CINXE.COM

Completeness of the real numbers - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Completeness of the real numbers - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"1e3754dd-29cf-44fa-ac70-db4fb07e2ac7","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Completeness_of_the_real_numbers","wgTitle":"Completeness of the real numbers","wgCurRevisionId":1189120715,"wgRevisionId":1189120715,"wgArticleId":29322627,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Use shortened footnotes from May 2021","Real numbers"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Completeness_of_the_real_numbers","wgRelevantArticleId":29322627,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1324487","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth", "ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Completeness of the real numbers - Wikipedia"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Completeness_of_the_real_numbers"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Completeness_of_the_real_numbers"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Completeness_of_the_real_numbers rootpage-Completeness_of_the_real_numbers skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Completeness+of+the+real+numbers" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Completeness+of+the+real+numbers" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Completeness+of+the+real+numbers" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Completeness+of+the+real+numbers" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Forms_of_completeness" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Forms_of_completeness"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Forms of completeness</span> </div> </a> <button aria-controls="toc-Forms_of_completeness-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Forms of completeness subsection</span> </button> <ul id="toc-Forms_of_completeness-sublist" class="vector-toc-list"> <li id="toc-Least_upper_bound_property" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Least_upper_bound_property"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Least upper bound property</span> </div> </a> <ul id="toc-Least_upper_bound_property-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dedekind_completeness" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dedekind_completeness"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Dedekind completeness</span> </div> </a> <ul id="toc-Dedekind_completeness-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cauchy_completeness" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cauchy_completeness"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Cauchy completeness</span> </div> </a> <ul id="toc-Cauchy_completeness-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nested_intervals_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nested_intervals_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Nested intervals theorem</span> </div> </a> <ul id="toc-Nested_intervals_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_open_induction_principle" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_open_induction_principle"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.5</span> <span>The open induction principle</span> </div> </a> <ul id="toc-The_open_induction_principle-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Monotone_convergence_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Monotone_convergence_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.6</span> <span>Monotone convergence theorem</span> </div> </a> <ul id="toc-Monotone_convergence_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bolzano–Weierstrass_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bolzano–Weierstrass_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.7</span> <span>Bolzano–Weierstrass theorem</span> </div> </a> <ul id="toc-Bolzano–Weierstrass_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_intermediate_value_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_intermediate_value_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.8</span> <span>The intermediate value theorem</span> </div> </a> <ul id="toc-The_intermediate_value_theorem-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Completeness of the real numbers</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 14 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-14" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">14 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D9%83%D8%AA%D9%85%D8%A7%D9%84_%D8%A7%D9%84%D8%A3%D8%B9%D8%AF%D8%A7%D8%AF_%D8%A7%D9%84%D8%AD%D9%82%D9%8A%D9%82%D9%8A%D8%A9" title="اكتمال الأعداد الحقيقية – Arabic" lang="ar" hreflang="ar" data-title="اكتمال الأعداد الحقيقية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Axioma_del_supremo" title="Axioma del supremo – Spanish" lang="es" hreflang="es" data-title="Axioma del supremo" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D9%85%D8%A7%D9%85%DB%8C%D8%AA_%D8%A7%D8%B9%D8%AF%D8%A7%D8%AF_%D8%AD%D9%82%DB%8C%D9%82%DB%8C" title="تمامیت اعداد حقیقی – Persian" lang="fa" hreflang="fa" data-title="تمامیت اعداد حقیقی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%8B%A4%EC%88%98%EC%9D%98_%EC%99%84%EB%B9%84%EC%84%B1" title="실수의 완비성 – Korean" lang="ko" hreflang="ko" data-title="실수의 완비성" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Assioma_di_Dedekind" title="Assioma di Dedekind – Italian" lang="it" hreflang="it" data-title="Assioma di Dedekind" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Assioma_de_Dedekind" title="Assioma de Dedekind – Lombard" lang="lmo" hreflang="lmo" data-title="Assioma de Dedekind" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%AE%9F%E6%95%B0%E3%81%AE%E9%80%A3%E7%B6%9A%E6%80%A7" title="実数の連続性 – Japanese" lang="ja" hreflang="ja" data-title="実数の連続性" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Aksjomat_ci%C4%85g%C5%82o%C5%9Bci" title="Aksjomat ciągłości – Polish" lang="pl" hreflang="pl" data-title="Aksjomat ciągłości" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Axioma_do_supremo" title="Axioma do supremo – Portuguese" lang="pt" hreflang="pt" data-title="Axioma do supremo" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%BF%D1%80%D0%B5%D1%80%D1%8B%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D1%8C_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%B0_%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D1%85_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Непрерывность множества действительных чисел – Russian" lang="ru" hreflang="ru" data-title="Непрерывность множества действительных чисел" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/T%C3%A4ydellisyysaksiooma" title="Täydellisyysaksiooma – Finnish" lang="fi" hreflang="fi" data-title="Täydellisyysaksiooma" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%90%D0%BA%D1%81%D1%96%D0%BE%D0%BC%D0%B0_%D0%94%D0%B5%D0%B4%D0%B5%D0%BA%D1%96%D0%BD%D0%B4%D0%B0" title="Аксіома Дедекінда – Ukrainian" lang="uk" hreflang="uk" data-title="Аксіома Дедекінда" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%AF%A6%E6%95%B8%E5%AE%8C%E5%82%99%E6%80%A7" title="實數完備性 – Cantonese" lang="yue" hreflang="yue" data-title="實數完備性" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%AE%9E%E6%95%B0%E5%AE%8C%E5%A4%87%E6%80%A7" title="实数完备性 – Chinese" lang="zh" hreflang="zh" data-title="实数完备性" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1324487#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Completeness_of_the_real_numbers" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Completeness_of_the_real_numbers" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Completeness_of_the_real_numbers"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Completeness_of_the_real_numbers"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Completeness_of_the_real_numbers" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Completeness_of_the_real_numbers" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;oldid=1189120715" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Completeness_of_the_real_numbers&amp;id=1189120715&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCompleteness_of_the_real_numbers"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCompleteness_of_the_real_numbers"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Completeness_of_the_real_numbers&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1324487" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Concept in mathematics</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Completeness_(logic)" title="Completeness (logic)">Completeness (logic)</a>.</div> <p> <b>Completeness</b> is a property of the <a href="/wiki/Real_numbers" class="mw-redirect" title="Real numbers">real numbers</a> that, intuitively, implies that there are no "gaps" (in Dedekind's terminology) or "missing points" in the <a href="/wiki/Real_line" class="mw-redirect" title="Real line">real number line</a>. This contrasts with the <a href="/wiki/Rational_number" title="Rational number">rational numbers</a>, whose corresponding number line has a "gap" at each <a href="/wiki/Irrational_number" title="Irrational number">irrational</a> value. In the <a href="/wiki/Decimal" title="Decimal">decimal number system</a>, completeness is equivalent to the statement that any infinite string of decimal digits is actually a <a href="/wiki/Decimal_representation" title="Decimal representation">decimal representation</a> for some real number. </p><p>Depending on the <a href="/wiki/Construction_of_the_real_numbers" title="Construction of the real numbers">construction of the real numbers</a> used, completeness may take the form of an <a href="/wiki/Axiom" title="Axiom">axiom</a> (the <b>completeness axiom</b>), or may be a <a href="/wiki/Theorem" title="Theorem">theorem</a> proven from the construction. There are many <a href="/wiki/Logical_equivalence" title="Logical equivalence">equivalent</a> forms of completeness, the most prominent being <b>Dedekind completeness</b> and <b>Cauchy completeness</b> (<a href="/wiki/Complete_metric_space" title="Complete metric space">completeness as a metric space</a>). </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Forms_of_completeness">Forms of completeness</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=edit&amp;section=1" title="Edit section: Forms of completeness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Real_number" title="Real number">real numbers</a> can be <a href="/wiki/Construction_of_the_real_numbers#Synthetic_approach" title="Construction of the real numbers">defined synthetically</a> as an <a href="/wiki/Ordered_field" title="Ordered field">ordered field</a> satisfying some version of the <i>completeness axiom</i>. Different versions of this axiom are all equivalent in the sense that any ordered field that satisfies one form of completeness satisfies all of them, apart from Cauchy completeness and nested intervals theorem, which are strictly weaker in that there are <a href="/wiki/Non-Archimedean_ordered_field" title="Non-Archimedean ordered field">non</a> <a href="/wiki/Archimedean_property" title="Archimedean property">Archimedean fields</a> that are ordered and Cauchy complete. When the real numbers are instead constructed using a model, completeness becomes a <a href="/wiki/Theorem" title="Theorem">theorem</a> or collection of theorems. </p> <div class="mw-heading mw-heading3"><h3 id="Least_upper_bound_property">Least upper bound property</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=edit&amp;section=2" title="Edit section: Least upper bound property"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Least-upper-bound_property" title="Least-upper-bound property">Least-upper-bound property</a></div> <p>The <b>least-upper-bound property</b> states that every <a href="/wiki/Nonempty" class="mw-redirect" title="Nonempty">nonempty</a> subset of real numbers having an <a href="/wiki/Upper_bound" class="mw-redirect" title="Upper bound">upper bound</a> (or bounded above) must have a <a href="/wiki/Least_upper_bound" class="mw-redirect" title="Least upper bound">least upper bound</a> (or supremum) in the set of real numbers. </p><p>The <a href="/wiki/Rational_number" title="Rational number">rational number line</a> <b>Q</b> does not have the least upper bound property. An example is the subset of rational numbers </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\{x\in \mathbb {Q} \mid x^{2}&lt;2\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&lt;</mo> <mn>2</mn> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=\{x\in \mathbb {Q} \mid x^{2}&lt;2\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8224e87681e9892da8ea1a842bed05a8cafd5972" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.13ex; height:3.176ex;" alt="{\displaystyle S=\{x\in \mathbb {Q} \mid x^{2}&lt;2\}.}"></span></dd></dl> <p>This set has an upper bound. However, this set has no least upper bound in <span class="texhtml"><b>Q</b></span>: the least upper bound as a subset of the reals would be <span class="texhtml">√2</span>, but it does not exist in <span class="texhtml"><b>Q</b></span>. For any upper bound <span class="texhtml"><i>x</i> ∈ <b>Q</b></span>, there is another upper bound <span class="texhtml"><i>y</i> ∈ <b>Q</b></span> with <span class="texhtml"><i>y</i> &lt; <i>x</i></span>. </p><p>For instance, take <span class="texhtml"><i>x</i> = 1.5</span>, then <span class="texhtml mvar" style="font-style:italic;">x</span> is certainly an upper bound of <span class="texhtml mvar" style="font-style:italic;">S</span>, since <span class="texhtml mvar" style="font-style:italic;">x</span> is positive and <span class="texhtml"><i>x</i><sup>2</sup> = 2.25 ≥ 2</span>; that is, no element of <span class="texhtml mvar" style="font-style:italic;">S</span> is larger than <span class="texhtml mvar" style="font-style:italic;">x</span>. However, we can choose a smaller upper bound, say <span class="texhtml"><i>y</i> = 1.45</span>; this is also an upper bound of <span class="texhtml mvar" style="font-style:italic;">S</span> for the same reasons, but it is smaller than <span class="texhtml mvar" style="font-style:italic;">x</span>, so <span class="texhtml mvar" style="font-style:italic;">x</span> is not a least-upper-bound of <span class="texhtml mvar" style="font-style:italic;">S</span>. We can proceed similarly to find an upper bound of <span class="texhtml mvar" style="font-style:italic;">S</span> that is smaller than <span class="texhtml mvar" style="font-style:italic;">y</span>, say <span class="texhtml"><i>z</i> = 1.42</span>, etc., such that we never find a least-upper-bound of <span class="texhtml mvar" style="font-style:italic;">S</span> in <span class="texhtml"><b>Q</b></span>. </p><p>The least upper bound property can be generalized to the setting of <a href="/wiki/Partially_ordered_set" title="Partially ordered set">partially ordered sets</a>. See <a href="/wiki/Completeness_(order_theory)" title="Completeness (order theory)">completeness (order theory)</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Dedekind_completeness">Dedekind completeness</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=edit&amp;section=3" title="Edit section: Dedekind completeness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><i>See <a href="/wiki/Dedekind_completeness" class="mw-redirect" title="Dedekind completeness">Dedekind completeness</a> for more general concepts bearing this name.</i></dd></dl> <p>Dedekind completeness is the property that every <a href="/wiki/Dedekind_cut" title="Dedekind cut">Dedekind cut</a> of the real numbers is generated by a real number. In a synthetic approach to the real numbers, this is the version of completeness that is most often included as an axiom. </p><p>The <a href="/wiki/Rational_number" title="Rational number">rational number line</a> <b>Q</b> is not Dedekind complete. An example is the Dedekind cut </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=\{x\in \mathbb {Q} \mid x^{2}\leq 2\vee x&lt;0\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2264;<!-- ≤ --></mo> <mn>2</mn> <mo>&#x2228;<!-- ∨ --></mo> <mi>x</mi> <mo>&lt;</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=\{x\in \mathbb {Q} \mid x^{2}\leq 2\vee x&lt;0\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73df7bd6cffb054e0277d1596897fe67f562af78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.387ex; height:3.176ex;" alt="{\displaystyle L=\{x\in \mathbb {Q} \mid x^{2}\leq 2\vee x&lt;0\}.}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=\{x\in \mathbb {Q} \mid x^{2}\geq 2\wedge x&gt;0\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2265;<!-- ≥ --></mo> <mn>2</mn> <mo>&#x2227;<!-- ∧ --></mo> <mi>x</mi> <mo>&gt;</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=\{x\in \mathbb {Q} \mid x^{2}\geq 2\wedge x&gt;0\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b941127320672fe394dfbeff73dddcd701251392" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.568ex; height:3.176ex;" alt="{\displaystyle R=\{x\in \mathbb {Q} \mid x^{2}\geq 2\wedge x&gt;0\}.}"></span></dd></dl> <p><i>L</i> does not have a maximum and <i>R</i> does not have a minimum, so this cut is not generated by a rational number. </p><p>There is a <a href="/wiki/Construction_of_the_real_numbers#Construction_by_Dedekind_cuts" title="Construction of the real numbers">construction of the real numbers</a> based on the idea of using Dedekind cuts of rational numbers to name real numbers; e.g. the cut <i>(L,R)</i> described above would name <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4afc1e27d418021bf10898eb44a7f5f315735ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2}}}"></span>. If one were to repeat the construction of real numbers with Dedekind cuts (i.e., "close" the set of real numbers by adding all possible Dedekind cuts), one would obtain no additional numbers because the real numbers are already Dedekind complete. </p> <div class="mw-heading mw-heading3"><h3 id="Cauchy_completeness">Cauchy completeness</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=edit&amp;section=4" title="Edit section: Cauchy completeness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b>Cauchy completeness</b> is the statement that every <a href="/wiki/Cauchy_sequence" title="Cauchy sequence">Cauchy sequence</a> of real numbers <a href="/wiki/Convergent_sequences" class="mw-redirect" title="Convergent sequences">converges</a> to a real number. </p><p>The <a href="/wiki/Rational_number" title="Rational number">rational number line</a> <b>Q</b> is not Cauchy complete. An example is the following sequence of rational numbers: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3,\quad 3.1,\quad 3.14,\quad 3.142,\quad 3.1416,\quad \ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>,</mo> <mspace width="1em" /> <mn>3.1</mn> <mo>,</mo> <mspace width="1em" /> <mn>3.14</mn> <mo>,</mo> <mspace width="1em" /> <mn>3.142</mn> <mo>,</mo> <mspace width="1em" /> <mn>3.1416</mn> <mo>,</mo> <mspace width="1em" /> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3,\quad 3.1,\quad 3.14,\quad 3.142,\quad 3.1416,\quad \ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6018fe7b060bb29c8927e99a5d2618b6c6f2573e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:39.53ex; height:2.509ex;" alt="{\displaystyle 3,\quad 3.1,\quad 3.14,\quad 3.142,\quad 3.1416,\quad \ldots }"></span></dd></dl> <p>Here the <i>n</i>th term in the sequence is the <i>n</i>th decimal approximation for <a href="/wiki/Pi" title="Pi">pi</a>. Though this is a Cauchy sequence of rational numbers, it does not converge to any rational number. (In this real number line, this sequence converges to pi.) </p><p>Cauchy completeness is related to the construction of the real numbers using Cauchy sequences. Essentially, this method defines a real number to be the limit of a Cauchy sequence of rational numbers. </p><p>In <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, Cauchy completeness can be generalized to a notion of completeness for any <a href="/wiki/Metric_space" title="Metric space">metric space</a>. See <a href="/wiki/Complete_metric_space" title="Complete metric space">complete metric space</a>. </p><p>For an <a href="/wiki/Ordered_field" title="Ordered field">ordered field</a>, Cauchy completeness is weaker than the other forms of completeness on this page. But Cauchy completeness and the <a href="/wiki/Archimedean_property" title="Archimedean property">Archimedean property</a> taken together are equivalent to the others. </p> <div class="mw-heading mw-heading3"><h3 id="Nested_intervals_theorem">Nested intervals theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=edit&amp;section=5" title="Edit section: Nested intervals theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Nested_intervals" title="Nested intervals">Nested intervals</a></div> <p>The <b>nested interval theorem</b> is another form of completeness. Let <span class="texhtml"><i>I<sub>n</sub></i> = [<i>a<sub>n</sub></i>, <i>b<sub>n</sub></i>]</span> be a sequence of closed <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">intervals</a>, and suppose that these intervals are nested in the sense that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{1}\;\supset \;I_{2}\;\supset \;I_{3}\;\supset \;\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="thickmathspace" /> <mo>&#x2283;<!-- ⊃ --></mo> <mspace width="thickmathspace" /> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="thickmathspace" /> <mo>&#x2283;<!-- ⊃ --></mo> <mspace width="thickmathspace" /> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mspace width="thickmathspace" /> <mo>&#x2283;<!-- ⊃ --></mo> <mspace width="thickmathspace" /> <mo>&#x22EF;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{1}\;\supset \;I_{2}\;\supset \;I_{3}\;\supset \;\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ef3a06baedf410f7006f82c393f9b1aadc03758" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.122ex; height:2.509ex;" alt="{\displaystyle I_{1}\;\supset \;I_{2}\;\supset \;I_{3}\;\supset \;\cdots }"></span></dd></dl> <p>Moreover, assume that <span class="texhtml"><i>b<sub>n</sub></i> − <i>a<sub>n</sub></i> → 0</span> as <span class="texhtml"><i>n</i> → +∞</span>. The nested interval theorem states that the <a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a> of all of the intervals <span class="texhtml"><i>I<sub>n</sub></i></span> contains exactly one point. </p><p>The <a href="/wiki/Rational_number" title="Rational number">rational number line</a> does not satisfy the nested interval theorem. For example, the sequence (whose terms are derived from the digits of <a href="/wiki/Pi" title="Pi">pi</a> in the suggested way) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [3,4]\;\supset \;[3.1,3.2]\;\supset \;[3.14,3.15]\;\supset \;[3.141,3.142]\;\supset \;\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo stretchy="false">]</mo> <mspace width="thickmathspace" /> <mo>&#x2283;<!-- ⊃ --></mo> <mspace width="thickmathspace" /> <mo stretchy="false">[</mo> <mn>3.1</mn> <mo>,</mo> <mn>3.2</mn> <mo stretchy="false">]</mo> <mspace width="thickmathspace" /> <mo>&#x2283;<!-- ⊃ --></mo> <mspace width="thickmathspace" /> <mo stretchy="false">[</mo> <mn>3.14</mn> <mo>,</mo> <mn>3.15</mn> <mo stretchy="false">]</mo> <mspace width="thickmathspace" /> <mo>&#x2283;<!-- ⊃ --></mo> <mspace width="thickmathspace" /> <mo stretchy="false">[</mo> <mn>3.141</mn> <mo>,</mo> <mn>3.142</mn> <mo stretchy="false">]</mo> <mspace width="thickmathspace" /> <mo>&#x2283;<!-- ⊃ --></mo> <mspace width="thickmathspace" /> <mo>&#x22EF;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [3,4]\;\supset \;[3.1,3.2]\;\supset \;[3.14,3.15]\;\supset \;[3.141,3.142]\;\supset \;\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ab26179b0bef3009146785a269f6a229f148345" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:56.719ex; height:2.843ex;" alt="{\displaystyle [3,4]\;\supset \;[3.1,3.2]\;\supset \;[3.14,3.15]\;\supset \;[3.141,3.142]\;\supset \;\cdots }"></span></dd></dl> <p>is a nested sequence of closed intervals in the rational numbers whose intersection is empty. (In the real numbers, the intersection of these intervals contains the number <a href="/wiki/Pi" title="Pi">pi</a>.) </p><p>Nested intervals theorem shares the same logical status as Cauchy completeness in this spectrum of expressions of completeness. In other words, nested intervals theorem by itself is weaker than other forms of completeness, although taken together with <a href="/wiki/Archimedean_property" title="Archimedean property">Archimedean property</a>, it is equivalent to the others. </p> <div class="mw-heading mw-heading3"><h3 id="The_open_induction_principle">The open induction principle</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=edit&amp;section=6" title="Edit section: The open induction principle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The open induction principle states that a non-empty open subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> of the interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span> must be equal to the entire interval, if for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\in [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\in [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d206089575b085a14500241de3977673eaa92881" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.444ex; height:2.843ex;" alt="{\displaystyle r\in [a,b]}"></span>, we have that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,r)\subset S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>&#x2282;<!-- ⊂ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,r)\subset S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/994c0497e4b78608e439ca056b66e061a20a0033" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.462ex; height:2.843ex;" alt="{\displaystyle [a,r)\subset S}"></span> implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,r]\subset S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>r</mi> <mo stretchy="false">]</mo> <mo>&#x2282;<!-- ⊂ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,r]\subset S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6311dfedf3aa2cabec651b22bf4350e03316a762" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.204ex; height:2.843ex;" alt="{\displaystyle [a,r]\subset S}"></span>. </p><p>The open induction principle can be shown to be equivalent to Dedekind completeness for arbitrary ordered sets under the order topology, using proofs by contradiction. In weaker foundations such as in <a href="/wiki/Constructive_analysis" title="Constructive analysis">constructive analysis</a> where the law of the excluded middle does not hold, the full form of the least upper bound property fails for the Dedekind reals, while the open induction property remains true in most models (following from Brouwer's bar theorem) and is strong enough to give short proofs of key theorems. </p> <div class="mw-heading mw-heading3"><h3 id="Monotone_convergence_theorem">Monotone convergence theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=edit&amp;section=7" title="Edit section: Monotone convergence theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b><a href="/wiki/Monotone_convergence_theorem#Convergence_of_a_monotone_sequence_of_real_numbers" title="Monotone convergence theorem">monotone convergence theorem</a></b> (described as the <b>fundamental axiom of analysis</b> by Körner<sup id="cite_ref-Körner2004_1-0" class="reference"><a href="#cite_note-Körner2004-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup>) states that every nondecreasing, bounded sequence of real numbers converges. This can be viewed as a special case of the least upper bound property, but it can also be used fairly directly to prove the Cauchy completeness of the real numbers. </p> <div class="mw-heading mw-heading3"><h3 id="Bolzano–Weierstrass_theorem"><span id="Bolzano.E2.80.93Weierstrass_theorem"></span>Bolzano–Weierstrass theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=edit&amp;section=8" title="Edit section: Bolzano–Weierstrass theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b><a href="/wiki/Bolzano%E2%80%93Weierstrass_theorem" title="Bolzano–Weierstrass theorem">Bolzano–Weierstrass theorem</a></b> states that every bounded sequence of real numbers has a convergent <a href="/wiki/Subsequence" title="Subsequence">subsequence</a>. Again, this theorem is equivalent to the other forms of completeness given above. </p> <div class="mw-heading mw-heading3"><h3 id="The_intermediate_value_theorem">The intermediate value theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=edit&amp;section=9" title="Edit section: The intermediate value theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b><a href="/wiki/Intermediate_value_theorem" title="Intermediate value theorem">intermediate value theorem</a></b> states that every continuous function that attains both negative and positive values has a root. This is a consequence of the least upper bound property, but it can also be used to prove the least upper bound property if treated as an axiom. (The definition of continuity does not depend on any form of completeness, so there is no circularity: what is meant is that the intermediate value theorem and the least upper bound property are equivalent statements.) </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=edit&amp;section=10" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/List_of_real_analysis_topics" title="List of real analysis topics">List of real analysis topics</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=edit&amp;section=11" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Körner2004-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Körner2004_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFKörner2004" class="citation book cs1"><a href="/wiki/Thomas_William_K%C3%B6rner" title="Thomas William Körner">Körner, Thomas William</a> (2004). <i>A companion to analysis: a second first and first second course in analysis</i>. AMS Chelsea. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780821834473" title="Special:BookSources/9780821834473"><bdi>9780821834473</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+companion+to+analysis%3A+a+second+first+and+first+second+course+in+analysis&amp;rft.pub=AMS+Chelsea&amp;rft.date=2004&amp;rft.isbn=9780821834473&amp;rft.aulast=K%C3%B6rner&amp;rft.aufirst=Thomas+William&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACompleteness+of+the+real+numbers" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Completeness_of_the_real_numbers&amp;action=edit&amp;section=12" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAliprantisBurkinshaw1998" class="citation book cs1"><a href="/wiki/Charalambos_D._Aliprantis" class="mw-redirect" title="Charalambos D. Aliprantis">Aliprantis, Charalambos D.</a>; Burkinshaw, Owen (1998). <i>Principles of real analysis</i> (3rd&#160;ed.). Academic. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-12-050257-7" title="Special:BookSources/0-12-050257-7"><bdi>0-12-050257-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principles+of+real+analysis&amp;rft.edition=3rd&amp;rft.pub=Academic&amp;rft.date=1998&amp;rft.isbn=0-12-050257-7&amp;rft.aulast=Aliprantis&amp;rft.aufirst=Charalambos+D.&amp;rft.au=Burkinshaw%2C+Owen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACompleteness+of+the+real+numbers" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrowder,_Andrew1996" class="citation book cs1">Browder, Andrew (1996). <i>Mathematical Analysis: An Introduction</i>. <a href="/wiki/Undergraduate_Texts_in_Mathematics" title="Undergraduate Texts in Mathematics">Undergraduate Texts in Mathematics</a>. New York City: Springer Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-94614-4" title="Special:BookSources/0-387-94614-4"><bdi>0-387-94614-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Analysis%3A+An+Introduction&amp;rft.place=New+York+City&amp;rft.series=Undergraduate+Texts+in+Mathematics&amp;rft.pub=Springer+Verlag&amp;rft.date=1996&amp;rft.isbn=0-387-94614-4&amp;rft.au=Browder%2C+Andrew&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACompleteness+of+the+real+numbers" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBartle,_Robert_G.Sherbert,_Donald_R.2000" class="citation book cs1">Bartle, Robert G.; Sherbert, Donald R. (2000). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontore00bart_1"><i>Introduction to Real Analysis</i></a></span> (3rd&#160;ed.). New York City: John Wiley and Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-32148-6" title="Special:BookSources/0-471-32148-6"><bdi>0-471-32148-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Real+Analysis&amp;rft.place=New+York+City&amp;rft.edition=3rd&amp;rft.pub=John+Wiley+and+Sons&amp;rft.date=2000&amp;rft.isbn=0-471-32148-6&amp;rft.au=Bartle%2C+Robert+G.&amp;rft.au=Sherbert%2C+Donald+R.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontore00bart_1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACompleteness+of+the+real+numbers" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbbott,_Stephen2001" class="citation book cs1">Abbott, Stephen (2001). <i>Understanding Analysis</i>. Undergraduate Texts in Mathematics. New York: Springer Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-95060-5" title="Special:BookSources/0-387-95060-5"><bdi>0-387-95060-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Understanding+Analysis&amp;rft.place=New+York&amp;rft.series=Undergraduate+Texts+in+Mathematics&amp;rft.pub=Springer+Verlag&amp;rft.date=2001&amp;rft.isbn=0-387-95060-5&amp;rft.au=Abbott%2C+Stephen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACompleteness+of+the+real+numbers" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin,_Walter1976" class="citation book cs1">Rudin, Walter (1976). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/principlesofmath00rudi"><i>Principles of Mathematical Analysis</i></a></span>. Walter Rudin Student Series in Advanced Mathematics (3rd&#160;ed.). McGraw-Hill. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780070542358" title="Special:BookSources/9780070542358"><bdi>9780070542358</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principles+of+Mathematical+Analysis&amp;rft.series=Walter+Rudin+Student+Series+in+Advanced+Mathematics&amp;rft.edition=3rd&amp;rft.pub=McGraw-Hill&amp;rft.date=1976&amp;rft.isbn=9780070542358&amp;rft.au=Rudin%2C+Walter&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fprinciplesofmath00rudi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACompleteness+of+the+real+numbers" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDangello,_FrankSeyfried,_Michael1999" class="citation book cs1">Dangello, Frank; Seyfried, Michael (1999). <i>Introductory Real Analysis</i>. Brooks Cole. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780395959336" title="Special:BookSources/9780395959336"><bdi>9780395959336</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introductory+Real+Analysis&amp;rft.pub=Brooks+Cole&amp;rft.date=1999&amp;rft.isbn=9780395959336&amp;rft.au=Dangello%2C+Frank&amp;rft.au=Seyfried%2C+Michael&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACompleteness+of+the+real+numbers" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBressoud,_David2007" class="citation book cs1">Bressoud, David (2007). <i>A Radical Approach to Real Analysis</i>. <a href="/wiki/Mathematical_Association_of_America" title="Mathematical Association of America">MAA</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-88385-747-2" title="Special:BookSources/978-0-88385-747-2"><bdi>978-0-88385-747-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Radical+Approach+to+Real+Analysis&amp;rft.pub=MAA&amp;rft.date=2007&amp;rft.isbn=978-0-88385-747-2&amp;rft.au=Bressoud%2C+David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACompleteness+of+the+real+numbers" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Real_numbers" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Real_numbers" title="Template:Real numbers"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Real_numbers" title="Template talk:Real numbers"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Real_numbers" title="Special:EditPage/Template:Real numbers"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Real_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Real_number" title="Real number">Real numbers</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/0.999..." title="0.999...">0.999...</a></li> <li><a href="/wiki/Absolute_difference" title="Absolute difference">Absolute difference</a></li> <li><a href="/wiki/Cantor_set" title="Cantor set">Cantor set</a></li> <li><a href="/wiki/Cantor%E2%80%93Dedekind_axiom" title="Cantor–Dedekind axiom">Cantor–Dedekind axiom</a></li> <li><a class="mw-selflink selflink">Completeness</a></li> <li><a href="/wiki/Construction_of_the_real_numbers" title="Construction of the real numbers">Construction</a></li> <li><a href="/wiki/Decidability_of_first-order_theories_of_the_real_numbers" title="Decidability of first-order theories of the real numbers">Decidability of first-order theories</a></li> <li><a href="/wiki/Extended_real_number_line" title="Extended real number line">Extended real number line</a></li> <li><a href="/wiki/Gregory_number" title="Gregory number">Gregory number</a></li> <li><a href="/wiki/Irrational_number" title="Irrational number">Irrational number</a></li> <li><a href="/wiki/Normal_number" title="Normal number">Normal number</a></li> <li><a href="/wiki/Rational_number" title="Rational number">Rational number</a></li> <li><a href="/wiki/Rational_zeta_series" title="Rational zeta series">Rational zeta series</a></li> <li><a href="/wiki/Real_coordinate_space" title="Real coordinate space">Real coordinate space</a></li> <li><a href="/wiki/Real_line" class="mw-redirect" title="Real line">Real line</a></li> <li><a href="/wiki/Tarski%27s_axiomatization_of_the_reals" title="Tarski&#39;s axiomatization of the reals">Tarski axiomatization</a></li> <li><a href="/wiki/Vitali_set" title="Vitali set">Vitali set</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐zhjmb Cached time: 20241122150134 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.335 seconds Real time usage: 0.482 seconds Preprocessor visited node count: 1769/1000000 Post‐expand include size: 23597/2097152 bytes Template argument size: 1802/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 5/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 29646/5000000 bytes Lua time usage: 0.206/10.000 seconds Lua memory usage: 5158536/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 370.872 1 -total 29.16% 108.137 8 Template:Cite_book 25.24% 93.608 1 Template:Reflist 23.59% 87.507 1 Template:Real_numbers 22.57% 83.693 1 Template:Navbox 19.23% 71.324 1 Template:Short_description 11.09% 41.145 2 Template:Pagetype 6.98% 25.881 1 Template:R 6.10% 22.607 1 Template:Distinguish 5.81% 21.533 18 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:idhash:29322627-0!canonical and timestamp 20241122150134 and revision id 1189120715. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Completeness_of_the_real_numbers&amp;oldid=1189120715">https://en.wikipedia.org/w/index.php?title=Completeness_of_the_real_numbers&amp;oldid=1189120715</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Real_numbers" title="Category:Real numbers">Real numbers</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Use_shortened_footnotes_from_May_2021" title="Category:Use shortened footnotes from May 2021">Use shortened footnotes from May 2021</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 9 December 2023, at 21:13<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Completeness_of_the_real_numbers&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-7g25x","wgBackendResponseTime":185,"wgPageParseReport":{"limitreport":{"cputime":"0.335","walltime":"0.482","ppvisitednodes":{"value":1769,"limit":1000000},"postexpandincludesize":{"value":23597,"limit":2097152},"templateargumentsize":{"value":1802,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":29646,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 370.872 1 -total"," 29.16% 108.137 8 Template:Cite_book"," 25.24% 93.608 1 Template:Reflist"," 23.59% 87.507 1 Template:Real_numbers"," 22.57% 83.693 1 Template:Navbox"," 19.23% 71.324 1 Template:Short_description"," 11.09% 41.145 2 Template:Pagetype"," 6.98% 25.881 1 Template:R"," 6.10% 22.607 1 Template:Distinguish"," 5.81% 21.533 18 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.206","limit":"10.000"},"limitreport-memusage":{"value":5158536,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-zhjmb","timestamp":"20241122150134","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Completeness of the real numbers","url":"https:\/\/en.wikipedia.org\/wiki\/Completeness_of_the_real_numbers","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1324487","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1324487","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2010-10-23T18:20:31Z","dateModified":"2023-12-09T21:13:59Z","headline":"Concept in mathematics"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10