CINXE.COM
Search results for: sugar beet lime
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sugar beet lime</title> <meta name="description" content="Search results for: sugar beet lime"> <meta name="keywords" content="sugar beet lime"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sugar beet lime" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sugar beet lime"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 696</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sugar beet lime</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">696</span> Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Rida">S. Rida</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Saadani%20Hassani"> O. Saadani Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20R%E2%80%99zina"> Q. R’zina</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Saadaoui"> N. Saadaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Fares"> K. Fares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime" title=" sugar beet lime"> sugar beet lime</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/42132/agronomic-value-of-wastewater-and-sugar-beet-lime-sludge-compost-on-radish-crop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">695</span> Using Sugar Mill Waste for Biobased Epoxy Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ulku%20Soydal">Ulku Soydal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Esen%20Marti"> Mustafa Esen Marti</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulnare%20Ahmetli"> Gulnare Ahmetli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, precipitated calcium carbonate lime waste (LW) from sugar beet process was recycled as the raw material for the preparation of composite materials. Epoxidized soybean oil (ESO) was used as a co-matrix in 50 wt% with DGEBA type epoxy resin (ER). XRD was used for characterization of composites. Effects of ESO and LW filler amounts on mechanical properties of neat ER were investigated. Modification of ER with ESO remarkably enhanced plasticity of ER. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title="epoxy resin">epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title=" biocomposite"> biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20waste" title=" lime waste"> lime waste</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/50205/using-sugar-mill-waste-for-biobased-epoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">694</span> M. J. Rodríguez, F. M. Sánchez, B. Velardo, P. Calvo, M. J. Serradilla, J. Delgado, J. M. López</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Q.%20Rzina">Q. Rzina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lahrouni"> M. Lahrouni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rida"> S. Rida</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Saadaoui"> N. Saadaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Almossaid"> Y. Almossaid</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Oufdou"> K. Oufdou</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Fares"> K. Fares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many organic solid wastes are produced in the world. Poultry manure (PM), municipal organic wastes (MOW) and sugar beet lime sludge (LS) are produced in large quantities in Morocco. The co-composting of these organic wastes was investigated. The recycling and the valorization of such wastes is environmentally and economically beneficial especially for PM which is known source of bacterial pathogens. The aerobic biodegradation process was carried out by using three windrows of variable compositions: C1 prepared without LS (only MOW were composted with PM), C2 prepared from MOW plus PM and10% LS; and the last one C3 from MOW plus PM and 20% LS. The main process physico-chemical parameters (temperature, pH, humidity and C/N) and microbiological populations (mesophilic and thermophilic flora, total coliform, fecal coliform, Streptococci, Staphylococcus aureus and mesophilic fungi) were monitored over three months to ascertain the compost maturity and to ensure the compost hygienic aspect. The final products were characterized by their relatively high organic matter content, and low C/N ratio of 10.6-10.9. The organic matter degradation was reached approximately 59% for C2 and C3. In addition, the monitoring of the microbial population showed that the produced composts are mature and hygienic. The agronomic valorization of the final composts was tested on radish plant with tree level of composts and poultry manure without composting. The primary results of field trial showed a growth of radish plant biomass and root development without any phytotoxicity detected which reflects the quality of the composts produced. As for poultry manure it allowed to have a better results than other composts because of its readily available nitrogen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20organic%20wastes" title=" municipal organic wastes"> municipal organic wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20manure" title=" poultry manure"> poultry manure</a>, <a href="https://publications.waset.org/abstracts/search?q=radish%20crop" title=" radish crop"> radish crop</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime%20sludge" title=" sugar beet lime sludge"> sugar beet lime sludge</a> </p> <a href="https://publications.waset.org/abstracts/42134/m-j-rodriguez-f-m-sanchez-b-velardo-p-calvo-m-j-serradilla-j-delgado-j-m-lopez" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">693</span> Genetic Diversity of Sugar Beet Pollinators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ksenija%20Ta%C5%A1ki-Ajdukovic">Ksenija Taški-Ajdukovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Nevena%20Nagl"> Nevena Nagl</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%BDivko%20%C4%86ur%C4%8Di%C4%87"> Živko Ćurčić</a>, <a href="https://publications.waset.org/abstracts/search?q=Dario%20Danojevi%C4%87"> Dario Danojević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Information about genetic diversity of sugar beet parental populations is of a great importance for hybrid breeding programs. The aim of this research was to evaluate genetic diversity among and within populations and lines of diploid sugar beet pollinators, by using SSR markers. As plant material were used eight pollinators originating from three USDA-ARS breeding programs and four pollinators from Institute of Field and Vegetable Crops, Novi Sad. Depending on the presence of self-fertility gene, the pollinators were divided into three groups: autofertile (inbred lines), autosterile (open-pollinating populations), and group with partial presence of autofertility gene. A total of 40 SSR primers were screened, out of which 34 were selected for the analysis of genetic diversity. A total of 129 different alleles were obtained with mean value 3.2 alleles per SSR primer. According to the results of genetic variability assessment the number and percentage of polymorphic loci was the maximal in pollinators NS1 and tester cms2 while effective number of alleles, expected heterozygosis and Shannon’s index was highest in pollinator EL0204. Analysis of molecular variance (AMOVA) showed that 77.34% of the total genetic variation was attributed to intra-varietal variance. Correspondence analysis results were very similar to grouping by neighbor-joining algorithm. Number of groups was smaller by one, because correspondence analysis merged IFVCNS pollinators with CZ25 into one group. Pollinators FC220, FC221 and C 51 were in the next group, while self-fertile pollinators CR10 and C930-35 from USDA-Salinas were separated. On another branch were self-sterile pollinators ЕL0204 and ЕL53 from USDA-East Lansing. Sterile testers cms1 and cms2 formed separate group. The presented results confirmed that SSR analysis can be successfully used in estimation of genetic diversity within and among sugar beet populations. Since the tested pollinator differed considering the presence of self-fertility gene, their heterozygosity differed as well. It was lower in genotypes with fixed self-fertility genes. Since the most of tested populations were open-pollinated, which rarely self-pollinate, high variability within the populations was expected. Cluster analysis grouped populations according to their origin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto%20fertility" title="auto fertility">auto fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=pollinator" title=" pollinator"> pollinator</a>, <a href="https://publications.waset.org/abstracts/search?q=SSR" title=" SSR"> SSR</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20beet" title=" sugar beet"> sugar beet</a> </p> <a href="https://publications.waset.org/abstracts/31210/genetic-diversity-of-sugar-beet-pollinators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">692</span> Effect of Mobile Drip and Linear Irrigation System on Sugar Beet Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Tas">Ismail Tas</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Ersoy%20Yildirim"> Yusuf Ersoy Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yavuz%20Fatih%20Fidantemiz"> Yavuz Fatih Fidantemiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysegul%20Boyacioglu"> Aysegul Boyacioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Demet%20Uygan"> Demet Uygan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozgur%20Ates"> Ozgur Ates</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdinc%20Savasli"> Erdinc Savasli</a>, <a href="https://publications.waset.org/abstracts/search?q=Oguz%20Onder"> Oguz Onder</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Tugrul"> Murat Tugrul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biggest input of agricultural production is irrigation, water and energy. Although it varies according to the conditions in drip and sprinkler irrigation systems compared to surface irrigation systems, there is a significant amount of energy expenditure. However, this expense not only increases the user's control over the irrigation water but also provides an increase in water savings and water application efficiency. Thus, while irrigation water is used more effectively, it also contributes to reducing production costs. The Mobile Drip Irrigation System (MDIS) is a system in which new technologies are used, and it is one of the systems that are thought to play an important role in increasing the irrigation water utilization rate of plants and reducing water losses, as well as using irrigation water effectively. MDIS is currently considered the most effective method for irrigation, with the development of both linear and central motion systems. MDIS is potentially more advantageous than sprinkler irrigation systems in terms of reducing wind-induced water losses and reducing evaporation losses on the soil and plant surface. Another feature of MDIS is that the sprinkler heads on the systems (such as the liner and center pivot) can remain operational even when the drip irrigation system is installed. This allows the user to use both irrigation methods. In this study, the effect of MDIS and linear sprinkler irrigation method on sugar beet yield at different irrigation water levels will be revealed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MDIS" title="MDIS">MDIS</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20sprinkler" title=" linear sprinkler"> linear sprinkler</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20beet" title=" sugar beet"> sugar beet</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20efficiency" title=" irrigation efficiency"> irrigation efficiency</a> </p> <a href="https://publications.waset.org/abstracts/163220/effect-of-mobile-drip-and-linear-irrigation-system-on-sugar-beet-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">691</span> Acrylamide Concentration in Cakes with Different Caloric Sweeteners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Garc%C3%ADa">L. García</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Cobas"> N. Cobas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L%C3%B3pez"> M. López</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acrylamide, a probable carcinogen, is formed in high-temperature processed food (>120ºC) when the free amino acid asparagine reacts with reducing sugars, mainly glucose and fructose. Cane juices' repeated heating would potentially form acrylamide during brown sugar production. This study aims to determine if using panela in yogurt cake preparation increases acrylamide formation. A secondary aim is to analyze the acrylamide concentration in four cake confections with different caloric sweetener ingredients: beet sugar (BS), cane sugar (CS), panela (P), and a panela and chocolate mix (PC). The doughs were obtained by combining ingredients in a planetary mixer. A model system made up of flour (25%), caloric sweeteners (25 %), eggs (23%), yogurt (15.7%), sunflower oil (9.4%), and brewer's yeast (2 %) was applied to BS, CS and P cakes. The ingredients of PC cakes varied: flour (21.5 %), panela chocolate (21.5 %), eggs (25.9 %), yogurt (18 %), sunflower oil (10.8 %), and brewer’s yeast (2.3 %). The preparations were baked for 45' at 180 ºC. Moisture was estimated by AOAC. Protein was determined by the Kjeldahl method. Ash percentage was calculated by weight loss after pyrolysis (≈ 600 °C). Fat content was measured using liquid-solid extraction in hydrolyzed raw ingredients and final confections. Carbohydrates were determined by difference and total sugars by the Luff-Schoorl method, based on the iodometric determination of copper ions. Finally, acrylamide content was determined by LC-MS by the isocratic system (phase A: 97.5 % water with 0.1% formic acid; phase B: 2.5 % methanol), using a standard internal procedure. Statistical analysis was performed using SPSS v.23. One-way variance analysis determined differences between acrylamide content and compositional analysis, with caloric sweeteners as fixed effect. Significance levels were determined by applying Duncan's t-test (p<0.05). P cakes showed a lower energy value than the other baked products; sugar content was similar to BS and CS, with 6.1 % mean crude protein. Acrylamide content in caloric sweeteners was similar to previously reported values. However, P and PC showed significantly higher concentrations, probably explained by the applied procedure. Acrylamide formation depends on both reducing sugars and asparagine concentration and availability. Beet sugar samples did not present acrylamide concentrations within the detection and quantification limit. However, the highest acrylamide content was measured in the BS. This may be due to the higher concentration of reducing sugars and asparagine in other raw ingredients. The cakes made with panela, cane sugar, or panela with chocolate did not differ in acrylamide content. The lack of asparagine measures constitutes a limitation. Cakes made with panela showed lower acrylamide formation than products elaborated with beet or cane sugar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beet%20sugar" title="beet sugar">beet sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=cane%20sugar" title=" cane sugar"> cane sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=panela" title=" panela"> panela</a>, <a href="https://publications.waset.org/abstracts/search?q=yogurt%20cake" title=" yogurt cake"> yogurt cake</a> </p> <a href="https://publications.waset.org/abstracts/146841/acrylamide-concentration-in-cakes-with-different-caloric-sweeteners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">690</span> Shell Lime: An Eco-Friendly and Cost-Efficient Alternative for Agricultural Lime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hene%20L.%20Hapinat">Hene L. Hapinat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mae%20D.%20Dumapig"> Mae D. Dumapig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to determine the lime potential of 3 mollusks, namely: Crassostrea iredalei (Oyster shell), Turritella terebra (Turret shell), and Anodontia edentula (Mangrove clam shell) as alternative for commercially produced agricultural lime. The hydrogen ion concentration (pH) and the lime concentration using Calcium Carbonate Equivalent (CCE) of each shellfish species were measured and tested for the enhancement of an acidic soil. The experiment was laid out in a Completely Randomized Design (CRD) with 4 treatments replicated 3 times. The treatments were as follows: Treatment A- 100 g agricultural lime; B- 100 g oyster shell lime; C- 100 g turret shell lime; and D- 100 g mangrove clam shell lime. Each treatment was combined to the acidic soil sample. The results were statistically analyzed using One-way Analysis of Variance (ANOVA) and Least Square Difference (LSD) at 0.01 and 0.05 levels of significance. Results revealed that lime produced from the 3 selected mollusks can be a potential source of alternative and/or supplement materials for agricultural lime in dealing with soil acidity, entailing lower cost of farm production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shell%20lime" title="shell lime">shell lime</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate%20concentrations" title=" calcium carbonate concentrations"> calcium carbonate concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=mollusks" title=" mollusks"> mollusks</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20lime" title=" agricultural lime"> agricultural lime</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20potential%20concentration" title=" lime potential concentration"> lime potential concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=acidic%20soil" title=" acidic soil "> acidic soil </a> </p> <a href="https://publications.waset.org/abstracts/16781/shell-lime-an-eco-friendly-and-cost-efficient-alternative-for-agricultural-lime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">689</span> Changes in Physical Soil Properties and Crop Status on Soil Enriched With Treated Manure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaclav%20Novak">Vaclav Novak</a>, <a href="https://publications.waset.org/abstracts/search?q=Katerina%20Krizova"> Katerina Krizova</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Sarec"> Petr Sarec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern agriculture has to face many issues from which soil degradation and lack of organic matter in the soil are only a few of them. Apart from Climate Change, human utilization of landscape is the cause of a majority part of these problems. Cattle production in Czechia has been reduced by more than half in recent 30 years. However, cattle manure is considered as staple organic fertilizer, and its role in attempts for sustainable agriculture is irreplaceable. This study aims to describe the impact of so-called activators of biological manure transformation (Z´fix, Olmix Group) mainly on physical soil properties but also on crop status. The experiment has been established in 2017; nevertheless, initial measurements of implement draft have been performed before the treated manure application. In 2018, the physical soil properties and crop status (sugar beet) has been determined and compared with the untreated manure and control variant. Significant results have been observed already in the first year, where the implement draft decreased by 9.2 % within the treated manure variant in comparison with the control variant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=field%20experiment" title="field experiment">field experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=implement%20draft" title=" implement draft"> implement draft</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation%20index" title=" vegetation index"> vegetation index</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20beet" title=" sugar beet"> sugar beet</a> </p> <a href="https://publications.waset.org/abstracts/120126/changes-in-physical-soil-properties-and-crop-status-on-soil-enriched-with-treated-manure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">688</span> Determination of Yield and Yield Components of Fodder Beet (Beta vulgaris L. var. rapacea Koch.) Cultivars under the Konya Region Conditions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ozkose">A. Ozkose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to determination of yield and yield components of some fodder beet types (Amarilla Barres, Feldherr, Kyros, Magnum, and Rota) under the Konya region conditions. Fodder beet was obtained from the Selcuk University, Faculty of Agriculture, at 2006-2007 season and the experiment was established in a randomized complete block design with three replicates. Differences among the averages of the fodder beet cultivars are statistically important in terms of all the characteristics investigated. Leaf attitude value was 1.2–2.2 (1=erect; 5= prostrate), root shape scale value was (1=spheroidal – 9=cylindrical), root diameter 11.0–12.2 cm, remaining part of root on the ground was 6.3–13.7 cm, root length was 21.4 – 29.6 cm, leaf yield 1592 – 1917 kg/da, root yield was 10083–12258 kg/da, root dry matter content was %8.2– 18.6 and root dry matter yield was 889–1887 kg/da. As a result of the study, it was determined that fodder beet cultivars are different conditions in terms of yield and yield components. Therefore, determination of appropriate cultivars for each region affect crop yield importantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fedder%20beet" title="fedder beet">fedder beet</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20yield" title=" root yield"> root yield</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20components" title=" yield components"> yield components</a>, <a href="https://publications.waset.org/abstracts/search?q=Konya" title=" Konya"> Konya</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a> </p> <a href="https://publications.waset.org/abstracts/3225/determination-of-yield-and-yield-components-of-fodder-beet-beta-vulgaris-l-var-rapacea-koch-cultivars-under-the-konya-region-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">687</span> Powdered Beet Red Roots Using as Adsorbent to Removal of Methylene Blue Dye from Aqueous Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulali%20Bashir%20Ben%20Saleh">Abdulali Bashir Ben Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The powdered beet red roots (PBRR) were used as an adsorbent to remove dyes namely methylene blue dye (as a typical cationic or basic dye) from aqueous solutions. The present study shows that used beet red roots powder exhibit adsorption trend for the dye. The adsorption processes were carried out at various conditions of concentrations, processing time and a wide range of pH between 2.5-11. Adsorption isotherm equations such as Freundlich, and Langmuir were applied to calculate the values of respective constants. Adsorption study was found that the currently introduced adsorbent can be used to remove cationic dyes such as methylene blue from aqueous solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beet%20red%20root" title="beet red root">beet red root</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20of%20deys" title=" removal of deys"> removal of deys</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/22809/powdered-beet-red-roots-using-as-adsorbent-to-removal-of-methylene-blue-dye-from-aqueous-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">686</span> The Effect of Air Injection in Irrigation Water on Sugar Beet Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Ersoy%20Yildirim">Yusuf Ersoy Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Tas"> Ismail Tas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ceren%20Gorgusen"> Ceren Gorgusen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tugba%20Yeter"> Tugba Yeter</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysegul%20Boyacioglu"> Aysegul Boyacioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mehmet%20Tugrul"> K. Mehmet Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Tugrul"> Murat Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayten%20Namli"> Ayten Namli</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sabri%20Ozturk"> H. Sabri Ozturk</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Onur%20Akca"> M. Onur Akca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, a lot of research has been done for the sustainable use of scarce resources in the world. Especially, effective and sustainable use of water resources has been researched for many years. Sub-surface drip irrigation (SDI) is one of the most effective irrigation methods in which efficient and sustainable use of irrigation water can be achieved. When the literature is taken into consideration, it is often emphasized that, besides its numerous advantages, it also allows the application of irrigation water to the plant root zone along with air. It is stated in different studies that the air applied to the plant root zone with irrigation water has a positive effect on the root zone. Plants need sufficient oxygen for root respiration as well as for the metabolic functions of the roots. Decreased root respiration due to low oxygen content reduces transpiration, disrupts the flow of ions, and increases the ingress of salt reaching toxic levels, seriously affecting plant growth. Lack of oxygen (Hypoxia) can affect the survival of plants. The lack of oxygen in the soil is related to the exchange of gases in the soil with the gases in the atmosphere. Soil aeration is an important physical parameter of a soil. It is highly dynamic and is closely related to the amount of water in the soil and its bulk weight. Subsurface drip irrigation; It has higher water use efficiency compared to irrigation methods such as furrow irrigation and sprinkler irrigation. However, in heavy clay soils, subsurface drip irrigation creates continuous wetting fronts that predispose the rhizosphere region to hypoxia or anoxia. With subsurface drip irrigation, the oxygen is limited for root microbial respiration and root development, with the continuous spreading of water to a certain region of the root zone. In this study, the change in sugar beet yield caused by air application in the SDI system will be explained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sugar%20beet" title="sugar beet">sugar beet</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20drip%20irrigation" title=" subsurface drip irrigation"> subsurface drip irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20application" title=" air application"> air application</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20efficiency" title=" irrigation efficiency"> irrigation efficiency</a> </p> <a href="https://publications.waset.org/abstracts/163222/the-effect-of-air-injection-in-irrigation-water-on-sugar-beet-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">685</span> Mechanical and Hydraulic Behavior of Arid Zone Soils Treated with Lime: Case of Abadla, Bechar Clays, South of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadek%20Younes">Sadek Younes</a>, <a href="https://publications.waset.org/abstracts/search?q=Fali%20Leyla"> Fali Leyla</a>, <a href="https://publications.waset.org/abstracts/search?q=Rikioui%20Tayeb"> Rikioui Tayeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Zizouni%20Khaled"> Zizouni Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stabilization of clay with lime as bearing stratum is an alternative to replacement of original soil. By adding lime to clay soil, the soil workability is improved due to the combination of calcium ions to the clay minerals, which means, modified soil properties. The paper investigates the effect of hydrated lime on the behaviour of lime treated, arid zones clay (Abadla Clay). A number of mechanical and hydraulic tests were performed to identify the effect of lime dosage and compaction water content on the compressibility, permeability, and shear strength parameters of the soil. Test results show that the soil parameters can be improved through additives such as lime. Overall, the addition percentages of 6% and 9% lime give the best desired results. Also, results revealed that the compressibility behavior of lime-treated soil strongly affected by lime content. The results are presented in terms of modern interpretation of the behaviour of treated soils, in comparison with the parameters of the untreated soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arid%20zones" title="arid zones">arid zones</a>, <a href="https://publications.waset.org/abstracts/search?q=compressibility" title=" compressibility"> compressibility</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20behaviour" title=" soil behaviour"> soil behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization" title=" soil stabilization"> soil stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soil" title=" unsaturated soil"> unsaturated soil</a> </p> <a href="https://publications.waset.org/abstracts/93366/mechanical-and-hydraulic-behavior-of-arid-zone-soils-treated-with-lime-case-of-abadla-bechar-clays-south-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">684</span> Extraction of Essential Oil and Pectin from Lime and Waste Technology Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wilaisri%20Limphapayom">Wilaisri Limphapayom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lime is one of the economically important produced in Thailand. The objective of this research is to increase utilization in food and cosmetic. Extraction of essential oil and pectin from lime (Citrus aurantifolia (Christm & Panz ) Swing) have been studied. Extraction of essential oil has been made by using hydro-distillation .The essential oil ranged from 1.72-2.20%. The chemical composition of essential oil composed of alpha-pinene , beta-pinene , D-limonene , comphene , a-phellandrene , g-terpinene , a-ocimene , O-cymene , 2-carene , Linalool , trans-ocimenol , Geraniol , Citral , Isogeraniol , Verbinol , and others when analyzed by using GC-MS method. Pectin extraction from lime waste , boiled water after essential oil extraction. Pectin extraction were found 40.11-65.81 g /100g of lime peel. The best extraction condition was found to be higher in yield by using ethanol extraction. The potential of this study had satisfactory results to improve lime processing system for value-added . The present study was also focused on Lime powder production as source of vitamin C or ascorbic acid and the potential of lime waste as a source of essential oil and pectin. Lime powder produced from Spray Dryer . Lime juice with 2 different level of maltodextrins DE 10 , 30 and 50% w/w was sprayed at 150 degrees celsius inlet air temperature and at 90-degree celsius outlet temperature. Lime powder with 50% maltodextrin gave the most desirable quality product. This product has vitamin C contents of 25 mg/100g (w/w). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=pectin" title=" pectin"> pectin</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a> </p> <a href="https://publications.waset.org/abstracts/92730/extraction-of-essential-oil-and-pectin-from-lime-and-waste-technology-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">683</span> Generalized Model Estimating Strength of Bauxite Residue-Lime Mix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujeet%20Kumar">Sujeet Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Prasad"> Arun Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work investigates the effect of multiple parameters on the unconfined compressive strength of the bauxite residue-lime mix. A number of unconfined compressive strength tests considering various curing time, lime content, dry density and moisture content were carried out. The results show that an empirical correlation may be successfully developed using volumetric lime content, porosity, moisture content, curing time unconfined compressive strength for the range of the bauxite residue-lime mix studied. The proposed empirical correlations efficiently predict the strength of bauxite residue-lime mix, and it can be used as a generalized empirical equation to estimate unconfined compressive strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bauxite%20residue" title="bauxite residue">bauxite residue</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20time" title=" curing time"> curing time</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%2Fvolumetric%20lime%20ratio" title=" porosity/volumetric lime ratio"> porosity/volumetric lime ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compressive%20strength" title=" unconfined compressive strength"> unconfined compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/80378/generalized-model-estimating-strength-of-bauxite-residue-lime-mix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">682</span> Field Application of Reduced Crude Conversion Spent Lime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brian%20H.%20Marsh">Brian H. Marsh</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20H.%20Grove"> John H. Grove</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gypsum is being applied to ameliorate subsoil acidity and to overcome the problem of very slow lime movement from surface lime applications. Reduced Crude Conversion Spent Lime (RCCSL) containing anhydrite was evaluated for use as a liming material with specific consideration given to the movement of sulfate into the acid subsoil. Agricultural lime and RCCSL were applied at 0, 0.5, 1.0, and 1.5 times the lime requirement of 6.72 Mg ha-1 to an acid Trappist silt loam (Typic Hapuldult). Corn [Zea mays (L.)]was grown following lime material application and soybean [Glycine max (L.) Merr.]was grown in the second year. Soil pH increased rapidly with the addition of the RCCSL material. Over time there was no difference in soil pH between the materials but there was with increasing rate. None of the observed changes in plant nutrient concentration had an impact on yield. Grain yield was higher for the RCCSL amended treatments in the first year but not in the second. There was a significant increase in soybean grain yield from the full lime requirement treatments over no lime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20acidity" title="soil acidity">soil acidity</a>, <a href="https://publications.waset.org/abstracts/search?q=corn" title=" corn"> corn</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a>, <a href="https://publications.waset.org/abstracts/search?q=liming%20materials" title=" liming materials"> liming materials</a> </p> <a href="https://publications.waset.org/abstracts/3923/field-application-of-reduced-crude-conversion-spent-lime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">681</span> Continuous Production of Prebiotic Pectic Oligosaccharides from Sugar Beet Pulp in a Continuous Cross Flow Membrane Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Babbar">Neha Babbar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Van%20Roy"> S. Van Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Dejonghe"> W. Dejonghe</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sforza"> S. Sforza</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Elst"> K. Elst</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pectic oligosaccharides (a class of prebiotics) are non-digestible carbohydrates which benefits the host by stimulating the growth of healthy gut micro flora. Production of prebiotic pectic oligosaccharides (POS) from pectin rich agricultural residues involves a cutting of long chain polymer of pectin to oligomers of pectin while avoiding the formation of monosaccharides. The objective of the present study is to develop a two-step continuous biocatalytic membrane reactor (MER) for the continuous production of POS (from sugar beet pulp) in which conversion is combined with separation. Optimization of the ratio of POS/monosaccharides, stability and productivities of the process was done by testing various residence times (RT) in the reactor vessel with diluted (10 RT, 20 RT, and 30 RT) and undiluted (30 RT, 40 RT and 60 RT) substrate. The results show that the most stable processes (steady state) were 20 RT and 30 RT for diluted substrate and 40 RT and 60 RT for undiluted substrate. The highest volumetric and specific productivities of 20 g/L/h and 11 g/gE/h; 17 g/l/h and 9 g/gE/h were respectively obtained with 20 RT (diluted substrate) and 40 RT (undiluted substrate). Under these conditions, the permeates of the reactor test with 20 RT (diluted substrate) consisted of 80 % POS fractions while that of 40 RT (undiluted substrate) resulted in 70% POS fractions. A two-step continuous biocatalytic MER for the continuous POS production looks very promising for the continuous production of tailor made POS. Although both the processes i.e 20 RT (diluted substrate) and 40 RT (undiluted substrate) gave the best results, but for an Industrial application it is preferable to use an undiluted substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pectic%20oligosaccharides" title="pectic oligosaccharides">pectic oligosaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20reactor" title=" membrane reactor"> membrane reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time" title=" residence time"> residence time</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20productivity" title=" specific productivity"> specific productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=volumetric%20productivity" title=" volumetric productivity"> volumetric productivity</a> </p> <a href="https://publications.waset.org/abstracts/32025/continuous-production-of-prebiotic-pectic-oligosaccharides-from-sugar-beet-pulp-in-a-continuous-cross-flow-membrane-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">680</span> GC-MS-Based Untargeted Metabolomics to Study the Metabolism of Pectobacterium Strains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Smoktunowicz">Magdalena Smoktunowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Wawrzyniak"> Renata Wawrzyniak</a>, <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20Waleron"> Malgorzata Waleron</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Waleron"> Krzysztof Waleron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pectobacterium spp. were previously classified into the Erwinia genus founded in 1917 to unite at that time all Gram-negative, fermentative, nonsporulating and peritrichous flagellated plant pathogenic bacteria. After work of Waldee (1945), on Approved Lists of Bacterial Names and bacteriology manuals in 1980, they were described either under the species named Erwinia or Pectobacterium. The Pectobacterium genus was formally described in 1998 of 265 Pectobacterium strains. Currently, there are 21 species of Pectobacterium bacteria, including Pectobacterium betavasculorum since 2003, which caused soft rot on sugar beet tubers. Based on the biochemical experiments carried out for this, it is known that these bacteria are gram-negative, catalase-positive, oxidase-negative, facultatively anaerobic, using gelatin and causing symptoms of soft rot on potato and sugar beet tubers. The mere fact of growing on sugar beet may indicate a metabolism characteristic only for this species. Metabolomics, broadly defined as the biology of the metabolic systems, which allows to make comprehensive measurements of metabolites. Metabolomics, in combination with genomics, are complementary tools for the identification of metabolites and their reactions, and thus for the reconstruction of metabolic networks. The aim of this study was to apply the GC-MS-based untargeted metabolomics to study the metabolism of P. betavasculorum in different growing conditions. The metabolomic profiles of biomass and biomass media were determined. For sample preparation the following protocol was used: extraction with 900 µl of methanol: chloroform: water mixture (10: 3: 1, v: v) were added to 900 µl of biomass from the bottom of the tube and up to 900 µl of nutrient medium from the bacterial biomass. After centrifugation (13,000 x g, 15 min, 4oC), 300µL of the obtained supernatants were concentrated by rotary vacuum and evaporated to dryness. Afterwards, two-step derivatization procedure was performed before GC-MS analyses. The obtained results were subjected to statistical calculations with the use of both uni- and multivariate tests. The obtained results were evaluated using KEGG database, to asses which metabolic pathways are activated and which genes are responsible for it, during the metabolism of given substrates contained in the growing environment. The observed metabolic changes, combined with biochemical and physiological tests, may enable pathway discovery, regulatory inference and understanding of the homeostatic abilities of P. betavasculorum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GC-MS%20chromatograpfy" title="GC-MS chromatograpfy">GC-MS chromatograpfy</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism" title=" metabolism"> metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=pectobacterium%20strains" title=" pectobacterium strains"> pectobacterium strains</a>, <a href="https://publications.waset.org/abstracts/search?q=pectobacterium%20betavasculorum" title=" pectobacterium betavasculorum"> pectobacterium betavasculorum</a> </p> <a href="https://publications.waset.org/abstracts/155862/gc-ms-based-untargeted-metabolomics-to-study-the-metabolism-of-pectobacterium-strains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">679</span> Estimation and Validation of Free Lime Analysis of Clinker by Quantitative Phase Analysis Using X ray diffraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Palla">Suresh Palla</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalpna%20Sharma"> Kalpna Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Bhatnagar"> Gaurav Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Chaturvedi"> S. K. Chaturvedi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20N.%20Mohapatra"> B. N. Mohapatra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determining the content of free lime is especially important to judge reactivity of the raw materials and clinker quality. The free lime limit isn’t the same for all cements; it depends on several factors, especially the temperature reached during the cooking and the grain size distribution in cement after grinding. Estimation of free lime by conventional method is influenced by the presence of portlandite and misleads the actual free lime content in the clinker for quality check up conditions. To ensure the product quality according to the standard specifications in terms of within the quality limits or not, a reliable, precise, and very reproducible method to quantify the relative phase abundances in the Portland Cement clinker and Portland Cements is to use X-ray diffraction (XRD) in combination with the Rietveld method. In the present study, a methodology was proposed using XRD to validate the obtained results of free lime by conventional method. The XRD and TG/DTA results confirm the presence of portlandite in the clinker to take the decision on the obtained free lime results through conventional method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20lime" title="free lime">free lime</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20phase%20analysis" title=" quantitative phase analysis"> quantitative phase analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20method" title=" conventional method"> conventional method</a>, <a href="https://publications.waset.org/abstracts/search?q=x%20ray%20diffraction" title=" x ray diffraction"> x ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/135211/estimation-and-validation-of-free-lime-analysis-of-clinker-by-quantitative-phase-analysis-using-x-ray-diffraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">678</span> The Influence of Partial Replacement of Hydrated Lime by Pozzolans on Properties of Lime Mortars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Przemyslaw%20Brzyski">Przemyslaw Brzyski</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislaw%20Fic"> Stanislaw Fic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrated lime, because of the life cycle (return to its natural form as a result of the setting and hardening) has a positive environmental impact. The lime binder is used in mortars. Lime is a slow setting binder with low mechanical properties. The aim of the study was to evaluate the possibility of improving the properties of the lime binder by using different pozzolanic materials as partial replacement of hydrated lime binder. Pozzolan materials are the natural or industrial waste, so do not affect the environmental impact of the lime binder. The following laboratory tests were performed: the analysis of the physical characteristics of the tested samples of lime mortars (bulk density, porosity), flexural and compressive strength, water absorption and the capillary rise of samples and consistency of fresh mortars. As a partial replacement of hydrated lime (in the amount of 10%, 20%, 30% by weight of lime) a metakaolin, silica fume, and zeolite were used. The shortest setting and hardening time showed mortars with the addition of metakaolin. All additives noticeably improved strength characteristic of lime mortars. With the increase in the amount of additive, the increase in strength was also observed. The highest flexural strength was obtained by using the addition of metakaolin in an amount of 20% by weight of lime (2.08 MPa). The highest compressive strength was obtained by using also the addition of metakaolin but in an amount of 30% by weight of lime (9.43 MPa). The addition of pozzolan caused an increase in the mortar tightness which contributed to the limitation of absorbability. Due to the different surface area, pozzolanic additives affected the consistency of fresh mortars. Initial consistency was assumed as plastic. Only the addition of silica fume an amount of 20 and 30% by weight of lime changed the consistency to the thick-plastic. The conducted study demonstrated the possibility of applying lime mortar with satisfactory properties. The features of lime mortars do not differ significantly from cement-based mortar properties and show a lower environmental impact due to CO₂ absorption during lime hardening. Taking into consideration the setting time, strength and consistency, the best results can be obtained with metakaolin addition to the lime mortar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lime" title="lime">lime</a>, <a href="https://publications.waset.org/abstracts/search?q=binder" title=" binder"> binder</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolan" title=" pozzolan"> pozzolan</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/91218/the-influence-of-partial-replacement-of-hydrated-lime-by-pozzolans-on-properties-of-lime-mortars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">677</span> Influence of Nano Copper Slag in Strength Behavior of Lime Stabilized Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Stalin">V. K. Stalin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kirithika"> M. Kirithika</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Shanmugam"> K. Shanmugam</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Tharini"> K. Tharini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotechnology has been widely used in many applications such as medical, electronics, robotics and also in geotechnical engineering area through stabilization of bore holes, grouting etc. In this paper, an attempt is made for understanding the influence of nano copper slag (1%, 2% & 3%) on the index, compaction and UCC strength properties of natural soil (CH type) with and without lime stabilization for immediate and 7 days curing period. Results indicated that upto 1% of Nano copper slag, there is an increment in UC strength of virgin soil and lime stabilised soil. Beyond 1% nano copper slag, there is a steep reduction in UC strength and increase of plasticity both in lime stabilised soil and virgin soil. The effect of lime is found to show more influence on large surface area of nano copper slag in natural soil. For both immediate and curing effect, with 1% of Nano copper slag, the maximum unconfined compressive strength was 38% and 106% higher than that of the virgin soil strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lime" title="lime">lime</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20copper%20slag" title=" nano copper slag"> nano copper slag</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilisation" title=" stabilisation"> stabilisation</a> </p> <a href="https://publications.waset.org/abstracts/56496/influence-of-nano-copper-slag-in-strength-behavior-of-lime-stabilized-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">676</span> Effect of Lime and Leaf Ash on Engineering Properties of Red Mud</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawandeep%20Kaur">Pawandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Garg"> Prashant Garg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Red mud is a byproduct of aluminum extraction from Bauxite industry. It is dumped in a pond which not only uses thousands of acres of land but having very high pH, it pollutes the ground water and the soil also. Leaves are yet another big waste especially during autumn when they contribute immensely to the blockage of drains and can easily catch fire, among other risks hence also needs to be utilized effectively. The use of leaf ash and red mud in highway construction as a filling material may be an efficient way to dispose of leaf ash and red mud. In this study, leaf ash and lime were used as admixtures to improve the geotechnical engineering properties of red mud. The red mud was taken from National Aluminum Company Limited, Odisha, and leaf ash was locally collected. The aim of present study is to investigate the effect of lime and leaf ash on compaction characteristics and strength characteristics of red mud. California Bearing Ratio and Unconfined Compression Strength tests were performed on red mud by varying different percentages of lime and leaf ash. Leaf ash was added in proportion 2%,4%,6%,8% and 10% whereas lime was added in proportions of 5% to 15%. Optimized value of lime was decided with respect to maximum CBR (California Bearing Ratio) of red mud mixed with different proportions of lime. An increase of 300% in California Bearing ratio of red mud and an increase of 125% in Unconfined Compression Strength values were observed. It may, therefore, be concluded that red mud may be effectively utilized in the highway industry as a filler material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stabilization" title="stabilization">stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20mud" title=" red mud"> red mud</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20ash" title=" leaf ash"> leaf ash</a> </p> <a href="https://publications.waset.org/abstracts/87827/effect-of-lime-and-leaf-ash-on-engineering-properties-of-red-mud" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">675</span> Analysis of Reinforced Granular Pile in Soft Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Nitesh">G. Nitesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stone column or granular pile is a proven technique to mitigate settlement in soft soil. Granular pile increases both rate of consolidation and stiffness of the ground. In this paper, a method to analyze further reduction in settlement of granular column reinforced with lime pile is presented treating the system as a unit cell and considering one-dimensional compression approach. The core of the granular pile is stiffened with a steel rod or lime column. Influence of a wide range of parameters such as area ratio of granular pile-soft soil, area ratio of lime pile-granular pile, modular ratio of granular pile and modular ratio of lime pile with respect to granular pile on settlement reduction factor, etc. are obtained and presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lime%20pile" title="lime pile">lime pile</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20pile" title=" granular pile"> granular pile</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil" title=" soft soil"> soft soil</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/15737/analysis-of-reinforced-granular-pile-in-soft-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">674</span> A Study of Soft Soil Improvement by Using Lime Grit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashim%20Kanti%20Dey">Ashim Kanti Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Briti%20Sundar%20Bhowmik"> Briti Sundar Bhowmik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an idea to improve the soft soil by using lime grits which are normally produced as waste product in the paper manufacturing industries. This waste material cannot be used as a construction material because of its light weight, uniform size and poor compaction control. With scarcity in land, effective disposal of lime grit is a major concern of all paper manufacturing industries. Considering its non-plasticity and high permeability characteristics the lime grit may suitably be used as a drainage material for speedy consolidation of cohesive soil. It can also be used to improve the bearing capacity of soft clay. An attempt has been made in this paper to show the usefulness of lime grit in improving the bearing capacity of shallow foundation resting on soft clayey soil. A series of undrained unconsolidated cyclic triaxial tests performed at different area ratios and at three different water contents shows that dynamic shear modulus and damping ratio can be substantially improved with lime grit. Improvement is observed to be more in case of higher area ratio and higher water content. Static triaxial tests were also conducted on lime grit reinforced clayey soil after application of 50 load cycles to determine the effect of lime grit columns on cyclically loaded clayey soils. It is observed that the degradation is less for lime grit stabilized soil. A study of model test with different area ratio of lime column installation is also included to see the field behaviour of lime grit reinforced soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lime%20grit%20column" title="lime grit column">lime grit column</a>, <a href="https://publications.waset.org/abstracts/search?q=area%20ratio" title=" area ratio"> area ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20ratio" title=" damping ratio"> damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20ratio" title=" strength ratio"> strength ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement%20factor" title=" improvement factor"> improvement factor</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation%20factor" title=" degradation factor"> degradation factor</a> </p> <a href="https://publications.waset.org/abstracts/10849/a-study-of-soft-soil-improvement-by-using-lime-grit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">673</span> Viability of Sub-Surface Drip Irrigation in Agronomic and Vegetable Crops Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Montazar">Ali Montazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to assess the viability of sub-surface drip irrigation (SDI) using several ongoing and conducted researches in the low desert region of California. The experiments were carried out in the University of California Desert Research and Extension Center (UC DREC) and ten commercial fields at alfalfa, sugar beets, dehydrated onions, and spinach crops. The results demonstrated greater yields, actual crop water consumption, and water productivity of SDI as compared with conventional irrigation practices (border, furrow, and sprinkler irrigation) with an average increase of 21%, 7%, and 15%, respectively. The severity of plant disease, particularly root rot in sugar beet, and downy mildew in onions and spinach, were significantly lower in SDI than furrow and sprinkler irrigation (an average of 3-5 times). While utilizing this irrigation technology may have ability to achieve higher yields, conserve water, improve the efficiency of water and nutrient use, and manage food safety risks and plant disease, further work is required to better understand the impact of management practices and strategies on the viability of SDI application, and maintain its profitability in various agricultural production systems as water, labor costs, and environmental concerns increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alfalfa" title="alfalfa">alfalfa</a>, <a href="https://publications.waset.org/abstracts/search?q=onions" title=" onions"> onions</a>, <a href="https://publications.waset.org/abstracts/search?q=spinach" title=" spinach"> spinach</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20beets" title=" sugar beets"> sugar beets</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20drip%20irrigation" title=" subsurface drip irrigation"> subsurface drip irrigation</a> </p> <a href="https://publications.waset.org/abstracts/110229/viability-of-sub-surface-drip-irrigation-in-agronomic-and-vegetable-crops-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">672</span> Rheological Properties of Red Beet Root Juice Squeezed from Ultrasounicated Red Beet Root Slices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20%C3%87evik">M. Çevik</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sabanc%C4%B1"> S. Sabancı</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Tezcan"> D. Tezcan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20%C3%87elebi"> C. Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20%C4%B0%C3%A7ier"> F. İçier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasound technology is the one of the non-thermal food processing method in recent years which has been used widely in the food industry. Ultrasound application in the food industry is divided into two groups: low and high intensity ultrasound application. While low intensity ultrasound is used to obtain information about physicochemical properties of foods, high intensity ultrasound is used to extract bioactive components and to inactivate microorganisms and enzymes. In this study, the ultrasound pre-treatment at a constant power (1500 W) and fixed frequency (20 kHz) was applied to the red beetroot slices having the dimension of 25×25×50 mm at the constant temperature (25°C) for different application times (0, 5, 10, 15 and 20 min). The red beet root slices pretreated with ultrasonication was squeezed immediately. The changes on rheological properties of red beet root juice depending on ultrasonication duration applied to slices were investigated. Rheological measurements were conducted by using Brookfield viscometer (LVDV-II Pro, USA). Shear stress-shear rate data was obtained from experimental measurements for 0-200 rpm range by using spindle 18. Rheological properties of juice were determined by fitting this data to some rheological models (Newtonian, Bingham, Power Law, Herschel Bulkley). It was investigated that the best model was Power Law model for both untreated red beet root juice (R2=0.991, χ2=0.0007, RMSE=0.0247) and red beetroot juice produced from ultrasonicated slices (R2=0.993, χ2=0.0006, RMSE=0.0216 for 20 min pre-treatment). k (consistency coefficient) and n (flow behavior index) values of red beetroot juices were not affected from the duration of ultrasonication applied to the slices. Ultrasound treatment does not result in any changes on the rheological properties of red beetroot juice. This can be explained by lack of ability to homogenize of the intensity of applied ultrasound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonication" title="ultrasonication">ultrasonication</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20beet%20root%20slice" title=" red beet root slice"> red beet root slice</a>, <a href="https://publications.waset.org/abstracts/search?q=juice" title=" juice"> juice</a> </p> <a href="https://publications.waset.org/abstracts/12857/rheological-properties-of-red-beet-root-juice-squeezed-from-ultrasounicated-red-beet-root-slices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">671</span> Effect of Sand Wall Stabilized with Different Percentages of Lime on Bearing Capacity of Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Abdulrasool">Ahmed S. Abdulrasool</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently sand wall started to gain more attention as the sand is easy to compact by using vibroflotation technique. An advantage of sand wall is the availability of different additives that can be mixed with sand to increase the stiffness of the sand wall and hence to increase its performance. In this paper, the bearing capacity of circular foundation surrounded by sand wall stabilized with lime is evaluated through laboratory testing. The studied parameters include different sand-lime walls depth (H/D) ratio (wall depth to foundation diameter) ranged between (0.0-3.0). Effect of lime percentages on the bearing capacity of skirted foundation models is investigated too. From the results, significant change is occurred in the behavior of shallow foundations due to confinement of the soil. It has been found that (H/D) ratio of 2 gives substantial improvement in bearing capacity, and beyond (H/D) ratio of 2, there is no significant improvement in bearing capacity. The results show that the optimum lime content is 11%, and the maximum increase in bearing capacity reaches approximately 52% at (H/D) ratio of 2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20foundation" title=" circular foundation"> circular foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20soil" title=" clay soil"> clay soil</a>, <a href="https://publications.waset.org/abstracts/search?q=lime-sand%20wall" title=" lime-sand wall"> lime-sand wall</a> </p> <a href="https://publications.waset.org/abstracts/62996/effect-of-sand-wall-stabilized-with-different-percentages-of-lime-on-bearing-capacity-of-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">670</span> The Effectivity of Lime Juice on the Cooked Rice's Shelf-Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Novriyanti%20Lubis">Novriyanti Lubis</a>, <a href="https://publications.waset.org/abstracts/search?q=Riska%20Prasetiawati"> Riska Prasetiawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuriani%20Rahayu"> Nuriani Rahayu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effectivity of lime juice on the cooked rice’s shelf-life was investigated. This research was proposed to get the optimal condition, such as concentration lime juice as the preservatives, and shelf-life cooked rice’s container to store using rice warmer. The effectivity was analysed total colony bacteriology, and physically. The variation of lime juice’s concentration that have been used were 0%, 0,46%, 0,93%, 1,40%, and 1,87%. The observation of cooked rice’s quality was done every 12 hours, including colour, smell, flavour, and total colony every 24 hours. Based on the result of the research considered from the cooked rice’s quality through observing the total of the colony bacteriology and physically, it showed the optimum concentrate which is effective preserve the cooked rise’s level concentrate was 0.93%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteriology" title="bacteriology">bacteriology</a>, <a href="https://publications.waset.org/abstracts/search?q=cooked%20rice%27s" title=" cooked rice's"> cooked rice's</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20juice" title=" lime juice"> lime juice</a>, <a href="https://publications.waset.org/abstracts/search?q=preservative" title=" preservative"> preservative</a> </p> <a href="https://publications.waset.org/abstracts/56368/the-effectivity-of-lime-juice-on-the-cooked-rices-shelf-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">669</span> Lime Based Products as a Maintainable Option for Repair And Restoration of Historic Buildings in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adedayo%20Jeremiah%20Adeyekun">Adedayo Jeremiah Adeyekun</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Oluwagbemiga%20Ishola"> Samuel Oluwagbemiga Ishola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study the use of traditional building materials for the repair and refurbishment of historic buildings in India and to provide an authentic treatment of historical buildings that will be highly considered by taking into consideration the new standards of rehabilitating process. This can be proven to be an effective solution over modern impervious material due to its compatibility with traditional building methods and materials. For example, their elastoplastic properties allow accommodating movement due to settlement or moisture/temperature changes without cracking. The use of lime also enhances workability, water retention and bond characteristics. Lime is considered to be a natural, traditional material, but it is also sustainable and energy-efficient, with production powered by biomass and emissions up to 25% less than cementitious materials. However, there is a lack of comprehensive data on the impact of lime‐based materials on the energy efficiency and thermal properties of traditional buildings and structures. Although lime mortars, renders and plasters were largely superseded by cement-based products in the first half of the 20th century, lime has a long and proven track record dating back to ancient times. This was used by the Egyptians in 4000BC to construct the pyramids. This doesn't mean that lime is an outdated technology, nor is it difficult to be used as a material. In fact, lime has a growing place in modern construction, with increasing numbers of designers choosing to use lime-based products because of their special properties. To carry out this research, some historic buildings will be surveyed and information will be derived from the textbooks and journals related to Architectural restoration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lime" title="lime">lime</a>, <a href="https://publications.waset.org/abstracts/search?q=materials" title=" materials"> materials</a>, <a href="https://publications.waset.org/abstracts/search?q=historic" title=" historic"> historic</a>, <a href="https://publications.waset.org/abstracts/search?q=buildings" title=" buildings"> buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/143272/lime-based-products-as-a-maintainable-option-for-repair-and-restoration-of-historic-buildings-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">668</span> Durability of Lime Treated Soil Reinforced by Natural Fibre under Bending Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivi%20Anggraini">Vivi Anggraini</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Asadi"> Afshin Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bujang%20B.%20K.%20Huat"> Bujang B. K. Huat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth structures constructed of marine clay soils have tendency to crack. In order to improve the flexural strength and brittleness, a technique of mixing short fibers is introduced to the soil lime mixture. Coir fiber was used in this study as reinforcing elements. An experimental investigation consisting primarily of flexural tensile tests was conducted to examine the influence of coir fibers on the flexural behaviour of the reinforced soils. The test results demonstrated that the coir fibers were effective in improving the flexural strength and young’s modulus of all soils were examined and ductility after peak strength for reinforced marine clay soil was treated by lime. 5% lime treated soil and 1% coir fiber reinforced soil specimen’s demonstrated good strength and durability when submerged in water and retained 45% of their air-cured strengths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title="flexural strength">flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=durabilty" title=" durabilty"> durabilty</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=coir%20fibers" title=" coir fibers"> coir fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20force" title=" bending force"> bending force</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a> </p> <a href="https://publications.waset.org/abstracts/35165/durability-of-lime-treated-soil-reinforced-by-natural-fibre-under-bending-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">667</span> Study on Preparation and Storage of Jam Incorporating Carrots (Dacus Carrota), Banana (Musa Acuminata) and Lime (Citrus Aurantifola)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Premakumar">K. Premakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Rushani"> D. S. Rushani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20N.%20Hettiarachchi"> H. N. Hettiarachchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production and consumption of preserved foods have gained much importance due to globalization, and they provide a health benefit apart from the basic nutritional functions. Therefore, a study was conducted to develop a jam incorporating carrot, banana, and lime. Considering the findings of several preliminary studies, five formulations of the jam were prepared by blending different percentages of carrot and banana including control (where the only carrot was added). The freshly prepared formulations were subjected to physicochemical and sensory analysis.Physico-Chemical parameters such as pH, TSS, titrable acidity, ascorbic acid content, total sugar and non-reducing sugar and organoleptic qualities such as colour, aroma, taste, spread ability and overall acceptability and microbial analysis (total plate count) were analyzed after formulations. Physico-Chemical Analysis of the freshly prepared Carrot –Banana Blend jam showed increasing trend in titrable acidity (from 0.8 to 0.96, as % of citric acid), TSS (from 70.05 to 67.5 0Brix), ascorbic acid content (from 0.83 to 11.465 mg/100ml), reducing sugar (from 15.64 to 20.553%) with increase in carrot pulp from 50 to 100%. pH, total sugar, and non-reducing sugar were also reduced when carrot concentration is increased. Five points hedonic scale was used to evaluate the organoleptic characters. According to Duncan's Multiple Range Test, the mean scores for all the assessed sensory characters varied significantly (p<0.05) in the freshly made carrot-banana blend jam formulations. Based on the physicochemical and sensory analysis, the most preferred carrot: banana combinations of 50:50, 100:0 and 80:20 (T1, T2, and T5) were selected for storage studies.The formulations were stored at 300 °C room temperature and 70-75% of RH for 12 weeks. The physicochemical characteristics were measured at two weeks interval during storage. The decreasing trends in pH and ascorbic acid and an increasing trend in TSS, titrable acidity, total sugar, reducing sugar and non-reducing sugar were noted with advancement of storage periods of 12 weeks. The results of the chemical analysis showed that there were significance differences (p<0.05) between the tested formulations. Sensory evaluation was done for carrot –banana blends jam after a period of 12 weeks through a panel of 16 semi-trained panelists. The sensory analysis showed that there were significant differences (p<0.05) for organoleptic characters between carrot-banana blend jam formulations. The highest overall acceptability was observed in formulation with 80% carrot and 20% banana pulp. Microbiological Analysis was carried out on the day of preparation, 1 month, 2 months and 3 months after preparation. No bacterial growth was observed in the freshly made carrot -banana blend jam. There were no counts of yeast and moulds and coliforms in all treatments after the heat treatments and during the storage period. Only the bacterial counts (Total Plate Counts) were observed after three months of storage below the critical level, and all formulations were microbiologically safe for consumption. Based on the results of physio-chemical characteristics, sensory attributes, and microbial test, the carrot –banana blend jam with 80% carrot and 20% banana (T2) was selected as best formulation and could be stored up to 12 weeks without any significant changes in the quality characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=formulations" title="formulations">formulations</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20parameters" title=" physicochemical parameters"> physicochemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiological%20analysis" title=" microbiological analysis"> microbiological analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20evaluation" title=" sensory evaluation"> sensory evaluation</a> </p> <a href="https://publications.waset.org/abstracts/59580/study-on-preparation-and-storage-of-jam-incorporating-carrots-dacus-carrota-banana-musa-acuminata-and-lime-citrus-aurantifola" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime&page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime&page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>