CINXE.COM

MUFr in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> MUFr in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } </style> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li &gt; p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*=&quot;http://arxiv.org/&quot;] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*=&quot;http://golem.ph.utexas.edu/category&quot;] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=&quot;.pdf&quot;] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=&quot;.pdf#&quot;] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^=&quot;http://&quot;] { border: 0px; color: #003399; } a[href^=&quot;http://&quot;]:visited { border: 0px; color: #330066; } a[href^=&quot;https://&quot;] { border: 0px; color: #003399; } a[href^=&quot;https://&quot;]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: &quot;A(Hover to reveal, click to &quot;hold&quot;)&quot;; font-size: 60%; } div.clickDown .clickToHide:after { content: &quot;A(Click to hide)&quot;; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- function updateSize(elt, w, h) { // adjust to the size of the user's browser area. // w and h are the original, unadjusted, width and height per row/column var parentheight = document.viewport.getHeight(); var parentwidth = $('Container').getWidth(); elt.writeAttribute({'cols': Math.floor(parentwidth/w) - 1, 'rows': Math.floor(parentheight/h) - 2 }); elt.setStyle({Width: parentwidth, Height: parentheight}); } function resizeableTextarea() { //make the textarea resize to fit available space $$('textarea#content').each( function(textarea) { var w = textarea.getWidth()/textarea.getAttribute('cols'); var h = textarea.getStyle('lineHeight').replace(/(\d*)px/, "$1"); Event.observe(window, 'resize', function(){ updateSize(textarea, w, h) }); updateSize(textarea, w, h); Form.Element.focus(textarea); }); } window.onload = function (){ resizeableTextarea(); } //--><!]]> </script> </head> <body> <div id="Container"> <textarea id='content' readonly=' readonly' rows='24' cols='60' > +-- {: .rightHandSide} +-- {: .toc .clickDown tabindex=&quot;0&quot;} ###Context### #### Cobordism theory +--{: .hide} [[!include cobordism theory -- contents]] =-- =-- =-- #Contents# * table of contents {:toc} ## Idea In joint generalization of the [[cobordism cohomology theories]] [[MU]] and [[MFr]] of [[closed manifold|closed]] $U$-manifolds and of $Fr$-manifolds, respectively, a _$(U,fr)$-manifold_ ([Conner-Floyd 66, Section 16](#ConnerFloyd66), [Conner-Smith 69, Sections 6, 13](#ConnerSmith69)) is a [[compact topological space|compact]] [[manifold with boundary]] equipped with [[unitary group]]-[[tangential structure]] on its [[stable tangent bundle]] and equipped with a [[trivial vector bundle|trivialization]] (stable [[framed manifold|framing]]) of that over the [[boundary]]. The corresponding [[bordism classes]] form a [[bordism ring]] denoted $\Omega^{\mathrm{U},fr}_\bullet$. ## Properties ### Representing spectrum {#RepresentingSpectrum} In generalization to how the complex [[cobordism ring]] $\Omega^U_{2k}$ is represented by [[homotopy classes]] of [[maps]] into the [[Thom spectrum]] [[MU]], so $\Omega^{\mathrm{U},fr}_{2k}$ is represented by maps into the [[quotient spaces]] $MU_{2k}/S^{2k}$ (for $S^{2k} = Th(\mathbb{C}^{k}) \to Th( \mathbb{C}^k \times_{\mathrm{U}(k)} E \mathrm{U}(k) ) = M \mathrm{U}_{2k}$ the canonical inclusion): \[ \label{InTermsOfHomotopyGroupsOfQuotientedThomSpace} \Omega^{(\mathrm{U},fr)}_\bullet \;=\; \pi_{\bullet + 2k} \big( MU_{2k}/S^{2k} \big) \,, \;\;\;\;\; \text{for any} \; 2k \geq \bullet + 2 \,. \] ([Conner-Floyd 66, p. 97](#ConnerFloyd66)) Hence the representing spectrum $M(\mathrm{U},fr)$ is the [[homotopy cofiber]] of the [[ring spectrum]] unit $1^{M\mathrm{U}} \;\colon\; \mathbb{S} \longrightarrow M \mathrm{U}$ out of the [[sphere spectrum]] ([Conner-Smith 69, p. 156 (41 of 106)](#ConnerSmith69), [Smith 71](#Smith71)) which deserves to be denoted $$ M(\mathrm{U},fr) \;\coloneqq\; M \mathrm{U} / \mathbb{S} \,, $$ but which in notation common around the [[Adams spectral sequence]] would be &quot;$\Sigma \overline {M \mathrm{U}}$&quot; (as in [Adams 74, theorem 15.1 page 319](Adams+spectral+sequence#Adams74)) or just &quot;$\overline{ M \mathrm{U} }$&quot; (e.g. [Hopkins 99, Cor. 5.3](Adams+spectral+sequence#Hopkins99)): \[ \label{AsUnitCofiber} \array{ \mathbb{S} &amp; \overset{ 1^{M\mathrm{U}} }{ \longrightarrow } &amp; M \mathrm{U} \\ \big\downarrow &amp; {}^{{}_{(po)}} &amp; \big\downarrow \\ \ast &amp;\longrightarrow&amp; M \mathrm{U}/ \mathbb{S} } \] So in terms of [[stable homotopy groups]] of this spectrum we have the $(\mathrm{U},fr)$-[[cobordism ring]] \[ \label{UFrCobordismRing} \Omega^{\mathrm{U},fr}_{\bullet} \;\coloneqq\; \pi_{\bullet} \big( M\mathrm{U}/\mathbb{S} \big) \] ### Boundary morphism to $MFr$ {#BoundaryMorphism} The realization (eq:AsUnitCofiber) makes it manifest (this is left implicit in [Conner-Floyd 66, p. 99](#ConnerFloyd66)) that there is a [[cohomology operation]] to [[MFr]] of the form \[ \label{BoundaryCohomologyOperation} \array{ M(\mathrm{U},fr) \;= &amp; M \mathrm{U}/\mathbb{S} &amp; \overset{ \;\;\; \partial \;\;\; }{\longrightarrow} &amp; \Sigma \mathbb{S} &amp; =\; \Sigma Mfr \\ \pi_{2d+2}\big( M(\mathrm{U},fr) \big) &amp;&amp; \longrightarrow &amp;&amp; \pi_{2d+1}\big( Mfr \big) } \,. \] Namely, $\partial$ is the second next step in the long [[homotopy cofiber]]-sequence starting with $1^{M \mathrm{U}}$. In terms of the [[pasting law]]: \[ \label{BoundaryOperationViaPastingLaw} \array{ \mathbb{S} &amp; \overset{ 1^{M\mathrm{U}} }{ \longrightarrow } &amp; M \mathrm{U} &amp; \longrightarrow &amp; \ast \\ \big\downarrow &amp; {}^{{}_{(po)}} &amp; \big\downarrow &amp; {}^{{}_{(po)}} &amp; \big\downarrow \\ \ast &amp; \longrightarrow &amp; M \mathrm{U}/ \mathbb{S} &amp; \underset{ \partial }{ \longrightarrow } &amp; \Sigma \mathbb{S} } \] +-- {: .num_remark} ###### Remark The implicit idea in [Conner-Floyd 66, p. 99](#ConnerFloyd66) must be to see $\partial$ (eq:BoundaryCohomologyOperation) in terms of forming actual [[boundaries]] of representative [[manifolds with boundaries]] under a version of the [[Pontrjagin-Thom construction]]. This is certainly plausible, but not proven either, as they &quot;forego the tedious details&quot; on [p. 97](#ConnerFloyd66). NB: for the purpose on p. 99 they might just _define_ $\partial$ in this geometric way, but then the claim wrapping around p. 100-101 needs proof. This claim however is immediate from the abstract homotopy theory, namely it is just the continuation yet one step further along the long cofiber sequence -- this is Prop. \ref{AShortExactSequenceOfUFrBordismRings} below. =-- \linebreak ### Relation to $MU$ and $MFr$ {#RelationToMUAndFr} +-- {: .num_prop #AShortExactSequenceOfUFrBordismRings} ###### Proposition In [[positive number|positive]] degree, the underlying [[abelian groups]] of the [[bordism rings]] for [[MU]], [[MFr]] and $MUFr$ (eq:UFrCobordismRing) sit in [[short exact sequences]] of this form: \[ \label{ShortExactSequenceOfUFrBordismRings} 0 \to \Omega^{\mathrm{U}}_{2n + 2} \overset{i}{\longrightarrow} \Omega^{\mathrm{U},fr}_{2n + 2} \overset{\partial}{ \longrightarrow } \Omega^{fr}_{2n + 1} \to 0 \,, \phantom{AAAA} n \in \mathbb{N} \,, \] where $i$ is the evident inclusion, while $\partial$ is the [[boundary]] homomorphism from [above](#BoundaryMorphism). =-- This is stated without comment in [Conner-Floyd 66, p. 99](#ConnerFloyd66). The beginning of an argument appears inside the proof of [CF66, Thm. 16.2 (p. 100)](#ConnerFloyd66), attributed there to [[Peter Landweber]] (see Remark \ref{BoundaryOperationFromFrBordToUFrBordIsSurjective} below). The idea for how to complete the argument is a little more explicit in [Stong 68, p. 102](#Stong68). The following is the complete and quick proof using the formulation (eq:BoundaryOperationViaPastingLaw) via abstract homotopy [above](#BoundaryMorphism): +-- {: .proof} ###### Proof We have the [[long exact sequence of homotopy groups]] ([[long exact sequence in generalized cohomology]] on [[spheres]]) obtained from the [[cofiber sequence]] $\mathbb{S} \overset{1^{M\mathrm{U}}}{\longrightarrow} M \mathrm{U} \to M \mathrm{U}/\mathbb{S} \overset{\partial}{\to} \Sigma \mathbb{S}$ (eq:BoundaryOperationViaPastingLaw), the relevant part of which looks as follows: \[ \label{SToMULongExactSequenceOfHomotopyGroups} \array{ \overset{ \mathclap{ \color{darkblue} pure \; torsion } }{ \overbrace{ \pi_{2d+2} \big( \mathbb{S} \big) } } &amp; \overset{ 1^{M\mathrm{U}} }{ \longrightarrow } &amp; \overset{ \mathclap{ \color{darkblue} free \; abelian } }{ \overbrace{ \pi_{2d+2} \big( M\mathrm{U} \big) } } &amp; \overset{ }{\longrightarrow} &amp; \pi_{2d+2} \big( M\mathrm{U}/\mathbb{S} \big) &amp; \overset{ \partial }{\longrightarrow} &amp; \pi_{2d+1}\big(\mathbb{S}\big) &amp;\longrightarrow&amp; \overset{ \color{darkblue} trivial }{ \overbrace{ \pi_{2d+1}\big(M\mathrm{U}\big) } } \\ \big\downarrow{}^{\mathrlap{=}} &amp;&amp; \big\downarrow{}^{\mathrlap{=}} &amp;&amp; \big\downarrow{}^{\mathrlap{=}} &amp;&amp; \big\downarrow{}^{\mathrlap{=}} &amp;&amp; \big\downarrow{}^{\mathrlap{=}} \\ \Omega^{fr}_{2d+2} &amp; \underset{ \color{green} 0 }{ \longrightarrow } &amp; \Omega^{\mathrm{U}}_{2d+2} &amp; \underset{ i }{\longrightarrow} &amp; \Omega^{(\mathrm{U},fr)}_{2d+2} &amp; \underset{ \partial }{\longrightarrow} &amp; \Omega^{fr}_{2d + 1} &amp; \underset{ \color{green} 0 }{\longrightarrow} &amp; 0 } \] Observing now that the [[stable homotopy groups]] of $M\mathrm{U}$ are [[free abelian groups]] concentrated in [[even number|even]] degrees (by [this theorem](MU#RelationToCobordismRing) at _[[MU]]_) it follows that: 1. the rightmost morphism shown in (eq:SToMULongExactSequenceOfHomotopyGroups) is the [[zero morphism]] since its [[codomain]] is [[zero object|zero]]; 1. the leftmost morphism shown in (eq:SToMULongExactSequenceOfHomotopyGroups) is the [[zero morphism]], since the [[stable homotopy groups of spheres]] are all pure [[torsion groups]] in [[positive number|positive]] degrees (by the [[Serre finiteness theorem]]), and the only morphism from a torsion group to a [[free abelian group]] is the zero morphism. =-- +-- {: .num_remark #BoundaryOperationFromFrBordToUFrBordIsSurjective} ###### Remark Here is an explicit construction of a [[lift]] through the boundary map in (eq:ShortExactSequenceOfUFrBordismRings), depending on a choice of trivialization in $\pi_{2d-1}\big( M\mathrm{U}\big)$: (The following is essentially a streamlined account of the construction in the first half of the proof of [Conner-Floyd 66, Thm. 16.2](#ConnerFloyd66); for more and a more abstract perspective see at _[[d-invariant]]_ the section _[Trivializations of the d-invariant](d-invariant#TrivializationsOfThedInvariant)_): Let $$ \big[ \Sigma^\infty S^{2(n+d)-1} \overset{ \Sigma^{\infty} {\color{green} c } }{\longrightarrow} \Sigma^\infty S^{2n} \big] \;\in\; \pi^s_{2d-1} \;\simeq\; \Omega^{fr}_{2d-1} $$ be a given class in [[stable Cohomotopy]], hence in the [[MFr]]-[[cobordism ring]], under the [[Pontryagin-Thom isomorphism|PT isomorphism]]. (We write this as the [[stabilization]] of a class ${\color{green} c}$ in unstable [[Cohomotopy]] just for emphasis that we can.) Consider then following [[homotopy coherent diagram|homotopy]] [[pasting diagram]]: \begin{imagefromfile} &quot;file_name&quot;: &quot;LiftingFromUBordismToUFrBordism.jpg&quot;, &quot;width&quot;: 600, &quot;unit&quot;: &quot;px&quot;, &quot;margin&quot;: { &quot;top&quot;: -20, &quot;bottom&quot;: 20, &quot;right&quot;: 0, &quot;left&quot;: 10 }, &quot;caption&quot;: &quot;From [SS21](https://ncatlab.org/schreiber/show/Equivariant+Cohomotopy+and+Oriented+Cohomology+Theory)&quot; \end{imagefromfile} Here all squares are [[homotopy pushout]]-squares, they arise as follows (beware that we say &quot;square&quot; for any _single_ cell and &quot;rectangle&quot; for the pasting composite of any adjacent _pair_ of cells): * The top square witnesses the [[homotopy cofiber]] $C_c$, defined thereby; * the left rectangle is a homotopy pushout by definition of [[suspension]], * hence the bottom left square is so by the [[pasting law]]. * Again via the first point, a dashed morphism exists as shown, witnessing the fact that the pullback of the class $\Sigma^{2n}(1^{M\mathrm{U}})$ to an odd-dimensional square vanishes (as does every $MU$-class); * with this, the bottom left rectangle exists, and it is a homotopy pushout by definition of $M \mathrm{U}/\mathbb{S}$ (eq:BoundaryOperationViaPastingLaw); * hence the morphism $\color{magenta} M^{2 d}$ exists, and the resulting bottom middle square is a homotopy pushout, again by the [[pasting law]]. * Now the bottom right rectangle is defined to be a homotopy pushout, and thus looks as shown by the [[pasting law]]; * therefore the bottom right square exists, and it is a homotopy pushout by the [[pasting law]]. But now the commuting three morphism in the very bottom and right part of the diagram shows that ${\color{magenta}M^{2d}} \in \pi_{2d}\big( M(U,fr) \big)$ is a lift of ${\color{green} c} \in \pi_{2d-1}(M Fr)$ through $\partial$. =-- ### Relation to Todd classes and the e-invariant +-- {: .num_prop #EInvariantIsToddClassOnCoboundingUFrManifold} ###### Proposition **([[e-invariant is Todd class of cobounding (U,fr)-manifold]])** Evaluation of the [[Todd class]] on $(U,fr)$-manifolds yields [[rational numbers]] which are [[integers]] on actual $U$-manifolds. It follows with the [[short exact sequence]] (eq:ShortExactSequenceOfUFrBordismRings) that assigning to $Fr$-manifolds the Todd class of any of their cobounding $(U,fr)$-manifolds yields a well-defined element in [[Q/Z]]. Under the [[Pontrjagin-Thom isomorphism]] between the [[framed bordism ring]] and the [[stable homotopy group of spheres]] $\pi^s_\bullet$, this assignment coincides with the [[Adams e-invariant]] in [its Q/Z-incarnation](Adams+e-invariant#TheEInvariantAsAnElementOfQModZ): \[ \label{ToddClassesOnShortExactSequenceOfUFrBordismRings} \array{ 0 \to &amp; \Omega^{\mathrm{U}}_{\bullet+1} &amp; \overset{i}{\longrightarrow} &amp; \Omega^{\mathrm{U},fr}_{\bullet+1} &amp; \overset{\partial}{ \longrightarrow } &amp; \Omega^{fr}_\bullet &amp; \simeq &amp; \pi^s_\bullet \\ &amp; \big\downarrow{}^{\mathrlap{Td}} &amp;&amp; \big\downarrow{}^{\mathrlap{Td}} &amp;&amp; \big\downarrow{}^{} &amp;&amp; \big\downarrow{}^{e} \\ 0 \to &amp; \mathbb{Z} &amp;\overset{\;\;\;\;\;}{\hookrightarrow}&amp; \mathbb{Q} &amp;\overset{\;\;\;\;}{\longrightarrow}&amp; \mathbb{Q}/\mathbb{Z} &amp;=&amp; \mathbb{Q}/\mathbb{Z} } \,, \] =-- ([Conner-Floyd 66, Theorem 16.2](#ConnerFloyd66)) The first step in the proof of (eq:ToddClassesOnShortExactSequenceOfUFrBordismRings) is the observation ([Conner-Floyd 66, p. 100-101](#ConnerFloyd66)) that the representing map (eq:InTermsOfHomotopyGroupsOfQuotientedThomSpace) for a $(U,fr)$-manifold $M^{2k}$ cobounding a $Fr$-manifold represented by a map $f$ is given by the following [[homotopy coherent diagram|homotopy]] [[pasting diagram]] (see also at _[[Hopf invariant]] -- [In generalized cohomology](Hopf+invariant#InGeneralizedCohomology)_): \begin{imagefromfile} &quot;file_name&quot;: &quot;CoboundingUFrManifoldDiagrammatically.jpg&quot;, &quot;web&quot;: &quot;nlab&quot;, &quot;width&quot;: 470, &quot;unit&quot;: &quot;px&quot;, &quot;margin&quot;: { &quot;top&quot;: -20, &quot;right&quot;: 0, &quot;bottom&quot;: 20, &quot;left&quot;: 20, &quot;unit&quot;: &quot;px&quot; }, &quot;alt&quot;: &quot;homotopy pasting diagram exhibiting cobounding UFr-manifolds&quot;, &quot;caption&quot;: &quot;from [SS21](https://ncatlab.org/schreiber/show/Equivariant+Cohomotopy+and+Oriented+Cohomology+Theory)&quot; \end{imagefromfile} ## Related concepts [[!include flavours of cobordism cohomology theories -- table]] ## References The concept of $(U,fr)$-bordism theory and its relation to the [[e-invariant]] originates with: * {#ConnerFloyd66} [[Pierre Conner]], [[Edwin Floyd]], Section 16 of: _[[The Relation of Cobordism to K-Theories]]_, Lecture Notes in Mathematics __28__ Springer 1966 ([doi:10.1007/BFb0071091](https://link.springer.com/book/10.1007/BFb0071091), [MR216511](http://www.ams.org/mathscinet-getitem?mr=216511)) * {#ConnerSmith69} [[Pierre Conner]], [[Larry Smith]], Section 6 of: _On the complex bordism of finite complexes_, Publications Math茅matiques de l&#39;IH脡S, Tome 37 (1969) , pp. 117-221 ([numdam:PMIHES_1969__37__117_0](http://www.numdam.org/item/?id=PMIHES_1969__37__117_0)) Analogous discussion for [[MO]]-bordism with [[MSO]]-boundaries: * G. E. Mitchell, _Bordism of Manifolds with Oriented Boundaries_, Proceedings of the American Mathematical Society Vol. 47, No. 1 (Jan., 1975), pp. 208-214 ([doi:10.2307/2040234](https://doi.org/10.2307/2040234)) Analogous discussion for [[MOFr]] is in * {#Stong68} [[Robert Stong]], p. 102 of: _Notes on Cobordism theory_, Princeton University Press, 1968 ([toc pdf](http://pi.math.virginia.edu/StongConf/Stongbookcontents.pdf), [ISBN:9780691649016](http://press.princeton.edu/titles/6465.html), [pdf](https://www.maths.ed.ac.uk/~v1ranick/papers/stongcob.pdf)) See also * {#Smith71} [[Larry Smith]], _On characteristic numbers of almost complex manifolds with framed boundaries_, Topology Volume 10, Issue 3, August 1971, Pages 237-256 (&lt;a href=&quot;https://doi.org/10.1016/0040-9383(71)90008-5&quot;&gt;doi:10.1016/0040-9383(71)90008-5&lt;/a&gt;) Generalization to [[manifolds with corners]] and relation to the [[f-invariant]]: * Gerd Laures, _On cobordism of manifolds with corners_, Trans. Amer. Math. Soc. 352 (2000) ([doi:10.1090/S0002-9947-00-02676-3](https://doi.org/10.1090/S0002-9947-00-02676-3)) [[!redirects (U,fr)-manifold]] [[!redirects (U,fr)-manifolds]] [[!redirects (U,fr)-bordism]] [[!redirects (U,fr)-bordisms]] [[!redirects (U,fr)-bordism ring]] [[!redirects (U,fr)-bordism rings]] [[!redirects (U,fr)-cobordism]] [[!redirects (U,fr)-cobordisms]] [[!redirects (U,fr)-cobordism ring]] [[!redirects (U,fr)-cobordism rings]] </textarea> </div> <!-- Container --> </body> </html>