CINXE.COM

Search results for: dissipative technologies

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: dissipative technologies</title> <meta name="description" content="Search results for: dissipative technologies"> <meta name="keywords" content="dissipative technologies"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="dissipative technologies" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="dissipative technologies"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3666</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: dissipative technologies</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3666</span> Innovative Dissipative Bracings for Seismic-Resistant Automated Rack Supported Warehouses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agnese%20Natali">Agnese Natali</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Morelli"> Francesco Morelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Salvatore"> Walter Salvatore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated Rack Supported Warehouses (ARSWs) are storage buildings whose structure is made of the same racks where goods are placed. The possibility of designing dissipative seismic-resistant ARSWs is investigated. Diagonals are the dissipative elements, arranged as tense-only X bracings. Local optimization is numerically performed to satisfy the over-resistant connection request for the dissipative element, that is hard to be reached due the geometrical limits of the thin-walled diagonals and must be balanced with resistance, the limit of slenderness, and ductility requests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20racks" title="steel racks">steel racks</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-walled%20cold-formed%20elements" title=" thin-walled cold-formed elements"> thin-walled cold-formed elements</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title=" structural optimization"> structural optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchy%20rules" title=" hierarchy rules"> hierarchy rules</a>, <a href="https://publications.waset.org/abstracts/search?q=dog-bone%20philosophy" title=" dog-bone philosophy"> dog-bone philosophy</a> </p> <a href="https://publications.waset.org/abstracts/143716/innovative-dissipative-bracings-for-seismic-resistant-automated-rack-supported-warehouses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3665</span> Seismic Retrofit of Reinforced Concrete Structures by Highly Dissipative Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Sorace">Stefano Sorace</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Terenzi"> Gloria Terenzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giulia%20Mazzieri"> Giulia Mazzieri</a>, <a href="https://publications.waset.org/abstracts/search?q=Iacopo%20Costoli"> Iacopo Costoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prolonged earthquake sequence that struck several urban agglomerations and villages in Central Italy, starting from 24 August 2016 through January 2017, highlighted once again the seismic vulnerability of pre-normative reinforced concrete (R/C) structures. At the same time, considerable damages were surveyed in recently retrofitted R/C buildings too, one of which also by means of a dissipative bracing system. The solution adopted for the latter did not expressly take into account the performance of non-structural elements, and namely of infills and partitions, confirming the importance of their dynamic interaction with the structural skeleton. Based on this consideration, an alternative supplemental damping-based retrofit solution for this representative building, i.e., a school with an R/C structure situated in the municipality of Norcia, is examined in this paper. It consists of the incorporation of dissipative braces equipped with pressurized silicone fluid viscous (FV) dampers, instead of the BRAD system installed in the building, the delayed activation of which -caused by the high stiffness of the constituting metallic dampers- determined the observed non-structural damages. Indeed, the alternative solution proposed herein, characterized by dissipaters with mainly damping mechanical properties, guarantees an earlier activation of the protective system. A careful assessment analysis, preliminarily carried out to simulate and check the case study building performance in originally BRAD-retrofitted conditions, confirms that the interstorey drift demand related to the Norcia earthquake's mainshock and aftershocks is beyond the response capacity of infills. The verification analyses developed on the R/C structure, including the FV-damped braces, highlight their higher performance, giving rise to a completely undamaged response both of structural and non-structural elements up to the basic design earthquake normative level of seismic action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissipative%20technologies" title="dissipative technologies">dissipative technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20assessment%20analysis" title=" performance assessment analysis"> performance assessment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20structures" title=" concrete structures"> concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a> </p> <a href="https://publications.waset.org/abstracts/114797/seismic-retrofit-of-reinforced-concrete-structures-by-highly-dissipative-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3664</span> Dynamics of Adiabatic Rapid Passage in an Open Rabi Dimer Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justin%20Zhengjie%20Tan">Justin Zhengjie Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhao"> Yang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adiabatic Rapid Passage, a popular method of achieving population inversion, is studied in a Rabi dimer model in the presence of noise which acts as a dissipative environment. The integration of the multi-Davydov D2 Ansatz into the time-dependent variational framework enables us to model the intricate quantum system accurately. By influencing the system with a driving field strength resonant with the energy spacing, the probability of adiabatic rapid passage, which is modelled after the Landau Zener model, can be derived along with several other observables, such as the photon population. The effects of a dissipative environment can be reproduced by coupling the system to a common phonon mode. By manipulating the strength and frequency of the driving field, along with the coupling strength of the phonon mode to the qubits, we are able to control the qubits and photon dynamics and subsequently increase the probability of Adiabatic Rapid Passage happening. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20electrodynamics" title="quantum electrodynamics">quantum electrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=adiabatic%20rapid%20passage" title=" adiabatic rapid passage"> adiabatic rapid passage</a>, <a href="https://publications.waset.org/abstracts/search?q=Landau-Zener%20transitions" title=" Landau-Zener transitions"> Landau-Zener transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20environment" title=" dissipative environment"> dissipative environment</a> </p> <a href="https://publications.waset.org/abstracts/167520/dynamics-of-adiabatic-rapid-passage-in-an-open-rabi-dimer-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3663</span> Zero-Dissipative Explicit Runge-Kutta Method for Periodic Initial Value Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Senu">N. Senu</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Kasim"> I. A. Kasim</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ismail"> F. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bachok"> N. Bachok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper zero-dissipative explicit Runge-Kutta method is derived for solving second-order ordinary differential equations with periodical solutions. The phase-lag and dissipation properties for Runge-Kutta (RK) method are also discussed. The new method has algebraic order three with dissipation of order infinity. The numerical results for the new method are compared with existing method when solving the second-order differential equations with periodic solutions using constant step size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissipation" title="dissipation">dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillatory%20solutions" title=" oscillatory solutions"> oscillatory solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=phase-lag" title=" phase-lag"> phase-lag</a>, <a href="https://publications.waset.org/abstracts/search?q=Runge-Kutta%20methods" title=" Runge-Kutta methods "> Runge-Kutta methods </a> </p> <a href="https://publications.waset.org/abstracts/13272/zero-dissipative-explicit-runge-kutta-method-for-periodic-initial-value-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3662</span> Dust Ion Acoustic Shock Waves in Dissipative Superthermal Plasmas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Reza%20Pakzad">Hamid Reza Pakzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma, whose constituents are inertial ions, superthermal electrons, and stationary dust particles, are investigated by employing the reductive perturbation method. The dissipation is taken into account the kinematic viscosity among the plasma constituents. It is shown that the basic features of DIA shock waves are significantly modified by the effects of electron superthermality and ion kinematic viscosity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reductive%20perturbation%20method" title="reductive perturbation method">reductive perturbation method</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20ion%20acoustic%20shock%20wave" title=" dust ion acoustic shock wave"> dust ion acoustic shock wave</a>, <a href="https://publications.waset.org/abstracts/search?q=superthermal%20electron" title=" superthermal electron"> superthermal electron</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20plasmas" title=" dissipative plasmas"> dissipative plasmas</a> </p> <a href="https://publications.waset.org/abstracts/51026/dust-ion-acoustic-shock-waves-in-dissipative-superthermal-plasmas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3661</span> Correlations between Wear Rate and Energy Dissipation Mechanisms in a Ti6Al4V–WC/Co Sliding Pair</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Rudas">J. S. Rudas</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Guti%C3%A9rrez%20Cabeza"> J. M. Gutiérrez Cabeza</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Corz%20Rodr%C3%ADguez"> A. Corz Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20G%C3%B3mez"> L. M. Gómez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Toro"> A. O. Toro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prediction of the wear rate of rubbing pairs has attracted the interest of many researchers for years. It has been recently proposed that the sliding wear rate can be inferred from the calculation of the energy rate dissipated by the tribological pair. In this paper some of the dissipative mechanisms present in a pin-on-disc configuration are discussed and both analytical and numerical calculations are carried out. Three dissipative mechanisms were studied: First, the energy release due to temperature gradients within the solid; second, the heat flow from the solid to the environment, and third, the energy loss due to abrasive damage of the surface. The Finite Element Method was used to calculate the dynamics of heat transfer within the solid, with the aid of commercial software. Validation the FEM model was assisted by virtual and laboratory experimentation using different operating points (sliding velocity and geometry contact). The materials for the experiments were Ti6Al4V alloy and Tungsten Carbide (WC-Co). The results showed that the sliding wear rate has a linear relationship with the energy dissipation flow. It was also found that energy loss due to micro-cutting is relevant for the system. This mechanism changes if the sliding velocity and pin geometry are modified though the degradation coefficient continues to present a linear behavior. We found that the less relevant dissipation mechanism for all the cases studied is the energy release by temperature gradients in the solid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20mechanism" title=" dissipative mechanism"> dissipative mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20sliding" title=" dry sliding"> dry sliding</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear "> wear </a> </p> <a href="https://publications.waset.org/abstracts/22761/correlations-between-wear-rate-and-energy-dissipation-mechanisms-in-a-ti6al4v-wcco-sliding-pair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3660</span> High Performance Wood Shear Walls and Dissipative Anchors for Damage Limitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vera%20Wilden">Vera Wilden</a>, <a href="https://publications.waset.org/abstracts/search?q=Benno%20Hoffmeister"> Benno Hoffmeister</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgios%20%20Balaskas"> Georgios Balaskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Rauber"> Lukas Rauber</a>, <a href="https://publications.waset.org/abstracts/search?q=Burkhard%20Walter"> Burkhard Walter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Light-weight timber frame elements represent an efficient structural solution for wooden multistory buildings. The wall elements of such buildings – which act as shear diaphragms- provide lateral stiffness and resistance to wind and seismic loads. The tendency towards multi-story structures leads to challenges regarding the prediction of stiffness, strength and ductility of the buildings. Lightweight timber frame elements are built up of several structural parts (sheeting, fasteners, frame, support and anchorages); each of them contributing to the dynamic response of the structure. This contribution describes the experimental and numerical investigation and development of enhanced lightweight timber frame buildings. These developments comprise high-performance timber frame walls with the variable arrangements of sheathing planes and dissipative anchors at the base of the timber buildings, which reduce damages to the timber structure and can be exchanged after significant earthquakes. In order to prove the performance of the developed elements in the context of a real building a full-scale two-story building core was designed and erected in the laboratory and tested experimentally for its seismic performance. The results of the tests and a comparison of the test results to the predicted behavior are presented. Observation during the test also reveals some aspects of the design and details which need to consider in the application of the timber walls in the context of the complete building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissipative%20anchoring" title="dissipative anchoring">dissipative anchoring</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20scale%20test" title=" full scale test"> full scale test</a>, <a href="https://publications.waset.org/abstracts/search?q=push-over-test" title=" push-over-test"> push-over-test</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20shear%20walls" title=" wood shear walls"> wood shear walls</a> </p> <a href="https://publications.waset.org/abstracts/139541/high-performance-wood-shear-walls-and-dissipative-anchors-for-damage-limitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3659</span> Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Anas">K. Anas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Selvakumar"> M. Selvakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Samson%20David"> Samson David</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Babu"> R. R. Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chattopadhyay"> S. Chattopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20ratio" title="damping ratio">damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslinking%20density" title=" crosslinking density"> crosslinking density</a>, <a href="https://publications.waset.org/abstracts/search?q=segmental%20motion" title=" segmental motion"> segmental motion</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20activity" title=" surface activity"> surface activity</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative" title=" dissipative"> dissipative</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20chain%20friction" title=" polymeric chain friction"> polymeric chain friction</a> </p> <a href="https://publications.waset.org/abstracts/38171/energy-dissipation-characteristics-of-an-elastomer-under-dynamic-condition-a-comprehensive-assessment-using-high-and-low-frequency-analyser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3658</span> Collapse Performance of Steel Frame with Hysteric Energy Dissipating Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyung-Joon%20Kim">Hyung-Joon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Young%20Park"> Jin-Young Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy dissipating devices (EDDs) have become more popular as seismic-force-resisting systems for building structures. However, there is little information on the collapse capacities of frames employing EDDs which are an important criterion for their seismic design. This study investigates the collapse capacities of steel frames with TADAS hysteric energy dissipative devices (HEDDs) that become an alternative to steel braced frames. To do this, 5-story steel ordinary concentrically braced frame and steel frame with HEDDs are designed and modeled. Nonlinear dynamic analyses and incremental dynamic analysis with 40 ground motions scaled to maximum considered earthquake are carried out. It is shown from analysis results that the significant enhancement in terms of the collapse capacities is found due to the introduction HEDDs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collapse%20capacity" title="collapse capacity">collapse capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20dynamic%20analysis" title=" incremental dynamic analysis"> incremental dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20braced%20frame" title=" steel braced frame"> steel braced frame</a>, <a href="https://publications.waset.org/abstracts/search?q=TADAS%20hysteric%20energy%20dissipative%20device" title=" TADAS hysteric energy dissipative device"> TADAS hysteric energy dissipative device</a> </p> <a href="https://publications.waset.org/abstracts/14461/collapse-performance-of-steel-frame-with-hysteric-energy-dissipating-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3657</span> Simulation of Red Blood Cells in Complex Micro-Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ting%20Ye">Ting Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Nhan%20Phan-Thien"> Nhan Phan-Thien</a>, <a href="https://publications.waset.org/abstracts/search?q=Chwee%20Teck%20Lim"> Chwee Teck Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Peng"> Lina Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Huixin%20Shi"> Huixin Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In biofluid flow systems, often the flow problems of fluids of complex structures, such as the flow of red blood cells (RBCs) through complex capillary vessels, need to be considered. In this paper, we aim to apply a particle-based method, Smoothed Dissipative Particle Dynamics (SDPD), to simulate the motion and deformation of RBCs in complex micro-tubes. We first present the theoretical models, including SDPD model, RBC-fluid interaction model, RBC deformation model, RBC aggregation model, and boundary treatment model. After that, we show the verification and validation of these models, by comparing our numerical results with the theoretical, experimental and previously-published numerical results. Finally, we provide some simulation cases, such as the motion and deformation of RBCs in rectangular, cylinder, curved, bifurcated, and constricted micro-tubes, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregation" title="aggregation">aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20blood%20cell" title=" red blood cell"> red blood cell</a>, <a href="https://publications.waset.org/abstracts/search?q=smoothed%20dissipative%20particle%20dynamics" title=" smoothed dissipative particle dynamics"> smoothed dissipative particle dynamics</a> </p> <a href="https://publications.waset.org/abstracts/88686/simulation-of-red-blood-cells-in-complex-micro-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3656</span> A Tunable Long-Cavity Passive Mode-Locked Fiber Laser Based on Nonlinear Amplifier Loop Mirror</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pinghe%20Wang">Pinghe Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we demonstrate a tunable long-cavity passive mode-locked fiber laser. The mode locker is a nonlinear amplifying loop mirror (NALM). The cavity frequency of the laser is 465 kHz because that 404m SMF is inserted in the cavity. A tunable bandpass filter with ~1nm 3dB bandwidth is inserted into the cavity to realize tunable mode locking. The passive mode-locked laser at a fixed wavelength is investigated in detail. The experimental results indicate that the laser operates in dissipative soliton resonance (DSR) region. When the pump power is 400mW, the laser generates the rectangular pulses with 10.58 ns pulse duration, 70.28nJ single-pulse energy. When the pump power is 400mW, the laser keeps stable mode locking status in the range from 1523.4nm to 1575nm. During the whole tuning range, the SNR, the pulse duration, the output power and single pulse energy have a little fluctuation because that the gain of the EDF changes with the wavelength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20laser" title="fiber laser">fiber laser</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20soliton%20resonance" title=" dissipative soliton resonance"> dissipative soliton resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20locking" title=" mode locking"> mode locking</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable" title=" tunable"> tunable</a> </p> <a href="https://publications.waset.org/abstracts/78191/a-tunable-long-cavity-passive-mode-locked-fiber-laser-based-on-nonlinear-amplifier-loop-mirror" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3655</span> Influence of the Coarse-Graining Method on a DEM-CFD Simulation of a Pilot-Scale Gas Fluidized Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theo%20Ndereyimana">Theo Ndereyimana</a>, <a href="https://publications.waset.org/abstracts/search?q=Yann%20Dufresne"> Yann Dufresne</a>, <a href="https://publications.waset.org/abstracts/search?q=Micael%20Boulet"> Micael Boulet</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Moreau"> Stephane Moreau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The DEM (Discrete Element Method) is used a lot in the industry to simulate large-scale flows of particles; for instance, in a fluidized bed, it allows to predict of the trajectory of every particle. One of the main limits of the DEM is the computational time. The CGM (Coarse-Graining Method) has been developed to tackle this issue. The goal is to increase the size of the particle and, by this means, decrease the number of particles. The method leads to a reduction of the collision frequency due to the reduction of the number of particles. Multiple characteristics of the particle movement and the fluid flow - when there is a coupling between DEM and CFD (Computational Fluid Dynamics). The main characteristic that is impacted is the energy dissipation of the system, to regain the dissipation, an ADM (Additional Dissipative Mechanism) can be added to the model. The objective of this current work is to observe the influence of the choice of the ADM and the factor of coarse-graining on the numerical results. These results will be compared with experimental results of a fluidized bed and with a numerical model of the same fluidized bed without using the CGM. The numerical model is one of a 3D cylindrical fluidized bed with 9.6M Geldart B-type particles in a bubbling regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20dissipative%20mechanism" title="additive dissipative mechanism">additive dissipative mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse-graining" title=" coarse-graining"> coarse-graining</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed" title=" fluidized bed"> fluidized bed</a> </p> <a href="https://publications.waset.org/abstracts/176694/influence-of-the-coarse-graining-method-on-a-dem-cfd-simulation-of-a-pilot-scale-gas-fluidized-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3654</span> Analytic Solutions of Solitary Waves in Three-Level Unbalanced Dense Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Grira">Sofiane Grira</a>, <a href="https://publications.waset.org/abstracts/search?q=Hichem%20Eleuch"> Hichem Eleuch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We explore the analytical soliton-pair solutions for unbalanced coupling between the two coherent lights and the atomic transitions in a dissipative three-level system in lambda configuration. The two allowed atomic transitions are interacting resonantly with two laser fields. For unbalanced coupling, it is possible to derive an explicit solution for non-linear differential equations describing the soliton-pair propagation in this three-level system with the same velocity. We suppose that the spontaneous emission rates from the excited state to both ground states are the same. In this work, we focus on such case where we consider the coupling between the transitions and the optical fields are unbalanced. The existence conditions for the soliton-pair propagations are determined. We will show that there are four possible configurations of the soliton-pair pulses. Two of them can be interpreted as a couple of solitons with same directions of polarization and the other two as soliton-pair with opposite directions of polarization. Due to the fact that solitons have stable shapes while propagating in the considered media, they are insensitive to noise and dispersion. Our results have potential applications in data transfer with the soliton-pair pulses, where a dissipative three-level medium could be a realistic model for the optical communication media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-linear%20differential%20equations" title="non-linear differential equations">non-linear differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=solitons" title=" solitons"> solitons</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagations" title=" wave propagations"> wave propagations</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20fiber" title=" optical fiber"> optical fiber</a> </p> <a href="https://publications.waset.org/abstracts/108578/analytic-solutions-of-solitary-waves-in-three-level-unbalanced-dense-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3653</span> A Customize Battery Management Approach for Satellite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Affan">Muhammad Affan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ilyas%20Raza"> Muhammad Ilyas Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Harris%20Hashmi"> Muhammad Harris Hashmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is attributed to the battery management unit design of student Satellites under Pakistan National Student Satellite Program (PNSSP). The aim has been to design a customized, low-cost, efficient, reliable and less-complex battery management scheme for the Satellite. Nowadays, Lithium Ion (Li-ion) batteries have become the de-facto standard for remote applications, especially for satellites. Li-ion cells are selected for secondary storage. The design also addresses Li-ion safety requirements by monitoring, balancing and protecting cells for safe and prolonged operation. Accurate voltage measurement of individual cells was the main challenge because all the actions triggered were based on the digital voltage measurement. For this purpose, a resistive-divider network is used to maintain simplicity and cost-effectiveness. To cater the problem of insufficient i/o pins on microcontroller, fast multiplexers and de-multiplexers were used. The discrepancy inherited in the given design is the dissipation of heat due to the dissipative resistors. However, it is still considered to be the optimum adoption, considering the simple and cost-effective nature of the passive balancing technique. Furthermore, it is a completely unique solution, customized to meet specific requirements. However, there is still an option for a more advanced and expensive design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite" title="satellite">satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20module" title=" battery module"> battery module</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20balancing" title=" passive balancing"> passive balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative" title=" dissipative"> dissipative</a> </p> <a href="https://publications.waset.org/abstracts/157071/a-customize-battery-management-approach-for-satellite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3652</span> A Dissipative Particle Dynamics Study of a Capsule in Microfluidic Intracellular Delivery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nishanthi%20N.%20S.">Nishanthi N. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Srikanth%20Vedantam"> Srikanth Vedantam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intracellular delivery of materials has always proved to be a challenge in research and therapeutic applications. Usually, vector-based methods, such as liposomes and polymeric materials, and physical methods, such as electroporation and sonoporation have been used for introducing nucleic acids or proteins. Reliance on exogenous materials, toxicity, off-target effects was the short-comings of these methods. Microinjection was an alternative process which addressed the above drawbacks. However, its low throughput had hindered its adoption widely. Mechanical deformation of cells by squeezing them through constriction channel can cause the temporary development of pores that would facilitate non-targeted diffusion of materials. Advantages of this method include high efficiency in intracellular delivery, a wide choice of materials, improved viability and high throughput. This cell squeezing process can be studied deeper by employing simple models and efficient computational procedures. In our current work, we present a finite sized dissipative particle dynamics (FDPD) model to simulate the dynamics of the cell flowing through a constricted channel. The cell is modeled as a capsule with FDPD particles connected through a spring network to represent the membrane. The total energy of the capsule is associated with linear and radial springs in addition to constraint of the fixed area. By performing detailed simulations, we studied the strain on the membrane of the capsule for channels with varying constriction heights. The strain on the capsule membrane was found to be similar though the constriction heights vary. When strain on the membrane was correlated to the development of pores, we found higher porosity in capsule flowing in wider channel. This is due to localization of strain to a smaller region in the narrow constriction channel. But the residence time of the capsule increased as the channel constriction narrowed indicating that strain for an increased time will cause less cell viability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capsule" title="capsule">capsule</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20squeezing" title=" cell squeezing"> cell squeezing</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20particle%20dynamics" title=" dissipative particle dynamics"> dissipative particle dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=intracellular%20delivery" title=" intracellular delivery"> intracellular delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a> </p> <a href="https://publications.waset.org/abstracts/100996/a-dissipative-particle-dynamics-study-of-a-capsule-in-microfluidic-intracellular-delivery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3651</span> The Impact of the Information Technologies on the Accounting Department of the Romanian Companies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dumitru%20Valentin%20Florentin">Dumitru Valentin Florentin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need to use high volumes of data and the high competition are only two reasons which make necessary the use of information technologies. The objective of our research is to establish the impact of information technologies on the accounting department of the Romanian companies. In order to achieve it, starting from the literature review we made an empirical research based on a questionnaire. We investigated the types of technologies used, the reasons which led to the implementation of certain technologies, the benefits brought by the use of the information technologies, the difficulties brought by the implementation and the future effects of the applications. The conclusions show that there is an evolution in the degree of implementation of the information technologies in the Romanian companies, compared with the results of other studies conducted a few years before. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20technologies" title="information technologies">information technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=company" title=" company"> company</a>, <a href="https://publications.waset.org/abstracts/search?q=Romania" title=" Romania"> Romania</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20study" title=" empirical study"> empirical study</a> </p> <a href="https://publications.waset.org/abstracts/22404/the-impact-of-the-information-technologies-on-the-accounting-department-of-the-romanian-companies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3650</span> Development of Equivalent Inelastic Springs to Model C-Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oday%20Al-Mamoori">Oday Al-Mamoori</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Enrique%20Martinez-Rueda"> J. Enrique Martinez-Rueda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 'C' shape yielding devices (C-devices) are effective tools for introducing supplemental sources of energy dissipation by hysteresis. Studies have shown that C-devices made of mild steel can be successfully applied as integral parts of seismic retrofitting schemes. However, explicit modelling of these devices can become cumbersome, expensive and time consuming. The device under study in this article has been previously used in non-invasive dissipative bracing for seismic retrofitting. The device is cut from a mild steel plate and has an overall shape that resembles that of a rectangular portal frame with circular interior corner transitions to avoid stress concentration and to control the extension of the dissipative region of the device. A number of inelastic finite element (FE) analyses using either inelastic 2D plane stress elements or inelastic fibre frame elements are reported and used to calibrate a 1D equivalent inelastic spring model that effectively reproduces the cyclic response of the device. The more elaborate FE model accounts for the frictional forces developed between the steel plate and the bolts used to connect the C-device to structural members. FE results also allow the visualization of the inelastic regions of the device where energy dissipation is expected to occur. FE analysis results are in a good agreement with experimental observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C-device" title="C-device">C-device</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20nonlinear%20spring" title=" equivalent nonlinear spring"> equivalent nonlinear spring</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20analyses" title=" FE analyses"> FE analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=reversed%20cyclic%20tests" title=" reversed cyclic tests"> reversed cyclic tests</a> </p> <a href="https://publications.waset.org/abstracts/95702/development-of-equivalent-inelastic-springs-to-model-c-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3649</span> Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manisha%20A.%20Hira">Manisha A. Hira</a>, <a href="https://publications.waset.org/abstracts/search?q=Arup%20Rakshit"> Arup Rakshit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile substrates are endowed with flexibility and ease of making&ndash;up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title="carbon fiber">carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20textiles" title=" conductive textiles"> conductive textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20dissipative%20materials" title=" electrostatic dissipative materials"> electrostatic dissipative materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20yarns" title=" hybrid yarns"> hybrid yarns</a> </p> <a href="https://publications.waset.org/abstracts/45276/study-of-structure-and-properties-of-polyestercarbon-blends-for-technical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3648</span> The Effect of Information Technologies on Business Performance: An Application on Small Hotels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Karaman">Abdullah Karaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Kursad%20Sayin"> Kursad Sayin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, which information technologies are used in small hotel businesses, and the information technologies-performance perception of the managers are pointed out. During the research, the questionnaire was prepared and the small scale hotel managers were interviewed face to face and they filled out the questionnaire and the answers acquired were evaluated. As the result of the research, it was obtained that the managers do not care much about the information technologies usage in practice even though they accepted that the information technologies are important in terms of performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20technologies" title="information technologies">information technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=managers" title=" managers"> managers</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20hotels" title=" small hotels"> small hotels</a> </p> <a href="https://publications.waset.org/abstracts/60356/the-effect-of-information-technologies-on-business-performance-an-application-on-small-hotels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3647</span> Information Technologies in Automotive Assembly Industry in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jirarat%20Teeravaraprug">Jirarat Teeravaraprug</a>, <a href="https://publications.waset.org/abstracts/search?q=Usawadee%20Inklay"> Usawadee Inklay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper gave an attempt in prioritizing information technologies that organizations should give concentration. The case study was organizations in the automotive assembly industry in Thailand. Data were first collected to gather all information technologies known and used in the automotive assembly industry in Thailand. Five experts from the industries were surveyed based on the concept of fuzzy DEMATEL. The information technologies were categorized into six groups, which were communication, transaction, planning, organization management, warehouse management, and transportation. The cause groups of information technologies for each group were analysed and presented. Moreover, the relationship between the used and the significant information technologies was given. Discussions based on the used information technologies and the research results are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20technology" title="information technology">information technology</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20assembly%20industry" title=" automotive assembly industry"> automotive assembly industry</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20DEMATEL" title=" fuzzy DEMATEL"> fuzzy DEMATEL</a> </p> <a href="https://publications.waset.org/abstracts/2498/information-technologies-in-automotive-assembly-industry-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3646</span> An Examination of the Effects of Implantable Technologies on the Practices of Governmentality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benn%20Van%20Den%20Ende">Benn Van Den Ende</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last three decades, there has been an exponential increase in developments in implantable technologies such as the cardiac pacemaker, bionic prosthesis, and implantable chips. The effect of these technologies has been well researched in many areas. However, there is a lack of critical research in security studies. This paper will provide preliminary findings to an ongoing research project which aims to examine how implantable technologies effect the practices of governmentality in the context of security. It will do this by looking at the practices and techniques of governmentality along with different implantable technologies which increase, change or otherwise affect governmental practices. The preliminary research demonstrates that implantable technologies have a profound effect on the practices of governmentality, while also paving the way for further research into a potential ‘new’ form of governmentality in relation to these implantable technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20security%20studies" title="critical security studies">critical security studies</a>, <a href="https://publications.waset.org/abstracts/search?q=governmentality" title=" governmentality"> governmentality</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20theory" title=" security theory"> security theory</a>, <a href="https://publications.waset.org/abstracts/search?q=political%20theory" title=" political theory"> political theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Foucault" title=" Foucault "> Foucault </a> </p> <a href="https://publications.waset.org/abstracts/79464/an-examination-of-the-effects-of-implantable-technologies-on-the-practices-of-governmentality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3645</span> Advances in Membrane Technologies for Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deniz%20Sahin">Deniz Sahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study provides a literature review of the special issue on wastewater treatment technologies, especially membrane technologies. Currently, wastewater is a serious and increasing worldwide problem with an adverse effect on the environment and living organisms. For this reason, many technologies have been developed to treat wastewater before discharging it to water bodies. We have been discussed membrane technologies to remove contaminants from wastewater such as heavy metals, dyes, pesticides, etc., which represent the main pollutants in wastewater. All the properties of these technologies including performance, economics, simplicity, and operability are also compared with other wastewater treatment technologies. The conventional water treatment technologies have the disadvantages of low separation efficiency, high energy consumption, and strict operating temperature. To overcome these difficulties, membrane technologies have been developed and used in wastewater treatment. Membrane technology uses a selectively permeable membrane to remove suspended and dissolved solids from water. This membrane is a very thin film of synthetic organic or inorganic materials, that can allow a very selective separation between a mixture and its components. Examples of membrane technologies include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), gas separation, etc. Most of these technologies have been used extensively for the treatment of heavy metal wastewater. For instance, wastewater that contains Cu²⁺, Cd²⁺, Pb²⁺, Zn²⁺ was treated by ultrafiltration technology. It was shown that complete removal of metal ions could be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20pollution" title="industrial pollution">industrial pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20technologies" title=" membrane technologies"> membrane technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions" title=" metal ions"> metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/97532/advances-in-membrane-technologies-for-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3644</span> Acceptance of Big Data Technologies and Its Influence towards Employee’s Perception on Job Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia%20Yi%20Yap">Jia Yi Yap</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20S.%20H.%20Lee"> Angela S. H. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the use of big data technologies, organization can get result that they are interested in. Big data technologies simply load all the data that is useful for the organizations and provide organizations a better way of analysing data. The purpose of this research is to get employees’ opinion from films in Malaysia to explore the use of big data technologies in their organization in order to provide how it may affect the perception of the employees on job performance. Therefore, in order to identify will accepting big data technologies in the organization affect the perception of the employee, questionnaire will be distributed to different employee from different Small and medium-sized enterprises (SME) organization listed in Malaysia. The conceptual model proposed will test with other variables in order to see the relationship between variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data%20technologies" title="big data technologies">big data technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=employee" title=" employee"> employee</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20performance" title=" job performance"> job performance</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a> </p> <a href="https://publications.waset.org/abstracts/59432/acceptance-of-big-data-technologies-and-its-influence-towards-employees-perception-on-job-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3643</span> The Relevance of Smart Technologies in Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachael%20Olubukola%20Afolabi">Rachael Olubukola Afolabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Immersive technologies known as X Reality or Cross Reality that include virtual reality augmented reality, and mixed reality have pervaded into the education system at different levels from elementary school to adult learning. Instructors, instructional designers, and learning experience specialists continue to find new ways to engage students in the learning process using technology. While the progression of web technologies has enhanced digital learning experiences, analytics on learning outcomes continue to be explored to determine the relevance of these technologies in learning. Digital learning has evolved from web 1.0 (static) to 4.0 (dynamic and interactive), and this evolution of technologies has also advanced teaching methods and approaches. This paper explores how these technologies are being utilized in learning and the results that educators and learners have identified as effective learning opportunities and approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immersive%20technologoes" title="immersive technologoes">immersive technologoes</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title=" virtual reality"> virtual reality</a>, <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title=" augmented reality"> augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20in%20learning" title=" technology in learning"> technology in learning</a> </p> <a href="https://publications.waset.org/abstracts/146219/the-relevance-of-smart-technologies-in-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3642</span> Preparation Static Dissipative Nanocomposites of Alkaline Earth Metal Doped Aluminium Oxide and Methyl Vinyl Silicone Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aparna%20M.%20Joshi">Aparna M. Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methyl vinyl silicone polymer (VMQ) - alkaline earth metal doped aluminium oxide composites are prepared by conventional two rolls open mill mixing method. Doped aluminium oxides (DAO) using silvery white coloured alkaline earth metals such as Mg and Ca as dopants in the concentration of 0.4 % are synthesized by microwave combustion method and referred as MA ( Mg doped aluminium oxide) and CA ( Ca doped aluminium oxide). The as-synthesized materials are characterized for the electrical resistance, X–ray diffraction, FE-SEM, TEM and FTIR. The electrical resistances of the DAOs are observed to be ~ 8-20 MΩ. This means that the resistance of aluminium oxide (Corundum) α-Al2O3 which is ~ 1010Ω is reduced by the order of ~ 103 to 104 Ω after doping. XRD studies reveal the doping of Mg and Ca in aluminium oxide. The microstructural study using FE-SEM shows the flaky clusterous structures with the thickness of the flakes between 10 and 20 nm. TEM images depict the rod-shaped morphological geometry of the particles with the diameter of ~50-70 nm. The nanocomposites are synthesized by incorporating the DAOs in the concentration of 75 phr (parts per hundred parts of rubber) into VMQ polymer. The electrical resistance of VMQ polymer, which is ~ 1015Ω, drops by the order of 108Ω. There is a retention of the electrical resistance of ~ 30-50 MΩ for the nanocomposites which is a static dissipative range of electricity. In this work white coloured electrically conductive VMQ polymer-DAO nanocomposites (MAVMQ for Mg doping and CAVMQ for Ca doping) have been synthesized. The physical and mechanical properties of the composites such as specific gravity, hardness, tensile strength and rebound resilience are measured. Hardness and tensile strength are found to increase, with the negligible alteration in the other properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doped%20aluminium%20oxide" title="doped aluminium oxide">doped aluminium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20vinyl%20silicone%20polymer" title=" methyl vinyl silicone polymer"> methyl vinyl silicone polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title=" microwave synthesis"> microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20dissipation" title=" static dissipation"> static dissipation</a> </p> <a href="https://publications.waset.org/abstracts/33200/preparation-static-dissipative-nanocomposites-of-alkaline-earth-metal-doped-aluminium-oxide-and-methyl-vinyl-silicone-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3641</span> Communication Development for Development Communication: Prospects and Challenges of New Media Technologies in South East Zone, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20I.%20Ekwueme">O. I. Ekwueme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New media technologies are noted for their immense contributions in various sectors of the economy which are believed to have resulted in the development of European countries. There is an assumption that we cannot have development communication without communication development, but we are not sure if new media technologies contribute to development in the South-East zone, Nigeria. The study employed mixed method and discovered that new media technologies have a very minimal relationship to development in the South-East zone, Nigeria. It was discovered that the media report on development news is basically informative instead of interactive. The South-East zone is scarcely covered unlike other zones. It argued that the communication technologies introduced in Nigeria was as a result of their struggle for independence. It was recommended that media organisations in the South-East zone should give adequate coverage to the zone, and be more interactive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication" title="communication">communication</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20media" title=" new media"> new media</a>, <a href="https://publications.waset.org/abstracts/search?q=technologies" title=" technologies"> technologies</a> </p> <a href="https://publications.waset.org/abstracts/7966/communication-development-for-development-communication-prospects-and-challenges-of-new-media-technologies-in-south-east-zone-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3640</span> Impact of New Media Technologies to News, Social Interactions, and Traditional Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ademola%20Bamgbose">Ademola Bamgbose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The new media revolution, which encompasses a wide variety of new media technologies like blogs, social networking, visual worlds, wikis, have had a great influence on communications, traditional media and across other disciplines. This paper gives a review of the impact of new media technologies on the news, social interactions and traditional media in developing and developed countries. The study points to the fact that there is a significant impact of new media technologies on the news, social interactions and the traditional media in developing and developed countries, albeit both positively and negatively. Social interactions have been significantly affected, as well as in news production and reporting. It is reiterated that despite the pervasiveness of new media technologies, it would not bring to a total decline of traditional media. This paper contributes to the theoretical framework on the new media and will help to assess the extent of the impact of the new media in different locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication" title="communication">communication</a>, <a href="https://publications.waset.org/abstracts/search?q=media" title=" media"> media</a>, <a href="https://publications.waset.org/abstracts/search?q=news" title=" news"> news</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20media%20technologies" title=" new media technologies"> new media technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20interactions" title=" social interactions"> social interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20media" title=" traditional media"> traditional media</a> </p> <a href="https://publications.waset.org/abstracts/92034/impact-of-new-media-technologies-to-news-social-interactions-and-traditional-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3639</span> Soil Remediation Technologies towards Green Remediation Strategies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Petruzzelli">G. Petruzzelli</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Pedron"> F. Pedron</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Grifoni"> M. Grifoni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Barbafieri"> M. Barbafieri</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rosellini"> I. Rosellini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Pezzarossa"> B. Pezzarossa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a result of diverse industrial activities, pollution from numerous contaminant affects both groundwater and soils. Many contaminated sites have been discovered in industrialized countries and their remediation is a priority in environmental legislations. The aim of this paper is to provide the evolution of remediation from consolidated invasive technologies to environmental friendly green strategies. Many clean-up technologies have been used. Nowadays the technologies selection is no longer exclusively based on eliminating the source of pollution, but the aim of remediation includes also the recovery of soil quality. &ldquo;Green remediation&rdquo;, a strategy based on &ldquo;soft technologies&rdquo;, appears the key to tackle the issue of remediation of contaminated sites with the greatest attention to environmental quality, including the preservation of soil functionality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Green%20Remediation" title=" Green Remediation"> Green Remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation%20technologies" title=" remediation technologies"> remediation technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/44439/soil-remediation-technologies-towards-green-remediation-strategies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3638</span> Utilizing IoT for Waste Collection: A Review of Technologies for Eco-Friendly Waste Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemehsadat%20Mousaviabarbekouh">Fatemehsadat Mousaviabarbekouh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Population growth and changing consumption patterns have led to waste management becoming a significant global challenge. With projections indicating that nearly 67% of the Earth's population will live in megacities by 2050, there is a pressing need for smart solutions to address citizens' demands. Waste collection, facilitated by the Internet of Things (IoT), offers an efficient and cost-effective approach. This study aims to review the utilization of IoT for waste collection and explore technologies that promote eco-friendly waste management. The research focuses on information and communication technologies (ICTs), including spatial, identification, acquisition, and data communication technologies. Additionally, the study examines various energy harvesting technologies to further reduce costs. The findings indicate that the application of these technologies can lead to significant cost savings, energy efficiency, and ultimately reshape the future of waste management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20collection" title="waste collection">waste collection</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20cities" title=" smart cities"> smart cities</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly" title=" eco-friendly"> eco-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20and%20communication%20technologies" title=" information and communication technologies"> information and communication technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a> </p> <a href="https://publications.waset.org/abstracts/167946/utilizing-iot-for-waste-collection-a-review-of-technologies-for-eco-friendly-waste-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3637</span> Investigating the Use of Advanced Manufacturing Technologies in the Assembly Type Manufacturing Companies in Trinidad and Tobago</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadine%20Sangster">Nadine Sangster</a>, <a href="https://publications.waset.org/abstracts/search?q=Akil%20James"> Akil James</a>, <a href="https://publications.waset.org/abstracts/search?q=Rondell%20Duke"> Rondell Duke</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Ameerali"> Aaron Ameerali</a>, <a href="https://publications.waset.org/abstracts/search?q=Terrence%20Lalla"> Terrence Lalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The market place of the 21st century is evolving into one of merging national markets, fragmented consumer markets, and rapidly changing product technologies. The use of new technologies has become vital to the manufacturing industry for their survival and sustainability. This work focused on the assembly type industry in a small developing country and aimed at identifying the use of advanced manufacturing technologies and their impact on this sector of the manufacturing industry. It was found that some technologies were being used and that they had improved the effectiveness of those companies but there was still quite a bit of room for improvements. Some of the recommendations included benchmarking against international standards, the adoption of a “made in TT” campaign and the effective utilisation of the technologies to improve manufacturing effectiveness and thus improve competitive advantages and strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology" title="advanced manufacturing technology">advanced manufacturing technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Trinidad%20and%20Tobago" title=" Trinidad and Tobago"> Trinidad and Tobago</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20engineering" title=" industrial engineering"> industrial engineering</a> </p> <a href="https://publications.waset.org/abstracts/6597/investigating-the-use-of-advanced-manufacturing-technologies-in-the-assembly-type-manufacturing-companies-in-trinidad-and-tobago" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20technologies&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20technologies&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20technologies&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20technologies&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20technologies&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20technologies&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20technologies&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20technologies&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20technologies&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20technologies&amp;page=122">122</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20technologies&amp;page=123">123</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dissipative%20technologies&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10