridges. In this regard, existing papers on the characteristics of shear connectors in the composite bridges will be discussed thoroughly and matched with the fundamental characteristics and properties of SMA. Since due to the high strength, stiffness, and ductility phenomena of SMAs, it is expected to be a good material for the shear connectors in composite bridges, and the collected evidence encourages the prior scrutiny of its partial use in the composite constructions. Based on the comprehensive review, important and necessary conclusions will be affirmed, and further emergence of research direction on the use of SMA will be discussed. This opens the window of new possibilities of using smart materials to enhance the performance of bridges even more in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20bridges" title="composite bridges">composite bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudoelasticity" title=" pseudoelasticity"> pseudoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20connectors" title=" shear connectors"> shear connectors</a> </p> <a href="https://publications.waset.org/abstracts/139173/application-of-shape-memory-alloy-as-shear-connector-in-composite-bridges-overview-of-state-of-the-art" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3954</span> Dynamic Response of Doubly Curved Composite Shell with Embedded Shape Memory Alloys Wires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Ardali">Amin Ardali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Khalili"> Mohammadreza Khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Rezai"> Mohammadreza Rezai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, dynamic response of thin smart composite panel subjected to low-velocity transverse impact is investigated. Shape memory wires are used to reinforced curved composite panel in a smart way. One-dimensional thermodynamic constitutive model by Liang and Rogers is used for estimating the structural recovery stress. The two degrees-of-freedom mass-spring model is used for evaluation of the contact force between the curved composite panel and the impactor. This work is benefited from the Hertzian linear contact model which is linearized for the impact analysis of curved composite panel. The governing equations of curved panel are provided by first-order shear theory and solved by Fourier series related to simply supported boundary condition. For this purpose, the equation of doubly curved panel motion included the uniform in-plane forces is obtained. By the present analysis, the curved panel behavior under low-velocity impact, and also the effect of the impact parameters, the shape memory wire and the curved panel dimensions are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doubly%20curved%20shell" title="doubly curved shell">doubly curved shell</a>, <a href="https://publications.waset.org/abstracts/search?q=SMA%20wire" title=" SMA wire"> SMA wire</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20response" title=" impact response"> impact response</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20material" title=" smart material"> smart material</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a> </p> <a href="https://publications.waset.org/abstracts/49593/dynamic-response-of-doubly-curved-composite-shell-with-embedded-shape-memory-alloys-wires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3953</span> Formation of Nanostructured Surface Layers of a Material with TiNi-Based Shape Memory by Diffusion Metallization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zh.%20M.%20Blednova">Zh. M. Blednova</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20O.%20Rusinov"> P. O. Rusinov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Results of research on the formation of the surface layers of a material with shape memory effect (SME) based on TiNi diffusion metallization in molten Pb-Bi under isothermal conditions in an argon atmosphere are presented. It is shown that this method allows obtaining of uniform surface layers in nanostructured state of internal surfaces on the articles of complex shapes with stress concentrators. Structure, chemical and phase composition of the surface layers provide a manifestation of TiNi shape memory. The average grain size of TiNi coatings ranges between 60 ÷ 160 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20metallization" title="diffusion metallization">diffusion metallization</a>, <a href="https://publications.waset.org/abstracts/search?q=nikelid%20titanium%20surface%20layers" title=" nikelid titanium surface layers"> nikelid titanium surface layers</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20effect" title=" shape memory effect"> shape memory effect</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a> </p> <a href="https://publications.waset.org/abstracts/9419/formation-of-nanostructured-surface-layers-of-a-material-with-tini-based-shape-memory-by-diffusion-metallization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3952</span> Temperature-Responsive Shape Memory Polymer Filament Integrated Smart Polyester Knitted Fabric Featuring Memory Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Gupta">Priyanka Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Bipin%20Kumar"> Bipin Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent developments in smart materials motivate researchers to create novel textile products for innovative and functional applications, which have several potential uses beyond the conventional. This study investigates the memory behavior of shape memory filaments integrated into a knitted textile structure. The research advances the knowledge of how these intelligent materials respond within textile structures. This integration may also open new avenues for developing smart fabrics with unique sensing and actuation capabilities. A shape memory filament and polyester yarn were knitted to produce a shape memory knitted fabric (SMF). Thermo-mechanical tensile test was carried out to quantify the memory behavior of SMF under different conditions. The experimental findings demonstrate excellent shape recovery (100%) and shape fixity up to 88% at different strains (20% and 60%) and temperatures (30 ℃ and 50 ℃). Experimental results reveal that memory filament behaves differently in a fabric structure than in its pristine condition at various temperatures and strains. The cycle test of SMF under different thermo-mechanical conditions indicated complete shape recovery with an increase in shape fixity. So, the utterly recoverable textile structure was achieved after a few initial cycles. These intelligent textiles are beneficial for the development of novel, innovative, and functional fabrics like elegant curtains, pressure garments, compression stockings, etc. In addition to fashion and medical uses, this unique feature may also be leveraged to build textile-based sensors and actuators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knitting" title="knitting">knitting</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20filament" title=" memory filament"> memory filament</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory" title=" shape memory"> shape memory</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20textiles" title=" smart textiles"> smart textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20cycle" title=" thermo-mechanical cycle"> thermo-mechanical cycle</a> </p> <a href="https://publications.waset.org/abstracts/156641/temperature-responsive-shape-memory-polymer-filament-integrated-smart-polyester-knitted-fabric-featuring-memory-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3951</span> Different Orientations of Shape Memory Alloy Wire in Automotive Sector Product</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srishti%20Bhatt">Srishti Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Bhavsar"> Vaibhav Bhavsar</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Hussain"> Adil Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Aashay%20Mhaske"> Aashay Mhaske</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Bali"> S. C. Bali</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Srikanth"> T. S. Srikanth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shape Memory Alloys (SMA) are widely known for their unique shape recovery properties. SMA based actuation systems have high-force to weight ratio, light weight and also bio-compatible material. Which is why they are being used in different fields of aerospace, robotics, automotive and biomedical industries. However, in the automotive industry plenty of patents are available but commercially viable products are very few in market. This could be due to SMA material limitations like small stroke, direct dependability of lifecycle on stroke, pull load of the wire and high cycle time. In automotive sector, SMA being considered as an actuator which is required to have high stroke and constraint arises to accommodate a long length of wire (to compensate maximum 4 % strain as per better fatigue life cycle) not only increases complexity but also adds on the cost. More than 200 different types of actuators are used in an automobile, few of them whose efficiency can highly increase by replacing them with SMA based actuators which include latch lock mechanism, glove box, Head lamp leveling, side mirror and rear mirror leveling, tailgate opener and fuel lid cap actuator. To overcome the limitation of available space for required stroke of an actuator which leads to study the effect of different loading positions on SMA wires, different orientations of SMA wire by using pulleys and lever based systems to achieve maximum stroke. This investigation summarizes the loading under the V shape orientation the required stroke and carrying load capacity in more compact in comparison with straight orientation of wire. Similarly, the U shape orientation its showing higher load carrying capacity but reduced stroke which is aligned with concept of bundled wire method. Life-cycle of these orientations were also evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuators" title="actuators">actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a>, <a href="https://publications.waset.org/abstracts/search?q=nitinol" title=" nitinol"> nitinol</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=SMA%20wire%20orientations" title=" SMA wire orientations"> SMA wire orientations</a> </p> <a href="https://publications.waset.org/abstracts/150748/different-orientations-of-shape-memory-alloy-wire-in-automotive-sector-product" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3950</span> Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20M.%20Rezaul%20Islam">A. B. M. Rezaul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernur%20Karadogan"> Ernur Karadogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constitutive%20models" title="constitutive models">constitutive models</a>, <a href="https://publications.waset.org/abstracts/search?q=FAST%20sensitivity%20analysis" title=" FAST sensitivity analysis"> FAST sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sobol" title=" sobol"> sobol</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20analysis" title=" uncertainty analysis"> uncertainty analysis</a> </p> <a href="https://publications.waset.org/abstracts/117933/sensitivity-and-uncertainty-analysis-of-one-dimensional-shape-memory-alloy-constitutive-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3949</span> The Shape Memory Recovery Properties under Load of a Polymer Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Basit">Abdul Basit</a>, <a href="https://publications.waset.org/abstracts/search?q=Gildas%20Lhostis"> Gildas Lhostis</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Durand"> Bernard Durand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shape memory polymers (SMPs) are replacing shape memory alloys (SMAs) in many applications as SMPs have certain superior properties than SMAs. However, SMAs possess some properties like recovery under stress that SMPs lack. SMPs cannot give complete recovery even under a small load. SMPs are initially heated close to their transition temperature (glass transition temperature or the melting temperature). Then force is applied to deform the heated SMP to a specific position. Subsequently, SMP is allowed to cool keeping it deformed. After cooling, SMP gets the temporary shape. This temporary shape can be recovered by heating it again at the same temperature that was given it while heating it initially. As a result, it will recover its original position. SMP can perform unconstrained recovery and constrained recovery, however; under the load, it only recovers partially. In this work, the recovery under the load of an asymmetrical shape memory composite called as CBCM-SMPC has been investigated. It is found that it has the ability to recover under different loads. Under different loads, it shows powerful complete recovery in reference to initial position. This property can be utilized in many applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shape%20memory" title="shape memory">shape memory</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composite" title=" polymer composite"> polymer composite</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20testing" title=" thermo-mechanical testing"> thermo-mechanical testing</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20under%20load" title=" recovery under load"> recovery under load</a> </p> <a href="https://publications.waset.org/abstracts/74774/the-shape-memory-recovery-properties-under-load-of-a-polymer-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3948</span> Characteristic of Ta Alloy Coating Films on Near-Net Shape with Different Current Densities Using MARC Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Jun%20Lee">Young Jun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Hyuk%20Lee"> Tae Hyuk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoung%20Tae%20Park"> Kyoung Tae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Hyeon%20Lee"> Jong Hyeon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The harsh atmosphere of the sulfur-iodine process used for producing hydrogen requires better corrosion resistance and mechanical properties that is possible to obtain with pure tantalum. Ta-W alloy is superior to pure tantalum but is difficult to alloy due to its high melting temperature. In this study, substrates of near-net shape (Swagelok® tube ISSG8UT4) were coated with Ta-W using the multi-anode reactive alloy coating (MARC) process in molten salt (LiF-NaF-K2TaF7) at different current densities (1, 2 and 4mA/cm2). Ta-4W coating films of uniform coating thicknesses, without any entrapped salt, were successfully deposited on Swagelok tube by electrodeposition at 1 mA/cm2. The resulting coated film with a corrosion rate of less than 0.011 mm/year was attained in hydriodic acid at 160°C, and hardness up to 12.9 % stronger than pure tantalum coated film. The alloy coating films also contributed to significant enhancement of corrosion resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tantalum" title="tantalum">tantalum</a>, <a href="https://publications.waset.org/abstracts/search?q=tantalum%20alloy" title=" tantalum alloy"> tantalum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten%20alloy" title=" tungsten alloy"> tungsten alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=electroplating" title=" electroplating"> electroplating</a> </p> <a href="https://publications.waset.org/abstracts/32956/characteristic-of-ta-alloy-coating-films-on-near-net-shape-with-different-current-densities-using-marc-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3947</span> Lattice Twinning and Detwinning Processes in Phase Transformation in Shape Memory Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osman%20Adiguzel">Osman Adiguzel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shape memory effect is a peculiar property exhibited by certain alloy systems and based on martensitic transformation, and shape memory properties are closely related to the microstructures of the material. Shape memory effect is linked with martensitic transformation, which is a solid state phase transformation and occurs with the cooperative movement of atoms by means of lattice invariant shears on cooling from high-temperature parent phase. Lattice twinning and detwinning can be considered as elementary processes activated during the transformation. Thermally induced martensite occurs as martensite variants, in self-accommodating manner and consists of lattice twins. Also, this martensite is called the twinned martensite or multivariant martensite. Deformation of shape memory alloys in martensitic state proceeds through a martensite variant reorientation. The martensite variants turn into the reoriented single variants with deformation, and the reorientation process has great importance for the shape memory behavior. Copper based alloys exhibit this property in metastable β- phase region, which has DO3 –type ordered lattice in ternary case at high temperature, and these structures martensiticaly turn into the layered complex structures with lattice twinning mechanism, on cooling from high temperature parent phase region. The twinning occurs as martensite variants with lattice invariant shears in two opposite directions, <110 > -type directions on the {110}- type plane of austenite matrix. Lattice invariant shear is not uniform in copper based ternary alloys and gives rise to the formation of unusual layered structures, like 3R, 9R, or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. The unit cell and periodicity are completed through 18 atomic layers in case of 18R-structure. On the other hand, the deformed material recovers the original shape on heating above the austenite finish temperature. Meanwhile, the material returns to the twinned martensite structures (thermally induced martensite structure) in one way (irreversible) shape memory effect on cooling below the martensite finish temperature, whereas the material returns to the detwinned martensite structure (deformed martensite) in two-way (reversible) shape memory effect. Shortly one can say that the microstructural mechanisms, responsible for the shape memory effect are the twinning and detwinning processes as well as martensitic transformation. In the present contribution, x-ray diffraction, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) studies were carried out on two copper-based ternary alloys, CuZnAl, and CuAlMn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20effect" title="shape memory effect">shape memory effect</a>, <a href="https://publications.waset.org/abstracts/search?q=martensitic%20transformation" title=" martensitic transformation"> martensitic transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=twinning%20and%20detwinning" title=" twinning and detwinning"> twinning and detwinning</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20structures" title=" layered structures"> layered structures</a> </p> <a href="https://publications.waset.org/abstracts/33194/lattice-twinning-and-detwinning-processes-in-phase-transformation-in-shape-memory-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3946</span> Interlayer-Mechanical Working: Effective Strategy to Mitigate Solidification Cracking in Wire-Arc Additive Manufacturing (WAAM) of Fe-based Shape Memory Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumyajit%20Koley">Soumyajit Koley</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuladeep%20Rajamudili"> Kuladeep Rajamudili</a>, <a href="https://publications.waset.org/abstracts/search?q=Supriyo%20Ganguly"> Supriyo Ganguly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, iron-based shape-memory alloys have been emerging as an inexpensive alternative to costly Ni-Ti alloy and thus considered suitable for many different applications in civil structures. Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy contains 37 wt.% of total solute elements. Such complex multi-component metallurgical system often leads to severe solute segregation and solidification cracking. Wire-arc additive manufacturing (WAAM) of Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy was attempted using a cold-wire fed plasma arc torch attached to a 6-axis robot. Self-standing walls were manufactured. However, multiple vertical cracks were observed after deposition of around 15 layers. Microstructural characterization revealed open surfaces of dendrites inside the crack, confirming these cracks as solidification cracks. Machine hammer peening (MHP) process was adopted on each layer to cold work the newly deposited alloy. Effect of MHP traverse speed were varied systematically to attain a window of operation where cracking was completely stopped. Microstructural and textural analysis were carried out further to correlate the peening process to microstructure.MHP helped in many ways. Firstly, a compressive residual stress was induced on each layer which countered the tensile residual stress evolved from solidification process; thus, reducing net tensile stress on the wall along its length. Secondly, significant local plastic deformation from MHP followed by the thermal cycle induced by deposition of next layer resulted into a recovered and recrystallized equiaxed microstructure instead of long columnar grains along the vertical direction. This microstructural change increased the total crack propagation length and thus, the overall toughness. Thirdly, the inter-layer peening significantly reduced the strong cubic {001} crystallographic texture formed along the build direction. Cubic {001} texture promotes easy separation of planes and easy crack propagation. Thus reduction of cubic texture alleviates the chance of cracking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iron-based%20shape-memory%20alloy" title="Iron-based shape-memory alloy">Iron-based shape-memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=wire-arc%20additive%20manufacturing" title=" wire-arc additive manufacturing"> wire-arc additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification%20cracking" title=" solidification cracking"> solidification cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-layer%20cold%20working" title=" inter-layer cold working"> inter-layer cold working</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20hammer%20peening" title=" machine hammer peening"> machine hammer peening</a> </p> <a href="https://publications.waset.org/abstracts/167160/interlayer-mechanical-working-effective-strategy-to-mitigate-solidification-cracking-in-wire-arc-additive-manufacturing-waam-of-fe-based-shape-memory-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3945</span> Seismic Response of Braced Steel Frames with Shape Memory Alloy and Mega Bracing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Omar">Mohamed Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel bracing members are widely used in steel structures to reduce lateral displacement and dissipate energy during earthquake motions. Concentric steel bracing provide an excellent approach for strengthening and stiffening steel buildings. Using these braces the designer can hardly adjust the stiffness together with ductility as needed because of buckling of braces in compression. In this study the use of SMA bracing and steel bracing (Mega) utilized in steel frames are investigated. The effectiveness of these two systems in rehabilitating a mid-rise eight-storey steel frames were examined using time-history nonlinear analysis utilizing Seismo-Struct software. Results show that both systems improve the strength and stiffness of the original structure but due to excellent behavior of SMA in nonlinear phase and under compressive forces this system shows much better performance than the rehabilitation system of Mega bracing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=shapes%20memory%20alloy" title=" shapes memory alloy"> shapes memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frame" title=" steel frame"> steel frame</a>, <a href="https://publications.waset.org/abstracts/search?q=mega%20bracing" title=" mega bracing"> mega bracing</a> </p> <a href="https://publications.waset.org/abstracts/4180/seismic-response-of-braced-steel-frames-with-shape-memory-alloy-and-mega-bracing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3944</span> On Crack Tip Stress Field in Pseudo-Elastic Shape Memory Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulcan%20Ozerim">Gulcan Ozerim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunay%20Anlas"> Gunay Anlas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In shape memory alloys, upon loading, stress increases around crack tip and a martensitic phase transformation occurs in early stages. In many studies the stress distribution in the vicinity of the crack tip is represented by using linear elastic fracture mechanics (LEFM) although the pseudo-elastic behavior results in a nonlinear stress-strain relation. In this study, the HRR singularity (Hutchinson, Rice and Rosengren), that uses Rice’s path independent J-integral, is tried to formulate the stress distribution around the crack tip. In HRR approach, the Ramberg-Osgood model for the stress-strain relation of power-law hardening materials is used to represent the elastic-plastic behavior. Although it is recoverable, the inelastic portion of the deformation in martensitic transformation (up to the end of transformation) resembles to that of plastic deformation. To determine the constants of the Ramberg-Osgood equation, the material’s response is simulated in ABAQUS using a UMAT based on ZM (Zaki-Moumni) thermo-mechanically coupled model, and the stress-strain curve of the material is plotted. An edge cracked shape memory alloy (Nitinol) plate is loaded quasi-statically under mode I and modeled using ABAQUS; the opening stress values ahead of the cracked tip are calculated. The stresses are also evaluated using the asymptotic equations of both LEFM and HRR. The results show that in the transformation zone around the crack tip, the stress values are much better represented when the HRR singularity is used although the J-integral does not show path independent behavior. For the nodes very close to the crack tip, the HRR singularity is not valid due to the non-proportional loading effect and high-stress values that go beyond the transformation finish stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack" title="crack">crack</a>, <a href="https://publications.waset.org/abstracts/search?q=HRR%20singularity" title=" HRR singularity"> HRR singularity</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloys" title=" shape memory alloys"> shape memory alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20distribution" title=" stress distribution"> stress distribution</a> </p> <a href="https://publications.waset.org/abstracts/67670/on-crack-tip-stress-field-in-pseudo-elastic-shape-memory-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3943</span> Measurements of Recovery Stress and Recovery Strain of Ni-Based Shape Memory Alloys </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20J.%20Kim">W. J. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The behaviors of the recovery stress and strain of an ultrafine-grained Ni-50.2 at.% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined by a specially designed tensile-testing set up, and the factors that influence the recovery stress and strain were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed based on the experimental data. The recovery strain increased as the yield stress increased. The maximum recovery stress increased with an increase in yield stress. The residual recovery stress was affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-ratio%20differential%20speed%20rolling" title="high-ratio differential speed rolling">high-ratio differential speed rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20testing" title=" tensile testing"> tensile testing</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloys" title=" shape memory alloys"> shape memory alloys</a> </p> <a href="https://publications.waset.org/abstracts/69337/measurements-of-recovery-stress-and-recovery-strain-of-ni-based-shape-memory-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3942</span> Concepts of Technologies Based on Smart Materials to Improve Aircraft Aerodynamic Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Skiba">Krzysztof Skiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Czyz"> Zbigniew Czyz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20Siadkowska"> Ksenia Siadkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Borowiec"> Piotr Borowiec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents selected concepts of technologies that use intelligent materials in aircraft in order to improve their performance. Most of the research focuses on solutions that improve the performance of fixed wing aircraft due to related to their previously dominant market share. Recently, the development of the rotorcraft has been intensive, so there are not only helicopters but also gyroplanes and unmanned aerial vehicles using rotors and vertical take-off and landing. There are many different technologies to change a shape of the aircraft or its elements. Piezoelectric, deformable actuator systems can be applied in the system of an active control of vibration dampening in the aircraft tail structure. Wires made of shape memory alloys (SMA) could be used instead of hydraulic cylinders in the rear part of the aircraft flap. The aircraft made of intelligent materials (piezoelectrics and SMA) is one of the NASA projects which provide the possibility of changing a wing shape coefficient by 200%, a wing surface by 50%, and wing deflections by 20 degrees. Active surfaces made of shape memory alloys could be used to control swirls in the flowing stream. An intelligent control system for helicopter blades is a method for the active adaptation of blades to flight conditions and the reduction of vibrations caused by the rotor. Shape memory alloys are capable of recovering their pre-programmed shapes. They are divided into three groups: nickel-titanium-based, copper-based, and ferromagnetic. Due to the strongest shape memory effect and the best vibration damping ability, a Ni-Ti alloy is the most commercially important. The subject of this work was to prepare a conceptual design of a rotor blade with SMA actuators. The scope of work included 3D design of the supporting rotor blade, 3D design of beams enabling to change the geometry by changing the angle of rotation and FEM (Finite Element Method) analysis. The FEM analysis was performed using NX 12 software in the Pre/Post module, which includes extended finite element modeling tools and visualizations of the obtained results. Calculations are presented for two versions of the blade girders. For FEM analysis, three types of materials were used for comparison purposes (ABS, aluminium alloy 7057, steel C45). The analysis of internal stresses and extreme displacements of crossbars edges was carried out. The internal stresses in all materials were close to the yield point in the solution of girder no. 1. For girder no. 2 solution, the value of stresses decreased by about 45%. As a result of the displacement analysis, it was found that the best solution was the ABS girder no. 1. The displacement of about 0.5 mm was obtained, which resulted in turning the crossbars (upper and lower) by an angle equal to 3.59 degrees. This is the largest deviation of all the tests. The smallest deviation was obtained for beam no. 2 made of steel. The displacement value of the second girder solution was approximately 30% lower than the first solution. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopters" title=" helicopters"> helicopters</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=SMA" title=" SMA"> SMA</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20material" title=" smart material"> smart material</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle" title=" unmanned aerial vehicle"> unmanned aerial vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a> </p> <a href="https://publications.waset.org/abstracts/106636/concepts-of-technologies-based-on-smart-materials-to-improve-aircraft-aerodynamic-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3941</span> Shape Memory Alloy Structural Damper Manufactured by Selective Laser Melting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiziana%20Biasutti">Tiziana Biasutti</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Rigamonti"> Daniela Rigamonti</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Palmiotti"> Lorenzo Palmiotti</a>, <a href="https://publications.waset.org/abstracts/search?q=Adelaide%20Nespoli"> Adelaide Nespoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Bettini"> Paolo Bettini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerospace industry is based on the continuous development of new technologies and solutions that allows constant improvement of the systems. Shape Memory Alloys are smart materials that can be used as dampers due to their pseudoelastic effect. The purpose of the research was to design a passive damper in Nitinol, manufactured by Selective Laser Melting, for space applications to reduce vibration between different structural parts in space structures. The powder is NiTi (50.2 at.% of Ni). The structure manufactured by additive technology allows us to eliminate the presence of joint and moving parts and to have a compact solution with high structural strength. The designed dampers had single or double cell structures with three different internal angles (30°, 45° and 60°). This particular shape has damping properties also without the pseudoelastic effect. For this reason, the geometries were reproduced in different materials, SS316L and Ti6Al4V, to test the geometry loss factor. The mechanical performances of these specimens were compared to the ones of NiTi structures, pointing out good damping properties of the designed structure and the highest performances of the NiTi pseudoelastic effect. The NiTi damper was mechanically characterized by static and dynamic tests and with DSC and microscope observations. The experimental results were verified with numerical models and with some scaled steel specimens in which optical fibers were embedded. The realized structure presented good mechanical and damping properties. It was observed that the loss factor and the dissipated energy increased with the angles of the cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=damper" title=" damper"> damper</a>, <a href="https://publications.waset.org/abstracts/search?q=nitinol" title=" nitinol"> nitinol</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo%20elastic%20effect" title=" pseudo elastic effect"> pseudo elastic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20melting" title=" selective laser melting"> selective laser melting</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloys" title=" shape memory alloys"> shape memory alloys</a> </p> <a href="https://publications.waset.org/abstracts/156541/shape-memory-alloy-structural-damper-manufactured-by-selective-laser-melting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3940</span> Effect of Co-doping on Polycrystalline Ni-Mn-Ga</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Namvari">Mahsa Namvari</a>, <a href="https://publications.waset.org/abstracts/search?q=Kari%20Ullakko"> Kari Ullakko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well-known that the Co-doping of ferromagnetic shape memory alloys (FSMAs) is a crucial tool to control their multifunctional properties. The present work investigates the use of small quantities of Co to fine-tune the transformation, structure, microstructure, mechanical and magnetic properties of the polycrystalline Ni₄₉.₈Mn₂₈.₅Ga₂₁.₇ (at.%) alloy, At Co concentrations of 1-1.5 at.%, a microstructure with an average grain size of about 2.00 mm was formed with a twin structure, enabling the experimental observation of magnetic-field-induced twin variant rearrangement. At higher levels of Co-doping, the grain size was essentially reduced, and the crystal structure of the martensitic phase became 2M martensite. The decreasing grain size and changing crystal structure are attributed to the progress of γ-phase precipitates. Alongside the academic aspect, the results of the present work point to the commercial advantage of fabricating 10M Co-doped Ni-Mn-Ga actuating elements made from large grains of polycrystalline ingots obtained by a standard melting facility instead of grown single crystals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ni-Mn-Ga" title="Ni-Mn-Ga">Ni-Mn-Ga</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic%20shape%20memory" title=" ferromagnetic shape memory"> ferromagnetic shape memory</a>, <a href="https://publications.waset.org/abstracts/search?q=martensitic%20phase%20transformation" title=" martensitic phase transformation"> martensitic phase transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20growth" title=" grain growth"> grain growth</a> </p> <a href="https://publications.waset.org/abstracts/163892/effect-of-co-doping-on-polycrystalline-ni-mn-ga" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3939</span> Influence of Nanomaterials on the Properties of Shape Memory Polymeric Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katielly%20Vianna%20Polkowski">Katielly Vianna Polkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Denizarte%20de%20Oliveira%20Polkowski"> Rodrigo Denizarte de Oliveira Polkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristiano%20Grings%20Herbert"> Cristiano Grings Herbert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of nanomaterials in the formulation of polymeric materials modifies their molecular structure, offering an infinite range of possibilities for the development of smart products, being of great importance for science and contemporary industry. Shape memory polymers are generally lightweight, have high shape recovery capabilities, they are easy to process and have properties that can be adapted for a variety of applications. Shape memory materials are active materials that have attracted attention due to their superior damping properties when compared to conventional structural materials. The development of methodologies capable of preparing new materials, which use graphene in their structure, represents technological innovation that transforms low-cost products into advanced materials with high added value. To obtain an improvement in the shape memory effect (SME) of polymeric materials, it is possible to use graphene in its composition containing low concentration by mass of graphene nanoplatelets (GNP), graphene oxide (GO) or other functionalized graphene, via different mixture process. As a result, there was an improvement in the SME, regarding the increase in the values of maximum strain. In addition, the use of graphene contributes to obtaining nanocomposites with superior electrical properties, greater crystallinity, as well as resistance to material degradation. The methodology used in the research is Systematic Review, scientific investigation, gathering relevant studies on influence of nanomaterials on the properties of shape memory polymeric, using the literature database as a source and study methods. In the present study, a systematic reviewwas performed of all papers published from 2014 to 2022 regarding graphene and shape memory polymeric througha search of three databases. This study allows for easy identification of themost relevant fields of study with respect to graphene and shape memory polymeric, as well as the main gaps to beexplored in the literature. The addition of graphene showed improvements in obtaining higher values of maximum deformation of the material, attributed to a possible slip between stacked or agglomerated nanostructures, as well as an increase in stiffness due to the increase in the degree of phase separation that results in a greater amount physical cross-links, referring to the formation of shortrange rigid domains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory" title=" shape memory"> shape memory</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20materials" title=" smart materials"> smart materials</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/157621/influence-of-nanomaterials-on-the-properties-of-shape-memory-polymeric-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3938</span> Non-Linear Load-Deflection Response of Shape Memory Alloys-Reinforced Composite Cylindrical Shells under Uniform Radial Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behrang%20Tavousi%20Tehrani">Behrang Tavousi Tehrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad-Zaman%20Kabir"> Mohammad-Zaman Kabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shape memory alloys (SMA) are often implemented in smart structures as the active components. Their ability to recover large displacements has been used in many applications, including structural stability/response enhancement and active structural acoustic control. SMA wires or fibers can be embedded with composite cylinders to increase their critical buckling load, improve their load-deflection behavior, and reduce the radial deflections under various thermo-mechanical loadings. This paper presents a semi-analytical investigation on the non-linear load-deflection response of SMA-reinforced composite circular cylindrical shells. The cylinder shells are under uniform external pressure load. Based on first-order shear deformation<em> shell theory (FSDT),</em> the equilibrium equations of the structure are derived. One-dimensional simplified Brinson’s model is used for determining the SMA recovery force due to its simplicity and accuracy. Airy stress function and Galerkin technique are used to obtain non-linear load-deflection curves. The results are verified by comparing them with those in the literature. Several parametric studies are conducted in order to investigate the effect of SMA volume fraction, SMA pre-strain value, and SMA activation temperature on the response of the structure. It is shown that suitable usage of SMA wires results in a considerable enhancement in the load-deflection response of the shell due to the generation of the SMA tensile recovery force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airy%20stress%20function" title="airy stress function">airy stress function</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20shell" title=" cylindrical shell"> cylindrical shell</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20technique" title=" Galerkin technique"> Galerkin technique</a>, <a href="https://publications.waset.org/abstracts/search?q=load-deflection%20curve" title=" load-deflection curve"> load-deflection curve</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20stress" title=" recovery stress"> recovery stress</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a> </p> <a href="https://publications.waset.org/abstracts/96718/non-linear-load-deflection-response-of-shape-memory-alloys-reinforced-composite-cylindrical-shells-under-uniform-radial-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3937</span> Heat Forging Analysis Method on Blank Consist of Two Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Ueda">Takashi Ueda</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Enoki"> Shinichi Enoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forging parts is used to automobiles. Because they have high strength and it is possible to press them into complicated shape. When it is possible to manufacture hollow forging parts, it leads to reduce weight of the automobiles. But, hollow forging parts are confined to axisymmetrical shape. Hollow forging parts that were pressed to complicated shape are expected. Therefore, we forge a blank that aluminum alloy was inserted in stainless steel. After that, we can provide complex forging parts that are reduced weight, if it is possible to be melted the aluminum alloy away by using different of melting points. It is necessary to establish heat forging analysis method on blank consist of stainless steel and aluminum alloy. Because, this forging is different from conventional forging and this technology is not confirmed. In this study, we compared forging experiment with numerical analysis on the view point of forming load and shape after forming and establish how to set the material temperatures of two metals and material property of stainless steel on the analysis method. Consequently, temperature difference of stainless steel and aluminum alloy was obtained by experiment. We got material property of stainless steel on forging experimental by compression tests. We had compared numerical analysis that was used the temperature difference of two metals and the material property of stainless steel on forging experimental with forging experiment. Forging analysis method on blank consist of two metals was established by result of numerical analysis having agreed with result of forging experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forging" title="forging">forging</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight" title=" lightweight"> lightweight</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow" title=" hollow"> hollow</a> </p> <a href="https://publications.waset.org/abstracts/17370/heat-forging-analysis-method-on-blank-consist-of-two-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3936</span> Loading Forces following Addition of 5% Cu in Nickel-Titanium Alloy Used for Orthodontics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aphinan%20Phukaoluan">Aphinan Phukaoluan</a>, <a href="https://publications.waset.org/abstracts/search?q=Surachai%20Dechkunakorn"> Surachai Dechkunakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Niwat%20Anuwongnukroh"> Niwat Anuwongnukroh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anak%20Khantachawana"> Anak Khantachawana</a>, <a href="https://publications.waset.org/abstracts/search?q=Pongpan%20Kaewtathip"> Pongpan Kaewtathip</a>, <a href="https://publications.waset.org/abstracts/search?q=Julathep%20Kajornchaiyakul"> Julathep Kajornchaiyakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Wassana%20Wichai"> Wassana Wichai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: This study aims to address the amount of force delivered by a NiTiCu orthodontic wire with a ternary composition ratio of 46.0 Ni: 49.0 Ti: 5.0 Cu and to compare the results with a commercial NiTiCu 35 °C orthodontic archwire. Materials and Methods: Nickel (purity 99.9%), Titanium (purity 99.9%), and Copper (purity 99.9%) were used in this study with the atomic weight ratio 46.0 Ni: 49.0 Ti: 5.0 Cu. The elements were melted to form an alloy using an electrolytic arc furnace in argon gas atmosphere and homogenized at 800 °C for 1 hr. The alloys were subsequently sliced into thin plates (1.5mm) by EDM wire cutting machine to obtain the specimens and were cold-rolled with 30% followed by heat treatment in a furnace at 400 °C for 1 hour. Then, the three newly fabricated NiTiCu specimens were cut in nearly identical wire sizes of 0.016 inch x0.022 inch. Commercial preformed Ormco NiTiCu35 °C archwire with size 0.016 inch x 0.022 inches were used for comparative purposes. Three-point bending test was performed using a Universal Testing Machine to investigate the force of the load-deflection curve at oral temperature (36 °C+ 1) with deflection points at 0.25, 0.5, 0.75, 1.0. 1.25, and 1.5 mm. Descriptive statistics was used to evaluate each variables and independent t-test was used to analyze the differences between the groups. Results: Both NiTiCu wires presented typical superelastic properties as observed from the load-deflection curve. The average force was 341.70 g for loading, and 264.18 g for unloading for 46.0 Ni: 49.0 Ti: 5.0 Cu wire. Similarly, the values were 299.88 g for loading, and 201.96 g for unloading of Ormco NiTiCu35°C. There were significant differences (p < 0.05) in mean loading and unloading forces between the two NiTiCu wires. The deflection forces in loading and unloading force for Ormco NiTiCu at each point were less than 46.0 Ni: 49.0 Ti: 5.0 Cu wire, except at the deflection point of 0.25mm. Regarding the force difference between each deflection point of loading and unloading force, Ormco NiTiCu35 °C exerted less force than 46.0 Ni: 49.0 Ti: 5.0 Cu wire, except at difference deflection at 1.5-1.25 mm of unloading force. However, there were still within the acceptable limits for orthodontic use. Conclusion: The fabricated ternary alloy of 46.0 Ni: 49.0 Ti: 5.0 Cu (atomic weight) with 30% reduction and heat treatment at 400°C for 1 hr. and Ormco 35 °C NiTiCu presented the characteristics of the shape memory in their wire form. The unloading forces of both NiTiCu wires were in the range of orthodontic use. This should be a good foundation for further studies towards development of new orthodontic NiTiCu archwires. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=loading%20force" title="loading force">loading force</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20alloy" title=" ternary alloy"> ternary alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=NiTiCu" title=" NiTiCu"> NiTiCu</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory" title=" shape memory"> shape memory</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20wire" title=" orthodontic wire"> orthodontic wire</a> </p> <a href="https://publications.waset.org/abstracts/50228/loading-forces-following-addition-of-5-cu-in-nickel-titanium-alloy-used-for-orthodontics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3935</span> Diamond-Like Carbon-Based Structures as Functional Layers on Shape-Memory Alloy for Orthopedic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Jablonski">Piotr Jablonski</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Mars"> Krzysztof Mars</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiktor%20Niemiec"> Wiktor Niemiec</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Kyziol"> Agnieszka Kyziol</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Hebda"> Marek Hebda</a>, <a href="https://publications.waset.org/abstracts/search?q=Halina%20Krawiec"> Halina Krawiec</a>, <a href="https://publications.waset.org/abstracts/search?q=Karol%20Kyziol"> Karol Kyziol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NiTi alloys, possessing unique mechanical properties such as pseudoelasticity and shape memory effect (SME), are suitable for many applications, including implanthology and biomedical devices. Additionally, these alloys have similar values of elastic modulus to those of human bones, what is very important in orthopedics. Unfortunately, the environment of physiological fluids in vivo causes unfavorable release of Ni ions, which in turn may lead to metalosis as well as allergic reactions and toxic effects in the body. For these reasons, the surface properties of NiTi alloys should be improved to increase corrosion resistance, taking into account biological properties, i.e. excellent biocompatibility. The prospective in this respect are layers based on DLC (Diamond-Like Carbon) structures, which are an attractive solution for many applications in implanthology. These coatings (DLC), usually obtained by PVD (Physical Vapour Deposition) and PA CVD (Plasma Activated Chemical Vapour Deposition) methods, can be also modified by doping with other elements like silicon, nitrogen, oxygen, fluorine, titanium and silver. These methods, in combination with a suitably designed structure of the layers, allow the possibility co-decide about physicochemical and biological properties of modified surfaces. Mentioned techniques provide specific physicochemical properties of substrates surface in a single technological process. In this work, the following types of layers based on DLC structures (incl. Si-DLC or Si/N-DLC) were proposed as prospective and attractive approach in surface functionalization of shape memory alloy. Nitinol substrates were modified in plasma conditions, using RF CVD (Radio Frequency Chemical Vapour Deposition). The influence of plasma treatment on the useful properties of modified substrates after deposition DLC layers doped with silica and/or nitrogen atoms, as well as only pre-treated in O2 NH3 plasma atmosphere in a RF reactor was determined. The microstructure and topography of the modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the atomic structure of coatings was characterized by IR and Raman spectroscopy. The research also included the evaluation of surface wettability, surface energy as well as the characteristics of selected mechanical and biological properties of the layers. In addition, the corrosion properties of alloys after and before modification in the physiological saline were also investigated. In order to determine the corrosion resistance of NiTi in the Ringer solution, the potentiodynamic polarization curves (LSV – Linear Sweep Voltamperometry) were plotted. Furthermore, the evolution of corrosion potential versus immersion time of TiNi alloy in Ringer solution was performed. Based on all carried out research, the usefullness of proposed modifications of nitinol for medical applications was assessed. It was shown, inter alia, that the obtained Si-DLC layers on the surface of NiTi alloy exhibit a characteristic complex microstructure, increased surface development, which is an important aspect in improving the osteointegration of an implant. Furthermore, the modified alloy exhibits biocompatibility, the transfer of the metal (Ni, Ti) to Ringer’s solution is clearly limited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20coatings" title="bioactive coatings">bioactive coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance" title=" corrosion resistance"> corrosion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=doped%20DLC%20structure" title=" doped DLC structure"> doped DLC structure</a>, <a href="https://publications.waset.org/abstracts/search?q=NiTi%20alloy" title=" NiTi alloy"> NiTi alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20CVD" title=" RF CVD"> RF CVD</a> </p> <a href="https://publications.waset.org/abstracts/100182/diamond-like-carbon-based-structures-as-functional-layers-on-shape-memory-alloy-for-orthopedic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3934</span> Effect of Strontium on Surface Roughness and Chip Morphology When Turning Al-Si Cast Alloy Using Carbide Tool Insert</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Marani%20Barzani">Mohsen Marani Barzani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20D.%20Sarhan"> Ahmed A. D. Sarhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Farahany"> Saeed Farahany</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Singh"> Ramesh Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface roughness and chip morphology are important output in manufacturing product. In this paper, an experimental investigation was conducted to determine the effects of various cutting speeds and feed rates on surface roughness and chip morphology in turning the Al-Si cast alloy and Sr-containing. Experimental trials carried out using coated carbide inserts. Experiments accomplished under oblique dry cutting when various cutting speeds 70, 130 and 250 m/min and feed rates of 0.05, 0.1 and 0.15 mm/rev were used, whereas depth of cut kept constant at 0.05 mm. The results showed that Sr-containing Al-Si alloy have poor surface roughness in comparison to Al-Si alloy (base alloy). The surface roughness values reduce with cutting speed increment from 70 to 250 m/min. the size of chip changed with changing silicon shape in Al matrix. Also, the surface finish deteriorated with increase in feed rate from 0.5 mm/rev to 0.15 mm/rev. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strontium" title="strontium">strontium</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=chip" title=" chip"> chip</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=turning" title=" turning"> turning</a> </p> <a href="https://publications.waset.org/abstracts/36933/effect-of-strontium-on-surface-roughness-and-chip-morphology-when-turning-al-si-cast-alloy-using-carbide-tool-insert" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3933</span> Shape Optimization of Header Pipes in Power Plants for Enhanced Efficiency and Environmental Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Cherif%20Megri">Ahmed Cherif Megri</a>, <a href="https://publications.waset.org/abstracts/search?q=HossamEldin%20ElSherif"> HossamEldin ElSherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a power plant, the header pipe plays a pivotal role in optimizing the performance of diverse systems by serving as a central conduit for the collection and distribution of steam within the plant. This paper investigates the significance of header pipes within power plant setups, highlighting their critical influence on reliability, efficiency, and the performance of the power plant as a whole. The concept of shape optimization emerges as a crucial factor in power plant design and operation, with the potential to maximize performance while minimizing the use of materials. Shape optimization not only enhances efficiency but also contributes to reducing the environmental footprint of power plant installations. In this paper, we initially developed a methodology designed for optimizing header shapes with the primary goal of reducing the usage of costly new alloy materials and lowering the overall maintenance operation expenses. Secondly, we conducted a case study based on an authentic header sourced from an operational power plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shape%20optimization" title="shape optimization">shape optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=header" title=" header"> header</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant" title=" power plant"> power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=inconel%20alloy" title=" inconel alloy"> inconel alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title=" structural optimization"> structural optimization</a> </p> <a href="https://publications.waset.org/abstracts/174024/shape-optimization-of-header-pipes-in-power-plants-for-enhanced-efficiency-and-environmental-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3932</span> Computational Analysis of Variation in Thrust of Oblique Detonation Ramjet Engine With Adaptive Inlet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aditya">Aditya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganapati%20Joshi"> Ganapati Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar"> Vinod Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> IN THE MODERN-WARFARE ERA, THE PRIME REQUIREMENT IS A HIGH SPEED AND MACH NUMBER. WHEN THE MISSILES STRIKE IN THE HYPERSONIC REGIME THE OPPONENT CAN DETECT IT WITH THE ANTI-DEFENSE SYSTEM BUT CAN NOT STOP IT FROM CAUSING DAMAGE. SO, TO ACHIEVE THE SPEEDS OF THIS LEVEL THERE ARE TWO ENGINES THAT ARE AVAILABLE WHICH CAN WORK IN THIS REGION ARE RAMJET AND SCRAMJET. THE PROBLEM WITH RAMJET STARTS TO OCCUR WHEN MACH NUMBER EXCEEDS 4 AS THE STATIC PRESSURE AT THE INLET BECOMES EQUAL TO THE EXIT PRESSURE. SO, SCRAMJET ENGINE DEALS WITH THIS PROBLEM AS IT NEARLY HAS THE SAME WORKING BUT HERE THE FLOW IS NOT MUCH SLOWED DOWN AS COMPARED TO RAMJET IN THE DIFFUSER BUT IT SUFFERS FROM THE PROBLEMS SUCH AS INLET BUZZ, THERMAL CHOCKING, MIXING OF FUEL AND OXIDIZER, THERMAL HEATING, AND MANY MORE. HERE THE NEW ENGINE IS DEVELOPED ON THE SAME PRINCIPLE AS THE SCRAMJET ENGINE BUT BURNING HAPPENS DUE TO DETONATION INSTEAD OF DEFLAGRATION. THE PROBLEM WITH THE ENGINE STARTS WHEN THE MACH NUMBER BECOMES VARIABLE AND THE INLET GEOMETRY IS FIXED AND THIS LEADS TO INLET SPILLAGE WHICH WILL AFFECT THE THRUST ADVERSELY. SO, HERE ADAPTIVE INLET IS MADE OF SHAPE MEMORY ALLOYS WHICH WILL ENHANCE THE INLET MASS FLOW RATE AS WELL AS THRUST. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detonation" title="detonation">detonation</a>, <a href="https://publications.waset.org/abstracts/search?q=ramjet%20engine" title=" ramjet engine"> ramjet engine</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition%20delay" title=" ignition delay"> ignition delay</a>, <a href="https://publications.waset.org/abstracts/search?q=shock-boundary%20layer%20interaction" title=" shock-boundary layer interaction"> shock-boundary layer interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20dissipation" title=" eddy dissipation"> eddy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20nozzle" title=" asymmetric nozzle"> asymmetric nozzle</a> </p> <a href="https://publications.waset.org/abstracts/149070/computational-analysis-of-variation-in-thrust-of-oblique-detonation-ramjet-engine-with-adaptive-inlet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy&page=132">132</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy&page=133">133</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>