CINXE.COM
spectrum object in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> spectrum object in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> spectrum object </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/5657/#Item_7" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="stable_homotopy_theory">Stable Homotopy theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable homotopy theory</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/homological+algebra">homological algebra</a>, <a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></li> </ul> <p><em><a class="existingWikiWord" href="/nlab/show/Introduction+to+Stable+Homotopy+Theory">Introduction</a></em></p> <h1 id="ingredients">Ingredients</h1> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a></li> </ul> <h1 id="contents">Contents</h1> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/loop+space+object">loop space object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/suspension+object">suspension object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/looping+and+delooping">looping and delooping</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/stabilization">stabilization</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/spectrum+object">spectrum object</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+derivator">stable derivator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/triangulated+category">triangulated category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category+of+spectra">stable (∞,1)-category of spectra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+homotopy+category">stable homotopy category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smash+product+of+spectra">smash product of spectra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+smash+product+of+spectra">symmetric smash product of spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Spanier-Whitehead+duality">Spanier-Whitehead duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+ring">A-∞ ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+ring">E-∞ ring</a></p> </li> </ul> </li> </ul> <div> <p> <a href="/nlab/edit/stable+homotopy+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <ul> <li><a href='#via_spectrum_objects'>Via <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Ω</mi></mrow><annotation encoding="application/x-tex">\Omega</annotation></semantics></math>-spectrum objects</a></li> <li><a href='#ViaExcisiveFunctors'>Via excisive functors</a></li> <li><a href='#in_an_ordinary_category'>In an ordinary category</a></li> </ul> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#as_a_model_for_stabilization'>As a model for stabilization</a></li> <li><a href='#reflection_into_prespectrum_objects'>Reflection into pre-spectrum objects</a></li> </ul> <li><a href='#examples'>Examples</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>Every <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> with <a class="existingWikiWord" href="/nlab/show/finite+%28%E2%88%9E%2C1%29-limits">finite (∞,1)-limits</a> has a <a class="existingWikiWord" href="/nlab/show/stabilization">stabilization</a> to a <a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Stab</mi><mo stretchy="false">(</mo><mi>𝒞</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Stab(\mathcal{C})</annotation></semantics></math>. This stabilization may be defined by abstract properties, but it may also be constructed explicitly as the category of <em>spectrum objects</em> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>.</p> <p>In the special case that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi><mo>=</mo></mrow><annotation encoding="application/x-tex">\mathcal{C} = </annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/%E2%88%9EGrpd">∞Grpd</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>≃</mo><msub><mi>L</mi> <mi>whe</mi></msub></mrow><annotation encoding="application/x-tex">\simeq L_{whe}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Top">Top</a>, a spectrum object in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a> in the traditional sense. There is an evident generalization of the traditional notion of <a class="existingWikiWord" href="/nlab/show/Omega-spectrum">Omega-spectrum</a> from <a class="existingWikiWord" href="/nlab/show/Top">Top</a> to any <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> with <a class="existingWikiWord" href="/nlab/show/finite+%28%E2%88%9E%2C1%29-limits">finite (∞,1)-limits</a>: a spectrum object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mo>•</mo></msub></mrow><annotation encoding="application/x-tex">X_\bullet</annotation></semantics></math> is essentially a list of <a class="existingWikiWord" href="/nlab/show/pointed+objects">pointed objects</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">X_i</annotation></semantics></math> together with <a class="existingWikiWord" href="/nlab/show/equivalence+in+an+%28%E2%88%9E%2C1%29-category">equivalences</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>i</mi></msub><mo>→</mo><mi>Ω</mi><msub><mi>X</mi> <mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">X_i \to \Omega X_{i+1}</annotation></semantics></math>, from every object in the list to the <a class="existingWikiWord" href="/nlab/show/loop+space+object">loop space object</a> of its successor.</p> <h2 id="definition">Definition</h2> <h3 id="via_spectrum_objects">Via <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Ω</mi></mrow><annotation encoding="application/x-tex">\Omega</annotation></semantics></math>-spectrum objects</h3> <div class="num_defn"> <h6 id="definition_2">Definition</h6> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a>, a <strong>prespectrum object</strong> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> is</p> <ul> <li> <p>a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>:</mo><mi>ℤ</mi><mo>×</mo><mi>ℤ</mi><mo>→</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">X : \mathbb{Z} \times \mathbb{Z} \to \mathcal{C}</annotation></semantics></math></p> </li> <li> <p>such that for all integers <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi><mo>≠</mo><mi>j</mi></mrow><annotation encoding="application/x-tex">i \neq j</annotation></semantics></math> we have <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">X(i,j) = 0</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/zero+object">zero object</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math></p> </li> </ul> <p>Notice that this definition is highly redundant. The point is that writing <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">]</mo><mo>≔</mo><mi>X</mi><mo stretchy="false">(</mo><mi>n</mi><mo>,</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">X[n] \coloneqq X(n,n)</annotation></semantics></math> a spectrum object is for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℤ</mi></mrow><annotation encoding="application/x-tex">n \in \mathbb{Z}</annotation></semantics></math> a (homotopy) <a class="existingWikiWord" href="/nlab/show/commuting+diagram">commuting diagram</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>X</mi><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">]</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mn>0</mn></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mn>0</mn></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>X</mi><mo stretchy="false">[</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">]</mo></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ X[n] &\to& 0 \\ \downarrow && \downarrow \\ 0 &\to& X[n+1] } \,. </annotation></semantics></math></div> <p>Recalling that in an <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-category">(infinity,1)-category</a> with <a class="existingWikiWord" href="/nlab/show/zero+object">zero object</a></p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Ω</mi><mi>X</mi><mo stretchy="false">[</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">\Omega X[n+1]</annotation></semantics></math> denotes the pullback of such a diagram;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Σ</mi><mi>X</mi><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">\Sigma X[n]</annotation></semantics></math> denotes the pushout of such a diagram</p> </li> </ul> <p>this induces maps</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>α</mi> <mi>n</mi></msub><mo>:</mo><mi>Σ</mi><mi>X</mi><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">]</mo><mo>→</mo><mi>X</mi><mo stretchy="false">[</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex"> \alpha_n : \Sigma X[n] \to X[n+1] </annotation></semantics></math></div><div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>β</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>:</mo><mi>X</mi><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">]</mo><mo>→</mo><mi>Ω</mi><mi>X</mi><mo stretchy="false">[</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">]</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \beta_{n+1} : X[n] \to \Omega X[n+1] \,. </annotation></semantics></math></div> <p>A prespectrum object is</p> <ul> <li> <p>a <strong>spectrum object</strong> if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>β</mi> <mi>m</mi></msub></mrow><annotation encoding="application/x-tex">\beta_m</annotation></semantics></math> is an equivalence for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>∈</mo><mi>ℤ</mi></mrow><annotation encoding="application/x-tex">m \in \mathbb{Z}</annotation></semantics></math> (a <strong>spectrum below <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></strong>, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>β</mi> <mi>m</mi></msub></mrow><annotation encoding="application/x-tex">\beta_m</annotation></semantics></math> is an equivalence for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>≤</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m \leq n</annotation></semantics></math>);</p> </li> <li> <p>a <strong>suspension spectrum</strong> if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>α</mi> <mi>m</mi></msub></mrow><annotation encoding="application/x-tex">\alpha_m</annotation></semantics></math> is an equivalence for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>∈</mo><mi>ℤ</mi></mrow><annotation encoding="application/x-tex">m \in \mathbb{Z}</annotation></semantics></math> (a <strong>suspension spectrum above <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></strong>, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>α</mi> <mi>m</mi></msub></mrow><annotation encoding="application/x-tex">\alpha_m</annotation></semantics></math> is an equivalence for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>≥</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m \geq n</annotation></semantics></math>).</p> </li> </ul> </div> <p>(<a href="#StabCat">StabCat</a>)</p> <p>One writes</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Sp</mi><mo stretchy="false">(</mo><mi>𝒞</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Sp(\mathcal{C})</annotation></semantics></math> for the <a class="existingWikiWord" href="/nlab/show/full+sub-%28%E2%88%9E%2C1%29-category">full sub-(∞,1)-category</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Fun</mi><mo stretchy="false">(</mo><mi>ℤ</mi><mo>×</mo><mi>ℤ</mi><mo>,</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Fun(\mathbb{Z} \times \mathbb{Z},C)</annotation></semantics></math> on spectrum objects in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Stab</mi><mo stretchy="false">(</mo><mi>𝒞</mi><mo stretchy="false">)</mo><mo>≔</mo><mi>Sp</mi><mo stretchy="false">(</mo><msub><mi>𝒞</mi> <mo>*</mo></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Stab(\mathcal{C}) \coloneqq Sp(\mathcal{C}_*)</annotation></semantics></math> – the <strong>stabilization of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math></strong> for the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-category of spectrum objects in the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mo>*</mo></msub></mrow><annotation encoding="application/x-tex">C_*</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/pointed+object">pointed object</a>s of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>.</p> </li> </ul> <h3 id="ViaExcisiveFunctors">Via excisive functors</h3> <p>Write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn><msub><mi>Grpd</mi> <mi>fin</mi></msub></mrow><annotation encoding="application/x-tex">\infty Grpd_{fin}</annotation></semantics></math> for the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> of <a class="existingWikiWord" href="/nlab/show/finite+homotopy+types">finite homotopy types</a>, hence those freely generated by <a class="existingWikiWord" href="/nlab/show/finite+%28%E2%88%9E%2C1%29-colimits">finite (∞,1)-colimits</a> from the point. Write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn><msubsup><mi>Grpd</mi> <mi>fin</mi> <mrow><mo>*</mo><mo stretchy="false">/</mo></mrow></msubsup></mrow><annotation encoding="application/x-tex">\infty Grpd_{fin}^{\ast/}</annotation></semantics></math> for the <a class="existingWikiWord" href="/nlab/show/pointed+object">pointed</a> finite homotopy types.</p> <div class="num_defn"> <h6 id="definition_3">Definition</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> be an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> with <a class="existingWikiWord" href="/nlab/show/finite+%28%E2%88%9E%2C1%29-limits">finite (∞,1)-limits</a>. Then a <strong>spectrum object</strong> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> is a reduced (i.e. <a class="existingWikiWord" href="/nlab/show/terminal+object+in+an+%28infinity%2C1%29-category">terminal object</a>-preserving) <a class="existingWikiWord" href="/nlab/show/excisive+%28%E2%88%9E%2C1%29-functor">excisive (∞,1)-functor</a> of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mn>∞</mn><msubsup><mi>Grpd</mi> <mi>fin</mi> <mrow><mo>*</mo><mo stretchy="false">/</mo></mrow></msubsup><mo>⟶</mo><mi>𝒞</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \infty Grpd_{fin}^{\ast/} \longrightarrow \mathcal{C} \,. </annotation></semantics></math></div></div> <p>(<a href="#HigherAlg">HigherAlg, def. 1.4.2.8 and around p. 823</a>).</p> <div class="num_remark"> <h6 id="remark">Remark</h6> <p>This generalizes for instance to <a class="existingWikiWord" href="/nlab/show/G-spectra">G-spectra</a> (<a href="#Blumberg05">Blumberg 05</a>).</p> </div> <h3 id="in_an_ordinary_category">In an ordinary category</h3> <p>One can define <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Φ</mi></mrow><annotation encoding="application/x-tex">\Phi</annotation></semantics></math>-symmetric <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>-spectra in a category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Φ</mi></mrow><annotation encoding="application/x-tex">\Phi</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/graded+monoid">graded monoid</a> in the <a class="existingWikiWord" href="/nlab/show/category">category</a> of <a class="existingWikiWord" href="/nlab/show/groups">groups</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>:</mo><mi>C</mi><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">F : C \to C</annotation></semantics></math> is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Φ</mi></mrow><annotation encoding="application/x-tex">\Phi</annotation></semantics></math>-symmetric <a class="existingWikiWord" href="/nlab/show/endofunctor">endofunctor</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>. Here we follow <a href="#Ayoub">Ayoub</a>.</p> <p>(One recovers the classical case described at <a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a> by taking <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> to be the <a class="existingWikiWord" href="/nlab/show/category">category</a> of <a class="existingWikiWord" href="/nlab/show/pointed+spaces">pointed spaces</a>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Φ</mi></mrow><annotation encoding="application/x-tex">\Phi</annotation></semantics></math> to be the trivial <a class="existingWikiWord" href="/nlab/show/graded+monoid">graded monoid</a>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> to be the <a class="existingWikiWord" href="/nlab/show/suspension+functor">suspension functor</a>.)</p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Φ</mi></mrow><annotation encoding="application/x-tex">\Phi</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/graded+monoid">graded monoid</a> in the category of <a class="existingWikiWord" href="/nlab/show/groups">groups</a>. Write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Seq</mi><mo stretchy="false">(</mo><mi>Φ</mi><mo>,</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Seq(\Phi, C)</annotation></semantics></math> for the category of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Φ</mi></mrow><annotation encoding="application/x-tex">\Phi</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/symmetric+sequences">symmetric sequences</a>. Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>:</mo><mi>C</mi><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">F : C \to C</annotation></semantics></math> be a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Φ</mi></mrow><annotation encoding="application/x-tex">\Phi</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/symmetric+endofunctor">symmetric endofunctor</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>. (Usually <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> will be the functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><msub><mo>⊗</mo> <mi>C</mi></msub><mo>−</mo></mrow><annotation encoding="application/x-tex">T \otimes_C -</annotation></semantics></math> induced by <a class="existingWikiWord" href="/nlab/show/tensor+product">tensor product</a> with some object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>.)</p> <p>A <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Φ</mi></mrow><annotation encoding="application/x-tex">\Phi</annotation></semantics></math>-symmetric <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>-spectrum</strong> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Φ</mi></mrow><annotation encoding="application/x-tex">\Phi</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/symmetric+sequence">symmetric sequence</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>X</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mrow><mi>n</mi><mo>∈</mo><mstyle mathvariant="bold"><mi>N</mi></mstyle></mrow></msub></mrow><annotation encoding="application/x-tex">(X_n)_{n \in \mathbf{N}}</annotation></semantics></math> together with <strong>assembly morphisms</strong></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>γ</mi> <mi>n</mi></msub><mo>:</mo><mi>F</mi><mo stretchy="false">(</mo><msub><mi>X</mi> <mi>n</mi></msub><mo stretchy="false">)</mo><mo>→</mo><msub><mi>X</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex"> \gamma_n : F(X_n) \to X_{n+1} </annotation></semantics></math></div> <p>such that the composite morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>F</mi> <mi>m</mi></msup><mo stretchy="false">(</mo><msub><mi>X</mi> <mi>n</mi></msub><mo stretchy="false">)</mo><mo>→</mo><msup><mi>F</mi> <mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>X</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo stretchy="false">)</mo><mo>→</mo><mi>⋯</mi><mo>→</mo><msub><mi>X</mi> <mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msub></mrow><annotation encoding="application/x-tex"> F^m(X_n) \to F^{m-1}(X_{n+1}) \to \cdots \to X_{m+n} </annotation></semantics></math></div> <p>is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>Φ</mi> <mi>m</mi></msub><mo>×</mo><msub><mi>Φ</mi> <mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\Phi_m \times \Phi_n)</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/equivariant">equivariant</a>. (Note that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Φ</mi> <mi>m</mi></msub></mrow><annotation encoding="application/x-tex">\Phi_m</annotation></semantics></math> acts on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>F</mi> <mi>m</mi></msup></mrow><annotation encoding="application/x-tex">F^m</annotation></semantics></math> by the definition of <a class="existingWikiWord" href="/nlab/show/symmetric+endofunctor">symmetric endofunctor</a>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Φ</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">\Phi_n</annotation></semantics></math> acts on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">X_n</annotation></semantics></math> by the definition of <a class="existingWikiWord" href="/nlab/show/symmetric+sequence">symmetric sequence</a>.) A morphism of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Φ</mi></mrow><annotation encoding="application/x-tex">\Phi</annotation></semantics></math>-symmetric <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-spectra <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>X</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>n</mi></msub><mo>→</mo><mi>Y</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>Y</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">X = (X_n)_n \to Y = (Y_n)_n</annotation></semantics></math> is a morphism of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Φ</mi></mrow><annotation encoding="application/x-tex">\Phi</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/symmetric+sequences">symmetric sequences</a> making the obvious <a class="existingWikiWord" href="/nlab/show/diagrams">diagrams</a> <a class="existingWikiWord" href="/nlab/show/commutative+diagram">commute</a>. We write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>Spect</mi> <mi>F</mi> <mi>Φ</mi></msubsup><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Spect^{\Phi}_F(C)</annotation></semantics></math> for the category of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Φ</mi></mrow><annotation encoding="application/x-tex">\Phi</annotation></semantics></math>-symmetric <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>-spectra in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>.</p> <p>When <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Φ</mi><mo>=</mo><mi>Σ</mi></mrow><annotation encoding="application/x-tex">\Phi = \Sigma</annotation></semantics></math>, the <a class="existingWikiWord" href="/nlab/show/graded+monoid">graded monoid</a> of <a class="existingWikiWord" href="/nlab/show/symmetric+groups">symmetric groups</a>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Σ</mi></mrow><annotation encoding="application/x-tex">\Sigma</annotation></semantics></math>-symmetric <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>-spectra are called simply <strong>symmetric <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>-spectra</strong>. When <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Φ</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\Phi = 1</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math>-symmetric <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>-spectra are called simply <strong>nonsymmetric <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>-spectra</strong>. When the endofunctor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mo>⊗</mo><mo lspace="verythinmathspace" rspace="0em">−</mo></mrow><annotation encoding="application/x-tex">T \otimes -</annotation></semantics></math> for some object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mo>∈</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">T \in C</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>-spectra are called <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-spectra.</p> <p>When <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal category</a>, there is an induced <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+structure+on+spectrum+objects">symmetric monoidal structure on spectrum objects</a>.</p> <p>When <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is a sufficiently nice <a class="existingWikiWord" href="/nlab/show/model+category">model category</a>, there are induced <span class="newWikiWord">model structures on spectrum objects<a href="/nlab/new/model+structures+on+spectrum+objects">?</a></span>.</p> <h2 id="properties">Properties</h2> <h3 id="as_a_model_for_stabilization">As a model for stabilization</h3> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is a pointed <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-category with finite <a class="existingWikiWord" href="/nlab/show/limit+in+quasi-categories">limits</a>, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Sp</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Sp(C)</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/stable+%28infinity%2C1%29-category">stable (infinity,1)-category</a>.</p> <h3 id="reflection_into_prespectrum_objects">Reflection into pre-spectrum objects</h3> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> with <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-pullbacks">(∞,1)-pullbacks</a> and <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-colimits">(∞,1)-colimits</a>, then the inclusion of spectrum objects into prespectum objects should be a <a class="existingWikiWord" href="/nlab/show/exact+%28%E2%88%9E%2C1%29-functor">left exact</a> <a class="existingWikiWord" href="/nlab/show/reflective+sub-%28%E2%88%9E%2C1%29-category">reflective sub-(∞,1)-category</a> inclusion (<a href="#Joyal08">Joyal 08, section 35</a>).</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Spec</mi><mo stretchy="false">(</mo><mi>𝒞</mi><mo stretchy="false">)</mo><mover><mo>↪</mo><mover><mo>←</mo><mi>lex</mi></mover></mover><mi>PreSpec</mi><mo stretchy="false">(</mo><mi>𝒞</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> Spec(\mathcal{C}) \stackrel{\overset{lex}{\leftarrow}}{\hookrightarrow} PreSpec(\mathcal{C}) \,. </annotation></semantics></math></div> <p>This implies in particular that the <a class="existingWikiWord" href="/nlab/show/tangent+%28%E2%88%9E%2C1%29-category">tangent (∞,1)-category</a> of an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a> is itself again an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a> (<a href="#Joyal08">Joyal 08, section 35.5</a>), see at <em><a href="tangent+%28infinity%2C1%29-category#TangentTopos">tangent (∞,1)-category – Tangent (∞,1)-topos</a></em> .</p> <h2 id="examples">Examples</h2> <ul> <li> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>=</mo><mi>Top</mi></mrow><annotation encoding="application/x-tex">C = Top</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Stab</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Stab(C)</annotation></semantics></math> is the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-category version of the classical stable homotopy category of spaces: the <a class="existingWikiWord" href="/nlab/show/stable+%28infinity%2C1%29-category+of+spectra">stable (infinity,1)-category of spectra</a>.</p> </li> <li> <p>In the <a class="existingWikiWord" href="/nlab/show/equivariant+homotopy+theory">equivariant homotopy theory</a> of <a class="existingWikiWord" href="/nlab/show/G-spaces">G-spaces</a> a spectrum object is a <em><a class="existingWikiWord" href="/nlab/show/spectrum+with+G-action">spectrum with G-action</a></em>.</p> </li> <li> <p>see also at <em><a class="existingWikiWord" href="/nlab/show/motivic+spectrum">motivic spectrum</a></em></p> </li> </ul> <h2 id="related_concepts">Related concepts</h2> <div> <table><thead><tr><th></th><th><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-operad">(∞,1)-operad</a></th><th><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-operad">∞-algebra</a></th><th>grouplike version</th><th>in <a class="existingWikiWord" href="/nlab/show/Top">Top</a></th><th>generally</th></tr></thead><tbody><tr><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+operad">A-∞ operad</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+algebra">A-∞ algebra</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+space">A-∞ space</a>, e.g. <a class="existingWikiWord" href="/nlab/show/loop+space">loop space</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/loop+space+object">loop space object</a></td></tr> <tr><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/E-k+operad">E-k operad</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/E-k+algebra">E-k algebra</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/k-monoidal+%E2%88%9E-group">k-monoidal ∞-group</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/iterated+loop+space">iterated loop space</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/iterated+loop+space+object">iterated loop space object</a></td></tr> <tr><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+operad">E-∞ operad</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+algebra">E-∞ algebra</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/abelian+%E2%88%9E-group">abelian ∞-group</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+space">E-∞ space</a>, if grouplike: <a class="existingWikiWord" href="/nlab/show/infinite+loop+space">infinite loop space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>≃</mo></mrow><annotation encoding="application/x-tex">\simeq</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-space">∞-space</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/infinite+loop+space+object">infinite loop space object</a></td></tr> <tr><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>≃</mo></mrow><annotation encoding="application/x-tex">\simeq</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/connective+spectrum">connective spectrum</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>≃</mo></mrow><annotation encoding="application/x-tex">\simeq</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/connective+spectrum+object">connective spectrum object</a></td></tr> <tr><td style="text-align: left;"><strong><a class="existingWikiWord" href="/nlab/show/stabilization">stabilization</a></strong></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/spectrum+object">spectrum object</a></td></tr> </tbody></table> <ul> <li><a class="existingWikiWord" href="/nlab/show/looping+and+delooping">looping and delooping</a>, <a class="existingWikiWord" href="/nlab/show/stabilization+hypothesis">stabilization hypothesis</a></li> </ul> </div> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+homotopy+type">stable homotopy type</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cospectrum">cospectrum</a></p> </li> </ul> <h2 id="references">References</h2> <p>Discussion in terms of <a class="existingWikiWord" href="/nlab/show/stable+%28infinity%2C1%29-categories">stable (infinity,1)-categories</a> is in</p> <ul> <li id="StabCat"> <p><a class="existingWikiWord" href="/nlab/show/Jacob+Lurie">Jacob Lurie</a>, section 8 of <em><a class="existingWikiWord" href="/nlab/show/Stable+Infinity-Categories">Stable Infinity-Categories</a></em></p> </li> <li id="HigherAlg"> <p><a class="existingWikiWord" href="/nlab/show/Jacob+Lurie">Jacob Lurie</a>, section 1.4.2 <em><a class="existingWikiWord" href="/nlab/show/Higher+Algebra">Higher Algebra</a></em></p> </li> <li id="Joyal08"> <p><a class="existingWikiWord" href="/nlab/show/Andr%C3%A9+Joyal">André Joyal</a>, section 35 <em>Notes on Logoi</em>, 2008 (<a href="http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf">pdf</a>)</p> </li> </ul> <p>Discussion of <a class="existingWikiWord" href="/nlab/show/model+structure+on+spectra">model structures for spectrum objects</a> includes</p> <ul> <li id="Hovey00"> <p><a class="existingWikiWord" href="/nlab/show/Mark+Hovey">Mark Hovey</a>, <em>Spectra and symmetric spectra in general model categories</em> (<a href="http://arxiv.org/abs/math/0004051">arXiv:0004051</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bj%C3%B8rn+Ian+Dundas">Bjørn Ian Dundas</a>, <a class="existingWikiWord" href="/nlab/show/Oliver+R%C3%B6ndigs">Oliver Röndigs</a>, <a class="existingWikiWord" href="/nlab/show/Paul+Arne+%C3%98stv%C3%A6r">Paul Arne Østvær</a>, <em>Enriched functors and stable homotopy theory</em>, Doc. Math., 8:409–488, 2003 (<a href="https://eudml.org/doc/123650">EuDML</a>)</p> </li> </ul> <p>A detailed treatment of the 1-categorical case is in the last chapter of</p> <ul> <li id="Ayoub"><a class="existingWikiWord" href="/nlab/show/Joseph+Ayoub">Joseph Ayoub</a>, <em>Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, I</em>. Astérisque, Vol. 314 (2008). Société Mathématique de France. (<a href="http://user.math.uzh.ch/ayoub/PDF-Files/THESE.PDF">pdf</a>)</li> </ul> <p>Generalization to <a class="existingWikiWord" href="/nlab/show/G-spectra">G-spectra</a> is in</p> <ul> <li id="Blumberg05"><a class="existingWikiWord" href="/nlab/show/Andrew+Blumberg">Andrew Blumberg</a>, <em>Continuous functors as a model for the equivariant stable homotopy category</em> (<a href="http://arxiv.org/abs/math.AT/0505512">arXiv:math.AT/0505512</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on January 16, 2024 at 09:26:16. See the <a href="/nlab/history/spectrum+object" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/spectrum+object" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/5657/#Item_7">Discuss</a><span class="backintime"><a href="/nlab/revision/spectrum+object/20" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/spectrum+object" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/spectrum+object" accesskey="S" class="navlink" id="history" rel="nofollow">History (20 revisions)</a> <a href="/nlab/show/spectrum+object/cite" style="color: black">Cite</a> <a href="/nlab/print/spectrum+object" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/spectrum+object" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>