CINXE.COM
Колебания. Большая российская энциклопедия
<!DOCTYPE html><html lang="ru"><head><meta charset="utf-8"> <meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=1"> <title>Колебания. Большая российская энциклопедия</title> <link href="https://mc.yandex.ru" rel="preconnect"> <link href="https://top-fwz1.mail.ru/js/code.js" as="script" crossorigin> <link href="https://news.gnezdo2.ru/gnezdo_news_tracker_new.js" as="script" crossorigin> <link href="https://mc.yandex.ru" rel="dns-prefetch"> <link href="https://mc.yandex.ru/metrika/tag.js" as="script" crossorigin> <meta name="msapplication-TileColor" content="#da532c"> <meta name="msapplication-config" content="/meta/browserconfig.xml"> <meta name="theme-color" content="#ffffff"> <link rel="icon" sizes="32x32" href="/favicon.ico"> <link rel="icon" type="image/svg+xml" href="/meta/favicon.svg"> <link rel="apple-touch-icon" href="/meta/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="48x48" href="/meta/favicon-48x48.png"> <link rel="manifest" href="/meta/site.webmanifest"> <meta content="2023-06-06T11:49:29.000Z" name="article:modified_time"> <meta content="Физические процессы, явления" property="article:section"> <meta content="Теория колебаний" property="article:tag"> <meta content="Колеба́ния, движения или поведение системы, обладающие той или иной степенью повторяемости во времени. Колебания свойственны всем явлениям природы...." name="description"> <meta content="Теория колебаний" name="keywords"> <meta content="Колеба́ния, движения или поведение системы, обладающие той или иной степенью повторяемости во времени. Колебания свойственны всем явлениям природы...." property="og:description"> <meta content="https://i.bigenc.ru/resizer/resize?sign=K2mwjNK87zofppSZEffyIw&filename=vault/3cf067030012eb10bb78b0ddf25f3b6b.webp&width=1200" property="og:image"> <meta content="«Большая российская энциклопедия»" property="og:image:alt"> <meta content="792" property="og:image:height"> <meta content="webp&width=1200" property="og:image:type"> <meta content="1200" property="og:image:width"> <meta content="Колебания" property="og:title"> <meta content="article" property="og:type"> <meta content="https://bigenc.ru/c/kolebaniia-ef7a5d" property="og:url"> <meta content="summary_large_image" property="twitter:card"> <meta content="Большая российская энциклопедия" property="og:site_name"> <meta content="2023-06-06T11:49:29.000Z" name="article:published_time"> <link rel="stylesheet" href="https://s.bigenc.ru/_nuxt/entry.mpjHLZVQ.css"> <link rel="stylesheet" href="https://s.bigenc.ru/_nuxt/components.EYp_E6uU.css"> <link rel="stylesheet" href="https://s.bigenc.ru/_nuxt/Formula.OAWbmYZe.css"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/entry.-Z8AjeEO.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/chunk.eVCQshbn.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/components.a6A3eWos.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/index.64RxBmGv.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Renderer.vue.KBqHlDjs.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/ArticleSidebar.vue.QjMjnOY7.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Image.vue.hLe6_eLu.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/MediaFigure.vue.8Cjz8VZ4.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Image.MIRfcYkN.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Formula.hIoX9Hw3.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/PreviewLink.1ksiu7wu.js"> <link rel="prefetch" as="image" type="image/jpeg" href="https://s.bigenc.ru/_nuxt/fallback.OCsNm7LY.jpg"> <script type="module" src="https://s.bigenc.ru/_nuxt/entry.-Z8AjeEO.js" crossorigin></script></head><body><div id="__nuxt"><!--[--><div class="loading-indicator" style="position:fixed;top:0;right:0;left:0;pointer-events:none;width:0%;height:1px;opacity:0;background:repeating-linear-gradient(to right,#7698f5 0%,#436ee6 50%,#0047e1 100%);background-size:Infinity% auto;transition:width 0.1s, height 0.4s, opacity 0.4s;z-index:999999;"></div><div><!----><div class="bre-page" itemscope itemprop="mainEntity" itemtype="https://schema.org/WebPage"><header class="bre-header" itemprop="hasPart" itemscope itemtype="https://schema.org/WPHeader" style=""><div class="bre-header-fixed"><nav class="bre-header-nav"><div class="bre-header-nav-item _flex-start _logo"><a class="bre-header-logo -show-on-desktop-s _big" aria-label="Домой"></a><a class="bre-header-logo _small" aria-label="Домой"></a></div><div class="bre-header-nav-item _flex-start _catalog"><button type="button" class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer tw-h-11 -show-on-desktop-s tw-px-4 tw-w-[132px] !tw-justify-start" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M20.75 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h16a.75.75 0 0 1 .75.75Zm-7 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h9a.75.75 0 0 1 .75.75ZM20 18.75a.75.75 0 0 0 0-1.5H4a.75.75 0 0 0 0 1.5h16Z" fill="currentColor"/></svg> </span><span class="c-button__content" data-v-cfbedafc><!--[--> Каталог <!--]--></span></button><button type="button" class="b-button b-button--transparent -text-button tw-rounded-lg tw-cursor-pointer tw-gap-0 md:tw-gap-2 -hide-on-desktop-s" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0 tw-text-primary-black" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M20.75 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h16a.75.75 0 0 1 .75.75Zm-7 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h9a.75.75 0 0 1 .75.75ZM20 18.75a.75.75 0 0 0 0-1.5H4a.75.75 0 0 0 0 1.5h16Z" fill="currentColor"/></svg> </span><span class="c-button__content" data-v-cfbedafc><!--[--><span class="tw-hidden tw-pt-0.5 tw-text-primary-black md:tw-block">Каталог</span><!--]--></span></button></div><div class="bre-header-nav-item _flex-start lg:tw-flex-1"><div class="min-lg:tw-w-[228px] tw-relative max-md:tw-mb-[6px] max-md:tw-mt-4 lg:tw-w-full lg:tw-max-w-[606px] max-md:tw-hidden"><div class="tw-flex max-lg:tw-hidden" data-v-f39cd9b8><div class="tw-flex tw-w-full tw-items-center tw-border tw-border-solid tw-border-transparent tw-bg-gray-6 tw-px-3 tw-transition lg:hover:tw-bg-gray-5 lg:tw-bg-primary-white lg:tw-border-gray-5 lg:hover:tw-border-transparent lg:tw-rounded-e-none lg:tw-pr-4 tw-rounded-lg tw-h-11" data-v-f39cd9b8><span class="nuxt-icon _no-icon-margin tw-shrink-0 tw-text-2xl tw-text-gray-2 tw-cursor-pointer" style="display:none;" data-v-f39cd9b8><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10 17C13.866 17 17 13.866 17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 13.866 6.13401 17 10 17Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M21.0004 21.0004L15.5 15.5" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span><input class="b-search-input -text-headline-6 tw-h-full tw-shrink tw-grow tw-basis-auto tw-border-none tw-bg-transparent tw-p-0 tw-indent-2 tw-leading-none tw-text-primary-black tw-outline-none tw-transition md:tw-w-[154px] tw-placeholder-gray-2 lg:tw-placeholder-gray-1 lg:tw-indent-1 lg:tw-pr-4 lg:-text-caption-1 placeholder-on-focus" name="new-search" value="" type="text" placeholder="Искать в энциклопедии" autocomplete="off" spellcheck="false" data-v-f39cd9b8><button type="button" class="b-button tw-gap-2 b-button--transparent -text-button tw-rounded-lg tw-cursor-pointer b-button--icon-only" style="display:none;" data-v-f39cd9b8 data-v-cfbedafc><span class="nuxt-icon nuxt-icon--fill nuxt-icon--stroke tw-text-2xl tw-shrink-0 tw-text-gray-2" data-v-cfbedafc><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" d="M17 17 7 7M17 7 7 17"/></svg> </span><!----></button></div><!--[--><button type="button" class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer b-button--icon-only tw-h-11 tw-w-11 tw-rounded-s-none tw-flex-none" style="" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10 17C13.866 17 17 13.866 17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 13.866 6.13401 17 10 17Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M21.0004 21.0004L15.5 15.5" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span><!----></button><!--]--></div><!----></div><button class="lg:tw-hidden"><span class="nuxt-icon tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10 17C13.866 17 17 13.866 17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 13.866 6.13401 17 10 17Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M21.0004 21.0004L15.5 15.5" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span></button></div><div class="bre-header-nav-item _flex-start -show-on-tablet button-author-animation lg:tw-justify-end lg:tw-basis-[calc(50vw-348px)]"><a class="b-button tw-gap-2 b-button--secondary -text-button tw-rounded-lg tw-cursor-pointer tw-h-10 tw-w-[172px] tw-px-6 lg:tw-h-11" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[--> Стать автором <!--]--></span></a></div><div class="bre-header-nav-item _flex-start tw-relative max-md:tw-w-6 sm:tw-z-[9] md:tw-z-[21]"><div class="bre-header-profile"><!--[--><!--[--><a class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer tw-h-10 tw-px-6 -show-on-tablet -hide-on-desktop-s tw-w-[102px]" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[--> Войти <!--]--></span></a><a class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer tw-h-11 tw-px-6 -show-on-desktop-s tw-w-[102px]" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[--> Войти <!--]--></span></a><a class="b-button tw-gap-2 b-button--transparent -text-button tw-rounded-lg tw-cursor-pointer b-button--icon-only tw-mx-1 -hide-on-tablet" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0 tw-text-primary-black" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M20 21V19C20 17.9391 19.5786 16.9217 18.8284 16.1716C18.0783 15.4214 17.0609 15 16 15H8C6.93913 15 5.92172 15.4214 5.17157 16.1716C4.42143 16.9217 4 17.9391 4 19V21" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M12 12C14.2091 12 16 10.2091 16 8C16 5.79086 14.2091 4 12 4C9.79086 4 8 5.79086 8 8C8 10.2091 9.79086 12 12 12Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span><!----></a><!--]--></div></div></nav><!----><!----></div><!----><!----></header><main class="bre-page-main"><!--[--><div class="bre-article-layout _no-margin"><nav class="bre-article-layout__menu"><div class="bre-article-menu lg:tw-sticky"><div class="bre-article-menu__list"><!--[--><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><span class="bre-article-menu__list-item _active"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-blue"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M4.29919 18V6C4.29919 4.61929 5.41848 3.5 6.79919 3.5H11.7992H13.4413C13.7192 3.5 13.9922 3.54628 14.25 3.63441V7C14.25 8.51878 15.4812 9.75 17 9.75H19.2992V12V18C19.2992 19.3807 18.1799 20.5 16.7992 20.5H6.79919C5.41848 20.5 4.29919 19.3807 4.29919 18ZM18.9149 8.25C18.8305 8.11585 18.7329 7.98916 18.623 7.87194L15.75 4.80733V7C15.75 7.69036 16.3096 8.25 17 8.25H18.9149ZM2.79919 6C2.79919 3.79086 4.59006 2 6.79919 2H11.7992H13.4413C14.5469 2 15.6032 2.45763 16.3594 3.26424L19.7173 6.84603C20.4124 7.58741 20.7992 8.56555 20.7992 9.58179V12V18C20.7992 20.2091 19.0083 22 16.7992 22H6.79919C4.59006 22 2.79919 20.2091 2.79919 18V6ZM7.04919 12C7.04919 11.5858 7.38498 11.25 7.79919 11.25H15.7992C16.2134 11.25 16.5492 11.5858 16.5492 12C16.5492 12.4142 16.2134 12.75 15.7992 12.75H7.79919C7.38498 12.75 7.04919 12.4142 7.04919 12ZM7.79919 16.25C7.38498 16.25 7.04919 16.5858 7.04919 17C7.04919 17.4142 7.38498 17.75 7.79919 17.75H12.7992C13.2134 17.75 13.5492 17.4142 13.5492 17C13.5492 16.5858 13.2134 16.25 12.7992 16.25H7.79919Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Статья</span></span><!--]--><!--]--><span style="display:none;" class=""><span>Статья</span></span></span><span class="bre-article-menu__list-item _active tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-blue"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M4.29919 18V6C4.29919 4.61929 5.41848 3.5 6.79919 3.5H11.7992H13.4413C13.7192 3.5 13.9922 3.54628 14.25 3.63441V7C14.25 8.51878 15.4812 9.75 17 9.75H19.2992V12V18C19.2992 19.3807 18.1799 20.5 16.7992 20.5H6.79919C5.41848 20.5 4.29919 19.3807 4.29919 18ZM18.9149 8.25C18.8305 8.11585 18.7329 7.98916 18.623 7.87194L15.75 4.80733V7C15.75 7.69036 16.3096 8.25 17 8.25H18.9149ZM2.79919 6C2.79919 3.79086 4.59006 2 6.79919 2H11.7992H13.4413C14.5469 2 15.6032 2.45763 16.3594 3.26424L19.7173 6.84603C20.4124 7.58741 20.7992 8.56555 20.7992 9.58179V12V18C20.7992 20.2091 19.0083 22 16.7992 22H6.79919C4.59006 22 2.79919 20.2091 2.79919 18V6ZM7.04919 12C7.04919 11.5858 7.38498 11.25 7.79919 11.25H15.7992C16.2134 11.25 16.5492 11.5858 16.5492 12C16.5492 12.4142 16.2134 12.75 15.7992 12.75H7.79919C7.38498 12.75 7.04919 12.4142 7.04919 12ZM7.79919 16.25C7.38498 16.25 7.04919 16.5858 7.04919 17C7.04919 17.4142 7.38498 17.75 7.79919 17.75H12.7992C13.2134 17.75 13.5492 17.4142 13.5492 17C13.5492 16.5858 13.2134 16.25 12.7992 16.25H7.79919Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Статья</span></span></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/kolebaniia-ef7a5d/annotation" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M18.2363 4.12686C18.2363 3.43651 18.796 2.87686 19.4863 2.87686C20.1767 2.87686 20.7363 3.43651 20.7363 4.12686C20.7363 4.81722 20.1767 5.37686 19.4863 5.37686C18.796 5.37686 18.2363 4.81722 18.2363 4.12686ZM19.4863 1.37686C17.9675 1.37686 16.7363 2.60808 16.7363 4.12686C16.7363 4.43206 16.786 4.72564 16.8778 4.99996H7C4.79086 4.99996 3 6.79082 3 8.99996V19C3 21.2091 4.79086 23 7 23H17C19.2091 23 21 21.2091 21 19V8.99996C21 8.16642 20.745 7.39244 20.3089 6.75173C21.4258 6.40207 22.2363 5.35911 22.2363 4.12686C22.2363 2.60808 21.0051 1.37686 19.4863 1.37686ZM7 6.49996H16.6319L14.6964 8.43547C14.4035 8.72837 14.4035 9.20324 14.6964 9.49613C14.9893 9.78903 15.4641 9.78903 15.757 9.49613L18.3547 6.89846C19.0438 7.34362 19.5 8.11852 19.5 8.99996V19C19.5 20.3807 18.3807 21.5 17 21.5H7C5.61929 21.5 4.5 20.3807 4.5 19V8.99996C4.5 7.61924 5.61929 6.49996 7 6.49996ZM9.25 12C9.25 11.5857 9.58579 11.25 10 11.25H12H14C14.4142 11.25 14.75 11.5857 14.75 12C14.75 12.4142 14.4142 12.75 14 12.75H12H10C9.58579 12.75 9.25 12.4142 9.25 12ZM9.25 17C9.25 16.5857 9.58579 16.25 10 16.25H12H14C14.4142 16.25 14.75 16.5857 14.75 17C14.75 17.4142 14.4142 17.75 14 17.75H12H10C9.58579 17.75 9.25 17.4142 9.25 17Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Аннотация</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Аннотация</span></span></span><a href="/c/kolebaniia-ef7a5d/annotation" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M18.2363 4.12686C18.2363 3.43651 18.796 2.87686 19.4863 2.87686C20.1767 2.87686 20.7363 3.43651 20.7363 4.12686C20.7363 4.81722 20.1767 5.37686 19.4863 5.37686C18.796 5.37686 18.2363 4.81722 18.2363 4.12686ZM19.4863 1.37686C17.9675 1.37686 16.7363 2.60808 16.7363 4.12686C16.7363 4.43206 16.786 4.72564 16.8778 4.99996H7C4.79086 4.99996 3 6.79082 3 8.99996V19C3 21.2091 4.79086 23 7 23H17C19.2091 23 21 21.2091 21 19V8.99996C21 8.16642 20.745 7.39244 20.3089 6.75173C21.4258 6.40207 22.2363 5.35911 22.2363 4.12686C22.2363 2.60808 21.0051 1.37686 19.4863 1.37686ZM7 6.49996H16.6319L14.6964 8.43547C14.4035 8.72837 14.4035 9.20324 14.6964 9.49613C14.9893 9.78903 15.4641 9.78903 15.757 9.49613L18.3547 6.89846C19.0438 7.34362 19.5 8.11852 19.5 8.99996V19C19.5 20.3807 18.3807 21.5 17 21.5H7C5.61929 21.5 4.5 20.3807 4.5 19V8.99996C4.5 7.61924 5.61929 6.49996 7 6.49996ZM9.25 12C9.25 11.5857 9.58579 11.25 10 11.25H12H14C14.4142 11.25 14.75 11.5857 14.75 12C14.75 12.4142 14.4142 12.75 14 12.75H12H10C9.58579 12.75 9.25 12.4142 9.25 12ZM9.25 17C9.25 16.5857 9.58579 16.25 10 16.25H12H14C14.4142 16.25 14.75 16.5857 14.75 17C14.75 17.4142 14.4142 17.75 14 17.75H12H10C9.58579 17.75 9.25 17.4142 9.25 17Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Аннотация</span></a></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/kolebaniia-ef7a5d/media" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M17 4H7C5.61929 4 4.5 5.11929 4.5 6.5V17.5C4.5 18.1033 4.71367 18.6566 5.06946 19.0885L15.6829 8.95748C15.8374 8.81003 16.0474 8.73542 16.2603 8.75237C16.4732 8.76931 16.6687 8.87621 16.7979 9.04625L19.5 12.6023V6.5C19.5 5.11929 18.3807 4 17 4ZM19.5 15.0592C19.465 15.0278 19.4324 14.9926 19.4028 14.9538L16.1114 10.6221L6.37067 19.9201C6.57173 19.9723 6.78263 20 7 20H17C18.3807 20 19.5 18.8807 19.5 17.5V15.0592ZM7 2.5C4.79086 2.5 3 4.29086 3 6.5V17.5C3 19.7091 4.79086 21.5 7 21.5H17C19.2091 21.5 21 19.7091 21 17.5V6.5C21 4.29086 19.2091 2.5 17 2.5H7ZM9.20078 7.25C8.51042 7.25 7.95078 7.80964 7.95078 8.5C7.95078 9.19036 8.51042 9.75 9.20078 9.75C9.89113 9.75 10.4508 9.19036 10.4508 8.5C10.4508 7.80964 9.89113 7.25 9.20078 7.25ZM6.45078 8.5C6.45078 6.98122 7.68199 5.75 9.20078 5.75C10.7196 5.75 11.9508 6.98122 11.9508 8.5C11.9508 10.0188 10.7196 11.25 9.20078 11.25C7.68199 11.25 6.45078 10.0188 6.45078 8.5Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Медиа</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Медиа</span></span></span><a href="/c/kolebaniia-ef7a5d/media" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M17 4H7C5.61929 4 4.5 5.11929 4.5 6.5V17.5C4.5 18.1033 4.71367 18.6566 5.06946 19.0885L15.6829 8.95748C15.8374 8.81003 16.0474 8.73542 16.2603 8.75237C16.4732 8.76931 16.6687 8.87621 16.7979 9.04625L19.5 12.6023V6.5C19.5 5.11929 18.3807 4 17 4ZM19.5 15.0592C19.465 15.0278 19.4324 14.9926 19.4028 14.9538L16.1114 10.6221L6.37067 19.9201C6.57173 19.9723 6.78263 20 7 20H17C18.3807 20 19.5 18.8807 19.5 17.5V15.0592ZM7 2.5C4.79086 2.5 3 4.29086 3 6.5V17.5C3 19.7091 4.79086 21.5 7 21.5H17C19.2091 21.5 21 19.7091 21 17.5V6.5C21 4.29086 19.2091 2.5 17 2.5H7ZM9.20078 7.25C8.51042 7.25 7.95078 7.80964 7.95078 8.5C7.95078 9.19036 8.51042 9.75 9.20078 9.75C9.89113 9.75 10.4508 9.19036 10.4508 8.5C10.4508 7.80964 9.89113 7.25 9.20078 7.25ZM6.45078 8.5C6.45078 6.98122 7.68199 5.75 9.20078 5.75C10.7196 5.75 11.9508 6.98122 11.9508 8.5C11.9508 10.0188 10.7196 11.25 9.20078 11.25C7.68199 11.25 6.45078 10.0188 6.45078 8.5Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Медиа</span></a></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/kolebaniia-ef7a5d/references" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M5 3.25C3.48122 3.25 2.25 4.48122 2.25 6V16.1667C2.25 17.6854 3.48122 18.9167 5 18.9167H9.3C9.80519 18.9167 10.2974 19.1269 10.6662 19.5139C11.0362 19.9022 11.25 20.4361 11.25 21C11.25 21.4142 11.5858 21.75 12 21.75C12.4142 21.75 12.75 21.4142 12.75 21C12.75 20.4227 12.9564 19.8833 13.3026 19.4973C13.6464 19.114 14.0941 18.9167 14.5412 18.9167H19C20.5188 18.9167 21.75 17.6855 21.75 16.1667V6C21.75 4.48122 20.5188 3.25 19 3.25H15.3882C14.2627 3.25 13.2022 3.74922 12.4341 4.60572C12.266 4.79308 12.1147 4.99431 11.9809 5.20674C11.8358 4.98777 11.6713 4.78092 11.4885 4.58908C10.6758 3.73626 9.56568 3.25 8.4 3.25H5ZM12.75 17.993C13.2735 17.6237 13.8929 17.4167 14.5412 17.4167H19C19.6904 17.4167 20.25 16.857 20.25 16.1667V6C20.25 5.30964 19.6904 4.75 19 4.75H15.3882C14.7165 4.75 14.0534 5.04681 13.5507 5.60725C13.0457 6.17037 12.75 6.95001 12.75 7.77778V17.993ZM11.25 18.0438V7.77778C11.25 6.96341 10.9414 6.18924 10.4026 5.62389C9.86506 5.05976 9.14388 4.75 8.4 4.75H5C4.30964 4.75 3.75 5.30964 3.75 6V16.1667C3.75 16.857 4.30964 17.4167 5 17.4167H9.3C10.0044 17.4167 10.6825 17.64 11.25 18.0438Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Библиография</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Библиография</span></span></span><a href="/c/kolebaniia-ef7a5d/references" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M5 3.25C3.48122 3.25 2.25 4.48122 2.25 6V16.1667C2.25 17.6854 3.48122 18.9167 5 18.9167H9.3C9.80519 18.9167 10.2974 19.1269 10.6662 19.5139C11.0362 19.9022 11.25 20.4361 11.25 21C11.25 21.4142 11.5858 21.75 12 21.75C12.4142 21.75 12.75 21.4142 12.75 21C12.75 20.4227 12.9564 19.8833 13.3026 19.4973C13.6464 19.114 14.0941 18.9167 14.5412 18.9167H19C20.5188 18.9167 21.75 17.6855 21.75 16.1667V6C21.75 4.48122 20.5188 3.25 19 3.25H15.3882C14.2627 3.25 13.2022 3.74922 12.4341 4.60572C12.266 4.79308 12.1147 4.99431 11.9809 5.20674C11.8358 4.98777 11.6713 4.78092 11.4885 4.58908C10.6758 3.73626 9.56568 3.25 8.4 3.25H5ZM12.75 17.993C13.2735 17.6237 13.8929 17.4167 14.5412 17.4167H19C19.6904 17.4167 20.25 16.857 20.25 16.1667V6C20.25 5.30964 19.6904 4.75 19 4.75H15.3882C14.7165 4.75 14.0534 5.04681 13.5507 5.60725C13.0457 6.17037 12.75 6.95001 12.75 7.77778V17.993ZM11.25 18.0438V7.77778C11.25 6.96341 10.9414 6.18924 10.4026 5.62389C9.86506 5.05976 9.14388 4.75 8.4 4.75H5C4.30964 4.75 3.75 5.30964 3.75 6V16.1667C3.75 16.857 4.30964 17.4167 5 17.4167H9.3C10.0044 17.4167 10.6825 17.64 11.25 18.0438Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Библиография</span></a></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/kolebaniia-ef7a5d/versions" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M10.9565 3.85864H7.51619C7.8045 3.2057 8.4577 2.75 9.21734 2.75H13.5652H14.7687C15.4365 2.75 16.0697 3.0466 16.4972 3.55959L19.2502 6.86313C19.5871 7.26748 19.7717 7.77718 19.7717 8.30354V10.6957V16.7826C19.7717 17.5422 19.316 18.1954 18.663 18.4838V13.3043V10.9122C18.663 10.0349 18.3555 9.18542 17.7939 8.51149L15.0409 5.20795C14.3284 4.35298 13.273 3.85864 12.1601 3.85864H10.9565ZM14.913 22.7499C16.6051 22.7499 18.0354 21.6293 18.5022 20.0898C20.0762 19.8113 21.2717 18.4365 21.2717 16.7826V10.6957V8.30354C21.2717 7.42628 20.9641 6.57678 20.4025 5.90285L17.6496 2.59931C16.9371 1.74434 15.8817 1.25 14.7687 1.25H13.5652H9.21734C7.56341 1.25 6.18869 2.44548 5.91016 4.01947C4.37062 4.48633 3.25 5.91662 3.25 7.60864V18.9999C3.25 21.071 4.92893 22.7499 7 22.7499H14.913ZM7 5.35864C5.75736 5.35864 4.75 6.366 4.75 7.60864V18.9999C4.75 20.2426 5.75736 21.2499 7 21.2499H14.913C16.1557 21.2499 17.163 20.2426 17.163 18.9999V13.3043V10.9122C17.163 10.7991 17.1545 10.6867 17.1378 10.5761H15.3043C13.9296 10.5761 12.8152 9.46164 12.8152 8.08694V5.45611C12.6051 5.39215 12.3845 5.35864 12.1601 5.35864H10.9565H7ZM14.3152 6.68014V8.08694C14.3152 8.63322 14.758 9.07607 15.3043 9.07607H16.3118L14.3152 6.68014ZM6.72827 13.3043C6.72827 12.8901 7.06406 12.5543 7.47827 12.5543H14.4348C14.849 12.5543 15.1848 12.8901 15.1848 13.3043C15.1848 13.7185 14.849 14.0543 14.4348 14.0543H7.47827C7.06406 14.0543 6.72827 13.7185 6.72827 13.3043ZM7.47827 16.9022C7.06406 16.9022 6.72827 17.238 6.72827 17.6522C6.72827 18.0664 7.06406 18.4022 7.47827 18.4022H10.9565C11.3707 18.4022 11.7065 18.0664 11.7065 17.6522C11.7065 17.238 11.3707 16.9022 10.9565 16.9022H7.47827Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Версии</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Версии</span></span></span><a href="/c/kolebaniia-ef7a5d/versions" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M10.9565 3.85864H7.51619C7.8045 3.2057 8.4577 2.75 9.21734 2.75H13.5652H14.7687C15.4365 2.75 16.0697 3.0466 16.4972 3.55959L19.2502 6.86313C19.5871 7.26748 19.7717 7.77718 19.7717 8.30354V10.6957V16.7826C19.7717 17.5422 19.316 18.1954 18.663 18.4838V13.3043V10.9122C18.663 10.0349 18.3555 9.18542 17.7939 8.51149L15.0409 5.20795C14.3284 4.35298 13.273 3.85864 12.1601 3.85864H10.9565ZM14.913 22.7499C16.6051 22.7499 18.0354 21.6293 18.5022 20.0898C20.0762 19.8113 21.2717 18.4365 21.2717 16.7826V10.6957V8.30354C21.2717 7.42628 20.9641 6.57678 20.4025 5.90285L17.6496 2.59931C16.9371 1.74434 15.8817 1.25 14.7687 1.25H13.5652H9.21734C7.56341 1.25 6.18869 2.44548 5.91016 4.01947C4.37062 4.48633 3.25 5.91662 3.25 7.60864V18.9999C3.25 21.071 4.92893 22.7499 7 22.7499H14.913ZM7 5.35864C5.75736 5.35864 4.75 6.366 4.75 7.60864V18.9999C4.75 20.2426 5.75736 21.2499 7 21.2499H14.913C16.1557 21.2499 17.163 20.2426 17.163 18.9999V13.3043V10.9122C17.163 10.7991 17.1545 10.6867 17.1378 10.5761H15.3043C13.9296 10.5761 12.8152 9.46164 12.8152 8.08694V5.45611C12.6051 5.39215 12.3845 5.35864 12.1601 5.35864H10.9565H7ZM14.3152 6.68014V8.08694C14.3152 8.63322 14.758 9.07607 15.3043 9.07607H16.3118L14.3152 6.68014ZM6.72827 13.3043C6.72827 12.8901 7.06406 12.5543 7.47827 12.5543H14.4348C14.849 12.5543 15.1848 12.8901 15.1848 13.3043C15.1848 13.7185 14.849 14.0543 14.4348 14.0543H7.47827C7.06406 14.0543 6.72827 13.7185 6.72827 13.3043ZM7.47827 16.9022C7.06406 16.9022 6.72827 17.238 6.72827 17.6522C6.72827 18.0664 7.06406 18.4022 7.47827 18.4022H10.9565C11.3707 18.4022 11.7065 18.0664 11.7065 17.6522C11.7065 17.238 11.3707 16.9022 10.9565 16.9022H7.47827Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Версии</span></a></div><!--]--></div></div></nav><!--[--><div><meta itemprop="image primaryImageOfPage" content="https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120"><article itemscope itemprop="mainEntity" itemtype="https://schema.org/Article"><div itemprop="publisher" itemscope itemtype="https://schema.org/Organization"><meta itemprop="name" content="Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия»"><meta itemprop="address" content="Покровский бульвар, д. 8, стр. 1А, Москва, 109028"><meta itemprop="telephone" content="+7 (495) 781-15-95"><meta itemprop="logo" content="https://s.bigenc.ru/_nuxt/logo.98u7ubS9.svg"></div><div itemprop="copyrightHolder" itemscope itemtype="https://schema.org/Organization"><meta itemprop="name" content="Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия»"><meta itemprop="address" content="Покровский бульвар, д. 8, стр. 1А, Москва, 109028"><meta itemprop="telephone" content="+7 (495) 781-15-95"><meta itemprop="logo" content="https://s.bigenc.ru/_nuxt/logo.98u7ubS9.svg"></div><meta itemprop="articleSection" content="Физические процессы, явления"><meta itemprop="headline" content="Колебания"><meta itemprop="keywords" content="Теория колебаний"><!----><div class="bre-article-page max-md:tw-mt-10 md:max-lg:tw-mt-[81px] max-md:tw-mt-[105px]"><!----><nav class="bre-article-loc -hide-on-desktop-s"><div class="bre-article-loc-button"><span class="bre-article-loc-title">Содержание</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><div class="bre-article-loc-short">Теория колебаний и волн</div></div><!----></nav><div class="article-sidebar -hide-on-desktop-s"><div class="article-sidebar-button -show-on-tablet -hide-on-desktop-s"><span class="article-sidebar-title">Информация</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><!--[--><div class="article-sidebar-text -show-on-tablet -hide-on-desktop-s">Колебания</div><!--]--></div><div class="article-sidebar-wrapper -hide-on-tablet"><header class="bre-article-header -hide-on-tablet"><div class="bre-label__wrap"><span data-v-tippy class="tw-leading-[0px]"><!--[--><!--[--><span class="bre-label">Физические процессы, явления</span><!--]--><!--]--><span style="display:none;" class=""><span>Физические процессы, явления</span></span></span><!----></div><!--[--><!----><h1 class="bre-article-header-title">Колебания</h1><!--]--><!----></header><section class="-hide-on-tablet tw-h-14 md:tw-h-20"><!----></section><!----><span class="bre-media-image article-sidebar-image _note-exclude _clean" data-width="100%" data-display="block"><span class="bre-media-figure _note-exclude _clean" itemscope itemtype="https://schema.org/ImageObject" itemprop="image"><!--[--><span class="bre-media-image-container _placeholder"><meta itemprop="name" content="Физика"><meta itemprop="caption" content="Физика. Научно-образовательный портал «Большая российская энциклопедия»"><!----><!----><span class="tw-flex tw-w-full" style=""><img src="https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120" onerror="this.setAttribute('data-error', 1)" alt="Физика" data-nuxt-img sizes="320px" srcset="https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=Jf8Ovt6NK1CJRMEXmLmu9w&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=9FmjZNIS1_JG-eBy3nkCow&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=W0YAxakNej-ihBYTmKOUhA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=bU5vxPnJKBxMhvgLEjl-uA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=CO7eqX0CglCAJmsuCYDJxQ&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=SNrDJXfJeDUaOjs9TGABPA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=A65s2m2zZF6hgTDDppMoDA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1920 1920w" title="Физика" class="" itemprop="contentUrl"></span><!----></span><!--]--><!----></span><!----><!----></span><div class="article-sidebar-meta"><dl class="tw-mt-0"><!--[--><!--[--><dt>Области знаний:</dt><dd>Теория колебаний и волн</dd><!--]--><!--]--><!----></dl></div></div></div><div class="bre-article-page__container"><div class="bre-article-page__content bre-article-content"><header class="bre-article-header -show-on-tablet"><div class="bre-label__wrap"><span data-v-tippy class="tw-leading-[0px]"><!--[--><!--[--><span class="bre-label">Физические процессы, явления</span><!--]--><!--]--><span style="display:none;" class=""><span>Физические процессы, явления</span></span></span><!----></div><!--[--><!----><h1 class="bre-article-header-title">Колебания</h1><!--]--><!----></header><section class="tw-flex"><div class="-show-on-tablet tw-h-14 md:tw-h-20"><div><div><div itemprop="interactionStatistic" itemscope itemtype="https://schema.org/InteractionCounter"><meta itemprop="interactionType" content="https://schema.org/ViewAction"><meta itemprop="userInteractionCount" content=""></div><div itemprop="interactionStatistic" itemscope itemtype="https://schema.org/InteractionCounter"><meta itemprop="interactionType" content="https://schema.org/ShareAction"><meta itemprop="userInteractionCount" content=""></div><div itemprop="interactionStatistic" itemscope itemtype="https://schema.org/InteractionCounter"><meta itemprop="interactionType" content="https://schema.org/LikeAction"><meta itemprop="userInteractionCount" content=""></div></div><span></span></div></div><span></span></section><div class="js-preview-link-root"><div itemprop="articleBody" class="bre-article-body"><!--[--><section><section><p><b>Колеба́ния,</b> движения или поведение системы, обладающие той или иной степенью повторяемости во времени. Колебания свойственны всем явлениям природы: пульсирует излучение <a href="/c/zviozdy-ed73d6" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->звёзд<!--]--><!--]--><!----></a>, внутри которых происходят циклические <a href="/c/termoiadernye-reaktsii-7ac0a5" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->термоядерные реакции<!--]--><!--]--><!----></a>; с высокой степенью периодичности вращаются планеты <a href="/c/solnechnaia-sistema-c236f6" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Солнечной системы<!--]--><!--]--><!----></a> (а всякое вращение можно представить себе как два одновременных колебания во взаимно перпендикулярных направлениях); движение <a href="/c/luna-f8c129" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Луны<!--]--><!--]--><!----></a> вызывает приливы и отливы на <a href="/c/zemlia-b173fe" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Земле<!--]--><!--]--><!----></a>; ветры возбуждают колебания и волны на поверхностях водоёмов и т. д. Внутри любого живого организма – от одиночных клеток до их высокоорганизованных популяций – непрерывно происходят разнообразные повторяющиеся процессы (биение сердца, колебания психических состояний и др.). В виде сложнейшей совокупности колебаний частиц и полей (<a href="/c/elektron-1c39f0" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->электронов<!--]--><!--]--><!----></a>, <a href="/c/foton-12c525" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->фотонов<!--]--><!--]--><!----></a>, <a href="/c/proton-908670" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->протонов<!--]--><!--]--><!----></a> и др.) можно представить «устройство» микромира.</p><p>Колебания могут быть регулярными, т. е. строго <a href="/c/periodicheskaia-funktsiia-7cb9c7" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->периодическими<!--]--><!--]--><!----></a>, или <a href="/c/khaos-cd4d97" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->хаотическими<!--]--><!--]--><!----></a> (нерегулярными). Хаотические колебания возможны не только в сложных системах (с большим числом <a href="/c/stepeni-svobody-958e77" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->степеней свободы<!--]--><!--]--><!----></a>), но и в очень простых, например, в связанных <a href="/c/maiatnik-4b4e2f" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->маятниках<!--]--><!--]--><!----></a> (см. <a href="/c/sviazannaia-sistema-4d5089" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Связанные системы<!--]--><!--]--><!----></a> ).</p><p><span class="bre-media-image _note-exclude" data-width="33%" data-display="left"><span class="bre-media-figure _note-exclude" itemscope itemtype="https://schema.org/ImageObject" itemprop="image"><!--[--><span class="bre-media-image-container"><meta itemprop="name" content="Различные виды колебаний"><meta itemprop="caption" content="Различные виды колебаний."><meta itemprop="copyrightNotice" content="БРЭ Т. 14"><!----><span class="tw-flex tw-w-full" style=""><img src="https://i.bigenc.ru/resizer/resize?sign=oSHx0_kLuHNIPVx0OqXH0Q&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=120" onerror="this.setAttribute('data-error', 1)" alt="Различные виды колебаний" data-nuxt-img srcset="https://i.bigenc.ru/resizer/resize?sign=oSHx0_kLuHNIPVx0OqXH0Q&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=2xXURbTqpyP5-pNYy-3PPA&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=GM4xsC4X9gJBoVZBb99PHA&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=pp12F1i_2P1ctTJIbqI01w&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=fL0HtYa5e1fnTzIeK8T8dQ&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=bpI6Re4zzCTJSMZZ1tYuTA&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=OYg3R4ynG9FvLoEqhiT0ag&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=paCtN2orTZVaOz6o8p5ohw&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=WN9PknTH1M9xtOCim9lrBw&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=3840 3840w" title="Различные виды колебаний" class="" itemprop="contentUrl"></span><!----></span><!--]--><span class="bre-media-caption"><span class="bre-media-caption-content"><!----><span class="bre-media-caption__text"><span data-v-tippy><!--[--><!--[--><span class="tw-line-clamp-3">Различные виды колебаний.</span><!--]--><!--]--><span style="display:none;" class=""><span>Различные виды колебаний.</span></span></span></span><!----></span><!----></span></span><!----><!----></span>В технике колебания либо выполняют определённые функциональные обязанности (<a href="/c/koleso-11ab60" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->колесо<!--]--><!--]--><!----></a>, маятник, <a href="/c/kolebatel-nyi-kontur-0a9cd4" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->колебательный контур<!--]--><!--]--><!----></a>, <a href="/c/generator-ae518e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->генератор колебаний<!--]--><!--]--><!----></a> и др.), либо возникают как неизбежное проявление физических свойств (<a href="/c/vibratsiia-961b67" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->вибрации<!--]--><!--]--><!----></a> машин и сооружений, неустойчивости и вихревые потоки при движении тел в <a href="/c/gaz-d6a6d7" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->газах<!--]--><!--]--><!----></a> и т. п.).</p><p>В физике особо выделяются колебания двух видов – <a href="/c/mekhanicheskoe-dvizhenie-6727b4" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->механические<!--]--><!--]--><!----></a> и <a href="/c/elektromagnitnoe-pole-faaf77" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->электромагнитные<!--]--><!--]--><!----></a>, а также их электромеханические комбинации. Это обусловлено той исключительной ролью, которую играют <a href="/c/gravitatsionnoe-vzaimodeistvie-0c9c56" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->гравитационные<!--]--><!--]--><!----></a> и электромагнитные взаимодействия в масштабах, характерных для жизнедеятельности человека. Распространяющиеся колебания (механические, электромагнитные и др.) представляют собой <a href="/c/volny-11a6a9" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->волны<!--]--><!--]--><!----></a>. С помощью распространяющихся механических колебаний <a href="/c/plotnost-veshchestva-dacc8e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->плотности<!--]--><!--]--><!----></a> и <a href="/c/davlenie-54433f" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->давления<!--]--><!--]--><!----></a> воздуха, воспринимаемых нами как <a href="/c/zvuk-b74dc8" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->звук<!--]--><!--]--><!----></a>, а также колебаний <a href="/c/elektricheskoe-pole-21b68c" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->электрических<!--]--><!--]--><!----></a> и <a href="/c/magnitnoe-pole-c3384f" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->магнитных<!--]--><!--]--><!----></a> полей, воспринимаемых нами как <a href="/c/svet-549181" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->свет<!--]--><!--]--><!----></a>, мы получаем бóльшую часть прямой информации об окружающем мире.</p><p>В системах с малой <a href="/c/dissipatsiia-energii-a54662" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->диссипацией энергии<!--]--><!--]--><!----></a> колебания физических величин сопровождаются попеременным превращением энергии одного вида в другой. Так, оттягивая маятник (груз на нити) от положения равновесия, мы увеличиваем <a href="/c/potentsial-naia-energiia-41eb77" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->потенциальную энергию<!--]--><!--]--><!----></a> груза, запасённую в поле тяжести. Когда груз отпускаем, он начинает падать, вращаясь около точки подвеса как около центра, и в крайнем нижнем положении вся потенциальная энергия превращается в <a href="/c/kineticheskaia-energiia-06ee5a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->кинетическую<!--]--><!--]--><!----></a>. Поэтому груз проскакивает равновесное положение и процесс перекачки энергии повторяется, пока рассеяние (диссипация) энергии, обусловленное, например, <a href="/c/vneshnee-trenie-ba6ba1" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->трением<!--]--><!--]--><!----></a>, не приведёт к полному прекращению колебаний. В случае колебаний <a href="/c/elektricheskii-zariad-178b4d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->электрических зарядов<!--]--><!--]--><!----></a> и <a href="/c/elektricheskii-tok-1ceecb" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->токов<!--]--><!--]--><!----></a> или электрических и магнитных полей в электромагнитных волнах роль потенциальной энергии обычно играет энергия электрического поля, а кинетической – магнитного поля.</p><h2 id="h2_teoriya_koleбanii_i_voln">Теория колебаний и волн</h2><p>Изучение колебаний играло стимулирующую роль в развитии науки. Так, исследования периодических колебаний маятника дали возможность <a href="/c/galilei-galileo-0b9095" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Г. Галилею<!--]--><!--]--><!----></a> более точно измерять промежутки времени (1636), изучение законов обращения планет вокруг Солнца привело <a href="/c/n-iuton-isaak-0f3dbe" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->И. Ньютона<!--]--><!--]--><!----></a> к созданию начал <a href="/c/klassicheskaia-mekhanika-f6fea9" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->классической механики<!--]--><!--]--><!----></a> (1686). <a href="/c/maksvell-dzheims-klerk-61c7f4" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Дж. Максвелл<!--]--><!--]--><!----></a>, следуя идеям <a href="/c/faradei-maikl-2bd1d1" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->М. Фарадея<!--]--><!--]--><!----></a> и связав свойства электрических колебаний с волновыми характеристиками света, построил основы <a href="/c/klassicheskaia-elektrodinamika-0341fc" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->классической электродинамики<!--]--><!--]--><!----></a> (1864). В результате корпускулярно-волнового рассмотрения материи появилась квантовая механика.</p><p>По мере изучения колебаний различной физической природы возникло убеждение о возможности общего, «внепредметного» подхода к ним, основанного на свойствах и закономерностях колебательных процессов вообще. Вследствие этого появилась теория колебаний и волн (называемая часто нелинейной динамикой), которая на основе математических и физических моделей устанавливает общие свойства колебательных и волновых процессов в реальных системах, не рассматривая детали их поведения (обусловленные их природой – физической, химической, и др.), и определяет связь между параметрами системы и её колебательными (волновыми) характеристиками.</p><p>Изучение любого динамического явления в каждом конкретном случае начинается с идеализации реальной системы, т. е. с построения модели и составления для неё соответствующих <a href="/c/uravnenie-ebd4ae" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->уравнений<!--]--><!--]--><!----></a>. Идеализации одних и тех же систем могут быть различными в зависимости от того, какое явление исследуется. Например, для нахождения условий раскачки качелей при периодическом изменении их длины модель может быть совсем простой – линейный <a href="/c/ostsilliator-6f2540" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->осциллятор<!--]--><!--]--><!----></a> с периодически меняющейся <a href="/c/sobstvennaia-chastota-a2cd6b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->собственной частотой<!--]--><!--]--><!----></a>. Когда же необходимо определить <a href="/c/amplituda-kolebanii-bdda01" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->амплитуду<!--]--><!--]--><!----></a> установившихся колебаний таких качелей, нужно уже учитывать нелинейность (зависимость частоты колебаний качелей от амплитуды колебаний) и использовать модель физического маятника, т. е. нелинейного осциллятора с периодически изменяемым параметром.</p><p>Теория колебаний и волн изучает явления (<a href="/c/rezonans-9e2206" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->резонанс<!--]--><!--]--><!----></a>, <a href="/c/avtokolebaniia-e3a99d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->автоколебания<!--]--><!--]--><!----></a>, <a href="/c/sinkhronizatsiia-kolebanii-i-voln-994ba2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->синхронизация<!--]--><!--]--><!----></a>, <a href="/c/samofokusirovka-sveta-5cc915" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->самофокусировка<!--]--><!--]--><!----></a> и др.) и модели <a href="/c/kolebatel-naia-sistema-d0e36d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->колебательных систем<!--]--><!--]--><!----></a> (линейная и нелинейная системы, система с <a href="/c/sistema-s-sosredotochennymi-parametrami-61457a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->сосредоточенными<!--]--><!--]--><!----></a> или <a href="/c/sistema-s-raspredelionnymi-parametrami-681f20" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->распределёнными<!--]--><!--]--><!----></a> параметрами, система с одной или несколькими степенями свободы и др.). На основе сложившихся представлений теории колебаний можно связать те или иные явления в конкретной системе с её характеристиками, фактически не решая задачу всякий раз заново. Например, преобразование энергии одних колебаний в другие в слабонелинейной системе (волны на воде, электромагнитные колебания в <a href="/c/ionosfera-zemli-f33909" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->ионосфере<!--]--><!--]--><!----></a> или колебания маятника на пружинке) возможно, только если выполнены условия резонанса собственных частот подсистемы.</p><p>Методы теории колебаний и волн – это методы анализа уравнений, описывающих модели реальных систем. Поэтому большинство из них являются общими с методами теории <a href="/c/kachestvennaia-teoriia-differentsial-nykh-uravnenii-b44e9b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->дифференциальных<!--]--><!--]--><!----></a> или разностных уравнений (метод <a href="/c/fazovoe-prostranstvo-1b1222" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->фазового пространства<!--]--><!--]--><!----></a>, метод <a href="/c/otobrazhenie-f655a8" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->отображений<!--]--><!--]--><!----></a> <a href="/c/puankare-anri-9adfed" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->А. Пуанкаре<!--]--><!--]--><!----></a> и др.), <a href="/c/asimptoticheskie-metody-0114ab" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->асимптотическими методами<!--]--><!--]--><!----></a> решения дифференциальных и других уравнений (<a href="/c/uravnenie-van-der-polia-80e0cb" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->метод Ван дер Поля<!--]--><!--]--><!----></a>, <a href="/c/metod-usredneniia-krylova-bogoliubova-e7f779" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->метод усреднения<!--]--><!--]--><!----></a> и т. д.). Специфика методов теории колебаний и волн состоит в том, что при изучении моделей интересуются общими свойствами решений соответствующих уравнений, которые характеризуют её различные колебательные возможности.</p><p>Основные разделы теории колебаний и волн – теория устойчивости линеаризованных систем, теория <a href="/c/parametricheskaia-kolebatel-naia-sistema-13e4fe" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->параметрических систем<!--]--><!--]--><!----></a> и <a href="/c/adiabaticheskii-invariant-12dcae" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->адиабатических инвариантов<!--]--><!--]--><!----></a>, теория автоколебательных и автоволновых процессов, теория <a href="/c/udarnaia-volna-d37604" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->ударных волн<!--]--><!--]--><!----></a> и <a href="/c/soliton-3011c0" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->солитонов<!--]--><!--]--><!----></a>, кинетика колебаний и волн в системах с большим числом степеней свободы, теория <a href="/c/dinamicheskii-khaos-426960" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->динамического хаоса<!--]--><!--]--><!----></a>. Если классическая теория колебаний и волн изучала, как правило, лишь регулярные (периодические) процессы, то во 2-й половине 20 в. усилился интерес к <a href="/c/matematicheskaia-statistika-bdcee6" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->статистическим<!--]--><!--]--><!----></a> задачам, связанным с анализом процессов «рождения» хаоса в детерминированных системах. В этой части, а также в части исследования сложных колебательных и волновых структур в неравновесных средах современная теория колебаний и волн пересекается с <a href="/c/sinergetika-f72bdc" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->синергетикой<!--]--><!--]--><!----></a>.</p><h2 id="h2_harakteristiki_koleбanii">Характеристики колебаний</h2><p>Для простоты рассмотрим колебания, описываемые функцией времени <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{u(t)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span></span><!----></span>, хотя с кинематической точки зрения пространственные и временны́е колебания взаимно сводятся друг к другу при переходе из одной системы отсчёта в другую.</p><p>На рисунке приведены диаграммы а – г, демонстрирующие периодические колебания различной формы, в которых любое значение <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{u(t)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span></span><!----></span> повторяется через одинаковые промежутки времени <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">{T}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span></span></span></span><!----></span>, называемые <a href="/c/period-kolebanii-c20a1f" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->периодом колебаний<!--]--><!--]--><!----></a>, т. е. <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo stretchy="false">(</mo><mi>t</mi><mo>+</mo><mi>T</mi><mo stretchy="false">)</mo><mo>=</mo><mi>u</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{u(t+T)=u(t)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">u</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span></span><!----></span>. Величину, обратную периоду <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">{T}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span></span></span></span><!----></span> и равную числу колебаний в единицу времени, называют <a href="/c/chastota-kolebanii-31aad2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->частотой колебаний<!--]--><!--]--><!----></a> <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ν</mi><mo>=</mo><mn>1</mn><mi mathvariant="normal">/</mi><mi>T</mi></mrow><annotation encoding="application/x-tex">{ν=1/T}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.06366em;">ν</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">1/</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span></span></span></span></span></span><!----></span>; нередко пользуются также круговой, или циклической, частотой <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ω</mi><mo>=</mo><mn>2</mn><mi>π</mi><mi>ν</mi></mrow><annotation encoding="application/x-tex">{ω=2πν}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord mathnormal" style="margin-right:0.06366em;">ν</span></span></span></span></span></span><!----></span>. Обычно частота измеряется в герцах (Гц), что соответствует числу колебаний, совершаемых в 1 с. В случае пространственных колебаний вводят аналогичные понятия пространственного периода (или длины волны <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">λ</span></span></span></span></span><!----></span>) и волнового числа <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">k</mi><mo>=</mo><mn>2</mn><mi>π</mi><mi mathvariant="normal">/</mi><mi>λ</mi></mrow><annotation encoding="application/x-tex">{\boldsymbol{k}=2π/λ}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.01852em;">k</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord mathnormal">λ</span></span></span></span></span></span><!----></span>.</p><p>Разновидностями периодических колебаний являются прямоугольные меандры (рисунок, б), пилообразные колебания (рисунок, в) и наиболее важные <a href="/c/sinusoida-5191f3" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->синусоидальные<!--]--><!--]--><!----></a> (<a href="/c/garmonicheskie-kolebaniia-45dab2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->гармонические<!--]--><!--]--><!----></a>) колебания (рисунок, г). Последние могут быть записаны в виде:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mi>u</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>A</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>φ</mi><mo>=</mo><mi>A</mi><mi>s</mi><mi>i</mi><mi>n</mi><mo stretchy="false">(</mo><mi>ω</mi><mi>t</mi><mo>+</mo><msub><mi>φ</mi><mn>0</mn></msub><mo stretchy="false">)</mo></mrow><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">{u(t)=Asinφ=Asin(ωt+{φ}_{0})},</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">A</span><span class="mord mathnormal">s</span><span class="mord mathnormal">in</span><span class="mord mathnormal">φ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">A</span><span class="mord mathnormal">s</span><span class="mord mathnormal">in</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">φ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span><span class="mpunct">,</span></span></span></span></span><!----></span>где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span></span><!----></span><i> </i>– амплитуда, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>φ</mi></mrow><annotation encoding="application/x-tex">\varphi </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">φ</span></span></span></span></span><!----></span><i> </i>– фаза, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>φ</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex"> \varphi_{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> – её начальное значение. Для строго гармонических колебаний величины <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ω</mi></mrow><annotation encoding="application/x-tex"> \omega </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span></span></span></span></span><!----></span> и <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>φ</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex"> \varphi_{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> не зависят от времени. Часто используют также <a href="/c/kompleksnoe-chislo-a7c76d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->комплексную<!--]--><!--]--><!----></a> запись синусоидальных колебаний:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mover accent="true"><mi>u</mi><mo>~</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mover accent="true"><mi>A</mi><mo>~</mo></mover><msup><mi>e</mi><mrow><mi>i</mi><mi>ω</mi><mi>t</mi></mrow></msup><mo>=</mo><mi>A</mi><mi>c</mi><mi>o</mi><mi>s</mi><mo stretchy="false">(</mo><mi>ω</mi><mi>t</mi><mo>+</mo><msub><mi>φ</mi><mn>0</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>i</mi><mi>A</mi><mi>s</mi><mi>i</mi><mi>n</mi><mo stretchy="false">(</mo><mi>ω</mi><mi>t</mi><mo>+</mo><msub><mi>φ</mi><mn>0</mn></msub><mo stretchy="false">)</mo></mrow><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">{ \tilde{u}(t)=\tilde{A}e^{iωt}=Acos(ωt+φ_{0})+iAsin(ωt+φ_{0})},</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1702em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">u</span></span><span style="top:-3.35em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2222em;"><span class="mord">~</span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9202em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">A</span></span><span style="top:-3.6023em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">~</span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">iω</span><span class="mord mathnormal mtight">t</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">A</span><span class="mord mathnormal">cos</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">i</span><span class="mord mathnormal">A</span><span class="mord mathnormal">s</span><span class="mord mathnormal">in</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span><span class="mpunct">,</span></span></span></span></span><!----></span>в которой комплексная амплитуда <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>A</mi><mo>~</mo></mover><mo>=</mo><mi>A</mi><msup><mi>e</mi><mrow><mi>i</mi><msub><mi>φ</mi><mn>0</mn></msub></mrow></msup></mrow><annotation encoding="application/x-tex">\tilde{A}=Ae^{iφ_{0}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9202em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9202em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">A</span></span><span style="top:-3.6023em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">~</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8247em;"></span><span class="mord mathnormal">A</span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mord mtight"><span class="mord mathnormal mtight">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span><!----></span> объединяет в себе действительные значения амплитуды и <a href="/c/faza-kolebanii-i-voln-b4316f" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->фазы<!--]--><!--]--><!----></a> колебаний. В частности, для показанного на рисунке, д затухающего колебания <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mover accent="true"><mi>A</mi><mo>~</mo></mover><msup><mi>e</mi><mrow><mo>−</mo><mi>δ</mi><mi>t</mi></mrow></msup><msup><mi>e</mi><mrow><mi>i</mi><mi>ω</mi><mi>t</mi></mrow></msup></mrow><annotation encoding="application/x-tex">u(t)=\tilde{A}e^{−δt}e^{iωt}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">u</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9202em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9202em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">A</span></span><span style="top:-3.6023em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">~</span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.03785em;">δ</span><span class="mord mathnormal mtight">t</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">iω</span><span class="mord mathnormal mtight">t</span></span></span></span></span></span></span></span></span></span></span></span></span><!----></span>, где <a href="/c/dekrement-zatukhaniia-a33d84" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->декремент затухания<!--]--><!--]--><!----></a> <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>δ</mi></mrow><annotation encoding="application/x-tex">\delta </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span></span></span></span></span><!----></span> можно либо считать мнимой частью частоты <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>ω</mi><mo>~</mo></mover><mo>=</mo><mi>ω</mi><mo>+</mo><mi>i</mi><mi>δ</mi></mrow><annotation encoding="application/x-tex">\tilde{ω}=ω+iδ</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6679em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span></span><span style="top:-3.35em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">~</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">i</span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span></span></span></span></span><!----></span>, либо относить к экспоненциально убывающей амплитуде. При отрицательном значении <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>δ</mi></mrow><annotation encoding="application/x-tex">\delta </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span></span></span></span></span><!----></span> этот коэффициент называют инкрементом, а соответствующее колебание превращается в экспоненциально растущее (рисунок, е). У колебаний с убывающей амплитудой периодичность нарушается, но при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>δ</mi><mo>≪</mo><mi>ω</mi></mrow><annotation encoding="application/x-tex"> \delta ≪ \omega </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≪</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span></span></span></span></span><!----></span> их всё же можно считать почти периодическими (квазипериодическими), а при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>δ</mi><mo>≫</mo><mi>ω</mi></mrow><annotation encoding="application/x-tex"> \delta ≫ \omega </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≫</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span></span></span></span></span><!----></span> – почти апериодическими, т. е. по существу уже не колебаниями, а монотонными движениями.</p><p>Для передачи информации применяются <a href="/c/moduliatsiia-kolebanii-i-voln-6b67b1" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->модулированные колебания<!--]--><!--]--><!----></a>, амплитуда, фаза или частота которых изменяются по закону кодирования информации; например, в <a href="/c/radioveshchanie-af7b73" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->радиовещании<!--]--><!--]--><!----></a> высокочастотные колебания модулируются колебаниями звуковых частот, передающими речь и <a href="/c/muzyka-ad2a05" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->музыку<!--]--><!--]--><!----></a>. Наиболее часто используют модулированные колебания вида <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>A</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>c</mi><mi>o</mi><mi>s</mi><mi>φ</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{u(t)=A(t)cosφ(t)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">A</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord mathnormal">cos</span><span class="mord mathnormal">φ</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span></span><!----></span>, где амплитуда <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{A(t)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span></span><!----></span> медленно изменяется в масштабах периода колебаний, а фаза <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>φ</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{φ(t)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">φ</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span></span><!----></span> обладает медленно изменяющейся <a href="/c/proizvodnaia-68fd90" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->производной<!--]--><!--]--><!----></a>, равной мгновенной частоте колебаний, т. е. <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ω</mi><mo>=</mo><mi>d</mi><mi>φ</mi><mi mathvariant="normal">/</mi><mi>d</mi><mi>t</mi><mo>≫</mo><msup><mi>ω</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>d</mi><mi>ω</mi><mi mathvariant="normal">/</mi><mi>d</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">{ω=dφ/dt≫ω^{−1}dω/dt}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">φ</span><span class="mord">/</span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≫</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mord">/</span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span></span></span></span><!----></span>. Колебание называется <a href="/c/amplitudnaia-moduliatsiia-2bd936" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->амплитудно-модулированным<!--]--><!--]--><!----></a> (рисунок, ж), если <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ω</mi><mo>=</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>s</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">{ω=const}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">co</span><span class="mord mathnormal">n</span><span class="mord mathnormal">s</span><span class="mord mathnormal">t</span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>φ</mi><mn>0</mn></msub><mo>=</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>s</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">{φ_{0}=const}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8095em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">co</span><span class="mord mathnormal">n</span><span class="mord mathnormal">s</span><span class="mord mathnormal">t</span></span></span></span></span></span><!----></span>. В частности, при синусоидальной модуляции <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>A</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mi>s</mi><mi>i</mi><mi>n</mi><mo stretchy="false">(</mo><mi mathvariant="normal">Ω</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{A(t)=A_{0}(1+αsin(Ωt))}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mord mathnormal">s</span><span class="mord mathnormal">in</span><span class="mopen">(</span><span class="mord">Ω</span><span class="mord mathnormal">t</span><span class="mclose">))</span></span></span></span></span></span><!----></span> такое колебание есть сумма трёх синусоидальных колебаний с частотами <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>ω</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex"> \omega_{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="normal">Ω</mi><mo lspace="0em" rspace="0em">+</mo></msub><msub><mi>ω</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">\Omega_{+} \omega_{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8917em;vertical-align:-0.2083em;"></span><span class="mord"><span class="mord">Ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2583em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">+</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>+<i>ω</i>0, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="normal">Ω</mi><mo lspace="0em" rspace="0em">−</mo></msub><msub><mi>ω</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">Ω_{−} \omega_{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8917em;vertical-align:-0.2083em;"></span><span class="mord"><span class="mord">Ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2583em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>A</mi><mn>0</mn></msub><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mi>s</mi><mi>i</mi><mi>n</mi><mo stretchy="false">(</mo><mi mathvariant="normal">Ω</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mi>c</mi><mi>o</mi><mi>s</mi><mo stretchy="false">(</mo><msub><mi>ω</mi><mn>0</mn></msub><mi>t</mi><mo>+</mo><msub><mi>φ</mi><mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><mi>α</mi><msub><mi>A</mi><mn>0</mn></msub></mrow><mn>2</mn></mfrac><mi>s</mi><mi>i</mi><mi>n</mi><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi mathvariant="normal">Ω</mi><mo>+</mo><msub><mi>ω</mi><mn>0</mn></msub><mo stretchy="false">)</mo><mi>t</mi><mo>+</mo><msub><mi>φ</mi><mn>0</mn></msub><mo stretchy="false">]</mo><mo>+</mo><mfrac><mrow><mi>α</mi><msub><mi>A</mi><mn>0</mn></msub></mrow><mn>2</mn></mfrac><mi>s</mi><mi>i</mi><mi>n</mi><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi mathvariant="normal">Ω</mi><mo>−</mo><msub><mi>ω</mi><mn>0</mn></msub><mo stretchy="false">)</mo><mi>t</mi><mo>−</mo><msub><mi>φ</mi><mn>0</mn></msub><mo stretchy="false">]</mo><mo>+</mo><mo>+</mo><msub><mi>A</mi><mn>0</mn></msub><mi>c</mi><mi>o</mi><mi>s</mi><mo stretchy="false">(</mo><msub><mi>ω</mi><mn>0</mn></msub><mi>t</mi><mo>+</mo><msub><mi>φ</mi><mn>0</mn></msub><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">A_{0}(1+αsin(Ωt))cos(ω_{0}t+φ_{0})=\frac{αA_{0}}{2}sin[(Ω+ω_{0})t+φ_{0}]+\frac{αA_{0}}{2}sin[(Ω−ω_{0})t−φ_{0}]++A_{0}cos(ω_{0}t+φ_{0}).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mord mathnormal">s</span><span class="mord mathnormal">in</span><span class="mopen">(</span><span class="mord">Ω</span><span class="mord mathnormal">t</span><span class="mclose">))</span><span class="mord mathnormal">cos</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.2334em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8884em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4101em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">s</span><span class="mord mathnormal">in</span><span class="mopen">[(</span><span class="mord">Ω</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.2334em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8884em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4101em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">s</span><span class="mord mathnormal">in</span><span class="mopen">[(</span><span class="mord">Ω</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">+</span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">cos</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">φ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span><!----></span>Когда модулирующий сигнал <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{A(t)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span></span><!----></span> имеет сложный периодический характер, результирующее колебание представляется сплошным набором колебаний всех частот (непрерывный спектр), симметрично сгруппированных около центральной (<a href="/c/nesushchaia-chastota-4df3b7" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->несущей<!--]--><!--]--><!----></a>) частоты <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>ω</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">ω_{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>. При <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>=</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>s</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">{A=const}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">co</span><span class="mord mathnormal">n</span><span class="mord mathnormal">s</span><span class="mord mathnormal">t</span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>φ</mi><mo>=</mo><msub><mi>ω</mi><mn>0</mn></msub><mi>t</mi><mo>+</mo><mi>φ</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{φ=ω_{0}t+φ(t)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">φ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">φ</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span></span><!----></span> колебание называется модулированным по фазе, при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>=</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>s</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">{A=const}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">co</span><span class="mord mathnormal">n</span><span class="mord mathnormal">s</span><span class="mord mathnormal">t</span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>φ</mi><mo>=</mo><mo>∫</mo><mi>ω</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>d</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">{φ= \int ω(t)dt}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1111em;vertical-align:-0.3061em;"></span><span class="mord"><span class="mord mathnormal">φ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mop op-symbol small-op" style="margin-right:0.19445em;position:relative;top:-0.0006em;">∫</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span></span></span></span><!----></span><i> </i>модуляция является частным случаем фазовой. На рисунке, з и рисунке, и приведены колебания, модулированные по амплитуде, частоте и фазе.</p><p>При стохастических процессах колебания являются частично и полностью случайными (см. статью <a href="/c/stokhasticheskie-kolebaniia-fd825a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Стохастические колебания<!--]--><!--]--><!----></a>). На рисунке, к дан пример синусоидальных колебаний, модулированных по амплитуде и фазе случайными функциями; на рисунке, л приведена одна из реализаций совершенно неупорядоченного процесса (<a href="/c/belyi-shum-c34351" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->белого шума<!--]--><!--]--><!----></a>), который лишь условно можно отнести к колебаниям.</p><p>В природе и во многих технических устройствах часто возникают движения, почти не отличающиеся (на протяжении больших промежутков времени) от чисто гармонических или равномерно вращательных. Физические приборы, называемые <a href="/c/analizator-spektra-f00f61" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->анализаторами спектра<!--]--><!--]--><!----></a>, выделяют из произвольных процессов наборы колебаний, близких к гармоническим. Возможна и обратная процедура синтеза гармонических колебаний, математически соответствующая <a href="/c/riad-fur-e-6e7e4a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->рядам<!--]--><!--]--><!----></a> и <a href="/c/integral-fur-e-f988fd" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->интегралам<!--]--><!--]--><!----></a> <a href="/c/fur-e-zhan-batist-zhozef-196a17" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Фурье<!--]--><!--]--><!----></a>, которая позволяет воссоздать любой временной процесс сложением или интегрированием гармонических колебаний различных частот и амплитуд.</p><h2 id="h2_svoбodnыe_(soбstvennыe)_koleбaniya">Свободные (собственные) колебания</h2><p>Свободные колебания являются движением системы, предоставленной самой себе, при отсутствии внешних воздействий. При малых отклонениях от состояния равновесия движения системы удовлетворяют <a href="/c/printsip-superpozitsii-093e33" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->принципу суперпозиции<!--]--><!--]--><!----></a>, согласно которому сумма двух произвольных движений также представляет собой допустимое движение системы; такие движения описываются линейными (в частности, дифференциальными) уравнениями. Если система ещё и консервативна (т. е. в ней нет потерь и притока энергии извне), а её параметры не изменяются во времени, то любое собственное колебание может быть однозначно представлено как сумма <a href="/c/normal-nye-kolebaniia-6b014f" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->нормальных колебаний<!--]--><!--]--><!----></a>, синусоидально изменяющихся во времени с определёнными собственными частотами. В колебательных системах с сосредоточенными параметрами, состоящих из <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">{N}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span></span></span><!----></span> связанных осцилляторов (например, цепочка из <a href="/c/kolebatel-nyi-kontur-0a9cd4" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->колебательных контуров<!--]--><!--]--><!----></a> или из соединённых упругими пружинками шариков), число нормальных колебаний (мод) равно <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">{N}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span></span></span><!----></span>. В системах с распределёнными параметрами (струна, <a href="/c/membrana-v-tekhnike-6c2603" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->мембрана<!--]--><!--]--><!----></a>, полый или открытый <a href="/c/rezonator-e70b0c" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->резонатор<!--]--><!--]--><!----></a>) таких колебаний существует бесконечное множество. Например, для струны длиной <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">{L}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">L</span></span></span></span></span></span><!----></span> с закреплёнными концами моды различаются числом полуволн, которые можно уложить на всей длине струны: <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi><mo>=</mo><mfrac><mrow><mi>n</mi><mi>λ</mi></mrow><mn>2</mn></mfrac><mo separator="true">,</mo><mo stretchy="false">(</mo><mi>n</mi><mo>=</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mi mathvariant="normal">∞</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{L= \frac{nλ}{2}, (n=0,1,…,∞)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2251em;vertical-align:-0.345em;"></span><span class="mord"><span class="mord mathnormal">L</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8801em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">nλ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">∞</span><span class="mclose">)</span></span></span></span></span></span><!----></span>. Если скорость распространения волн вдоль струны равна <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>υ</mi></mrow><annotation encoding="application/x-tex">{υ}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">υ</span></span></span></span></span></span><!----></span>, то спектр собственных частот определяется формулой:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>ω</mi><mi>n</mi></msub><mo>=</mo><msub><mi>k</mi><mi>n</mi></msub><mi>υ</mi><mo>=</mo><mn>2</mn><mi>π</mi><mi mathvariant="normal">/</mi><mi>T</mi><mi>n</mi><mo>=</mo><mn>2</mn><mi>π</mi><mi>υ</mi><mi mathvariant="normal">/</mi><mi>λ</mi><mi>n</mi><mo>=</mo><mi>n</mi><mi>π</mi><mi>υ</mi><mi mathvariant="normal">/</mi><mi>L</mi><mo separator="true">,</mo><mspace width="1em"/><mo stretchy="false">(</mo><mi>n</mi><mo>=</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mi mathvariant="normal">∞</mi><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">ω_{n}=k_{n}υ=2π/Tn=2πυ/λn=nπυ/L, \quad(n=0,1,…,∞).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.03588em;">υ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord mathnormal" style="margin-right:0.03588em;">υ</span><span class="mord">/</span><span class="mord mathnormal">λn</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">nπ</span><span class="mord mathnormal" style="margin-right:0.03588em;">υ</span><span class="mord">/</span><span class="mord mathnormal">L</span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">∞</span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span><!----></span>Наличие <a href="/c/dispersiia-voln-7f0ea4" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->дисперсии волн<!--]--><!--]--><!----></a> [зависимости <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>υ</mi><mo>=</mo><mi>υ</mi><mo stretchy="false">(</mo><mi>ω</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{υ=υ(ω)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">υ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">υ</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mclose">)</span></span></span></span></span></span><!----></span>] искажает это простое эквидистантное распределение частот, спектр которых определяется уже из т. н. дисперсионного уравнения: <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>ω</mi><mi>n</mi></msub><mo>=</mo><mi>ω</mi><mo stretchy="false">(</mo><msub><mi>k</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>n</mi><mi>π</mi><mi mathvariant="normal">/</mi><mi>L</mi><mo stretchy="false">)</mo><mi>υ</mi><mo stretchy="false">(</mo><msub><mi>ω</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{ω_{n}=ω(k_{n})=(nπ/L)υ(ω_{n})}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">nπ</span><span class="mord">/</span><span class="mord mathnormal">L</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.03588em;">υ</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><!----></span>. В реальных системах собственные колебания затухают из-за потерь, поэтому их можно считать приближённо гармоническими лишь в интервале времени, меньшем <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mi>δ</mi></mrow><annotation encoding="application/x-tex">{1/δ}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord">1/</span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span></span></span></span></span></span><!----></span>. Затухающее колебание (рисунок, д) можно представить в виде пакета гармонических колебаний, непрерывно заполняющих интервал частот <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>ω</mi><mn>0</mn></msub><mo>±</mo><mi mathvariant="normal">Δ</mi><mi>ω</mi></mrow><annotation encoding="application/x-tex">ω_{0}±Δω</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">±</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span></span></span></span></span><!----></span>, тем более узкий, чем меньше <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>δ</mi><mo stretchy="false">(</mo><mi mathvariant="normal">Δ</mi><mi>ω</mi><mo>∼</mo><mi>δ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{δ(Δω∼δ)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mopen">(</span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∼</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mclose">)</span></span></span></span></span></span><!----></span>. В этом случае говорят об <a href="/c/ushirenie-spektral-nykh-linii-4ea5cb" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->уширении спектральной линии<!--]--><!--]--><!----></a>, иногда характеризуя её добротностью <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi></mrow><annotation encoding="application/x-tex">{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span></span><!----></span>, равной отношению запасённой энергии <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">{W}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span></span><!----></span> к потерям <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">{P}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span></span></span><!----></span> за период колебаний <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mi>π</mi><mi mathvariant="normal">/</mi><mi>ω</mi></mrow><annotation encoding="application/x-tex">{2π/ω}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span></span></span></span></span></span><!----></span>, т. е. <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mo>=</mo><mi>ω</mi><mi>W</mi><mi mathvariant="normal">/</mi><mi>P</mi><mo>≈</mo><mi>ω</mi><mi mathvariant="normal">/</mi><mn>2</mn><mi>δ</mi></mrow><annotation encoding="application/x-tex">{Q=ωW/P≈ω/2δ}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">ωW</span><span class="mord">/</span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≈</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mord">/2</span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span></span></span></span></span></span><!----></span>. Таким образом, сгущение спектра из-за потерь влечёт за собой превращение дискретного спектра в сплошной, когда ширина линий становится приблизительно равной интервалу между ними, т. е. <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>ω</mi><mo>≈</mo><mo stretchy="false">(</mo><msub><mi>ω</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>−</mo><msub><mi>ω</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{Δω≈(ω_{n+1}−ω_{n})}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≈</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><!----></span>.</p><p>Собственные колебания нелинейных систем менее доступны для классификации. Нелинейность систем с дискретным спектром собственных частот приводит к «перекачке» энергии колебаний по спектральным компонентам; при этом возникают процессы конкуренции мод – выживание одних и подавление других.</p><h2 id="h2_vozбuzhdenie_koleбanii">Возбуждение колебаний</h2><p>Возбуждение колебаний происходит либо путём непосредственного воздействия на состояние колебательной системы (раскачка маятника периодическими толчками, включение периодической <a href="/c/elektrodvizhushchaia-sila-cc867e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->ЭДС<!--]--><!--]--><!----></a> в колебательный контур и т. п.), либо путём периодического изменения параметров этой системы (длины подвеса маятника, <a href="/c/elektricheskaia-iomkost-9efb75" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->ёмкости<!--]--><!--]--><!----></a> или <a href="/c/samoinduktsiia-1b86c9" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->самоиндукции<!--]--><!--]--><!----></a> контура, <a href="/c/moduli-uprugosti-9936ce" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->коэффициента упругости<!--]--><!--]--><!----></a> струны и т. п.), либо благодаря «самовозбуждению» колебаний, т. е. возникновению колебательных движений внутри самой системы. В первом случае говорят о <a href="/c/vynuzhdennye-kolebaniia-ace2a4" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->вынужденных колебаниях<!--]--><!--]--><!----></a>, во втором – о параметрическом возбуждении колебаний, в третьем – об <a href="/c/avtokolebaniia-e3a99d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->автоколебаниях<!--]--><!--]--><!----></a>.</p><p>Особое значение при возбуждении колебаний имеет явление, состоящее в резком увеличении отклика системы (амплитуды колебаний) при приближении частоты внешнего воздействия к некоторой резонансной частоте, характеризующей систему. Если последняя линейна и параметры её не зависят от времени, то резонансные частоты совпадают с частотами её собственных колебаний и соответствующий отклик тем сильнее, чем выше добротность колебательной системы. Раскачка происходит до тех пор, пока энергия, вносимая извне (например, при каждом отклонении маятника), превышает потери за период осцилляции. Для линейных колебаний энергия, получаемая от источника, пропорциональна первой степени амплитуды, а потери растут пропорционально её квадрату, поэтому баланс энергий всегда достижим.</p><p>При бо́льших амплитудах колебания становятся нелинейными, происходят смещение собственных частот системы и обогащение их спектра <a href="/c/garmonika-02eac2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->гармониками<!--]--><!--]--><!----></a> и субгармониками. Ограничение амплитуды колебаний может быть обусловлено как нелинейной <a href="/c/dissipatsiia-energii-a54662" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->диссипацией энергии<!--]--><!--]--><!----></a>, так и уходом системы из резонанса. При возбуждении колебаний в <a href="/c/sistema-s-raspredelionnymi-parametrami-681f20" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->системах с распределёнными параметрами<!--]--><!--]--><!----></a> максимальные амплитуды достигаются в случае пространственно-временнóго резонанса, когда не только частота внешнего воздействия, но и его распределение по координатам хорошо «подогнаны» к структуре нормальной моды или когда наступает совмещение не только их частот (резонанс), но и волновых векторов (<a href="/c/sinkhronizm-30a0ef" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->синхронизм<!--]--><!--]--><!----></a>).</p><p>Существует некоторый класс вынужденных колебаний, в котором внешнее воздействие, не являясь чисто колебательным, имеет, однако, настолько богатый частотный спектр, что в нём всегда содержатся резонансные частоты. Например, заряженная частица, пролетающая между двумя плоскостями, возбуждает почти весь набор нормальных волн и колебаний, свойственный этой системе. Сюда же следует отнести <a href="/c/izluchenie-vavilova-cherenkova-4e314e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->излучение Вавилова – Черенкова<!--]--><!--]--><!----></a>, или <a href="/c/tormoznoe-izluchenie-ec0446" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->тормозное излучение<!--]--><!--]--><!----></a> частицы в однородных средах, когда и спектр внешнего воздействия, и спектр собственных колебаний – сплошные, т. е. в них представлены все возможные частоты. Наконец, есть и совсем аномальный случай вынужденных колебаний в системах с непрерывным спектром собственных частот типа <a href="/c/rotator-v-tekhnike-38afe6" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->ротатора<!--]--><!--]--><!----></a> (<a href="/c/makhovik-79657d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->маховик<!--]--><!--]--><!----></a>, колесо, <a href="/c/elektron-1c39f0" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->электрон<!--]--><!--]--><!----></a> в <a href="/c/magnitnoe-pole-c3384f" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->магнитном поле<!--]--><!--]--><!----></a> и др.), где <a href="/c/vrashchatel-noe-dvizhenie-be693b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->вращательное движение<!--]--><!--]--><!----></a> (а следовательно, два ортогональных колебательных движения) может возбуждаться силами, неизменными во времени.</p><p>Параметрическое возбуждение колебаний происходит в результате развития т. н. <a href="/c/parametricheskie-neustoichivosti-817ed3" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->параметрической неустойчивости<!--]--><!--]--><!----></a>, возникающей при периодическом воздействии на те параметры системы, которые определяют величину запасённой колебательной энергии; в электрическом контуре – это <a href="/c/induktivnost-ba48d2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->индуктивность<!--]--><!--]--><!----></a> или ёмкость (но не <a href="/c/elektricheskoe-soprotivlenie-32aba1" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->сопротивление<!--]--><!--]--><!----></a>), у маятника – длина нити или масса груза (но не <a href="/c/koeffitsient-treniia-8f91b2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->коэффициент трения<!--]--><!--]--><!----></a>). Параметрическое возбуждение колебаний проявляется с наибольшей эффективностью при равенстве частоты изменения параметра удвоенной собственной частоте. Сама же система остаётся линейной (см. также статьи <a href="/c/parametricheskaia-kolebatel-naia-sistema-13e4fe" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Параметрическая колебательная система<!--]--><!--]--><!----></a>, <a href="/c/parametricheskii-rezonans-061c21" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Параметрический резонанс<!--]--><!--]--><!----></a>).</p><p>В нелинейной диссипативной системе при наличии источника энергии (в том числе неколебательной) могут зарождаться и устойчиво существовать автоколебания. Во многих системах процесс формирования автоколебаний состоит в последовательном самосогласовании движений. Пусть начальное состояние системы неустойчиво – либо по отношению к ничтожно малым <a href="/c/fluktuatsii-11e7ba" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->флуктуациям<!--]--><!--]--><!----></a> (мягкий режим возбуждения), либо по отношению к определённым конечным возмущениям (жёсткий режим возбуждения). В любом случае спонтанно (случайно) возникшее колебание начнёт увеличиваться по амплитуде (процесс усиления колебаний). Эти усиленные колебания через элемент положительной <a href="/c/obratnaia-sviaz-0ad69b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->обратной связи<!--]--><!--]--><!----></a>, обеспечивающий самосогласованность фаз, снова «подаются» вместо своего возникновения и снова усиливаются, и т. д. Получается очень быстрый (чаще всего экспоненциальный) рост колебаний. Ограничение наступает из-за конечности энергетических ресурсов, а иногда и раньше – из-за рассогласованности фаз.</p><p>Автоколебательные системы обладают большим разнообразием поведения (периодические, многопериодические, хаотические) и широко представлены как в природе, так и в технике: <a href="/c/radiotekhnika-49b955" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->радиотехнические<!--]--><!--]--><!----></a>, <a href="/c/akusticheskaia-sistema-13bf68" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->акустические<!--]--><!--]--><!----></a>, <a href="/c/opticheskaia-sistema-0321c1" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->оптические<!--]--><!--]--><!----></a>, квантовые (<a href="/c/lazer-430c3c" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->лазеры<!--]--><!--]--><!----></a>) генераторы, генераторы с <a href="/c/sistema-s-sosredotochennymi-parametrami-61457a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->сосредоточенными<!--]--><!--]--><!----></a> и распределёнными параметрами, механические автоколебательные системы – часы, ветровые волны на воде, <a href="/c/turbulentnost-fcf219" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->турбулентные<!--]--><!--]--><!----></a> процессы в <a href="/c/aerodinamika-c63b82" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->аэро<!--]--><!--]--><!----></a>- и <a href="/c/gidrodinamika-31c37b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->гидродинамике<!--]--><!--]--><!----></a>, <a href="/c/flatter-1f5296" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->флаттер<!--]--><!--]--><!----></a> крыльев <a href="/c/samoliot-ec66cc" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->самолётов<!--]--><!--]--><!----></a> и др. Часто встречаются более сложные автоколебательные системы, где происходит взаимная <a href="/c/sinkhronizatsiia-kolebanii-i-voln-994ba2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->синхронизация колебаний и волн<!--]--><!--]--><!----></a> или хаотизация колебаний: стимуляция сердца, синхронизация мод в лазерах, индуцированные излучатели электромагнитных волн, переход к турбулентности в гидродинамических течениях <a href="/c/viazkost-93be51" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->вязкой<!--]--><!--]--><!----></a> жидкости, рождение шума в системах связанных <a href="/c/generator-ae518e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->генераторов<!--]--><!--]--><!----></a> и т. д.</p><span class="author _note-exclude"><span itemscope itemprop="author" itemtype="https://schema.org/Person" class="-text-caption-2-italic"><a href="/a/ma-miller-ab38cf" class=""><span itemprop="name">Миллер Михаил Адольфович</span></a><span>, </span></span><span itemscope itemprop="author" itemtype="https://schema.org/Person" class="-text-caption-2-italic"><a href="/a/mi-rabinovich-51e8c3" class=""><span itemprop="name">Рабинович Михаил Израилевич</span></a></span></span></section></section><!--]--></div><span class="bre-inline-menu _article-meta" style=""><meta itemprop="description" content="Колеба́ния, движения или поведение системы, обладающие той или иной степенью повторяемости во времени. Колебания свойственны всем явлениям природы...."><span><span class="bre-inline-menu__item _article-meta max-md:tw-block"><!--[-->Опубликовано <!--]--><span itemprop="datePublished">6 июня 2023 г. в 11:49 (GMT+3). </span></span><span class="bre-inline-menu__item _article-meta max-md:tw-block"> Последнее обновление <span itemprop="dateModified">6 июня 2023 г. в 11:49 (GMT+3).</span></span></span><span class="-flex-divider"></span><span class="bre-inline-menu__item tw-items-start"><button type="button" class="b-button tw-gap-2 b-button--link -text-button-text tw-rounded-lg tw-cursor-pointer" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[-->Связаться с редакцией<!--]--></span></button></span></span></div></div><div class="bre-tags-wrap"><!--[--><span data-v-063d9480><a href="/l/teoriia-kolebanii-440eda" class="bre-article-tag bre-article-tag__link _default _no-border" data-v-063d9480>#Теория колебаний</a><!----></span><!--]--></div></div><aside class="bre-article-page__sidebar -show-on-desktop-s" style=""><!----><nav class="bre-article-loc lg:tw-sticky"><div class="bre-article-loc-button"><span class="bre-article-loc-title">Содержание</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><div class="bre-article-loc-short">Теория колебаний и волн</div></div><!----></nav><div class="bre-article-page__sidebar-wrapper"><div class="article-sidebar"><div class="article-sidebar-button -show-on-tablet -hide-on-desktop-s"><span class="article-sidebar-title">Информация</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><!--[--><div class="article-sidebar-text -show-on-tablet -hide-on-desktop-s"></div><!--]--></div><div class="article-sidebar-wrapper -hide-on-tablet"><!----><!----><!----><span class="bre-media-image article-sidebar-image _note-exclude _clean" data-width="100%" data-display="block"><span class="bre-media-figure _note-exclude _clean" itemscope itemtype="https://schema.org/ImageObject" itemprop="image"><!--[--><span class="bre-media-image-container _placeholder"><meta itemprop="name" content="Физика"><meta itemprop="caption" content="Физика. Научно-образовательный портал «Большая российская энциклопедия»"><!----><!----><span class="tw-flex tw-w-full" style=""><img src="https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120" onerror="this.setAttribute('data-error', 1)" alt="Физика" data-nuxt-img sizes="320px" srcset="https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=Jf8Ovt6NK1CJRMEXmLmu9w&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=9FmjZNIS1_JG-eBy3nkCow&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=W0YAxakNej-ihBYTmKOUhA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=bU5vxPnJKBxMhvgLEjl-uA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=CO7eqX0CglCAJmsuCYDJxQ&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=SNrDJXfJeDUaOjs9TGABPA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=A65s2m2zZF6hgTDDppMoDA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1920 1920w" title="Физика" class="" itemprop="contentUrl"></span><!----></span><!--]--><!----></span><!----><!----></span><div class="article-sidebar-meta"><dl class="tw-mt-0"><!--[--><!--[--><dt>Области знаний:</dt><dd>Теория колебаний и волн</dd><!--]--><!--]--><!----></dl></div></div></div></div></aside></div><!----></article></div><!--]--></div><!----><!--]--><div></div></main><footer class="bre-footer" itemscope itemprop="hasPart" itemtype="https://schema.org/WPFooter"><meta itemprop="copyrightNotice" content="&copy;&nbsp;АНО БРЭ, 2022&nbsp;&mdash;&nbsp;2024. Все права защищены."><div class="bre-footer__inner" itemprop="hasPart" itemscope itemtype="https://schema.org/SiteNavigationElement"><!--[--><div class="_menu bre-footer-section"><ul class="bre-inline-menu _footer-link-groups"><!--[--><li class="_footer-links bre-inline-menu__item"><ul class="bre-inline-menu _footer-links"><!--[--><li class="_button bre-inline-menu__item"><a href="/p/about-project" class="" itemprop="url"><!----><span>О портале</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/author" class="" itemprop="url"><!----><span>Стать автором</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/partners" class="" itemprop="url"><!----><span>Партнёры</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/copyright-holders" class="" itemprop="url"><!----><span>Правообладателям</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/contacts" class="" itemprop="url"><!----><span>Контакты</span></a></li><li class="_button _full-width bre-inline-menu__item"><a href="https://old.bigenc.ru/" rel="noopener noreferrer nofollow" target="_blank" itemprop="url"><!----><span>Старая версия сайта</span></a></li><!--]--></ul></li><li class="bre-inline-menu__item"><ul class="bre-inline-menu"><!--[--><li class="bre-inline-menu__item"><a href="https://t.me/bigenc" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="Telegram"><svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24"> <path fill="currentColor" d="m2.319 11.552 4.147 1.555 1.605 5.189a.49.49 0 0 0 .562.336.487.487 0 0 0 .214-.102l2.312-1.893a.686.686 0 0 1 .84-.024l4.17 3.043a.486.486 0 0 0 .766-.297L19.99 4.59a.494.494 0 0 0-.397-.584.49.49 0 0 0-.258.025l-17.022 6.6a.491.491 0 0 0 .006.92Zm5.493.728 8.107-5.02c.145-.088.294.11.17.227l-6.69 6.25a1.39 1.39 0 0 0-.43.832l-.228 1.698c-.03.227-.346.25-.41.03l-.875-3.096a.823.823 0 0 1 .356-.921Z"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://vk.com/bigenc_ru" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="ВКонтакте"><svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24"> <path fill="currentColor" d="M21.969 6.82c.17.425-.353 1.418-1.567 2.978-.17.213-.389.496-.656.85-.559.663-.875 1.1-.947 1.313-.122.284-.073.555.145.815.122.142.401.426.838.851h.037v.036c.996.874 1.664 1.62 2.004 2.234l.073.141.073.267v.336l-.255.266-.62.124-2.66.071c-.17.024-.37 0-.601-.07a2.607 2.607 0 0 1-.528-.213l-.22-.142a4.162 4.162 0 0 1-.728-.639 28.415 28.415 0 0 1-.71-.78 3.62 3.62 0 0 0-.638-.585c-.219-.153-.413-.206-.583-.16a.18.18 0 0 0-.091.036 1.473 1.473 0 0 0-.183.16 1.148 1.148 0 0 0-.218.301 2.19 2.19 0 0 0-.164.514c-.049.225-.073.49-.073.798a.939.939 0 0 1-.036.266 1.154 1.154 0 0 1-.073.195l-.037.036c-.146.141-.34.212-.583.212h-1.166a4.34 4.34 0 0 1-1.548-.141 5.719 5.719 0 0 1-1.367-.55c-.389-.225-.74-.45-1.057-.674a6.361 6.361 0 0 1-.729-.585l-.255-.248a1.58 1.58 0 0 1-.291-.284c-.122-.141-.37-.449-.747-.922a23.006 23.006 0 0 1-1.111-1.524A29.008 29.008 0 0 1 3.42 9.957 34.16 34.16 0 0 1 2.073 7.21.8.8 0 0 1 2 6.926c0-.071.012-.13.036-.177l.037-.036c.097-.142.291-.213.583-.213h2.879a.49.49 0 0 1 .218.054l.182.088.037.036c.121.07.206.177.255.319.146.33.31.68.492 1.046s.322.644.419.833l.146.284c.218.402.419.75.6 1.046.183.295.347.526.493.691.146.166.291.296.437.39.146.095.267.142.365.142.097 0 .194-.012.291-.036l.036-.053.128-.23.146-.461.09-.816V8.557a6.15 6.15 0 0 0-.108-.727 2.135 2.135 0 0 0-.146-.479l-.037-.106c-.17-.236-.473-.39-.91-.461-.074 0-.05-.083.072-.248a1.55 1.55 0 0 1 .401-.284c.364-.189 1.19-.272 2.478-.248.559 0 1.032.047 1.421.142.121.023.23.065.328.124.097.059.17.142.219.248.048.106.085.213.109.32.024.106.036.26.036.46v.55a5.784 5.784 0 0 0-.036.709v.85c0 .072-.006.214-.018.426a9.251 9.251 0 0 0-.018.497c0 .118.012.254.036.408.024.153.067.283.128.39a.55.55 0 0 0 .4.283c.061.012.152-.023.274-.106a2.55 2.55 0 0 0 .4-.355c.146-.153.328-.384.547-.691.219-.307.45-.662.692-1.064a18.64 18.64 0 0 0 1.13-2.305c.024-.047.055-.1.091-.16.037-.058.08-.1.128-.123h.036l.037-.036.145-.035h.219l2.988-.036c.267-.023.492-.011.674.036.182.047.286.106.31.177l.073.106Z"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://dzen.ru/bigenc" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="Дзен"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <defs> <mask id="inner-star"> <circle cx="12" cy="12" r="9" fill="#fff"/> <path d="M21 12.0964V11.9036C17.0143 11.775 15.195 11.6786 13.7357 10.2643C12.3214 8.805 12.2186 6.98571 12.0964 3H11.9036C11.775 6.98571 11.6786 8.805 10.2643 10.2643C8.805 11.6786 6.98571 11.7814 3 11.9036V12.0964C6.98571 12.225 8.805 12.3214 10.2643 13.7357C11.6786 15.195 11.7814 17.0143 11.9036 21H12.0964C12.225 17.0143 12.3214 15.195 13.7357 13.7357C15.195 12.3214 17.0143 12.2186 21 12.0964Z" fill="#000"/> </mask> </defs> <circle cx="12" cy="12" r="9" fill="currentColor" mask="url(#inner-star)"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://ok.ru/group/70000000707835" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="Одноклассники"><svg viewBox="0 0 200 200" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M100.1 99.2C109.8 99.2 118.6 95.2 124.9 88.9C131.2 82.6 135.2 73.8 135.2 64.1C135.2 54.4 131.2 45.6 124.9 39.3C118.6 33 109.8 29 100.1 29C90.4 29 81.6 33 75.3 39.3C69 45.5 65 54.3 65 64.1C65 73.9 69 82.6 75.3 88.9C81.6 95.2 90.5 99.2 100.1 99.2ZM88.9 52.7C91.8 49.8 95.8 48 100.2 48C104.7 48 108.6 49.8 111.5 52.7C114.4 55.6 116.2 59.6 116.2 64C116.2 68.5 114.4 72.4 111.5 75.3C108.6 78.2 104.6 80 100.2 80C95.7 80 91.8 78.2 88.9 75.3C86 72.4 84.2 68.4 84.2 64C84.2 59.6 86.1 55.6 88.9 52.7Z" fill="currentColor"/> <path d="M147.5 113.4L137.2 99.3C136.6 98.5 135.4 98.4 134.7 99.1C125 107.4 113 112.8 100.1 112.8C87.2 112.8 75.3 107.4 65.5 99.1C64.8 98.5 63.6 98.6 63 99.3L52.7 113.4C52.2 114.1 52.3 115 52.9 115.6C61.6 122.6 71.7 127.4 82.2 129.9L60.4 168.3C59.8 169.4 60.6 170.8 61.8 170.8H83.1C83.8 170.8 84.4 170.4 84.6 169.7L99.8 135.7L115 169.7C115.2 170.3 115.8 170.8 116.5 170.8H137.8C139.1 170.8 139.8 169.5 139.2 168.3L117.4 129.9C127.9 127.4 138 122.8 146.7 115.6C148 115 148.1 114.1 147.5 113.4Z" fill="currentColor"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://www.youtube.com/channel/UCY4SUgcT8rBt4EgK9CAg6Ng" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="YouTube"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M21.1623 4.21363C22.1781 4.48683 22.9706 5.28671 23.2453 6.30818C23.9638 9.22233 23.917 14.7319 23.2604 17.6916C22.9887 18.713 22.1932 19.5099 21.1774 19.7861C18.3094 20.4995 5.46414 20.4114 2.76226 19.7861C1.74641 19.5129 0.953955 18.713 0.679238 17.6916C0.0015019 14.914 0.0482943 9.04019 0.664143 6.32335C0.935842 5.30188 1.73131 4.50505 2.74716 4.22881C6.58112 3.42438 19.7977 3.68392 21.1623 4.21363ZM9.69057 8.44824L15.8491 11.9999L9.69057 15.5515V8.44824Z" fill="currentColor"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://rutube.ru/channel/29677486/" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="RUTUBE"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M3 6.45205C3 4.54554 4.54554 3 6.45205 3H17.5479C19.4545 3 21 4.54554 21 6.45205V17.5479C21 19.4545 19.4545 21 17.5479 21H6.45205C4.54554 21 3 19.4545 3 17.5479V6.45205ZM14.8657 7.43835H6.20547V16.8082H8.6159V13.7598H13.2346L15.342 16.8082H18.0411L15.7173 13.7458C16.439 13.6335 16.9586 13.3665 17.2761 12.9451C17.5936 12.5237 17.7524 11.8494 17.7524 10.9503V10.2479C17.7524 9.71409 17.6947 9.29268 17.5936 8.96955C17.4926 8.64646 17.3194 8.3655 17.0741 8.11265C16.8142 7.87383 16.5256 7.70526 16.1792 7.59288C15.8328 7.49454 15.3997 7.43835 14.8657 7.43835ZM14.476 11.6948H8.6159V9.50336H14.476C14.808 9.50336 15.0389 9.55957 15.1544 9.65789C15.2698 9.75622 15.342 9.93886 15.342 10.2058V10.9925C15.342 11.2734 15.2698 11.456 15.1544 11.5543C15.0389 11.6527 14.808 11.6948 14.476 11.6948ZM19.274 6.57535C19.274 7.18816 18.7771 7.68494 18.1646 7.68494C17.5516 7.68494 17.0548 7.18816 17.0548 6.57535C17.0548 5.96254 17.5516 5.46576 18.1646 5.46576C18.7771 5.46576 19.274 5.96254 19.274 6.57535Z" fill="currentColor"/> </svg> </span><!----></a></li><!--]--></ul></li><!--]--></ul></div><div class="_border bre-footer-section"><ul class="bre-inline-menu"><!--[--><li class="_footer-text bre-inline-menu__item"><span><!----><span>Научно-образовательный портал «Большая российская энциклопедия»<br />Создан при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций Российской Федерации.<br />Свидетельство о регистрации СМИ ЭЛ № ФС77-84198, выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) 15 ноября 2022 года.<br>ISSN: 2949-2076</span></span></li><li class="_footer-text bre-inline-menu__item"><span><!----><span>Учредитель: Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия» <br /> Главный редактор: Кравец С. Л. <br />Телефон редакции: <a href="tel:+74959179000">+7 (495) 917 90 00</a> <br />Эл. почта редакции: <a href="mailto:secretar@greatbook.ru">secretar@greatbook.ru</a></span></span></li><li class="_half-width bre-inline-menu__item"><ul class="bre-inline-menu"><!--[--><li class="tw-h-12 tw-mt-3 bre-inline-menu__item"><span><span class="nuxt-icon tw-text-gray-2 tw-text-[60px] _no-icon-margin" title="АНО «БРЭ»"><svg viewBox="0 0 60 48" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M25.577.226C14.027 1.426 4.087 8.42.903 17.586c-1.187 3.417-1.206 8.83-.045 12.525 4.42 14.064 24.29 21.772 41.012 15.91 4.81-1.686 7.426-3.253 11.082-6.64 9.507-8.81 9.383-22.047-.29-31.086C45.986 2.058 36.151-.872 25.576.226zm12.902 3.345c1.283.355 3.172 1.009 4.198 1.452l1.866.806-2.498.863c-2.472.855-2.529.854-5.365-.107-3.749-1.27-9.587-1.36-14.153-.22-2.764.692-3.65.744-5.015.298-.91-.298-1.657-.717-1.657-.93 0-.435 4.797-2.101 7.962-2.765 2.75-.577 11.74-.207 14.662.603zM16.498 7.354c1.654.685 1.69.756 1.736 3.35.051 2.917.542 5.21.962 4.494.147-.251.406-1.213.574-2.138.169-.924.839-2.208 1.49-2.854 1.145-1.134 2.687-1.289 5.207-.523.928.282.818 10.774-.116 11.128-.385.147-.7.475-.7.73 0 .284 1.353.395 3.494.288 3.904-.195 5.13-.936 5.627-3.4.42-2.078-1.08-3.728-3.748-4.125l-2.108-.313v-2.05c0-2.032.015-2.051 1.617-2.051 1.196 0 1.764.27 2.187 1.04l.57 1.039.28-1.155c.768-3.16 5.399-.393 7.647 4.569 1.253 2.765 2.241 6.748 1.786 7.198-.136.136-5.723.237-12.415.226-9.379-.016-12.595-.173-14.033-.686-1.026-.366-1.918-.67-1.982-.673-.065-.004-.117.409-.117.917 0 .877-.311.924-6.085.924H2.285l.316-1.733c.84-4.62 3.604-9.246 7.303-12.224 3.61-2.905 4.04-3.034 6.594-1.978zm31.704.637c4.444 3.03 8.238 8.665 8.977 13.334l.311 1.964H48.171l-.258-2.821c-.33-3.602-2.508-8.06-5.049-10.334-1.046-.936-1.816-1.789-1.71-1.894.31-.306 3.796-1.516 4.471-1.552.339-.018 1.498.568 2.577 1.303zm-15.32.018c.815.318.741.406-.584.697-1.994.438-8.188-.192-6.88-.7 1.21-.47 6.259-.468 7.463.003zm-1.45 8.003c1.79 1.593 1.82 3.79.064 4.582-1.793.81-2.58-.147-2.58-3.137 0-2.827.585-3.163 2.516-1.445zm-17.73 10.05c-.164 1.016-.152 1.848.026 1.848s1.017-.728 1.864-1.618l1.54-1.617H43.459l-.306 1.964c-.824 5.29-2.498 8.885-4.907 10.53-.976.667-1.813.75-5.132.505l-3.964-.292-.132-5.43c-.129-5.327-.112-5.429.897-5.429 1.575 0 2.733 1.32 2.733 3.115 0 1.338-.219 1.668-1.4 2.11-1.494.558-1.867 1.244-.676 1.244 2.64 0 4.921-3.225 3.992-5.646-.584-1.52-1.303-1.747-5.542-1.747-2.972 0-3.418.095-2.744.583.696.504.787 1.301.672 5.882l-.133 5.298-2.262.374c-2.662.442-3.293.074-4.047-2.355-1.024-3.302-.923-3.132-1.405-2.376-.239.374-.438 1.837-.442 3.252l-.007 2.572-2.547 1.046c-1.475.605-2.943.921-3.486.75-1.374-.431-6.27-5.358-7.66-7.707-1.317-2.227-2.856-7.512-2.4-8.243.166-.266 2.655-.462 5.864-.462H14l-.299 1.848zm43.493.335c-.525 3.8-2.78 7.8-6.359 11.283-1.79 1.742-3.553 3.167-3.916 3.167-.364 0-1.837-.446-3.273-.99l-2.612-.99 2.245-2.36c2.681-2.82 4.187-5.74 4.564-8.85.438-3.62.174-3.444 5.144-3.444h4.51l-.303 2.184zM34.867 39.034c-1.24.715-5.09 1.044-8.004.684-4.526-.56-2.874-1.182 3.103-1.168 4.098.01 5.484.147 4.9.484zm7.727 1.625c1.2.405 2.182.91 2.182 1.122 0 .54-4.773 2.26-8.396 3.028-3.871.82-9.19.82-13.061 0-3.535-.749-8.397-2.485-8.397-2.997 0-.195.81-.62 1.801-.944 1.592-.52 1.955-.489 3.13.273 1.141.74 2.277.86 8.11.86 5.997 0 7.028-.116 8.883-1 2.592-1.235 3.025-1.26 5.748-.342z" fill="currentColor"/></svg> </span><!----></span></li><li class="tw-h-12 tw-mt-3 bre-inline-menu__item"><span><span class="nuxt-icon tw-text-gray-2 tw-text-5xl _no-icon-margin" title="Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации"><svg viewBox="0 0 48 48" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M23.723.258c.06.157 0 .258-.15.258a.254.254 0 0 0-.248.258c0 .142.118.258.263.258.144 0 .216.078.159.172-.058.095.056.172.253.172.196 0 .31-.077.253-.172-.058-.094.014-.172.159-.172.149 0 .263-.146.263-.338 0-.232-.08-.308-.255-.24-.183.072-.226.022-.151-.177.077-.203.005-.277-.27-.277-.262 0-.344.077-.276.258zm-.11 1.57c-.21.214-.128.712.134.815.414.162.781-.076.726-.471-.05-.362-.62-.59-.86-.344zm-.086 1.303c-.277.283-.254 1.342.058 2.608.405 1.644.432 1.654.764.283.508-2.103.396-3.097-.35-3.097a.767.767 0 0 0-.472.206zm-1.65.296c-.984.45-1.211 1.079-.825 2.284.161.502.398 1.124.526 1.382.218.44.284.463 1.032.363.44-.059.823-.127.853-.152.08-.067-.675-3.928-.796-4.07-.056-.066-.412.02-.79.193zm3.392-.113c-.143.439-.788 3.943-.734 3.989.03.025.415.094.855.153.747.1.814.076 1.032-.363.127-.258.364-.88.525-1.382.432-1.348.155-1.927-1.17-2.44-.323-.125-.457-.114-.509.043zM10.175 4.2c-.473.491-.977.824-1.428.944-.977.26-1.39.573-.612.463.325-.046.932-.13 1.35-.186.418-.056 1.193-.33 1.723-.611.53-.28 1.214-.511 1.519-.514.552-.006.55-.008-.288-.429-.464-.233-1-.424-1.189-.425-.19 0-.673.34-1.075.758zm25.301-.313c-.741.39-.747.4-.25.407.28.004.963.233 1.519.508.974.484 1.306.572 2.95.783.912.117.64-.153-.443-.44-.45-.12-.954-.454-1.427-.945-.842-.874-1.193-.921-2.349-.313zm-18.727.71c-.182.21-.193.3-.04.352.112.038.161.14.109.227-.053.086.015.157.15.157.293 0 .477-.415.342-.774-.123-.326-.251-.317-.56.038zm13.94-.038c-.095.254.023.774.176.774.043 0 .193-.116.332-.258.225-.23.225-.287 0-.516-.14-.142-.289-.258-.332-.258-.043 0-.122.116-.175.258zm-18.352.043c-.01.071-.006.361.008.645.015.284-.092.855-.236 1.27-.665 1.913-.131 2.904 1.849 3.431l.675.18-.498-.376c-.83-.627-1.274-1.18-1.274-1.584 0-.21.19-.82.421-1.356.548-1.26.563-2.088.043-2.23-.524-.143-.967-.134-.988.02zm22.253-.014c-.43.12-.378 1.028.127 2.191.232.535.422 1.153.422 1.373 0 .42-.442.973-1.275 1.597l-.497.372.59-.13c1.968-.433 2.597-1.564 1.933-3.475-.144-.414-.239-1.024-.211-1.355.045-.535.004-.605-.372-.629a2.652 2.652 0 0 0-.717.056zM3.422 5.958c-.489.633-.737 1.705-.609 2.632.205 1.48.872 2.56 2.75 4.454.968.977 1.799 1.737 1.845 1.69.212-.216-.4-1.476-1.08-2.223-.728-.8-1.653-2.533-1.539-2.882.031-.095.54.524 1.13 1.377.59.852 1.132 1.512 1.204 1.467.072-.046.177-.272.234-.504.08-.325-.126-.783-.912-2.023-.56-.88-1.327-2.24-1.706-3.021-.38-.78-.753-1.42-.83-1.42-.075 0-.295.204-.487.453zm13.32-.109c0 .26.088.352.296.312.162-.032.295-.172.295-.312 0-.139-.133-.279-.295-.31-.208-.042-.296.051-.296.31zm13.924-.172c-.141.233.05.517.348.517.134 0 .243-.155.243-.345 0-.356-.407-.474-.59-.172zm12.595 1.248c-.38.78-1.147 2.14-1.706 3.021-.787 1.24-.993 1.697-.913 2.023.057.232.163.459.235.504.072.045.613-.615 1.204-1.467.59-.853 1.098-1.472 1.13-1.377.113.349-.812 2.082-1.54 2.882-.68.747-1.292 2.007-1.08 2.222.047.048.877-.712 1.846-1.689 2.38-2.4 3.154-4.12 2.674-5.937-.185-.698-.761-1.602-1.022-1.602-.076 0-.449.64-.828 1.42zM7.924 5.877c-.552.206-.574.402-.127 1.09.395.609.425 1.246.08 1.711-.137.184-.248.449-.248.59 0 .19.097.16.39-.12.528-.505.622-.474.622.21 0 .343.143.749.35.989l.349.406-.1-.475c-.06-.286.009-.688.173-1.011.312-.615.256-1.332-.209-2.684-.324-.943-.453-1.014-1.28-.706zm30.871.706c-.465 1.352-.52 2.069-.208 2.684.164.323.232.725.172 1.011l-.1.475.35-.406c.206-.24.35-.646.35-.99 0-.683.093-.714.621-.209.293.28.39.31.39.12 0-.141-.11-.406-.247-.59-.345-.465-.316-1.102.079-1.71.457-.704.426-.882-.194-1.102-.814-.289-.88-.25-1.213.717zm-22.156.03c-.112.296.049 1.64.265 2.227.117.315.162.264.334-.378.273-1.02.178-1.991-.2-2.065a.365.365 0 0 0-.4.216zm14.005.009c-.132.35.036 1.882.25 2.27.122.224.203.069.356-.688.11-.537.175-1.15.145-1.363-.064-.461-.601-.618-.752-.22zm-15.213.127c-.54.266-.614.788-.251 1.775.3.819.336.85.895.793.32-.032.595-.07.61-.086.014-.014-.091-.627-.235-1.36-.266-1.36-.348-1.451-1.02-1.122zm2.414.004c-.114.362-.428 2.024-.428 2.268 0 .127.237.266.527.31.48.07.554.016.84-.627.172-.387.316-.878.318-1.091.006-.703-1.073-1.442-1.257-.86zm11.397.118c-.435.444-.442 1.04-.021 1.882.29.58.385.644.844.576.587-.088.6-.162.292-1.672-.235-1.153-.542-1.37-1.115-.786zm2.307 1c-.144.733-.249 1.346-.234 1.36.014.015.285.054.602.086.544.056.593.015.905-.754.189-.465.288-.986.23-1.217-.087-.355-.707-.808-1.105-.808-.075 0-.255.6-.398 1.333zm-9.406.066c-.41.168-.413.18-.094.419.457.343 3.443.344 3.902.001.316-.237.31-.252-.148-.43-.591-.23-3.09-.223-3.66.01zm-.928.947c-.186.15-.793.495-1.35.769-1.002.492-1.007.497-.41.497.784 0 2.113-.412 2.857-.887l.59-.377-.421-.125c-.656-.194-.902-.17-1.266.123zm4.304-.123l-.422.125.59.377c.746.476 2.075.888 2.858.886l.602-.002-.9-.427c-.496-.236-1.116-.583-1.377-.773-.501-.364-.67-.387-1.351-.186zm-9.283.805c-.14.053-.365.132-.502.177-.218.072-.218.101 0 .242.531.342 3.034.11 2.683-.25-.138-.14-1.898-.276-2.181-.17zm13.797.01c-.255.045-.464.145-.464.223 0 .238.486.352 1.49.349.986-.003 1.572-.2 1.233-.414-.25-.157-1.688-.257-2.259-.158zm-14.81.807c0 .49.798 1.74 1.55 2.43.904.828 1.277.996.988.446-.264-.503-.213-.575.2-.28.551.394.865.356.638-.076-.212-.403-.049-.435.412-.08.458.353.643.314.512-.106-.11-.354-.106-.355.356-.047.462.309.466.308.374-.052-.092-.357-.082-.356.5.047.623.43 2.109.584 2.318.238.06-.098-.093-.172-.358-.172-.255 0-.798-.165-1.208-.367l-.744-.368.48-.4.48-.4-.588-.007-.588-.006.58-.317c.632-.346.96-.861.41-.646-.54.211-4.146.31-5.257.145-.705-.105-1.055-.1-1.055.018zm10.999-.06c.04.124.335.37.653.543l.58.317-.589.006-.588.006.48.4.48.401-.744.368c-.41.202-.953.367-1.207.367-.266 0-.419.074-.36.172.21.346 1.696.193 2.32-.238.582-.403.591-.404.5-.046-.093.36-.088.36.374.051.461-.308.466-.307.356.047-.131.42.054.459.511.106.46-.355.624-.323.412.08-.226.432.087.47.638.076.413-.295.465-.223.2.28-.289.55.085.382.987-.446.753-.69 1.55-1.94 1.55-2.43 0-.117-.35-.123-1.054-.018-1.11.166-4.716.066-5.256-.145-.224-.088-.295-.057-.243.103zm-11.42.515c-.153.251.405 1.128 1.001 1.576l.517.389-.294-.423a12.588 12.588 0 0 1-.637-1.068c-.366-.691-.426-.74-.587-.474zm17.818.453c-.193.367-.484.856-.646 1.089l-.295.423.517-.389c.673-.505 1.184-1.373.95-1.611-.12-.122-.285.032-.526.488zM.61 11.206c-.159.262.61 1.77 1.246 2.445.734.778 2.12 1.771 3.374 2.417.813.42.915.436 1.159.188.147-.15.239-.293.205-.318a74.556 74.556 0 0 0-.906-.584 9.907 9.907 0 0 1-1.52-1.248c-.65-.683-.657-.702-.188-.521.589.227 1.262.691 2.383 1.644.746.635 1.772 1.09 1.772.785 0-.171-2-2.117-3.088-3.004-.539-.439-1.365-.997-1.836-1.24-.912-.471-2.454-.806-2.6-.564zm45.728-.016c-1.464.295-3.226 1.487-5.419 3.666-.58.576-1.054 1.098-1.054 1.158 0 .304 1.026-.15 1.772-.785 1.12-.953 1.794-1.417 2.383-1.644.469-.18.462-.162-.19.521-.37.39-1.054.95-1.518 1.248-.464.296-.872.56-.906.584-.035.025.057.168.204.318.244.248.346.232 1.16-.188 1.253-.646 2.64-1.64 3.373-2.417.926-.982 1.595-2.716 1.011-2.621-.064.01-.431.082-.816.16zm-32.82.184c-.8.3-.994 1.35-.38 2.064.219.254.295.249.911-.062.645-.325.708-.327 1.535-.051 1.27.424 1.602.2.622-.422-.43-.273-.988-.772-1.24-1.108-.474-.634-.702-.7-1.448-.42zm3.818.077c-.378.292-.784.267-.889-.053-.048-.148.133-.213.577-.21.61.005.628.02.312.263zm14.216-.053c-.104.32-.51.345-.889.053-.316-.243-.299-.258.313-.263.444-.004.625.062.576.21zm1.481.397c-.252.336-.81.835-1.24 1.108-.98.621-.649.845.623.422.827-.276.89-.274 1.534.051.616.31.693.316.91.062.638-.741.418-1.768-.445-2.075-.763-.27-.884-.233-1.382.432zm-25.399.065c-.297.567-.205 2.075.178 2.88.31.655 2.21 2.636 2.526 2.636.215 0-.294-1.246-.574-1.406-.298-.17-1.123-1.516-1.123-1.83 0-.109.318.154.706.584.697.77.709.775.908.396.181-.345.112-.492-.68-1.442-.484-.582-1.022-1.305-1.196-1.605-.367-.633-.504-.672-.745-.213zm31.987.213c-.174.3-.713 1.023-1.198 1.605-.79.95-.86 1.097-.678 1.442.199.38.21.374.907-.396.389-.43.706-.693.706-.585 0 .316-.825 1.661-1.122 1.83-.28.16-.79 1.407-.575 1.407.317 0 2.215-1.98 2.526-2.636.383-.805.476-2.313.178-2.88-.241-.46-.377-.42-.744.213zm-25.41.486c0 .095-.114.172-.253.172-.14 0-.254-.077-.254-.172 0-.095.114-.172.254-.172.139 0 .253.077.253.172zm20 0c.057.095-.015.172-.16.172-.144 0-.262-.077-.262-.172 0-.095.071-.172.158-.172.088 0 .206.077.264.172zm-14.43.497c0 .091.322.48.717.863l.717.698.054-.635c.04-.454-.03-.698-.243-.857-.212-.158-.33-.167-.413-.032-.083.138-.213.136-.474-.006-.208-.114-.359-.127-.359-.03zm7.193.069c-.214.159-.283.402-.244.857l.054.635.718-.698c.752-.732.953-1.157.405-.858-.198.108-.37.11-.473.005-.103-.104-.27-.083-.46.058zm-8.038.304c0 .293-.052.318-.337.162-.525-.286-.4.055.285.773.561.59.634.621.747.327.264-.686.163-1.21-.273-1.412-.374-.174-.422-.157-.422.15zm9.663-.132c-.397.183-.485.739-.222 1.413.124.318.18.293.747-.335.676-.747.791-1.065.288-.79-.264.144-.336.117-.38-.142-.044-.266-.119-.29-.433-.146zm-7.097 1.126c-.04.796.019 1.088.285 1.419.331.412.336.413.593.072.4-.533.33-1.362-.168-1.965-.24-.291-.487-.53-.548-.53-.062.001-.134.452-.162 1.004zm4.285-.474c-.498.603-.569 1.432-.168 1.965.257.341.262.34.594-.072.265-.33.324-.623.284-1.42-.027-.55-.1-1.002-.162-1.002-.061 0-.308.238-.548.529zm-11.354.155c-.573.173-1.067.294-1.097.269-.03-.025-.26-.096-.513-.157-.586-.144-.484.267.14.557.77.358 1.725.244 2.184-.26.34-.374.55-.792.372-.736l-1.086.327zm1.244.142c-.25.265-.454.619-.454.786 0 .283.03.282.464-.026.6-.425 1.474-.725 2.135-.732.497-.005.507-.018.196-.258-.18-.139-.678-.253-1.108-.253-.634 0-.864.09-1.233.483zm14.304-.23c-.31.24-.3.253.196.258.662.007 1.536.307 2.135.732.452.32.464.321.464.006 0-.178-.213-.532-.474-.786-.37-.362-.638-.463-1.233-.463-.418 0-.908.114-1.088.253zm2.457-.093c0 .074.187.34.414.59.459.504 1.414.618 2.185.26.623-.29.726-.7.14-.557-.253.061-.485.133-.515.158-.03.025-.543-.096-1.14-.27-.596-.174-1.084-.256-1.084-.181zm-12.489.748c0 .77.366 1.501.751 1.501.259 0 .43-.37.43-.928 0-.348-.78-1.309-1.064-1.309-.064 0-.117.332-.117.736zm7.373-.253c-.444.473-.555.94-.35 1.482.145.386.508.337.816-.11.27-.394.37-1.854.125-1.854-.075 0-.341.217-.59.482zm-16.74.488c-.643 1 .008 2.858 1.268 3.617.577.348.664.584.167.452-.186-.05-.338-.144-.338-.209 0-.164-2.158-1.804-2.825-2.148-.57-.293-1.965-.438-2.173-.226-.215.22.51 1.366 1.183 1.868.361.27 1.074.692 1.583.938.746.36.955.402 1.07.216.227-.364.19-.419-.496-.734a6.155 6.155 0 0 1-1.14-.708c-.82-.683-.074-.502 1.09.265.575.378 1.175.689 1.334.69.206.002.169.065-.13.22-.56.288-.62.744-.178 1.353l.363.5-.39-.087a45.326 45.326 0 0 0-1.393-.264c-1.17-.206-1.775-.622-.683-.469.372.052.917.148 1.213.213.48.106.528.082.45-.226-.096-.372-1.576-.899-2.518-.897-.763.001-1.76.333-1.76.586 0 .325 1.216 1.138 1.971 1.317.9.213 2.54.197 2.952-.028.25-.136.396-.136.529 0s.062.188-.256.188c-.287 0-.597.189-.886.54l-.445.539.375.407c.252.274.564.407.951.407h.577l-.456.552c-.464.562-1.676 1.232-2.008 1.11-.1-.036.27-.29.822-.563 1.03-.51 1.392-.927.803-.927-.447 0-1.705.463-2.227.82-.233.159-.614.299-.846.31-.232.012-.875.15-1.428.306-.553.156-1.199.278-1.435.27-.777-.026.93-.689 2.388-.927.732-.12 1.367-.255 1.413-.302.045-.046-.343-.129-.862-.183-1.34-.142-3.548.262-4.717.862-.57.292-1.435 1.07-1.435 1.289 0 .262.913.51 1.89.512 1.32.003 3.558-.763 3.933-1.347.154-.24.318-.397.364-.35.047.047-.046.29-.205.537-.369.574-.252.68.73.663 1.12-.02 2.23-.502 2.244-.974.01-.364.012-.363.163.02.119.3.288.386.76.386.334 0 .75-.077.923-.172.286-.156.307-.118.224.407-.114.712.179 1.314.638 1.314.19 0 .561-.221.826-.491l.482-.49.11.447c.129.53.553 1.05.856 1.05.298 0 .914-.836.914-1.24 0-.272.106-.218.582.296.991 1.071 1.163.852 1.182-1.508.01-1.199-.05-2.021-.148-2.021-.09 0-.374.206-.632.458-.36.352-.688.477-1.401.538-1.114.094-1.79-.156-2.39-.883-.378-.458-.425-.641-.344-1.342a5.43 5.43 0 0 1 .441-1.505c.673-1.344.393-2.112-1.216-3.342-.596-.456-1.297-1.172-1.557-1.592-.26-.42-.491-.762-.513-.762-.023 0-.172.204-.333.454zm7.926.019c.156.644.644 1.477.85 1.45.364-.045.262-.855-.175-1.383-.555-.673-.828-.7-.675-.067zm10.308.067c-.433.524-.537 1.317-.184 1.4.194.047.703-.822.86-1.467.152-.633-.121-.606-.676.067zm7.763.21c-.264.426-.966 1.148-1.559 1.604-.592.455-1.188 1-1.323 1.21-.344.532-.306 1.318.1 2.132.192.38.39 1.058.442 1.505.082.7.035.884-.343 1.342-.6.727-1.276.977-2.39.883-.731-.062-1.04-.184-1.433-.568-.275-.27-.553-.435-.619-.369-.064.067-.129 1.01-.143 2.095-.024 1.86-.006 1.975.308 1.975.183 0 .588-.277.9-.615.468-.505.57-.555.57-.28 0 .403.616 1.239.914 1.239.302 0 .727-.52.856-1.05l.11-.448.481.491c.265.27.636.49.826.49.456 0 .752-.6.64-1.299l-.089-.564.536.218c.294.12.725.166.957.103.35-.095.418-.212.396-.677a1.759 1.759 0 0 0-.41-.978l-.382-.415h.526c.322 0 .71-.167 1-.43l.474-.43-.552-.516c-.303-.284-.663-.517-.801-.517s-.25-.085-.25-.19c0-.119.11-.14.295-.053.515.239 2.24.283 3.054.078.919-.233 2.051-.94 2.051-1.283 0-.296-.863-.616-1.66-.616-1.031 0-2.518.51-2.618.898-.08.308-.031.332.45.226.295-.065.84-.161 1.212-.213 1.163-.163.442.282-.773.477-.596.095-1.224.217-1.397.27-.282.088-.277.047.06-.415.45-.62.393-1.075-.17-1.365-.3-.155-.337-.218-.13-.22.158-.001.759-.312 1.333-.69 1.164-.767 1.91-.948 1.09-.265a6.155 6.155 0 0 1-1.14.708c-.683.314-.722.371-.5.727.17.275 1.581-.323 2.64-1.119.703-.529 1.428-1.663 1.207-1.888-.234-.24-1.62-.067-2.298.285-.574.298-2.453 1.734-2.707 2.068-.135.177-.675.345-.674.21 0-.069.217-.25.48-.402 1.28-.742 1.969-2.81 1.246-3.735l-.312-.4-.48.776zm-13.945.848c-.297.856-.255 1.26.192 1.842l.33.43.334-.43c.397-.512.429-1.048.099-1.698-.461-.909-.678-.941-.955-.144zm2.172-.436c-.71.83-.812 1.614-.296 2.278l.333.43.334-.43c.39-.502.443-1.482.113-2.13-.214-.42-.243-.43-.484-.148zm-24.734.003c-.348.243.62 1.431 1.618 1.983 1.108.615 3.585 1.253 5.432 1.4l1.435.116-.417-.34c-.23-.187-1.076-.497-1.88-.688-1.466-.349-3.02-.979-3.02-1.225 0-.194 1.282.087 2.574.565 2.08.77 1.095-.396-1.064-1.26-1.145-.457-1.724-.582-2.944-.635-.836-.036-1.616.002-1.734.084zm43.865.307c-.683.238-1.48.554-1.772.703-.49.251-1.107.867-1.115 1.115-.002.06.509-.082 1.135-.314 1.295-.48 2.574-.76 2.574-.564 0 .261-1.449.855-2.948 1.208-.842.198-1.719.512-1.95.698l-.418.338 1.434-.113c1.85-.146 4.327-.781 5.433-1.395.988-.547 1.97-1.744 1.617-1.972-.477-.31-2.727-.142-3.99.296zm-24.21.342c-.104.654.19 1.814.473 1.858.091.015.27-.192.395-.46.258-.547.07-1.246-.47-1.743-.28-.259-.305-.237-.398.345zm8.132-.325c-.568.663-.685 1.074-.481 1.702.224.692.375.741.633.206.309-.64.368-1.045.241-1.65-.115-.549-.133-.56-.393-.258zm-6.714.204c-.275.523-.22 1.258.135 1.806l.316.489.274-.398c.405-.59.347-1.396-.135-1.856-.405-.388-.408-.389-.59-.041zm5.087.072c-.444.482-.488 1.263-.102 1.825l.273.398.316-.489c.366-.566.413-1.409.103-1.841-.2-.28-.24-.274-.59.107zm-4.148 1.864c-.324.47-.364 1.497-.082 2.126.258.578.381.554.816-.163.407-.672.361-1.276-.15-1.959l-.306-.41-.278.405zm1.498.147c-.142.28-.257.712-.257.963 0 .434.473 1.454.675 1.454.201 0 .675-1.02.675-1.454 0-.52-.436-1.47-.675-1.47-.088 0-.276.228-.418.507zm1.724-.116c-.494.768-.527 1.268-.128 1.926.438.723.56.748.82.169.293-.656.24-1.705-.11-2.144l-.304-.384-.278.433zm-4.762.12c-.368.414-.407 1.208-.1 1.983l.206.516.41-.483c.49-.579.538-1.465.109-2.006l-.3-.377-.325.367zm6.261.026c-.401.585-.344 1.424.135 1.99l.41.483.205-.516c.32-.806.27-1.596-.125-2l-.35-.356-.274.4zm-25.371.503c-.784.158-1.4.447-1.4.656 0 .264.774.872 1.566 1.23.754.34 3.358.677 5.269.683l.675.002-.506-.416c-.35-.288-.818-.45-1.52-.527-.556-.061-1.268-.193-1.58-.292-.837-.265-.323-.493.834-.37.61.065 1.082.025 1.336-.113.543-.296.271-.419-1.674-.757-1.734-.301-1.946-.308-3-.096zm42.159.073c-.688.131-1.447.29-1.688.351-.428.11-.43.117-.1.37.253.194.594.234 1.35.161 1.221-.118 1.763.11.907.381-.313.1-1.025.23-1.581.292-.702.077-1.169.24-1.52.527l-.506.416.675-.002c3.165-.01 5.53-.526 6.454-1.411.51-.488.483-.625-.174-.904-.867-.37-2.442-.444-3.817-.181zm-22.524 1.74c-.624.936-.58 1.103.287 1.103.402 0 .77-.04.82-.09.15-.154-.044-.845-.36-1.272l-.302-.408-.445.667zm1.701-.117c-.159.274-.29.662-.29.86 0 .306.103.36.676.36.573 0 .675-.054.675-.36 0-.362-.495-1.36-.675-1.36-.053 0-.226.225-.386.5zm1.688 0c-.16.274-.29.662-.29.86 0 .306.103.36.675.36.573 0 .676-.054.676-.36 0-.362-.496-1.36-.675-1.36-.053 0-.227.225-.386.5zm1.67-.074c-.151.234-.293.602-.315.817-.037.352.04.397.76.444.579.038.802-.011.802-.175 0-.213-.786-1.512-.915-1.512-.032 0-.182.192-.333.426zm-6.104.14c-.265.702-1.728 1.048-2.363.558-.477-.368-.581-.324-.581.246 0 .582.494 1.135 1.124 1.258.45.088.672-.198.502-.65-.078-.207.066-.258.739-.258.743 0 .846-.046.938-.417.056-.23.025-.559-.07-.732-.165-.299-.178-.3-.289-.005zm7.613.094c-.235.755.026 1.06.907 1.06.774 0 .808.02.79.474-.015.409.039.465.404.414.615-.085 1.181-.692 1.181-1.266 0-.488-.002-.49-.497-.228-.879.463-1.806.28-2.394-.475l-.275-.352-.116.373zM2.312 21.689c-.75.227-1.603.729-1.603.942 0 .103.323.376.717.606.64.374.916.419 2.574.419 1.021 0 2.082-.064 2.358-.142l.503-.142-.418-.33c-.277-.219-.57-.298-.868-.234-.585.123-1.73-.095-1.536-.293.081-.083.685-.181 1.341-.218.748-.042 1.36-.178 1.637-.363.243-.163.443-.326.443-.362 0-.137-4.662-.03-5.148.117zm5.883-.02c-.6.147-1.748.826-1.748 1.035 0 .379 1.308.78 2.48.759 1.504-.026 1.86-.139 1.569-.497-.138-.17-.52-.256-1.126-.256-.569 0-.878-.066-.813-.172.057-.095.332-.172.612-.172.632 0 1.16-.277 1.16-.609 0-.278-1.155-.325-2.134-.088zm29.475.064c0 .354.512.633 1.16.633.28 0 .555.077.613.172.064.106-.245.172-.814.172-.606 0-.988.087-1.126.256-.291.358.065.47 1.57.497 1.18.02 2.48-.38 2.48-.766 0-.08-.337-.346-.748-.591-.952-.569-3.135-.829-3.135-.373zm2.87-.177c0 .313 1.036.682 2.079.74.656.038 1.26.136 1.342.22.194.198-.952.415-1.537.292-.299-.064-.59.015-.868.234l-.417.33.502.142c.276.078 1.337.142 2.358.142 1.658 0 1.934-.045 2.574-.419.395-.23.718-.507.718-.614 0-.108-.361-.384-.802-.614-.725-.378-1.047-.423-3.376-.476-1.415-.032-2.573-.022-2.573.023zm-19.747 1.41c0 .07.165.426.367.792.253.46.426.615.559.502.16-.135.978.276 1.594.802.04.034-.008.145-.108.247-.13.132-.303.104-.606-.098-.316-.21-.456-.231-.548-.08-.07.116-.004.273.153.363.396.226.347.368-.256.731-.475.286-.503.343-.253.53.154.114.28.257.28.318 0 .24-.655.09-1.075-.247-.404-.323-.445-.466-.445-1.545 0-1.114-.025-1.195-.408-1.293-.85-.218-1.022-.06-1.076.989-.099 1.905.66 2.827 2.204 2.68.486-.047 1.004-.137 1.151-.201.156-.068.43.018.656.204l.387.32-.866.648c-.476.357-.865.7-.863.763.002.063.381.367.844.675.462.308.84.618.84.688-.003.265-1.423 1.054-1.61.895-.127-.106-.313.069-.571.538-.212.383-.35.73-.31.771.04.042.43.026.865-.035.621-.087.773-.17.708-.388-.055-.188.184-.46.741-.847l.824-.57.853.57c.587.392.828.657.77.847-.065.218.085.3.708.388.435.06.82.081.854.045.053-.053-.522-1.188-.749-1.48-.035-.044-.124.021-.2.145-.105.174-.293.114-.828-.263-.38-.269-.694-.54-.698-.603-.003-.063.374-.398.838-.746.465-.348.806-.696.76-.774-.048-.077-.428-.36-.845-.63-.417-.268-.759-.544-.759-.613 0-.069.18-.245.399-.392.307-.205.504-.226.855-.09.665.258 1.823.216 2.238-.08.52-.372.926-1.589.864-2.592L28.98 24h-1.351l-.084 1.263c-.071 1.061-.148 1.315-.483 1.591-.424.35-1.036.443-1.036.157a.17.17 0 0 1 .169-.172c.193 0 .235-.513.042-.522-.07-.003-.273-.118-.45-.255-.309-.238-.31-.266-.032-.58.387-.436.034-.681-.403-.28-.22.204-.398.244-.592.133-.232-.132-.143-.25.53-.696.57-.377.847-.476.933-.335.067.111.15.166.185.121.227-.291.802-1.426.75-1.48-.035-.035-.42-.015-.855.046-.623.087-.773.17-.708.388.058.19-.18.453-.755.837l-.84.56-.838-.56c-.614-.41-.815-.64-.748-.861.064-.215-.003-.301-.238-.301-.18 0-.565-.049-.855-.108-.29-.059-.527-.05-.527.02zm15.733.647c.035.118.517.439 1.069.712.552.273.914.53.804.57-.11.04-.429-.049-.709-.196-.663-.35-.695-.343-.695.14 0 .44.432.698 1.621.971.68.157 1.586.048 1.586-.191 0-.372-1.187-1.459-1.988-1.82-.98-.441-1.792-.531-1.688-.186zm3 .116c-.868.135-.702.21 1.132.51 1.244.203 2.77.841 2.069.865-.373.012-1.082-.15-2.676-.61l-.404-.117.39.538c.75 1.033 4.062 1.797 5.44 1.255.254-.1.463-.248.463-.327 0-.22-.866-.998-1.442-1.293-1.213-.624-3.648-1.025-4.971-.82zm-28.929 2.195c-.236.364-.479.913-.539 1.218-.096.49-.065.557.257.557.955 0 2.619-1.371 2.518-2.076-.054-.374-.094-.358-.869.326-1.077.952-1.282.9-.4-.1.189-.212.26-.387.158-.387-.101 0-.3-.044-.44-.1-.17-.066-.4.122-.685.562zm24.542-.243c0 .704 1.656 2.018 2.544 2.018.324 0 .354-.066.258-.557-.159-.81-.91-1.902-1.224-1.78-.14.056-.339.1-.44.1-.101 0-.03.175.157.387.189.213.4.492.472.62.191.341-.415-.013-.839-.49-.184-.207-.468-.45-.631-.539-.244-.133-.297-.09-.297.24zm-10.962.211c-.013.256-.39.209-.478-.06-.047-.144.03-.208.206-.171.155.033.277.137.272.231zm-18.005.424c-.884.517-2.088 1.778-2.088 2.188 0 .158.258.227.844.227.612 0 .935.093 1.173.335.348.355 2.61 5.897 2.796 6.848.06.307.178.56.264.56.085 0 .155.204.155.453 0 .25.168.796.372 1.213.367.75.367.766.057 1.354-.277.524-.287.653-.084 1.067.273.56 1.271 1.543 1.708 1.684.17.056.31.243.31.418 0 .398.925 1.208 1.379 1.208.306 0 .333-.09.271-.903-.038-.497-.12-1.02-.184-1.162-.083-.185.157-.436.855-.894 1.577-1.034 2.164-1.226 3.789-1.242 1.786-.017 2.015-.172 1.502-1.019-.332-.547-.337-.593-.058-.518.343.091 1.222-.534 1.222-.868 0-.144-.175-.19-.525-.138-.594.09-.818-.145-.822-.86-.003-.568.546-.998 1.274-.998.304 0 .65-.139.818-.328.282-.318.262-.33-.69-.397-.832-.059-1.03-.015-1.29.285l-.306.354.176-.369c.131-.273.113-.498-.072-.875-.202-.413-.364-.512-.882-.539-.349-.018-.78-.05-.96-.071-.205-.025-.468.176-.717.546-.215.322-.392.506-.392.41 0-.096.16-.382.357-.637.347-.45.348-.47.043-.71-.64-.503-1.744.153-2.098 1.245-.3.926-.131 1.123.627.728.873-.453 1.042-.419 1.103.227.08.837.535.815 1.298-.06l.64-.736.108.55c.066.333.21.549.37.549.233 0 .232.044-.009.419-.148.23-.245.637-.215.903.036.315-.044.544-.228.656-3.535 2.149-4.644 2.385-5.283 1.126-.229-.451-.36-.523-.942-.523-.496 0-.7-.08-.767-.302-.133-.438-1.1-2.484-1.275-2.699-.186-.227-1.999-4.03-1.999-4.193 0-.065.337-.3.748-.523.646-.35 1.748-1.473 2.2-2.244.22-.375-.725-.079-1.387.434-.677.526-.712.268-.066-.489.264-.31.52-.78.568-1.044.085-.47.08-.474-.27-.178-.917.773-1.675 1.565-1.986 2.077-.378.62-.57.61-.691-.04-.067-.359.034-.498.613-.844.381-.228 1.149-.78 1.706-1.227l1.013-.813-.652.118c-.359.065-1.093.354-1.632.642-1.22.652-1.722.553-.598-.118.7-.418.775-.511.502-.62-.547-.219-.799-.166-1.693.357zm33.962-.357c-.272.109-.197.202.503.62 1.123.671.622.77-.599.118-.539-.288-1.273-.577-1.631-.641l-.652-.118 1.097.883c1.657 1.334 2.887 1.91 4.077 1.91.704 0 .986-.065.986-.227 0-.41-1.204-1.671-2.087-2.188-.895-.523-1.146-.576-1.694-.357zm-16.736.346c.051.084-.026.2-.173.258-.464.181-.63.119-.407-.154.238-.293.443-.33.58-.104zm1.783.104c.175.215.152.258-.138.258-.37 0-.6-.223-.42-.407.17-.173.331-.13.558.149zm-12.566.47c-.28.686-.335 1.467-.125 1.803.27.435 1.886-1.041 1.889-1.726 0-.218-.733.072-.964.38-.18.242-.207.222-.214-.153-.004-.237-.08-.545-.167-.686-.125-.201-.213-.12-.419.382zm2.12-.158c-.353.915-.204 2.354.245 2.354.243 0 1.087-1.033 1.087-1.33 0-.324-.493-.384-.665-.082-.14.244-.171.206-.185-.222-.01-.284-.08-.671-.156-.86-.128-.32-.151-.31-.325.14zm2.024.213c-.403.697-.438 1.077-.158 1.703.257.576.414.553.822-.12.502-.83.587-1.32.28-1.632-.238-.244-.28-.215-.442.316l-.179.584.067-.731c.037-.402.044-.731.016-.731-.029 0-.211.275-.406.611zm14.091.12l.067.73-.179-.583c-.162-.53-.203-.56-.442-.316a.694.694 0 0 0-.161.67c.14.55.743 1.52.944 1.52.09 0 .255-.31.367-.688.175-.598.16-.768-.12-1.304-.451-.864-.553-.87-.476-.03zm2.035-.356c-.057.22-.108.592-.112.829-.006.369-.031.388-.176.136-.172-.302-.665-.242-.665.081 0 .308.848 1.331 1.103 1.331.32 0 .478-.7.372-1.66-.103-.93-.37-1.296-.522-.717zm2.028-.128a2.39 2.39 0 0 0-.117.67c-.005.33-.03.341-.212.097-.23-.31-.965-.6-.964-.38.002.346.721 1.292 1.218 1.6.485.3.561.308.693.068.186-.338.003-1.64-.288-2.045-.206-.287-.225-.288-.33-.01zm3.228.403c.047.257.302.722.567 1.033.615.722.628 1.102.017.517-.517-.495-1.706-.864-1.466-.455.756 1.29 2.592 2.728 3.482 2.728.94 0-.377-2.428-2.05-3.779l-.634-.512.084.468zm-13.538.058c.05.083-.101.24-.336.348-.33.154-.485.149-.686-.022-.233-.197-.23-.241.024-.431.292-.218.836-.16.997.105zm-12.79.304c-1.026.671-1.99 2.449-1.99 3.67 0 .798.021.84.38.729.652-.202 1.45-.919 1.905-1.709.402-.698.417-.795.193-1.23l-.243-.473-.263.518c-.144.285-.384.621-.532.747-.242.204-.251.178-.091-.25.098-.264.326-.69.507-.95.282-.404.742-1.401.629-1.364-.021.007-.244.147-.495.312zm6.2.463c-.241.59-.238.679.045 1.173.427.744.625.536.625-.656 0-1.216-.29-1.441-.67-.517zM29.3 27.42c-.14.375-.001 2 .175 2.045.088.022.298-.2.466-.494.282-.492.285-.585.05-1.162-.267-.649-.536-.8-.69-.389zm6.514-.015c0 .118.19.5.423.85.431.646.814 1.508.67 1.508-.043 0-.296-.306-.562-.68l-.484-.68-.197.441c-.17.38-.136.549.24 1.204.436.758 1.61 1.78 2.045 1.78.313 0 .3-1.381-.02-2.162-.368-.899-1.243-2.07-1.707-2.286-.313-.146-.408-.14-.408.025zm-21.648.982c-.054.142-.186.547-.292.9-.207.686-.507 1.021-.507.567 0-.15.111-.545.247-.876l.247-.603-.506.304c-.79.476-1.214 2.475-.713 3.367.168.301 1.135-.683 1.526-1.553.36-.803.398-1.04.259-1.65-.1-.435-.2-.613-.261-.456zm1.825.467c-.064.388-.229.848-.366 1.023-.228.29-.24.267-.136-.278.114-.593.113-.594-.287-.324-.463.312-.625 1.468-.319 2.288l.182.487.433-.412c.882-.84 1.27-2.204.858-3.007l-.248-.483-.117.706zm15.621-.167c-.35.863.034 2.136.89 2.951l.432.412.182-.487c.309-.828.145-1.975-.327-2.293l-.409-.276.117.594c.178.908-.207.396-.459-.61l-.207-.828-.219.537zm1.935.13c-.162.876.223 1.96.96 2.712.355.36.707.616.785.567.289-.182.346-1.434.103-2.267-.177-.61-.387-.93-.751-1.15l-.506-.304.247.603c.136.331.245.74.242.909-.005.283-.024.281-.25-.024-.136-.183-.294-.59-.352-.906-.146-.794-.347-.853-.478-.14zm-8.869.023c.37.25.672.48.672.514 0 .033-.304.265-.675.516l-.675.455-.675-.455c-.372-.25-.675-.49-.675-.533 0-.074 1.206-.95 1.308-.95.027 0 .351.204.72.453zm-6.74 1.946c-.116.657-.3 1.27-.41 1.364-.11.093-.502.194-.872.224l-.673.056.573.318c.315.175.92.33 1.343.345l.77.025.052-.645c.041-.51-.007-.645-.23-.645-.262 0-.263-.022-.003-.315.465-.522.294-1.922-.233-1.922-.06 0-.203.538-.318 1.195zm11.496-.988c-.295.3-.248 1.35.077 1.715.26.293.26.315 0 .315-.375 0-.396 1.17-.023 1.315.312.122 1.756-.23 2.09-.51.195-.164.098-.22-.504-.289l-.745-.086-.229-1.333c-.233-1.36-.31-1.49-.666-1.127zm2.034 3.1c-.467.23-.473.34-.042.736.185.172.337.412.337.535 0 .123.361.397.802.61.441.212.859.416.928.452.232.121.13-1.004-.138-1.533-.206-.406-1.174-1.068-1.46-.998a6.313 6.313 0 0 0-.427.198zm6.609.07c.08.213.026.257-.235.187-.273-.073-.34-.007-.34.335 0 .341.064.405.323.32.262-.084.307-.037.234.247-.071.277-.01.352.287.352.296 0 .357-.075.286-.352-.073-.284-.028-.33.234-.246.26.084.323.02.323-.32 0-.343-.066-.409-.34-.336-.261.07-.316.026-.235-.188.078-.205.007-.279-.268-.279-.276 0-.346.074-.27.28zm-8.087.36c-.549.052-.738.168-1.001.615-.179.303-.305.629-.282.724.023.094-.054.075-.172-.043-.24-.241-2.341-.304-2.341-.07 0 .36.723.773 1.375.787.552.01.767.111 1.04.482.294.4.314.534.14.922-.168.377-.289.44-.71.378-.644-.096-.746.069-.352.565.204.257.493.39.843.39.581 0 .65.181.337.882-.108.242-.148.489-.088.55.06.06.622.168 1.25.238 1.997.224 4.315.816 5.43 1.386.96.492 1.136.53 1.615.354.295-.109.707-.198.916-.198.85 0 2.018-.971 2.914-2.426l.28-.454-.871-.107c-1.123-.137-2.498-.137-3.787 0-.93.099-1.007.137-.836.416.295.481-.121.852-.952.847-1.3-.006-3.481-.98-3.481-1.554 0-.135.627-.076 1.06.1.27.11.29.044.194-.63-.058-.413-.24-.945-.402-1.182-.162-.237-.333-.84-.38-1.339-.06-.628-.207-1.039-.477-1.332-.215-.234-.435-.411-.488-.395a9.238 9.238 0 0 1-.774.094zm.93 2.294c0 .076.106.163.236.193.195.046.197.093.016.263-.177.166-.275.093-.487-.363-.146-.314-.372-.661-.502-.771-.192-.162-.262-.108-.365.277-.07.263-.112.788-.095 1.166.033.68.155.858 1.037 1.51.412.304.412.304-.094.046-.897-.458-1.097-.703-1.097-1.347 0-.411-.15-.8-.458-1.185-.366-.457-.38-.504-.074-.235.328.288.407.3.54.086.086-.138.157-.44.158-.672.003-.402.03-.391.594.237.325.361.59.72.59.795zm-6.372-.871c-.301.187-.548.434-.548.547 0 .114-.213 0-.474-.255-.547-.535-1.214-.622-1.214-.158 0 .166.133.544.295.837.41.743 1.393 1.907 1.393 1.651 0-.116.272-.518.606-.895.41-.462.635-.908.697-1.376.104-.787.014-.829-.755-.351zm.97.119c0 .253-.09.718-.203 1.034-.176.497-.163.612.105.872.22.213.33.24.384.09.042-.115.262-.489.49-.83l.412-.62-.383-.494c-.485-.627-.804-.648-.804-.052zm-4.108.025c-.366.412-.356.49.142 1.093.233.281.422.622.422.756 0 .322.242.312.513-.021.179-.219.167-.373-.063-.866-.155-.33-.28-.752-.28-.938 0-.425-.368-.437-.734-.024zm-6.358.179c-.408.222-.614.473-.673.817-.06.35-.198.512-.465.551-.5.073-.479.3.06.66.363.242.529.26.95.097l.51-.196-.097.61c-.084.529-.059.594.19.485.158-.069.579-.143.936-.165.986-.061 1.522-.562 1.662-1.55.078-.555.045-.97-.1-1.251l-.217-.422-.363.52c-.2.285-.434.701-.522.924-.117.298-.162.326-.17.104-.02-.55-.798-.348-1.16.301-.152.274-.192.287-.196.064-.002-.154.11-.376.248-.494.257-.217.361-1.376.124-1.376-.07 0-.394.144-.717.32zm16.981-.195c-.346.353.355 1.96 1.02 2.34.367.21 1.035-.007 1.243-.404.149-.283.127-.342-.13-.342a.719.719 0 0 1-.715-.703c0-.404-1.173-1.141-1.418-.89zm5.026.12c-.565.252-1.298 1.131-1.497 1.798-.122.41-.12.41.933.306.58-.058 1.074-.127 1.096-.153.128-.146.258-2.196.138-2.19-.078.003-.38.111-.67.24zm.949.012c0 .143.15.258.337.258.188 0 .338-.115.338-.258 0-.144-.15-.258-.337-.258-.188 0-.338.114-.338.258zm.881.859c.026.614.123 1.12.216 1.125.093.005.613.052 1.156.105.975.096.986.092.867-.308-.204-.682-.94-1.547-1.534-1.8-.31-.131-.605-.24-.657-.24-.052 0-.073.503-.047 1.118zm-.881.001c0 .143.15.258.337.258.188 0 .338-.115.338-.258 0-.143-.15-.258-.337-.258-.188 0-.338.115-.338.258zm.032.903c.031.166.169.301.306.301.136 0 .274-.135.305-.3.04-.212-.051-.302-.306-.302-.254 0-.345.09-.305.301zm-15.732.307c-.23.24-.564.569-.743.731-.865.787-1.11 1.074-1.11 1.303 0 .21.128.2.795-.058 1.187-.459 1.568-.875 1.568-1.71 0-.386-.02-.702-.046-.702-.025 0-.234.196-.464.436zm2.648-.321c-.23.235-.101 1.058.234 1.492.196.254.655.533 1.055.642.39.107.803.273.92.37.155.13.21.089.21-.156 0-.19-.461-.755-1.078-1.321a121.956 121.956 0 0 1-1.154-1.066c-.04-.042-.125-.024-.187.039zm-1.795.625c-.005.655.388 1.669.648 1.669.331 0 .703-.692.792-1.475l.097-.848-.45.516c-.249.287-.482.431-.523.326a3.04 3.04 0 0 0-.317-.516c-.223-.301-.242-.277-.247.328zm13.096.213a.276.276 0 0 0 .158.365c.33.13.48-.026.353-.364-.128-.34-.383-.341-.511-.001zm.936.02c.071.377.562.43.562.062 0-.14-.14-.283-.31-.317-.226-.044-.295.026-.252.256zm.89-.098c-.174.287.217.616.45.379.195-.199.073-.566-.188-.566-.081 0-.2.084-.262.187zm.853-.015c-.141.233.05.517.348.517.133 0 .243-.155.243-.345 0-.356-.407-.474-.59-.172zm1.041-.057c-.205.21-.116.574.14.574.141 0 .254-.153.254-.345 0-.342-.18-.447-.394-.229zm-4.594.244c-.063.103-.036.267.06.364.213.217.54.034.54-.303 0-.29-.435-.334-.6-.06zm5.354.099c.033.174.173.317.311.317.362 0 .31-.5-.06-.573-.225-.044-.294.026-.25.256zm-18.173.733c-.185.187-.965.612-1.733.946-.768.334-1.752.883-2.186 1.22-.888.692-1.489.744-1.467.127.009-.26-.084-.387-.284-.387-.664 0-1.177 1.053-.833 1.71.157.298.13.446-.154.813-.438.568-.442 1.264-.008 1.825.185.24.337.56.337.712 0 .408.293.33.61-.163l.28-.436.306.511c.168.281.456.594.64.694.407.223 1.199.235 1.525.024.168-.108.38-.01.717.333.561.572 1.258.769 1.875.53.388-.15.513-.099 1.025.423.32.327.652.594.736.594.084 0 .405-.265.713-.59.48-.505.62-.566.978-.428.587.228 1.64-.096 2.053-.632.279-.36.396-.405.673-.254.792.432 1.866-.045 2.254-1 .165-.408.19-.418.259-.107.141.64.715 1.074.715.54 0-.13.151-.432.337-.673.44-.569.442-1.523.006-1.926-.251-.231-.293-.383-.17-.618.381-.724.02-1.745-.683-1.933-.258-.068-.344-.017-.323.194.088.92-.458.968-1.489.132-.395-.32-1.478-.909-2.408-1.308-.929-.4-1.768-.854-1.865-1.008-.136-.218-.197-.23-.268-.055-.051.125-.264.43-.472.677-.414.49-.442.476-1.144-.52-.204-.29-.231-.29-.552.033zm.602 2.714c-.192.644-.438 1.904-.548 2.8-.191 1.554-.21 1.606-.418 1.119-.281-.66-.164-1.408.548-3.484.315-.92.584-1.828.598-2.017.022-.308.032-.305.096.034.04.208-.084.905-.276 1.548zm2.528 2.03c.23.732.2 1.688-.064 2.057-.199.277-.24.149-.333-1.042-.059-.747-.298-2.055-.531-2.907-.234-.851-.422-1.664-.42-1.806.005-.22.82 2.015 1.348 3.698zm-4.029-2.759c-.282.328-.714.947-.962 1.377-.436.76-.758.887-.75.297.005-.379.414-.89 1.32-1.653.923-.776 1.049-.783.392-.02zm5.668.683c.37.343.549.667.549.992 0 .582-.29.634-.493.09-.08-.216-.405-.739-.72-1.161-1.087-1.456-.97-1.442.664.079zM19.78 44.17c0 .12-.07.217-.157.217-.248 0-.7-.528-.596-.698.123-.203.753.2.753.481zm8.86-.018c-.297.22-.59.174-.59-.093 0-.075.171-.214.38-.31.482-.224.64.081.21.403z" fill="currentColor"/></svg> </span><!----></span></li><!--]--></ul></li><li class="_half-width _align-end tw-h-12 tw-mt-3 bre-inline-menu__item"><span><span class="nuxt-icon tw-text-gray-2 tw-text-5xl _no-icon-margin" title="16+"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" fill="none"><circle cx="24" cy="24" r="23" stroke="currentColor" stroke-width="2"/><path fill="currentColor" d="M10.11 21.188v-1.516c.703-.031 1.195-.078 1.476-.14.448-.1.812-.298 1.094-.595.192-.203.338-.474.437-.812.057-.203.086-.354.086-.453h1.852V29h-2.282v-7.813H10.11Zm10.77 4.226c0 .61.165 1.107.493 1.492a1.57 1.57 0 0 0 1.25.578c.495 0 .883-.185 1.164-.554.286-.375.43-.86.43-1.453 0-.662-.162-1.167-.485-1.516a1.545 1.545 0 0 0-1.187-.531c-.38 0-.717.114-1.008.343-.438.339-.656.886-.656 1.641Zm3.133-4.89c0-.183-.07-.383-.21-.602-.24-.354-.602-.531-1.086-.531-.724 0-1.24.406-1.547 1.218-.167.448-.282 1.11-.344 1.985.276-.328.596-.568.96-.719a3.243 3.243 0 0 1 1.25-.227c1.006 0 1.829.342 2.47 1.024.645.682.968 1.555.968 2.617 0 1.057-.315 1.99-.945 2.797-.63.807-1.61 1.21-2.937 1.21-1.427 0-2.48-.595-3.157-1.788-.526-.932-.789-2.136-.789-3.61 0-.864.037-1.567.11-2.109.13-.963.382-1.766.757-2.406a3.89 3.89 0 0 1 1.266-1.32c.526-.334 1.154-.5 1.883-.5 1.052 0 1.89.27 2.515.812.625.537.977 1.253 1.055 2.148h-2.219Zm3.85 5.257v-2.039h3.203V20.54h2.055v3.203h3.203v2.04H33.12V29h-2.055v-3.219h-3.203Z"/></svg> </span><!----></span></li><!--]--></ul></div><div class="bre-footer-section"><ul class="bre-inline-menu _min-gap-x _no-gap-y"><!--[--><li class="_footer-copyright bre-inline-menu__item"><span><!----><span>© АНО БРЭ, 2022 — 2025. Все права защищены.</span></span></li><li class="-hide-on-tablet _stretch-width -text-caption-1 text-decoration-underline tw-text-gray-2 tw-cursor-pointer bre-inline-menu__item"><span data-v-tippy><!--[--><!--[-->Условия использования информации.<!--]--><!--]--><span style="display:none;" class=""><span>Вся информация, размещенная на данном портале, предназначена только для использования в личных целях и не подлежит дальнейшему воспроизведению.<br />Медиаконтент (иллюстрации, фотографии, видео, аудиоматериалы, карты, скан образы) может быть использован только с разрешения правообладателей.</span></span></span></li><li class="-show-on-tablet _stretch-width -text-caption-1 text-decoration-underline tw-text-gray-2 tw-cursor-pointer bre-inline-menu__item"><span data-v-tippy><!--[--><!--[-->Условия использования информации.<!--]--><!--]--><span style="display:none;" class=""><span>Вся информация, размещенная на данном портале, предназначена только для использования в личных целях и не подлежит дальнейшему воспроизведению.<br />Медиаконтент (иллюстрации, фотографии, видео, аудиоматериалы, карты, скан образы) может быть использован только с разрешения правообладателей.</span></span></span></li><!--]--></ul></div><!--]--></div></footer><span></span></div></div><!----><!--]--></div><script type="application/json" id="__NUXT_DATA__" data-ssr="true">[["Reactive",1],{"data":2,"state":3,"once":5,"_errors":6,"serverRendered":7,"path":8,"pinia":9},{},{"$sreferer":4},"https://yandex.ru/",["Set"],{},true,"/c/kolebaniia-ef7a5d",{"preview":10,"auth-token":12,"search":15,"page-loading":20,"search-suggestions":21,"filters":24,"component-header":26,"collection":27,"article":28,"article-media-slider":2035,"modal":2049,"article-notes":2050,"article-loc":2051,"article-sidebar":2052,"author":2053,"article-metrics":2054,"collection-articles-favorite":2055,"article-collections":2056,"article-versions":2057,"error-form":2066,"text-selection":2067},{"get_":11,"getError":11,"getPending":7},null,{"post_":11,"postError":11,"postPending":7,"savedRoutePath":11,"isAuthorized":13,"firstNameLetter":14,"fullName":14,"userId":14,"processingRefresh":13,"showAuthModal":11},false,"",{"searchQuery":14,"savedList":16,"limit":17,"offset":18,"loading":13,"isSearchOpened":13,"page":19},[],10,0,1,{"loading":13},{"get_":11,"getError":11,"getPending":7,"headerSearchQuery":14,"pageSearchQuery":14,"selectedSuggestionIndex":22,"focusOn":23},-1,"header",{"get_":11,"getError":11,"getPending":7,"loading":13,"isExtendedSearchOpened":13,"chosenFilters":25},{},{"showCategories":13,"isFixed":13},{"get_":11,"getError":11,"getPending":7,"put_":-1,"putError":11,"putPending":7,"delete_":-1,"deleteError":11,"deletePending":7},{"get_":29,"getError":11,"getPending":13,"headers":2028,"timeline":2033,"isFullScreen":13,"getCache":2034},{"article":30,"components":2022},{"content":31,"createdAt":2001,"id":2002,"lastVersionId":2003,"meta":2004,"sections":11,"slug":2016,"tags":2017,"updatedAt":2001},{"article":32,"biblioRecord":1970,"category":1971,"sidebar":1972,"title":2000},[33],{"content":34,"type":1969},[35],{"attrs":36,"content":38,"marks":11,"text":14,"type":1969},{"section_id":37},"e5bab79e-754c-4002-93fa-8fa07fc9db04",[39,139,196,268,372,436,443,509,514,559,641,715,788,794,810,895,920,994,1079,1214,1284,1309,1352,1358,1450,1559,1564,1570,1631,1636,1676,1745,1807,1832,1958],{"attrs":40,"content":41,"marks":11,"text":14,"type":138},{"textAlign":11},[42,50,52,65,67,76,78,87,89,97,99,107,109,117,119,127,128,136],{"attrs":11,"content":11,"marks":43,"text":48,"type":49},[44],{"attrs":45,"content":11,"marks":11,"text":14,"type":47},{"version":46},"1","bold","Колеба́ния,","text",{"attrs":11,"content":11,"marks":11,"text":51,"type":49}," движения или поведение системы, обладающие той или иной степенью повторяемости во времени. Колебания свойственны всем явлениям природы: пульсирует излучение ",{"attrs":11,"content":11,"marks":53,"text":64,"type":49},[54],{"attrs":55,"content":11,"marks":11,"text":14,"type":63},{"content_id":56,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":59,"link_type":62,"navigation_value":11,"target":14,"version":46},"ed73d648-7528-44a3-b16c-9e6ca9c0d6c6","#","2",{"slug":60,"type":61},"zviozdy-ed73d6","article","51","a","звёзд",{"attrs":11,"content":11,"marks":11,"text":66,"type":49},", внутри которых происходят циклические ",{"attrs":11,"content":11,"marks":68,"text":75,"type":49},[69],{"attrs":70,"content":11,"marks":11,"text":14,"type":63},{"content_id":71,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":72,"link_type":74,"navigation_value":11,"target":14,"version":46},"7ac0a5fc-2e4d-42f0-8b58-fa526fda7453",{"slug":73,"type":61},"termoiadernye-reaktsii-7ac0a5","57","термоядерные реакции",{"attrs":11,"content":11,"marks":11,"text":77,"type":49},"; с высокой степенью периодичности вращаются планеты ",{"attrs":11,"content":11,"marks":79,"text":86,"type":49},[80],{"attrs":81,"content":11,"marks":11,"text":14,"type":63},{"content_id":82,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":83,"link_type":85,"navigation_value":11,"target":14,"version":46},"c236f628-445c-4a10-9335-b726ebc51e6a",{"slug":84,"type":61},"solnechnaia-sistema-c236f6","114","Солнечной системы",{"attrs":11,"content":11,"marks":11,"text":88,"type":49}," (а всякое вращение можно представить себе как два одновременных колебания во взаимно перпендикулярных направлениях); движение ",{"attrs":11,"content":11,"marks":90,"text":96,"type":49},[91],{"attrs":92,"content":11,"marks":11,"text":14,"type":63},{"content_id":93,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":94,"link_type":85,"navigation_value":11,"target":14,"version":46},"f8c12939-0e42-40e5-8051-e856edf6a8ec",{"slug":95,"type":61},"luna-f8c129","Луны",{"attrs":11,"content":11,"marks":11,"text":98,"type":49}," вызывает приливы и отливы на ",{"attrs":11,"content":11,"marks":100,"text":106,"type":49},[101],{"attrs":102,"content":11,"marks":11,"text":14,"type":63},{"content_id":103,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":104,"link_type":85,"navigation_value":11,"target":14,"version":46},"b173fead-c8b9-4abc-87e3-70132482ba6d",{"slug":105,"type":61},"zemlia-b173fe","Земле",{"attrs":11,"content":11,"marks":11,"text":108,"type":49},"; ветры возбуждают колебания и волны на поверхностях водоёмов и т. д. Внутри любого живого организма – от одиночных клеток до их высокоорганизованных популяций – непрерывно происходят разнообразные повторяющиеся процессы (биение сердца, колебания психических состояний и др.). В виде сложнейшей совокупности колебаний частиц и полей (",{"attrs":11,"content":11,"marks":110,"text":116,"type":49},[111],{"attrs":112,"content":11,"marks":11,"text":14,"type":63},{"content_id":113,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":114,"link_type":85,"navigation_value":11,"target":14,"version":46},"1c39f0c9-9028-4bd5-9e18-83e32f7766ad",{"slug":115,"type":61},"elektron-1c39f0","электронов",{"attrs":11,"content":11,"marks":11,"text":118,"type":49},", ",{"attrs":11,"content":11,"marks":120,"text":126,"type":49},[121],{"attrs":122,"content":11,"marks":11,"text":14,"type":63},{"content_id":123,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":124,"link_type":85,"navigation_value":11,"target":14,"version":46},"12c525af-4c0d-4f7e-9abe-e5662406d269",{"slug":125,"type":61},"foton-12c525","фотонов",{"attrs":11,"content":11,"marks":11,"text":118,"type":49},{"attrs":11,"content":11,"marks":129,"text":135,"type":49},[130],{"attrs":131,"content":11,"marks":11,"text":14,"type":63},{"content_id":132,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":133,"link_type":85,"navigation_value":11,"target":14,"version":46},"90867090-af1e-412f-a129-acaafc65b5ec",{"slug":134,"type":61},"proton-908670","протонов",{"attrs":11,"content":11,"marks":11,"text":137,"type":49}," и др.) можно представить «устройство» микромира.","paragraph",{"attrs":140,"content":141,"marks":11,"text":14,"type":138},{"textAlign":11},[142,144,153,155,163,165,173,175,183,185,194],{"attrs":11,"content":11,"marks":11,"text":143,"type":49},"Колебания могут быть регулярными, т. е. строго ",{"attrs":11,"content":11,"marks":145,"text":152,"type":49},[146],{"attrs":147,"content":11,"marks":11,"text":14,"type":63},{"content_id":148,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":149,"link_type":151,"navigation_value":11,"target":14,"version":46},"7cb9c76f-ce41-4e68-a98a-2032f4033117",{"slug":150,"type":61},"periodicheskaia-funktsiia-7cb9c7","107","периодическими",{"attrs":11,"content":11,"marks":11,"text":154,"type":49},", или ",{"attrs":11,"content":11,"marks":156,"text":162,"type":49},[157],{"attrs":158,"content":11,"marks":11,"text":14,"type":63},{"content_id":159,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":160,"link_type":151,"navigation_value":11,"target":14,"version":46},"cd4d97b6-0b34-4bcd-afa5-12295ab79e81",{"slug":161,"type":61},"khaos-cd4d97","хаотическими",{"attrs":11,"content":11,"marks":11,"text":164,"type":49}," (нерегулярными). Хаотические колебания возможны не только в сложных системах (с большим числом ",{"attrs":11,"content":11,"marks":166,"text":172,"type":49},[167],{"attrs":168,"content":11,"marks":11,"text":14,"type":63},{"content_id":169,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":170,"link_type":85,"navigation_value":11,"target":14,"version":46},"958e77ff-a917-4612-849c-106b3646db66",{"slug":171,"type":61},"stepeni-svobody-958e77","степеней свободы",{"attrs":11,"content":11,"marks":11,"text":174,"type":49},"), но и в очень простых, например, в связанных ",{"attrs":11,"content":11,"marks":176,"text":182,"type":49},[177],{"attrs":178,"content":11,"marks":11,"text":14,"type":63},{"content_id":179,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":180,"link_type":62,"navigation_value":11,"target":14,"version":46},"4b4e2f84-062e-48f4-a3fe-8edc4e6d8450",{"slug":181,"type":61},"maiatnik-4b4e2f","маятниках",{"attrs":11,"content":11,"marks":11,"text":184,"type":49}," (см. ",{"attrs":11,"content":11,"marks":186,"text":193,"type":49},[187],{"attrs":188,"content":11,"marks":11,"text":14,"type":63},{"content_id":189,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":190,"link_type":192,"navigation_value":11,"target":14,"version":46},"4d50894f-c45d-48b2-9a35-e2334186b243",{"slug":191,"type":61},"sviazannaia-sistema-4d5089","59","Связанные системы",{"attrs":11,"content":11,"marks":11,"text":195,"type":49}," ).",{"attrs":197,"content":198,"marks":11,"text":14,"type":138},{"textAlign":11},[199,216,218,226,228,236,237,245,247,256,258,266],{"attrs":200,"content":11,"marks":210,"text":14,"type":215},{"alt":14,"caption":201,"copyright":202,"copyrightLink":14,"display":203,"ref_id":204,"src":205,"srcset":206,"storage_link":14,"text":201,"title":207,"ts_expire":208,"width":209},"Различные виды колебаний.","БРЭ Т. 14","left","911ea37f-443a-4b78-a7cf-6407d83473d3","https://i.bigenc.ru/resizer/resize?sign=oSHx0_kLuHNIPVx0OqXH0Q&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=120","https://i.bigenc.ru/resizer/resize?sign=oSHx0_kLuHNIPVx0OqXH0Q&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=2xXURbTqpyP5-pNYy-3PPA&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=GM4xsC4X9gJBoVZBb99PHA&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=pp12F1i_2P1ctTJIbqI01w&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=fL0HtYa5e1fnTzIeK8T8dQ&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=bpI6Re4zzCTJSMZZ1tYuTA&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=OYg3R4ynG9FvLoEqhiT0ag&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=paCtN2orTZVaOz6o8p5ohw&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=WN9PknTH1M9xtOCim9lrBw&filename=vault/621d313a4ed7eb9976735a47385f1e65.webp&width=3840 3840w","Различные виды колебаний","31.12.2099","33%",[211],{"attrs":212,"content":11,"marks":11,"text":14,"type":214},{"caption":201,"display":203,"style":213,"version":46},"width:33%;","wrapper-inline","image",{"attrs":11,"content":11,"marks":11,"text":217,"type":49},"В технике колебания либо выполняют определённые функциональные обязанности (",{"attrs":11,"content":11,"marks":219,"text":225,"type":49},[220],{"attrs":221,"content":11,"marks":11,"text":14,"type":63},{"content_id":222,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":223,"link_type":62,"navigation_value":11,"target":14,"version":46},"11ab60c8-f9af-42a7-8e3d-f718f75e1bd2",{"slug":224,"type":61},"koleso-11ab60","колесо",{"attrs":11,"content":11,"marks":11,"text":227,"type":49},", маятник, ",{"attrs":11,"content":11,"marks":229,"text":235,"type":49},[230],{"attrs":231,"content":11,"marks":11,"text":14,"type":63},{"content_id":232,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":233,"link_type":192,"navigation_value":11,"target":14,"version":46},"0a9cd4ad-dc3e-4e56-a72d-1d7c1b0a8de4",{"slug":234,"type":61},"kolebatel-nyi-kontur-0a9cd4","колебательный контур",{"attrs":11,"content":11,"marks":11,"text":118,"type":49},{"attrs":11,"content":11,"marks":238,"text":244,"type":49},[239],{"attrs":240,"content":11,"marks":11,"text":14,"type":63},{"content_id":241,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":242,"link_type":192,"navigation_value":11,"target":14,"version":46},"ae518e5a-c27a-4be5-81cd-c912e5b0d857",{"slug":243,"type":61},"generator-ae518e","генератор колебаний",{"attrs":11,"content":11,"marks":11,"text":246,"type":49}," и др.), либо возникают как неизбежное проявление физических свойств (",{"attrs":11,"content":11,"marks":248,"text":255,"type":49},[249],{"attrs":250,"content":11,"marks":11,"text":14,"type":63},{"content_id":251,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":252,"link_type":254,"navigation_value":11,"target":14,"version":46},"961b6788-c998-4dec-bda1-372af62e829f",{"slug":253,"type":61},"vibratsiia-961b67","52","вибрации",{"attrs":11,"content":11,"marks":11,"text":257,"type":49}," машин и сооружений, неустойчивости и вихревые потоки при движении тел в ",{"attrs":11,"content":11,"marks":259,"text":265,"type":49},[260],{"attrs":261,"content":11,"marks":11,"text":14,"type":63},{"content_id":262,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":263,"link_type":192,"navigation_value":11,"target":14,"version":46},"d6a6d7da-3bc4-466c-9d91-22757276dd73",{"slug":264,"type":61},"gaz-d6a6d7","газах",{"attrs":11,"content":11,"marks":11,"text":267,"type":49}," и т. п.).",{"attrs":269,"content":270,"marks":11,"text":14,"type":138},{"textAlign":11},[271,273,282,284,292,294,302,304,312,314,322,323,331,333,341,343,351,352,360,362,370],{"attrs":11,"content":11,"marks":11,"text":272,"type":49},"В физике особо выделяются колебания двух видов – ",{"attrs":11,"content":11,"marks":274,"text":281,"type":49},[275],{"attrs":276,"content":11,"marks":11,"text":14,"type":63},{"content_id":277,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":278,"link_type":280,"navigation_value":11,"target":14,"version":46},"6727b414-ab55-4712-9ef1-cb8d001bfe73",{"slug":279,"type":61},"mekhanicheskoe-dvizhenie-6727b4","9","механические",{"attrs":11,"content":11,"marks":11,"text":283,"type":49}," и ",{"attrs":11,"content":11,"marks":285,"text":291,"type":49},[286],{"attrs":287,"content":11,"marks":11,"text":14,"type":63},{"content_id":288,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":289,"link_type":280,"navigation_value":11,"target":14,"version":46},"faaf77b4-850e-4154-90f9-b258827b3fe8",{"slug":290,"type":61},"elektromagnitnoe-pole-faaf77","электромагнитные",{"attrs":11,"content":11,"marks":11,"text":293,"type":49},", а также их электромеханические комбинации. Это обусловлено той исключительной ролью, которую играют ",{"attrs":11,"content":11,"marks":295,"text":301,"type":49},[296],{"attrs":297,"content":11,"marks":11,"text":14,"type":63},{"content_id":298,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":299,"link_type":280,"navigation_value":11,"target":14,"version":46},"0c9c56f4-3f7a-41c9-a420-ac149f12063f",{"slug":300,"type":61},"gravitatsionnoe-vzaimodeistvie-0c9c56","гравитационные",{"attrs":11,"content":11,"marks":11,"text":303,"type":49}," и электромагнитные взаимодействия в масштабах, характерных для жизнедеятельности человека. Распространяющиеся колебания (механические, электромагнитные и др.) представляют собой ",{"attrs":11,"content":11,"marks":305,"text":311,"type":49},[306],{"attrs":307,"content":11,"marks":11,"text":14,"type":63},{"content_id":308,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":309,"link_type":280,"navigation_value":11,"target":14,"version":46},"11a6a928-bdc2-4974-a82e-fba34a493004",{"slug":310,"type":61},"volny-11a6a9","волны",{"attrs":11,"content":11,"marks":11,"text":313,"type":49},". С помощью распространяющихся механических колебаний ",{"attrs":11,"content":11,"marks":315,"text":321,"type":49},[316],{"attrs":317,"content":11,"marks":11,"text":14,"type":63},{"content_id":318,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":319,"link_type":85,"navigation_value":11,"target":14,"version":46},"dacc8ed6-e7dd-4514-b00c-d8635aafae0c",{"slug":320,"type":61},"plotnost-veshchestva-dacc8e","плотности",{"attrs":11,"content":11,"marks":11,"text":283,"type":49},{"attrs":11,"content":11,"marks":324,"text":330,"type":49},[325],{"attrs":326,"content":11,"marks":11,"text":14,"type":63},{"content_id":327,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":328,"link_type":85,"navigation_value":11,"target":14,"version":46},"54433f5d-2122-423a-907e-bc396024d8e7",{"slug":329,"type":61},"davlenie-54433f","давления",{"attrs":11,"content":11,"marks":11,"text":332,"type":49}," воздуха, воспринимаемых нами как ",{"attrs":11,"content":11,"marks":334,"text":340,"type":49},[335],{"attrs":336,"content":11,"marks":11,"text":14,"type":63},{"content_id":337,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":338,"link_type":280,"navigation_value":11,"target":14,"version":46},"b74dc84c-12d0-4d24-8ad9-141a6bc6f033",{"slug":339,"type":61},"zvuk-b74dc8","звук",{"attrs":11,"content":11,"marks":11,"text":342,"type":49},", а также колебаний ",{"attrs":11,"content":11,"marks":344,"text":350,"type":49},[345],{"attrs":346,"content":11,"marks":11,"text":14,"type":63},{"content_id":347,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":348,"link_type":85,"navigation_value":11,"target":14,"version":46},"21b68c0e-4543-4f96-af5e-25beeffb89a4",{"slug":349,"type":61},"elektricheskoe-pole-21b68c","электрических",{"attrs":11,"content":11,"marks":11,"text":283,"type":49},{"attrs":11,"content":11,"marks":353,"text":359,"type":49},[354],{"attrs":355,"content":11,"marks":11,"text":14,"type":63},{"content_id":356,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":357,"link_type":85,"navigation_value":11,"target":14,"version":46},"c3384f89-0d25-4550-8756-84f354aeafb6",{"slug":358,"type":61},"magnitnoe-pole-c3384f","магнитных",{"attrs":11,"content":11,"marks":11,"text":361,"type":49}," полей, воспринимаемых нами как ",{"attrs":11,"content":11,"marks":363,"text":369,"type":49},[364],{"attrs":365,"content":11,"marks":11,"text":14,"type":63},{"content_id":366,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":367,"link_type":280,"navigation_value":11,"target":14,"version":46},"5491811b-f3cc-40b1-9cd3-19c776818ac7",{"slug":368,"type":61},"svet-549181","свет",{"attrs":11,"content":11,"marks":11,"text":371,"type":49},", мы получаем бóльшую часть прямой информации об окружающем мире.",{"attrs":373,"content":374,"marks":11,"text":14,"type":138},{"textAlign":11},[375,377,385,387,395,397,405,407,415,417,425,426,434],{"attrs":11,"content":11,"marks":11,"text":376,"type":49},"В системах с малой ",{"attrs":11,"content":11,"marks":378,"text":384,"type":49},[379],{"attrs":380,"content":11,"marks":11,"text":14,"type":63},{"content_id":381,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":382,"link_type":85,"navigation_value":11,"target":14,"version":46},"a546624f-07cb-4757-a4a0-d6cb69de226c",{"slug":383,"type":61},"dissipatsiia-energii-a54662","диссипацией энергии",{"attrs":11,"content":11,"marks":11,"text":386,"type":49}," колебания физических величин сопровождаются попеременным превращением энергии одного вида в другой. Так, оттягивая маятник (груз на нити) от положения равновесия, мы увеличиваем ",{"attrs":11,"content":11,"marks":388,"text":394,"type":49},[389],{"attrs":390,"content":11,"marks":11,"text":14,"type":63},{"content_id":391,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":392,"link_type":85,"navigation_value":11,"target":14,"version":46},"41eb77b2-1e1e-48d1-ab97-565196e24997",{"slug":393,"type":61},"potentsial-naia-energiia-41eb77","потенциальную энергию",{"attrs":11,"content":11,"marks":11,"text":396,"type":49}," груза, запасённую в поле тяжести. Когда груз отпускаем, он начинает падать, вращаясь около точки подвеса как около центра, и в крайнем нижнем положении вся потенциальная энергия превращается в ",{"attrs":11,"content":11,"marks":398,"text":404,"type":49},[399],{"attrs":400,"content":11,"marks":11,"text":14,"type":63},{"content_id":401,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":402,"link_type":85,"navigation_value":11,"target":14,"version":46},"06ee5a9c-f63b-4da6-a617-65764cf0dfaf",{"slug":403,"type":61},"kineticheskaia-energiia-06ee5a","кинетическую",{"attrs":11,"content":11,"marks":11,"text":406,"type":49},". Поэтому груз проскакивает равновесное положение и процесс перекачки энергии повторяется, пока рассеяние (диссипация) энергии, обусловленное, например, ",{"attrs":11,"content":11,"marks":408,"text":414,"type":49},[409],{"attrs":410,"content":11,"marks":11,"text":14,"type":63},{"content_id":411,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":412,"link_type":85,"navigation_value":11,"target":14,"version":46},"ba6ba191-ba90-4901-a58e-3fd34b6b6f75",{"slug":413,"type":61},"vneshnee-trenie-ba6ba1","трением",{"attrs":11,"content":11,"marks":11,"text":416,"type":49},", не приведёт к полному прекращению колебаний. В случае колебаний ",{"attrs":11,"content":11,"marks":418,"text":424,"type":49},[419],{"attrs":420,"content":11,"marks":11,"text":14,"type":63},{"content_id":421,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":422,"link_type":85,"navigation_value":11,"target":14,"version":46},"178b4dda-c5c9-4cd7-bb39-5ec34d4f352d",{"slug":423,"type":61},"elektricheskii-zariad-178b4d","электрических зарядов",{"attrs":11,"content":11,"marks":11,"text":283,"type":49},{"attrs":11,"content":11,"marks":427,"text":433,"type":49},[428],{"attrs":429,"content":11,"marks":11,"text":14,"type":63},{"content_id":430,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":431,"link_type":85,"navigation_value":11,"target":14,"version":46},"1ceecb7f-dd97-4601-90c1-c41e8f9e5ed0",{"slug":432,"type":61},"elektricheskii-tok-1ceecb","токов",{"attrs":11,"content":11,"marks":11,"text":435,"type":49}," или электрических и магнитных полей в электромагнитных волнах роль потенциальной энергии обычно играет энергия электрического поля, а кинетической – магнитного поля.",{"attrs":437,"content":439,"marks":11,"text":14,"type":442},{"textAlign":11,"version":46,"id":438},"h2_teoriya_koleбanii_i_voln",[440],{"attrs":11,"content":11,"marks":11,"text":441,"type":49},"Теория колебаний и волн","h2",{"attrs":444,"content":445,"marks":11,"text":14,"type":138},{"textAlign":11},[446,448,457,459,467,469,477,479,487,489,497,499,507],{"attrs":11,"content":11,"marks":11,"text":447,"type":49},"Изучение колебаний играло стимулирующую роль в развитии науки. Так, исследования периодических колебаний маятника дали возможность ",{"attrs":11,"content":11,"marks":449,"text":456,"type":49},[450],{"attrs":451,"content":11,"marks":11,"text":14,"type":63},{"content_id":452,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":453,"link_type":455,"navigation_value":11,"target":14,"version":46},"0b909562-c63e-4468-b904-55c08413b195",{"slug":454,"type":61},"galilei-galileo-0b9095","25","Г. Галилею",{"attrs":11,"content":11,"marks":11,"text":458,"type":49}," более точно измерять промежутки времени (1636), изучение законов обращения планет вокруг Солнца привело ",{"attrs":11,"content":11,"marks":460,"text":466,"type":49},[461],{"attrs":462,"content":11,"marks":11,"text":14,"type":63},{"content_id":463,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":464,"link_type":455,"navigation_value":11,"target":14,"version":46},"0f3dbee9-9266-4546-90fd-9eb3f14537cf",{"slug":465,"type":61},"n-iuton-isaak-0f3dbe","И. Ньютона",{"attrs":11,"content":11,"marks":11,"text":468,"type":49}," к созданию начал ",{"attrs":11,"content":11,"marks":470,"text":476,"type":49},[471],{"attrs":472,"content":11,"marks":11,"text":14,"type":63},{"content_id":473,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":474,"link_type":85,"navigation_value":11,"target":14,"version":46},"f6fea9f2-cd3d-4c5c-921e-e84a66a39fe1",{"slug":475,"type":61},"klassicheskaia-mekhanika-f6fea9","классической механики",{"attrs":11,"content":11,"marks":11,"text":478,"type":49}," (1686). ",{"attrs":11,"content":11,"marks":480,"text":486,"type":49},[481],{"attrs":482,"content":11,"marks":11,"text":14,"type":63},{"content_id":483,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":484,"link_type":455,"navigation_value":11,"target":14,"version":46},"61c7f467-6517-400a-a81f-70f634854861",{"slug":485,"type":61},"maksvell-dzheims-klerk-61c7f4","Дж. Максвелл",{"attrs":11,"content":11,"marks":11,"text":488,"type":49},", следуя идеям ",{"attrs":11,"content":11,"marks":490,"text":496,"type":49},[491],{"attrs":492,"content":11,"marks":11,"text":14,"type":63},{"content_id":493,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":494,"link_type":455,"navigation_value":11,"target":14,"version":46},"2bd1d1ae-d2f3-46b4-9e7f-84b796f1e606",{"slug":495,"type":61},"faradei-maikl-2bd1d1","М. Фарадея",{"attrs":11,"content":11,"marks":11,"text":498,"type":49}," и связав свойства электрических колебаний с волновыми характеристиками света, построил основы ",{"attrs":11,"content":11,"marks":500,"text":506,"type":49},[501],{"attrs":502,"content":11,"marks":11,"text":14,"type":63},{"content_id":503,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":504,"link_type":85,"navigation_value":11,"target":14,"version":46},"0341fcd2-55a5-4404-ad08-06b86b592189",{"slug":505,"type":61},"klassicheskaia-elektrodinamika-0341fc","классической электродинамики",{"attrs":11,"content":11,"marks":11,"text":508,"type":49}," (1864). В результате корпускулярно-волнового рассмотрения материи появилась квантовая механика.",{"attrs":510,"content":511,"marks":11,"text":14,"type":138},{"textAlign":11},[512],{"attrs":11,"content":11,"marks":11,"text":513,"type":49},"По мере изучения колебаний различной физической природы возникло убеждение о возможности общего, «внепредметного» подхода к ним, основанного на свойствах и закономерностях колебательных процессов вообще. Вследствие этого появилась теория колебаний и волн (называемая часто нелинейной динамикой), которая на основе математических и физических моделей устанавливает общие свойства колебательных и волновых процессов в реальных системах, не рассматривая детали их поведения (обусловленные их природой – физической, химической, и др.), и определяет связь между параметрами системы и её колебательными (волновыми) характеристиками.",{"attrs":515,"content":516,"marks":11,"text":14,"type":138},{"textAlign":11},[517,519,527,529,537,539,547,549,557],{"attrs":11,"content":11,"marks":11,"text":518,"type":49},"Изучение любого динамического явления в каждом конкретном случае начинается с идеализации реальной системы, т. е. с построения модели и составления для неё соответствующих ",{"attrs":11,"content":11,"marks":520,"text":526,"type":49},[521],{"attrs":522,"content":11,"marks":11,"text":14,"type":63},{"content_id":523,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":524,"link_type":85,"navigation_value":11,"target":14,"version":46},"ebd4ae39-80a3-421c-9302-4063ba9bd8a2",{"slug":525,"type":61},"uravnenie-ebd4ae","уравнений",{"attrs":11,"content":11,"marks":11,"text":528,"type":49},". Идеализации одних и тех же систем могут быть различными в зависимости от того, какое явление исследуется. Например, для нахождения условий раскачки качелей при периодическом изменении их длины модель может быть совсем простой – линейный ",{"attrs":11,"content":11,"marks":530,"text":536,"type":49},[531],{"attrs":532,"content":11,"marks":11,"text":14,"type":63},{"content_id":533,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":534,"link_type":62,"navigation_value":11,"target":14,"version":46},"6f254045-821f-4275-8a6d-751a14a673c8",{"slug":535,"type":61},"ostsilliator-6f2540","осциллятор",{"attrs":11,"content":11,"marks":11,"text":538,"type":49}," с периодически меняющейся ",{"attrs":11,"content":11,"marks":540,"text":546,"type":49},[541],{"attrs":542,"content":11,"marks":11,"text":14,"type":63},{"content_id":543,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":544,"link_type":85,"navigation_value":11,"target":14,"version":46},"a2cd6b21-a141-4441-bf96-e21a70ce2b1a",{"slug":545,"type":61},"sobstvennaia-chastota-a2cd6b","собственной частотой",{"attrs":11,"content":11,"marks":11,"text":548,"type":49},". Когда же необходимо определить ",{"attrs":11,"content":11,"marks":550,"text":556,"type":49},[551],{"attrs":552,"content":11,"marks":11,"text":14,"type":63},{"content_id":553,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":554,"link_type":151,"navigation_value":11,"target":14,"version":46},"bdda0147-7e1a-4f3d-abfa-958fd624c238",{"slug":555,"type":61},"amplituda-kolebanii-bdda01","амплитуду",{"attrs":11,"content":11,"marks":11,"text":558,"type":49}," установившихся колебаний таких качелей, нужно уже учитывать нелинейность (зависимость частоты колебаний качелей от амплитуды колебаний) и использовать модель физического маятника, т. е. нелинейного осциллятора с периодически изменяемым параметром.",{"attrs":560,"content":561,"marks":11,"text":14,"type":138},{"textAlign":11},[562,564,572,573,581,582,590,591,599,601,609,611,619,621,629,631,639],{"attrs":11,"content":11,"marks":11,"text":563,"type":49},"Теория колебаний и волн изучает явления (",{"attrs":11,"content":11,"marks":565,"text":571,"type":49},[566],{"attrs":567,"content":11,"marks":11,"text":14,"type":63},{"content_id":568,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":569,"link_type":85,"navigation_value":11,"target":14,"version":46},"9e22066c-b009-4b1e-b461-6e6931d1f960",{"slug":570,"type":61},"rezonans-9e2206","резонанс",{"attrs":11,"content":11,"marks":11,"text":118,"type":49},{"attrs":11,"content":11,"marks":574,"text":580,"type":49},[575],{"attrs":576,"content":11,"marks":11,"text":14,"type":63},{"content_id":577,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":578,"link_type":280,"navigation_value":11,"target":14,"version":46},"e3a99d36-cc0e-45aa-8005-dec8ef736517",{"slug":579,"type":61},"avtokolebaniia-e3a99d","автоколебания",{"attrs":11,"content":11,"marks":11,"text":118,"type":49},{"attrs":11,"content":11,"marks":583,"text":589,"type":49},[584],{"attrs":585,"content":11,"marks":11,"text":14,"type":63},{"content_id":586,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":587,"link_type":85,"navigation_value":11,"target":14,"version":46},"994ba2f6-f49f-476e-9a9e-e48e26e3e544",{"slug":588,"type":61},"sinkhronizatsiia-kolebanii-i-voln-994ba2","синхронизация",{"attrs":11,"content":11,"marks":11,"text":118,"type":49},{"attrs":11,"content":11,"marks":592,"text":598,"type":49},[593],{"attrs":594,"content":11,"marks":11,"text":14,"type":63},{"content_id":595,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":596,"link_type":85,"navigation_value":11,"target":14,"version":46},"5cc9154b-8e94-4b48-8057-587daf55bf0c",{"slug":597,"type":61},"samofokusirovka-sveta-5cc915","самофокусировка",{"attrs":11,"content":11,"marks":11,"text":600,"type":49}," и др.) и модели ",{"attrs":11,"content":11,"marks":602,"text":608,"type":49},[603],{"attrs":604,"content":11,"marks":11,"text":14,"type":63},{"content_id":605,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":606,"link_type":62,"navigation_value":11,"target":14,"version":46},"d0e36d08-bb52-4552-a578-2830baac81fd",{"slug":607,"type":61},"kolebatel-naia-sistema-d0e36d","колебательных систем",{"attrs":11,"content":11,"marks":11,"text":610,"type":49}," (линейная и нелинейная системы, система с ",{"attrs":11,"content":11,"marks":612,"text":618,"type":49},[613],{"attrs":614,"content":11,"marks":11,"text":14,"type":63},{"content_id":615,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":616,"link_type":62,"navigation_value":11,"target":14,"version":46},"61457a69-bfb4-41d5-82b0-4191d6f42403",{"slug":617,"type":61},"sistema-s-sosredotochennymi-parametrami-61457a","сосредоточенными",{"attrs":11,"content":11,"marks":11,"text":620,"type":49}," или ",{"attrs":11,"content":11,"marks":622,"text":628,"type":49},[623],{"attrs":624,"content":11,"marks":11,"text":14,"type":63},{"content_id":625,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":626,"link_type":62,"navigation_value":11,"target":14,"version":46},"681f2028-b0b2-40fc-a36e-e06c71b67a79",{"slug":627,"type":61},"sistema-s-raspredelionnymi-parametrami-681f20","распределёнными",{"attrs":11,"content":11,"marks":11,"text":630,"type":49}," параметрами, система с одной или несколькими степенями свободы и др.). На основе сложившихся представлений теории колебаний можно связать те или иные явления в конкретной системе с её характеристиками, фактически не решая задачу всякий раз заново. Например, преобразование энергии одних колебаний в другие в слабонелинейной системе (волны на воде, электромагнитные колебания в ",{"attrs":11,"content":11,"marks":632,"text":638,"type":49},[633],{"attrs":634,"content":11,"marks":11,"text":14,"type":63},{"content_id":635,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":636,"link_type":85,"navigation_value":11,"target":14,"version":46},"f3390929-9f66-4ed3-aebc-ef39af03a66f",{"slug":637,"type":61},"ionosfera-zemli-f33909","ионосфере",{"attrs":11,"content":11,"marks":11,"text":640,"type":49}," или колебания маятника на пружинке) возможно, только если выполнены условия резонанса собственных частот подсистемы.",{"attrs":642,"content":643,"marks":11,"text":14,"type":138},{"textAlign":11},[644,646,654,656,664,666,674,676,684,686,694,696,704,705,713],{"attrs":11,"content":11,"marks":11,"text":645,"type":49},"Методы теории колебаний и волн – это методы анализа уравнений, описывающих модели реальных систем. Поэтому большинство из них являются общими с методами теории ",{"attrs":11,"content":11,"marks":647,"text":653,"type":49},[648],{"attrs":649,"content":11,"marks":11,"text":14,"type":63},{"content_id":650,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":651,"link_type":85,"navigation_value":11,"target":14,"version":46},"b44e9b69-1515-49db-b8db-d4033648afff",{"slug":652,"type":61},"kachestvennaia-teoriia-differentsial-nykh-uravnenii-b44e9b","дифференциальных",{"attrs":11,"content":11,"marks":11,"text":655,"type":49}," или разностных уравнений (метод ",{"attrs":11,"content":11,"marks":657,"text":663,"type":49},[658],{"attrs":659,"content":11,"marks":11,"text":14,"type":63},{"content_id":660,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":661,"link_type":85,"navigation_value":11,"target":14,"version":46},"1b122227-f520-4136-87b7-2f69920abbae",{"slug":662,"type":61},"fazovoe-prostranstvo-1b1222","фазового пространства",{"attrs":11,"content":11,"marks":11,"text":665,"type":49},", метод ",{"attrs":11,"content":11,"marks":667,"text":673,"type":49},[668],{"attrs":669,"content":11,"marks":11,"text":14,"type":63},{"content_id":670,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":671,"link_type":85,"navigation_value":11,"target":14,"version":46},"f655a8a3-22b3-42a3-9c46-0611656cccc2",{"slug":672,"type":61},"otobrazhenie-f655a8","отображений",{"attrs":11,"content":11,"marks":11,"text":675,"type":49}," ",{"attrs":11,"content":11,"marks":677,"text":683,"type":49},[678],{"attrs":679,"content":11,"marks":11,"text":14,"type":63},{"content_id":680,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":681,"link_type":455,"navigation_value":11,"target":14,"version":46},"9adfed58-51b7-4089-944a-39dcf236d232",{"slug":682,"type":61},"puankare-anri-9adfed","А. Пуанкаре",{"attrs":11,"content":11,"marks":11,"text":685,"type":49}," и др.), ",{"attrs":11,"content":11,"marks":687,"text":693,"type":49},[688],{"attrs":689,"content":11,"marks":11,"text":14,"type":63},{"content_id":690,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":691,"link_type":85,"navigation_value":11,"target":14,"version":46},"0114abe6-75a2-423d-8c7c-15eb8886d8ad",{"slug":692,"type":61},"asimptoticheskie-metody-0114ab","асимптотическими методами",{"attrs":11,"content":11,"marks":11,"text":695,"type":49}," решения дифференциальных и других уравнений (",{"attrs":11,"content":11,"marks":697,"text":703,"type":49},[698],{"attrs":699,"content":11,"marks":11,"text":14,"type":63},{"content_id":700,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":701,"link_type":85,"navigation_value":11,"target":14,"version":46},"80e0cbdb-b0b5-43fe-b70f-173393697ed1",{"slug":702,"type":61},"uravnenie-van-der-polia-80e0cb","метод Ван дер Поля",{"attrs":11,"content":11,"marks":11,"text":118,"type":49},{"attrs":11,"content":11,"marks":706,"text":712,"type":49},[707],{"attrs":708,"content":11,"marks":11,"text":14,"type":63},{"content_id":709,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":710,"link_type":85,"navigation_value":11,"target":14,"version":46},"e7f7791a-a732-406d-97d4-92a5433c629a",{"slug":711,"type":61},"metod-usredneniia-krylova-bogoliubova-e7f779","метод усреднения",{"attrs":11,"content":11,"marks":11,"text":714,"type":49}," и т. д.). Специфика методов теории колебаний и волн состоит в том, что при изучении моделей интересуются общими свойствами решений соответствующих уравнений, которые характеризуют её различные колебательные возможности.",{"attrs":716,"content":717,"marks":11,"text":14,"type":138},{"textAlign":11},[718,720,728,729,737,739,747,748,756,758,766,768,776,778,786],{"attrs":11,"content":11,"marks":11,"text":719,"type":49},"Основные разделы теории колебаний и волн – теория устойчивости линеаризованных систем, теория ",{"attrs":11,"content":11,"marks":721,"text":727,"type":49},[722],{"attrs":723,"content":11,"marks":11,"text":14,"type":63},{"content_id":724,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":725,"link_type":85,"navigation_value":11,"target":14,"version":46},"13e4fe8d-8ffd-4a68-ab9e-842e720bac6e",{"slug":726,"type":61},"parametricheskaia-kolebatel-naia-sistema-13e4fe","параметрических систем",{"attrs":11,"content":11,"marks":11,"text":283,"type":49},{"attrs":11,"content":11,"marks":730,"text":736,"type":49},[731],{"attrs":732,"content":11,"marks":11,"text":14,"type":63},{"content_id":733,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":734,"link_type":85,"navigation_value":11,"target":14,"version":46},"12dcae6b-0af0-4041-a974-5d115b013f01",{"slug":735,"type":61},"adiabaticheskii-invariant-12dcae","адиабатических инвариантов",{"attrs":11,"content":11,"marks":11,"text":738,"type":49},", теория автоколебательных и автоволновых процессов, теория ",{"attrs":11,"content":11,"marks":740,"text":746,"type":49},[741],{"attrs":742,"content":11,"marks":11,"text":14,"type":63},{"content_id":743,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":744,"link_type":280,"navigation_value":11,"target":14,"version":46},"d37604cf-b51d-4232-a022-9614f4839466",{"slug":745,"type":61},"udarnaia-volna-d37604","ударных волн",{"attrs":11,"content":11,"marks":11,"text":283,"type":49},{"attrs":11,"content":11,"marks":749,"text":755,"type":49},[750],{"attrs":751,"content":11,"marks":11,"text":14,"type":63},{"content_id":752,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":753,"link_type":280,"navigation_value":11,"target":14,"version":46},"3011c036-a86a-4548-b61d-54951dd2069a",{"slug":754,"type":61},"soliton-3011c0","солитонов",{"attrs":11,"content":11,"marks":11,"text":757,"type":49},", кинетика колебаний и волн в системах с большим числом степеней свободы, теория ",{"attrs":11,"content":11,"marks":759,"text":765,"type":49},[760],{"attrs":761,"content":11,"marks":11,"text":14,"type":63},{"content_id":762,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":763,"link_type":85,"navigation_value":11,"target":14,"version":46},"42696030-6829-49c0-b18e-b1be1c424964",{"slug":764,"type":61},"dinamicheskii-khaos-426960","динамического хаоса",{"attrs":11,"content":11,"marks":11,"text":767,"type":49},". Если классическая теория колебаний и волн изучала, как правило, лишь регулярные (периодические) процессы, то во 2-й половине 20 в. усилился интерес к ",{"attrs":11,"content":11,"marks":769,"text":775,"type":49},[770],{"attrs":771,"content":11,"marks":11,"text":14,"type":63},{"content_id":772,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":773,"link_type":85,"navigation_value":11,"target":14,"version":46},"bdcee654-33cb-40fd-981e-f9608224ab8e",{"slug":774,"type":61},"matematicheskaia-statistika-bdcee6","статистическим",{"attrs":11,"content":11,"marks":11,"text":777,"type":49}," задачам, связанным с анализом процессов «рождения» хаоса в детерминированных системах. В этой части, а также в части исследования сложных колебательных и волновых структур в неравновесных средах современная теория колебаний и волн пересекается с ",{"attrs":11,"content":11,"marks":779,"text":785,"type":49},[780],{"attrs":781,"content":11,"marks":11,"text":14,"type":63},{"content_id":782,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":783,"link_type":455,"navigation_value":11,"target":14,"version":46},"f72bdc48-2bd9-45b2-a65e-df32acd35bd7",{"slug":784,"type":61},"sinergetika-f72bdc","синергетикой",{"attrs":11,"content":11,"marks":11,"text":787,"type":49},".",{"attrs":789,"content":791,"marks":11,"text":14,"type":442},{"textAlign":11,"version":46,"id":790},"h2_harakteristiki_koleбanii",[792],{"attrs":11,"content":11,"marks":11,"text":793,"type":49},"Характеристики колебаний",{"attrs":795,"content":796,"marks":11,"text":14,"type":138},{"textAlign":11},[797,799,808],{"attrs":11,"content":11,"marks":11,"text":798,"type":49},"Для простоты рассмотрим колебания, описываемые функцией времени ",{"attrs":800,"content":11,"marks":803,"text":14,"type":807},{"display":801,"displayMode":14,"src":802,"title":14},"inline","{u(t)}",[804],{"attrs":805,"content":11,"marks":11,"text":14,"type":806},{"version":46},"italic","formula",{"attrs":11,"content":11,"marks":11,"text":809,"type":49},", хотя с кинематической точки зрения пространственные и временны́е колебания взаимно сводятся друг к другу при переходе из одной системы отсчёта в другую.",{"attrs":811,"content":812,"marks":11,"text":14,"type":138},{"textAlign":11},[813,815,820,822,828,830,838,840,846,848,853,855,863,864,870,872,878,880,886,888,894],{"attrs":11,"content":11,"marks":11,"text":814,"type":49},"На рисунке приведены диаграммы а – г, демонстрирующие периодические колебания различной формы, в которых любое значение ",{"attrs":816,"content":11,"marks":817,"text":14,"type":807},{"display":801,"displayMode":14,"src":802,"title":14},[818],{"attrs":819,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":821,"type":49}," повторяется через одинаковые промежутки времени ",{"attrs":823,"content":11,"marks":825,"text":14,"type":807},{"display":801,"displayMode":14,"src":824,"title":14},"{T}",[826],{"attrs":827,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":829,"type":49},", называемые ",{"attrs":11,"content":11,"marks":831,"text":837,"type":49},[832],{"attrs":833,"content":11,"marks":11,"text":14,"type":63},{"content_id":834,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":835,"link_type":151,"navigation_value":11,"target":14,"version":46},"c20a1f08-70f5-4f94-ab6b-13f8c219e3c3",{"slug":836,"type":61},"period-kolebanii-c20a1f","периодом колебаний",{"attrs":11,"content":11,"marks":11,"text":839,"type":49},", т. е. ",{"attrs":841,"content":11,"marks":843,"text":14,"type":807},{"display":801,"displayMode":14,"src":842,"title":14},"{u(t+T)=u(t)}",[844],{"attrs":845,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":847,"type":49},". Величину, обратную периоду ",{"attrs":849,"content":11,"marks":850,"text":14,"type":807},{"display":801,"displayMode":14,"src":824,"title":14},[851],{"attrs":852,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":854,"type":49}," и равную числу колебаний в единицу времени, называют ",{"attrs":11,"content":11,"marks":856,"text":862,"type":49},[857],{"attrs":858,"content":11,"marks":11,"text":14,"type":63},{"content_id":859,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":860,"link_type":151,"navigation_value":11,"target":14,"version":46},"31aad242-58ef-4fa1-996c-cf6d545e6af8",{"slug":861,"type":61},"chastota-kolebanii-31aad2","частотой колебаний",{"attrs":11,"content":11,"marks":11,"text":675,"type":49},{"attrs":865,"content":11,"marks":867,"text":14,"type":807},{"display":801,"displayMode":14,"src":866,"title":14},"{ν=1/T}",[868],{"attrs":869,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":871,"type":49},"; нередко пользуются также круговой, или циклической, частотой ",{"attrs":873,"content":11,"marks":875,"text":14,"type":807},{"display":801,"displayMode":14,"src":874,"title":14},"{ω=2πν}",[876],{"attrs":877,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":879,"type":49},". Обычно частота измеряется в герцах (Гц), что соответствует числу колебаний, совершаемых в 1 с. В случае пространственных колебаний вводят аналогичные понятия пространственного периода (или длины волны ",{"attrs":881,"content":11,"marks":883,"text":14,"type":807},{"display":801,"displayMode":14,"src":882,"title":14},"\\lambda ",[884],{"attrs":885,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":887,"type":49},") и волнового числа ",{"attrs":889,"content":11,"marks":891,"text":14,"type":807},{"display":801,"displayMode":14,"src":890,"title":14},"{\\boldsymbol{k}=2π/λ}",[892],{"attrs":893,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":787,"type":49},{"attrs":896,"content":897,"marks":11,"text":14,"type":138},{"textAlign":11},[898,900,908,910,918],{"attrs":11,"content":11,"marks":11,"text":899,"type":49},"Разновидностями периодических колебаний являются прямоугольные меандры (рисунок, б), пилообразные колебания (рисунок, в) и наиболее важные ",{"attrs":11,"content":11,"marks":901,"text":907,"type":49},[902],{"attrs":903,"content":11,"marks":11,"text":14,"type":63},{"content_id":904,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":905,"link_type":85,"navigation_value":11,"target":14,"version":46},"5191f3f6-b6f0-493a-bf93-18411f987cb3",{"slug":906,"type":61},"sinusoida-5191f3","синусоидальные",{"attrs":11,"content":11,"marks":11,"text":909,"type":49}," (",{"attrs":11,"content":11,"marks":911,"text":917,"type":49},[912],{"attrs":913,"content":11,"marks":11,"text":14,"type":63},{"content_id":914,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":915,"link_type":280,"navigation_value":11,"target":14,"version":46},"45dab2c1-dc67-47ad-aace-b3c46bef8159",{"slug":916,"type":61},"garmonicheskie-kolebaniia-45dab2","гармонические",{"attrs":11,"content":11,"marks":11,"text":919,"type":49},") колебания (рисунок, г). Последние могут быть записаны в виде:",{"attrs":921,"content":922,"marks":11,"text":14,"type":138},{"textAlign":11},[923,930,932,938,942,944,950,954,956,962,964,969,970,976,977,982,984,992],{"attrs":924,"content":11,"marks":927,"text":14,"type":807},{"display":925,"displayMode":14,"src":926,"title":14},"block","{u(t)=Asinφ=Asin(ωt+{φ}_{0})},",[928],{"attrs":929,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":931,"type":49},"где ",{"attrs":933,"content":11,"marks":935,"text":14,"type":807},{"display":801,"displayMode":14,"src":934,"title":14},"{A}",[936],{"attrs":937,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":939,"text":675,"type":49},[940],{"attrs":941,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":943,"type":49},"– амплитуда, ",{"attrs":945,"content":11,"marks":947,"text":14,"type":807},{"display":801,"displayMode":14,"src":946,"title":14},"\\varphi ",[948],{"attrs":949,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":951,"text":675,"type":49},[952],{"attrs":953,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":955,"type":49},"– фаза, ",{"attrs":957,"content":11,"marks":959,"text":14,"type":807},{"display":801,"displayMode":14,"src":958,"title":14}," \\varphi_{0}",[960],{"attrs":961,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":963,"type":49}," – её начальное значение. Для строго гармонических колебаний величины ",{"attrs":965,"content":11,"marks":966,"text":14,"type":807},{"display":801,"displayMode":14,"src":934,"title":14},[967],{"attrs":968,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":118,"type":49},{"attrs":971,"content":11,"marks":973,"text":14,"type":807},{"display":801,"displayMode":14,"src":972,"title":14}," \\omega ",[974],{"attrs":975,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":283,"type":49},{"attrs":978,"content":11,"marks":979,"text":14,"type":807},{"display":801,"displayMode":14,"src":958,"title":14},[980],{"attrs":981,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":983,"type":49}," не зависят от времени. Часто используют также ",{"attrs":11,"content":11,"marks":985,"text":991,"type":49},[986],{"attrs":987,"content":11,"marks":11,"text":14,"type":63},{"content_id":988,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":989,"link_type":85,"navigation_value":11,"target":14,"version":46},"a7c76d06-b09f-4b3b-be8a-4c7f81368ddf",{"slug":990,"type":61},"kompleksnoe-chislo-a7c76d","комплексную",{"attrs":11,"content":11,"marks":11,"text":993,"type":49}," запись синусоидальных колебаний:",{"attrs":995,"content":996,"marks":11,"text":14,"type":138},{"textAlign":11},[997,1003,1005,1011,1013,1021,1023,1029,1031,1039,1040,1046,1048,1054,1056,1061,1063,1069,1071,1077],{"attrs":998,"content":11,"marks":1000,"text":14,"type":807},{"display":925,"displayMode":14,"src":999,"title":14},"{ \\tilde{u}(t)=\\tilde{A}e^{iωt}=Acos(ωt+φ_{0})+iAsin(ωt+φ_{0})},",[1001],{"attrs":1002,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1004,"type":49},"в которой комплексная амплитуда ",{"attrs":1006,"content":11,"marks":1008,"text":14,"type":807},{"display":801,"displayMode":14,"src":1007,"title":14},"\\tilde{A}=Ae^{iφ_{0}}",[1009],{"attrs":1010,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1012,"type":49}," объединяет в себе действительные значения амплитуды и ",{"attrs":11,"content":11,"marks":1014,"text":1020,"type":49},[1015],{"attrs":1016,"content":11,"marks":11,"text":14,"type":63},{"content_id":1017,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1018,"link_type":151,"navigation_value":11,"target":14,"version":46},"b4316fea-8cf8-477f-9703-bea4a59f6c9d",{"slug":1019,"type":61},"faza-kolebanii-i-voln-b4316f","фазы",{"attrs":11,"content":11,"marks":11,"text":1022,"type":49}," колебаний. В частности, для показанного на рисунке, д затухающего колебания ",{"attrs":1024,"content":11,"marks":1026,"text":14,"type":807},{"display":801,"displayMode":14,"src":1025,"title":14},"u(t)=\\tilde{A}e^{−δt}e^{iωt}",[1027],{"attrs":1028,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1030,"type":49},", где ",{"attrs":11,"content":11,"marks":1032,"text":1038,"type":49},[1033],{"attrs":1034,"content":11,"marks":11,"text":14,"type":63},{"content_id":1035,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1036,"link_type":151,"navigation_value":11,"target":14,"version":46},"a33d8440-6697-4222-aa94-166f083144a1",{"slug":1037,"type":61},"dekrement-zatukhaniia-a33d84","декремент затухания",{"attrs":11,"content":11,"marks":11,"text":675,"type":49},{"attrs":1041,"content":11,"marks":1043,"text":14,"type":807},{"display":801,"displayMode":14,"src":1042,"title":14},"\\delta ",[1044],{"attrs":1045,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1047,"type":49}," можно либо считать мнимой частью частоты ",{"attrs":1049,"content":11,"marks":1051,"text":14,"type":807},{"display":801,"displayMode":14,"src":1050,"title":14},"\\tilde{ω}=ω+iδ",[1052],{"attrs":1053,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1055,"type":49},", либо относить к экспоненциально убывающей амплитуде. При отрицательном значении ",{"attrs":1057,"content":11,"marks":1058,"text":14,"type":807},{"display":801,"displayMode":14,"src":1042,"title":14},[1059],{"attrs":1060,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1062,"type":49}," этот коэффициент называют инкрементом, а соответствующее колебание превращается в экспоненциально растущее (рисунок, е). У колебаний с убывающей амплитудой периодичность нарушается, но при ",{"attrs":1064,"content":11,"marks":1066,"text":14,"type":807},{"display":801,"displayMode":14,"src":1065,"title":14}," \\delta ≪ \\omega ",[1067],{"attrs":1068,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1070,"type":49}," их всё же можно считать почти периодическими (квазипериодическими), а при ",{"attrs":1072,"content":11,"marks":1074,"text":14,"type":807},{"display":801,"displayMode":14,"src":1073,"title":14}," \\delta ≫ \\omega ",[1075],{"attrs":1076,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1078,"type":49}," – почти апериодическими, т. е. по существу уже не колебаниями, а монотонными движениями.",{"attrs":1080,"content":1081,"marks":11,"text":14,"type":138},{"textAlign":11},[1082,1084,1092,1094,1103,1105,1113,1115,1121,1123,1129,1131,1137,1139,1147,1149,1155,1157,1165,1167,1173,1174,1180,1182,1188,1190,1196,1197,1200,1202,1207,1209,1212],{"attrs":11,"content":11,"marks":11,"text":1083,"type":49},"Для передачи информации применяются ",{"attrs":11,"content":11,"marks":1085,"text":1091,"type":49},[1086],{"attrs":1087,"content":11,"marks":11,"text":14,"type":63},{"content_id":1088,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1089,"link_type":85,"navigation_value":11,"target":14,"version":46},"6b67b138-1316-4605-85d0-b0376fad2b5f",{"slug":1090,"type":61},"moduliatsiia-kolebanii-i-voln-6b67b1","модулированные колебания",{"attrs":11,"content":11,"marks":11,"text":1093,"type":49},", амплитуда, фаза или частота которых изменяются по закону кодирования информации; например, в ",{"attrs":11,"content":11,"marks":1095,"text":1102,"type":49},[1096],{"attrs":1097,"content":11,"marks":11,"text":14,"type":63},{"content_id":1098,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1099,"link_type":1101,"navigation_value":11,"target":14,"version":46},"af7b73d4-4792-41c6-9562-255a13a15f62",{"slug":1100,"type":61},"radioveshchanie-af7b73","28","радиовещании",{"attrs":11,"content":11,"marks":11,"text":1104,"type":49}," высокочастотные колебания модулируются колебаниями звуковых частот, передающими речь и ",{"attrs":11,"content":11,"marks":1106,"text":1112,"type":49},[1107],{"attrs":1108,"content":11,"marks":11,"text":14,"type":63},{"content_id":1109,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1110,"link_type":85,"navigation_value":11,"target":14,"version":46},"ad2a05d6-de2c-47ec-986e-d999a5d9c15b",{"slug":1111,"type":61},"muzyka-ad2a05","музыку",{"attrs":11,"content":11,"marks":11,"text":1114,"type":49},". Наиболее часто используют модулированные колебания вида ",{"attrs":1116,"content":11,"marks":1118,"text":14,"type":807},{"display":801,"displayMode":14,"src":1117,"title":14},"{u(t)=A(t)cosφ(t)}",[1119],{"attrs":1120,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1122,"type":49},", где амплитуда ",{"attrs":1124,"content":11,"marks":1126,"text":14,"type":807},{"display":801,"displayMode":14,"src":1125,"title":14},"{A(t)}",[1127],{"attrs":1128,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1130,"type":49}," медленно изменяется в масштабах периода колебаний, а фаза ",{"attrs":1132,"content":11,"marks":1134,"text":14,"type":807},{"display":801,"displayMode":14,"src":1133,"title":14},"{φ(t)}",[1135],{"attrs":1136,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1138,"type":49}," обладает медленно изменяющейся ",{"attrs":11,"content":11,"marks":1140,"text":1146,"type":49},[1141],{"attrs":1142,"content":11,"marks":11,"text":14,"type":63},{"content_id":1143,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1144,"link_type":85,"navigation_value":11,"target":14,"version":46},"68fd9020-e8a0-4696-9e1d-b30708b6dd1e",{"slug":1145,"type":61},"proizvodnaia-68fd90","производной",{"attrs":11,"content":11,"marks":11,"text":1148,"type":49},", равной мгновенной частоте колебаний, т. е. ",{"attrs":1150,"content":11,"marks":1152,"text":14,"type":807},{"display":801,"displayMode":14,"src":1151,"title":14},"{ω=dφ/dt≫ω^{−1}dω/dt}",[1153],{"attrs":1154,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1156,"type":49},". Колебание называется ",{"attrs":11,"content":11,"marks":1158,"text":1164,"type":49},[1159],{"attrs":1160,"content":11,"marks":11,"text":14,"type":63},{"content_id":1161,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1162,"link_type":85,"navigation_value":11,"target":14,"version":46},"2bd9364e-1ba7-436d-b3c4-b7c8e6261306",{"slug":1163,"type":61},"amplitudnaia-moduliatsiia-2bd936","амплитудно-модулированным",{"attrs":11,"content":11,"marks":11,"text":1166,"type":49}," (рисунок, ж), если ",{"attrs":1168,"content":11,"marks":1170,"text":14,"type":807},{"display":801,"displayMode":14,"src":1169,"title":14},"{ω=const}",[1171],{"attrs":1172,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":118,"type":49},{"attrs":1175,"content":11,"marks":1177,"text":14,"type":807},{"display":801,"displayMode":14,"src":1176,"title":14},"{φ_{0}=const}",[1178],{"attrs":1179,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1181,"type":49},". В частности, при синусоидальной модуляции ",{"attrs":1183,"content":11,"marks":1185,"text":14,"type":807},{"display":801,"displayMode":14,"src":1184,"title":14},"{A(t)=A_{0}(1+αsin(Ωt))}",[1186],{"attrs":1187,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1189,"type":49}," такое колебание есть сумма трёх синусоидальных колебаний с частотами ",{"attrs":1191,"content":11,"marks":1193,"text":14,"type":807},{"display":801,"displayMode":14,"src":1192,"title":14}," \\omega_{0}",[1194],{"attrs":1195,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":118,"type":49},{"attrs":1198,"content":11,"marks":11,"text":14,"type":807},{"display":801,"displayMode":14,"src":1199,"title":14},"\\Omega_{+} \\omega_{0}",{"attrs":11,"content":11,"marks":11,"text":1201,"type":49},"+",{"attrs":11,"content":11,"marks":1203,"text":1206,"type":49},[1204],{"attrs":1205,"content":11,"marks":11,"text":14,"type":806},{"version":46},"ω",{"attrs":11,"content":11,"marks":11,"text":1208,"type":49},"0, ",{"attrs":1210,"content":11,"marks":11,"text":14,"type":807},{"display":801,"displayMode":14,"src":1211,"title":14},"Ω_{−} \\omega_{0}",{"attrs":11,"content":11,"marks":11,"text":1213,"type":49},":",{"attrs":1215,"content":1216,"marks":11,"text":14,"type":138},{"textAlign":11},[1217,1223,1225,1230,1232,1241,1243,1249,1251,1257,1258,1264,1266,1271,1272,1278,1282],{"attrs":1218,"content":11,"marks":1220,"text":14,"type":807},{"display":925,"displayMode":14,"src":1219,"title":14},"A_{0}(1+αsin(Ωt))cos(ω_{0}t+φ_{0})=\\frac{αA_{0}}{2}sin[(Ω+ω_{0})t+φ_{0}]+\\frac{αA_{0}}{2}sin[(Ω−ω_{0})t−φ_{0}]++A_{0}cos(ω_{0}t+φ_{0}).",[1221],{"attrs":1222,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1224,"type":49},"Когда модулирующий сигнал ",{"attrs":1226,"content":11,"marks":1227,"text":14,"type":807},{"display":801,"displayMode":14,"src":1125,"title":14},[1228],{"attrs":1229,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1231,"type":49}," имеет сложный периодический характер, результирующее колебание представляется сплошным набором колебаний всех частот (непрерывный спектр), симметрично сгруппированных около центральной (",{"attrs":11,"content":11,"marks":1233,"text":1240,"type":49},[1234],{"attrs":1235,"content":11,"marks":11,"text":14,"type":63},{"content_id":1236,"external":13,"graph_link":7,"href":57,"kind_id":1237,"link":1238,"link_type":85,"navigation_value":11,"target":14,"version":46},"4df3b7fd-5f02-4b3a-980c-f5726eb68421","4",{"slug":1239,"type":61},"nesushchaia-chastota-4df3b7","несущей",{"attrs":11,"content":11,"marks":11,"text":1242,"type":49},") частоты ",{"attrs":1244,"content":11,"marks":1246,"text":14,"type":807},{"display":801,"displayMode":14,"src":1245,"title":14},"ω_{0}",[1247],{"attrs":1248,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1250,"type":49},". При ",{"attrs":1252,"content":11,"marks":1254,"text":14,"type":807},{"display":801,"displayMode":14,"src":1253,"title":14},"{A=const}",[1255],{"attrs":1256,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":118,"type":49},{"attrs":1259,"content":11,"marks":1261,"text":14,"type":807},{"display":801,"displayMode":14,"src":1260,"title":14},"{φ=ω_{0}t+φ(t)}",[1262],{"attrs":1263,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1265,"type":49}," колебание называется модулированным по фазе, при ",{"attrs":1267,"content":11,"marks":1268,"text":14,"type":807},{"display":801,"displayMode":14,"src":1253,"title":14},[1269],{"attrs":1270,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":118,"type":49},{"attrs":1273,"content":11,"marks":1275,"text":14,"type":807},{"display":801,"displayMode":14,"src":1274,"title":14},"{φ= \\int ω(t)dt}",[1276],{"attrs":1277,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":1279,"text":675,"type":49},[1280],{"attrs":1281,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1283,"type":49},"модуляция является частным случаем фазовой. На рисунке, з и рисунке, и приведены колебания, модулированные по амплитуде, частоте и фазе.",{"attrs":1285,"content":1286,"marks":11,"text":14,"type":138},{"textAlign":11},[1287,1289,1297,1299,1307],{"attrs":11,"content":11,"marks":11,"text":1288,"type":49},"При стохастических процессах колебания являются частично и полностью случайными (см. статью ",{"attrs":11,"content":11,"marks":1290,"text":1296,"type":49},[1291],{"attrs":1292,"content":11,"marks":11,"text":14,"type":63},{"content_id":1293,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1294,"link_type":280,"navigation_value":11,"target":14,"version":46},"fd825aa2-fa63-45df-a164-5f081325e62a",{"slug":1295,"type":61},"stokhasticheskie-kolebaniia-fd825a","Стохастические колебания",{"attrs":11,"content":11,"marks":11,"text":1298,"type":49},"). На рисунке, к дан пример синусоидальных колебаний, модулированных по амплитуде и фазе случайными функциями; на рисунке, л приведена одна из реализаций совершенно неупорядоченного процесса (",{"attrs":11,"content":11,"marks":1300,"text":1306,"type":49},[1301],{"attrs":1302,"content":11,"marks":11,"text":14,"type":63},{"content_id":1303,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1304,"link_type":280,"navigation_value":11,"target":14,"version":46},"c343518b-a1cc-4d66-ab22-fca1e0fb843c",{"slug":1305,"type":61},"belyi-shum-c34351","белого шума",{"attrs":11,"content":11,"marks":11,"text":1308,"type":49},"), который лишь условно можно отнести к колебаниям.",{"attrs":1310,"content":1311,"marks":11,"text":14,"type":138},{"textAlign":11},[1312,1314,1322,1324,1332,1333,1341,1342,1350],{"attrs":11,"content":11,"marks":11,"text":1313,"type":49},"В природе и во многих технических устройствах часто возникают движения, почти не отличающиеся (на протяжении больших промежутков времени) от чисто гармонических или равномерно вращательных. Физические приборы, называемые ",{"attrs":11,"content":11,"marks":1315,"text":1321,"type":49},[1316],{"attrs":1317,"content":11,"marks":11,"text":14,"type":63},{"content_id":1318,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1319,"link_type":1101,"navigation_value":11,"target":14,"version":46},"f00f6177-9902-425b-bc26-fd3151a28dee",{"slug":1320,"type":61},"analizator-spektra-f00f61","анализаторами спектра",{"attrs":11,"content":11,"marks":11,"text":1323,"type":49},", выделяют из произвольных процессов наборы колебаний, близких к гармоническим. Возможна и обратная процедура синтеза гармонических колебаний, математически соответствующая ",{"attrs":11,"content":11,"marks":1325,"text":1331,"type":49},[1326],{"attrs":1327,"content":11,"marks":11,"text":14,"type":63},{"content_id":1328,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1329,"link_type":85,"navigation_value":11,"target":14,"version":46},"6e7e4af5-4440-4340-ab1e-0851d6b9f500",{"slug":1330,"type":61},"riad-fur-e-6e7e4a","рядам",{"attrs":11,"content":11,"marks":11,"text":283,"type":49},{"attrs":11,"content":11,"marks":1334,"text":1340,"type":49},[1335],{"attrs":1336,"content":11,"marks":11,"text":14,"type":63},{"content_id":1337,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1338,"link_type":85,"navigation_value":11,"target":14,"version":46},"f988fd0b-c4d9-4860-950e-84471ff72467",{"slug":1339,"type":61},"integral-fur-e-f988fd","интегралам",{"attrs":11,"content":11,"marks":11,"text":675,"type":49},{"attrs":11,"content":11,"marks":1343,"text":1349,"type":49},[1344],{"attrs":1345,"content":11,"marks":11,"text":14,"type":63},{"content_id":1346,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1347,"link_type":455,"navigation_value":11,"target":14,"version":46},"196a1737-88bb-472d-9251-849ae80122ed",{"slug":1348,"type":61},"fur-e-zhan-batist-zhozef-196a17","Фурье",{"attrs":11,"content":11,"marks":11,"text":1351,"type":49},", которая позволяет воссоздать любой временной процесс сложением или интегрированием гармонических колебаний различных частот и амплитуд.",{"attrs":1353,"content":1355,"marks":11,"text":14,"type":442},{"textAlign":11,"version":46,"id":1354},"h2_svoбodnыe_(soбstvennыe)_koleбaniya",[1356],{"attrs":11,"content":11,"marks":11,"text":1357,"type":49},"Свободные (собственные) колебания",{"attrs":1359,"content":1360,"marks":11,"text":14,"type":138},{"textAlign":11},[1361,1363,1371,1373,1381,1383,1389,1391,1397,1399,1404,1406,1414,1416,1424,1426,1432,1434,1440,1442,1448],{"attrs":11,"content":11,"marks":11,"text":1362,"type":49},"Свободные колебания являются движением системы, предоставленной самой себе, при отсутствии внешних воздействий. При малых отклонениях от состояния равновесия движения системы удовлетворяют ",{"attrs":11,"content":11,"marks":1364,"text":1370,"type":49},[1365],{"attrs":1366,"content":11,"marks":11,"text":14,"type":63},{"content_id":1367,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1368,"link_type":85,"navigation_value":11,"target":14,"version":46},"093e33f4-6274-4346-a926-14cbc4a61647",{"slug":1369,"type":61},"printsip-superpozitsii-093e33","принципу суперпозиции",{"attrs":11,"content":11,"marks":11,"text":1372,"type":49},", согласно которому сумма двух произвольных движений также представляет собой допустимое движение системы; такие движения описываются линейными (в частности, дифференциальными) уравнениями. Если система ещё и консервативна (т. е. в ней нет потерь и притока энергии извне), а её параметры не изменяются во времени, то любое собственное колебание может быть однозначно представлено как сумма ",{"attrs":11,"content":11,"marks":1374,"text":1380,"type":49},[1375],{"attrs":1376,"content":11,"marks":11,"text":14,"type":63},{"content_id":1377,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1378,"link_type":280,"navigation_value":11,"target":14,"version":46},"6b014fda-3758-455a-8c53-a4dd700ed6fc",{"slug":1379,"type":61},"normal-nye-kolebaniia-6b014f","нормальных колебаний",{"attrs":11,"content":11,"marks":11,"text":1382,"type":49},", синусоидально изменяющихся во времени с определёнными собственными частотами. В колебательных системах с сосредоточенными параметрами, состоящих из ",{"attrs":1384,"content":11,"marks":1386,"text":14,"type":807},{"display":801,"displayMode":14,"src":1385,"title":14},"{N}",[1387],{"attrs":1388,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1390,"type":49}," связанных осцилляторов (например, цепочка из ",{"attrs":11,"content":11,"marks":1392,"text":1396,"type":49},[1393],{"attrs":1394,"content":11,"marks":11,"text":14,"type":63},{"content_id":232,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1395,"link_type":1101,"navigation_value":11,"target":14,"version":46},{"slug":234,"type":61},"колебательных контуров",{"attrs":11,"content":11,"marks":11,"text":1398,"type":49}," или из соединённых упругими пружинками шариков), число нормальных колебаний (мод) равно ",{"attrs":1400,"content":11,"marks":1401,"text":14,"type":807},{"display":801,"displayMode":14,"src":1385,"title":14},[1402],{"attrs":1403,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1405,"type":49},". В системах с распределёнными параметрами (струна, ",{"attrs":11,"content":11,"marks":1407,"text":1413,"type":49},[1408],{"attrs":1409,"content":11,"marks":11,"text":14,"type":63},{"content_id":1410,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1411,"link_type":85,"navigation_value":11,"target":14,"version":46},"6c26034d-0d05-4e1c-966d-28028c511c1f",{"slug":1412,"type":61},"membrana-v-tekhnike-6c2603","мембрана",{"attrs":11,"content":11,"marks":11,"text":1415,"type":49},", полый или открытый ",{"attrs":11,"content":11,"marks":1417,"text":1423,"type":49},[1418],{"attrs":1419,"content":11,"marks":11,"text":14,"type":63},{"content_id":1420,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1421,"link_type":1101,"navigation_value":11,"target":14,"version":46},"e70b0cfa-7573-42ab-a529-9843eedb6e72",{"slug":1422,"type":61},"rezonator-e70b0c","резонатор",{"attrs":11,"content":11,"marks":11,"text":1425,"type":49},") таких колебаний существует бесконечное множество. Например, для струны длиной ",{"attrs":1427,"content":11,"marks":1429,"text":14,"type":807},{"display":801,"displayMode":14,"src":1428,"title":14},"{L}",[1430],{"attrs":1431,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1433,"type":49}," с закреплёнными концами моды различаются числом полуволн, которые можно уложить на всей длине струны: ",{"attrs":1435,"content":11,"marks":1437,"text":14,"type":807},{"display":801,"displayMode":14,"src":1436,"title":14},"{L= \\frac{nλ}{2}, (n=0,1,…,∞)}",[1438],{"attrs":1439,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1441,"type":49},". Если скорость распространения волн вдоль струны равна ",{"attrs":1443,"content":11,"marks":1445,"text":14,"type":807},{"display":801,"displayMode":14,"src":1444,"title":14},"{υ}",[1446],{"attrs":1447,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1449,"type":49},", то спектр собственных частот определяется формулой:",{"attrs":1451,"content":1452,"marks":11,"text":14,"type":138},{"textAlign":11},[1453,1459,1461,1469,1471,1477,1479,1485,1487,1490,1492,1498,1500,1506,1508,1516,1518,1524,1526,1532,1534,1540,1542,1545,1547,1553,1555,1558],{"attrs":1454,"content":11,"marks":1456,"text":14,"type":807},{"display":925,"displayMode":14,"src":1455,"title":14},"ω_{n}=k_{n}υ=2π/Tn=2πυ/λn=nπυ/L, \\quad(n=0,1,…,∞).",[1457],{"attrs":1458,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1460,"type":49},"Наличие ",{"attrs":11,"content":11,"marks":1462,"text":1468,"type":49},[1463],{"attrs":1464,"content":11,"marks":11,"text":14,"type":63},{"content_id":1465,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1466,"link_type":85,"navigation_value":11,"target":14,"version":46},"7f0ea4bb-646d-4526-a9fa-2a49e585551d",{"slug":1467,"type":61},"dispersiia-voln-7f0ea4","дисперсии волн",{"attrs":11,"content":11,"marks":11,"text":1470,"type":49}," [зависимости ",{"attrs":1472,"content":11,"marks":1474,"text":14,"type":807},{"display":801,"displayMode":14,"src":1473,"title":14},"{υ=υ(ω)}",[1475],{"attrs":1476,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1478,"type":49},"] искажает это простое эквидистантное распределение частот, спектр которых определяется уже из т. н. дисперсионного уравнения: ",{"attrs":1480,"content":11,"marks":1482,"text":14,"type":807},{"display":801,"displayMode":14,"src":1481,"title":14},"{ω_{n}=ω(k_{n})=(nπ/L)υ(ω_{n})}",[1483],{"attrs":1484,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1486,"type":49},". В реальных системах собственные колебания затухают из-за потерь, поэтому их можно считать приближённо гармоническими лишь в интервале времени, меньшем ",{"attrs":1488,"content":11,"marks":11,"text":14,"type":807},{"display":801,"displayMode":14,"src":1489,"title":14},"{1/δ}",{"attrs":11,"content":11,"marks":11,"text":1491,"type":49},". Затухающее колебание (рисунок, д) можно представить в виде пакета гармонических колебаний, непрерывно заполняющих интервал частот ",{"attrs":1493,"content":11,"marks":1495,"text":14,"type":807},{"display":801,"displayMode":14,"src":1494,"title":14},"ω_{0}±Δω",[1496],{"attrs":1497,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1499,"type":49},", тем более узкий, чем меньше ",{"attrs":1501,"content":11,"marks":1503,"text":14,"type":807},{"display":801,"displayMode":14,"src":1502,"title":14},"{δ(Δω∼δ)}",[1504],{"attrs":1505,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1507,"type":49},". В этом случае говорят об ",{"attrs":11,"content":11,"marks":1509,"text":1515,"type":49},[1510],{"attrs":1511,"content":11,"marks":11,"text":14,"type":63},{"content_id":1512,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1513,"link_type":85,"navigation_value":11,"target":14,"version":46},"4ea5cb32-d0e0-4702-8f0f-ee72c3e0964d",{"slug":1514,"type":61},"ushirenie-spektral-nykh-linii-4ea5cb","уширении спектральной линии",{"attrs":11,"content":11,"marks":11,"text":1517,"type":49},", иногда характеризуя её добротностью ",{"attrs":1519,"content":11,"marks":1521,"text":14,"type":807},{"display":801,"displayMode":14,"src":1520,"title":14},"{Q}",[1522],{"attrs":1523,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1525,"type":49},", равной отношению запасённой энергии ",{"attrs":1527,"content":11,"marks":1529,"text":14,"type":807},{"display":801,"displayMode":14,"src":1528,"title":14},"{W}",[1530],{"attrs":1531,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1533,"type":49}," к потерям ",{"attrs":1535,"content":11,"marks":1537,"text":14,"type":807},{"display":801,"displayMode":14,"src":1536,"title":14},"{P}",[1538],{"attrs":1539,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1541,"type":49}," за период колебаний ",{"attrs":1543,"content":11,"marks":11,"text":14,"type":807},{"display":801,"displayMode":14,"src":1544,"title":14},"{2π/ω}",{"attrs":11,"content":11,"marks":11,"text":1546,"type":49},", т. е. ",{"attrs":1548,"content":11,"marks":1550,"text":14,"type":807},{"display":801,"displayMode":14,"src":1549,"title":14},"{Q=ωW/P≈ω/2δ}",[1551],{"attrs":1552,"content":11,"marks":11,"text":14,"type":806},{"version":46},{"attrs":11,"content":11,"marks":11,"text":1554,"type":49},". Таким образом, сгущение спектра из-за потерь влечёт за собой превращение дискретного спектра в сплошной, когда ширина линий становится приблизительно равной интервалу между ними, т. е. ",{"attrs":1556,"content":11,"marks":11,"text":14,"type":807},{"display":801,"displayMode":14,"src":1557,"title":14},"{Δω≈(ω_{n+1}−ω_{n})}",{"attrs":11,"content":11,"marks":11,"text":787,"type":49},{"attrs":1560,"content":1561,"marks":11,"text":14,"type":138},{"textAlign":11},[1562],{"attrs":11,"content":11,"marks":11,"text":1563,"type":49},"Собственные колебания нелинейных систем менее доступны для классификации. Нелинейность систем с дискретным спектром собственных частот приводит к «перекачке» энергии колебаний по спектральным компонентам; при этом возникают процессы конкуренции мод – выживание одних и подавление других.",{"attrs":1565,"content":1567,"marks":11,"text":14,"type":442},{"textAlign":11,"version":46,"id":1566},"h2_vozбuzhdenie_koleбanii",[1568],{"attrs":11,"content":11,"marks":11,"text":1569,"type":49},"Возбуждение колебаний",{"attrs":1571,"content":1572,"marks":11,"text":14,"type":138},{"textAlign":11},[1573,1575,1583,1585,1593,1594,1602,1604,1612,1614,1622,1624,1630],{"attrs":11,"content":11,"marks":11,"text":1574,"type":49},"Возбуждение колебаний происходит либо путём непосредственного воздействия на состояние колебательной системы (раскачка маятника периодическими толчками, включение периодической ",{"attrs":11,"content":11,"marks":1576,"text":1582,"type":49},[1577],{"attrs":1578,"content":11,"marks":11,"text":14,"type":63},{"content_id":1579,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1580,"link_type":85,"navigation_value":11,"target":14,"version":46},"cc867ec2-79a0-421a-8328-a0af3bbfa61f",{"slug":1581,"type":61},"elektrodvizhushchaia-sila-cc867e","ЭДС",{"attrs":11,"content":11,"marks":11,"text":1584,"type":49}," в колебательный контур и т. п.), либо путём периодического изменения параметров этой системы (длины подвеса маятника, ",{"attrs":11,"content":11,"marks":1586,"text":1592,"type":49},[1587],{"attrs":1588,"content":11,"marks":11,"text":14,"type":63},{"content_id":1589,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1590,"link_type":85,"navigation_value":11,"target":14,"version":46},"9efb7598-35a0-45e5-b925-15772fafaed4",{"slug":1591,"type":61},"elektricheskaia-iomkost-9efb75","ёмкости",{"attrs":11,"content":11,"marks":11,"text":620,"type":49},{"attrs":11,"content":11,"marks":1595,"text":1601,"type":49},[1596],{"attrs":1597,"content":11,"marks":11,"text":14,"type":63},{"content_id":1598,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1599,"link_type":85,"navigation_value":11,"target":14,"version":46},"1b86c9aa-957e-41e6-b557-007681f69b18",{"slug":1600,"type":61},"samoinduktsiia-1b86c9","самоиндукции",{"attrs":11,"content":11,"marks":11,"text":1603,"type":49}," контура, ",{"attrs":11,"content":11,"marks":1605,"text":1611,"type":49},[1606],{"attrs":1607,"content":11,"marks":11,"text":14,"type":63},{"content_id":1608,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1609,"link_type":85,"navigation_value":11,"target":14,"version":46},"9936ce90-e2fb-4ab9-b3c1-ac363b4fcad4",{"slug":1610,"type":61},"moduli-uprugosti-9936ce","коэффициента упругости",{"attrs":11,"content":11,"marks":11,"text":1613,"type":49}," струны и т. п.), либо благодаря «самовозбуждению» колебаний, т. е. возникновению колебательных движений внутри самой системы. В первом случае говорят о ",{"attrs":11,"content":11,"marks":1615,"text":1621,"type":49},[1616],{"attrs":1617,"content":11,"marks":11,"text":14,"type":63},{"content_id":1618,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1619,"link_type":280,"navigation_value":11,"target":14,"version":46},"ace2a48e-73a7-4882-8fd1-5764b4c9150b",{"slug":1620,"type":61},"vynuzhdennye-kolebaniia-ace2a4","вынужденных колебаниях",{"attrs":11,"content":11,"marks":11,"text":1623,"type":49},", во втором – о параметрическом возбуждении колебаний, в третьем – об ",{"attrs":11,"content":11,"marks":1625,"text":1629,"type":49},[1626],{"attrs":1627,"content":11,"marks":11,"text":14,"type":63},{"content_id":577,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1628,"link_type":280,"navigation_value":11,"target":14,"version":46},{"slug":579,"type":61},"автоколебаниях",{"attrs":11,"content":11,"marks":11,"text":787,"type":49},{"attrs":1632,"content":1633,"marks":11,"text":14,"type":138},{"textAlign":11},[1634],{"attrs":11,"content":11,"marks":11,"text":1635,"type":49},"Особое значение при возбуждении колебаний имеет явление, состоящее в резком увеличении отклика системы (амплитуды колебаний) при приближении частоты внешнего воздействия к некоторой резонансной частоте, характеризующей систему. Если последняя линейна и параметры её не зависят от времени, то резонансные частоты совпадают с частотами её собственных колебаний и соответствующий отклик тем сильнее, чем выше добротность колебательной системы. Раскачка происходит до тех пор, пока энергия, вносимая извне (например, при каждом отклонении маятника), превышает потери за период осцилляции. Для линейных колебаний энергия, получаемая от источника, пропорциональна первой степени амплитуды, а потери растут пропорционально её квадрату, поэтому баланс энергий всегда достижим.",{"attrs":1637,"content":1638,"marks":11,"text":14,"type":138},{"textAlign":11},[1639,1641,1649,1651,1656,1658,1664,1666,1674],{"attrs":11,"content":11,"marks":11,"text":1640,"type":49},"При бо́льших амплитудах колебания становятся нелинейными, происходят смещение собственных частот системы и обогащение их спектра ",{"attrs":11,"content":11,"marks":1642,"text":1648,"type":49},[1643],{"attrs":1644,"content":11,"marks":11,"text":14,"type":63},{"content_id":1645,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1646,"link_type":85,"navigation_value":11,"target":14,"version":46},"02eac2b3-d613-456a-8d21-c166a3cef9b0",{"slug":1647,"type":61},"garmonika-02eac2","гармониками",{"attrs":11,"content":11,"marks":11,"text":1650,"type":49}," и субгармониками. Ограничение амплитуды колебаний может быть обусловлено как нелинейной ",{"attrs":11,"content":11,"marks":1652,"text":384,"type":49},[1653],{"attrs":1654,"content":11,"marks":11,"text":14,"type":63},{"content_id":381,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1655,"link_type":85,"navigation_value":11,"target":14,"version":46},{"slug":383,"type":61},{"attrs":11,"content":11,"marks":11,"text":1657,"type":49},", так и уходом системы из резонанса. При возбуждении колебаний в ",{"attrs":11,"content":11,"marks":1659,"text":1663,"type":49},[1660],{"attrs":1661,"content":11,"marks":11,"text":14,"type":63},{"content_id":625,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1662,"link_type":192,"navigation_value":11,"target":14,"version":46},{"slug":627,"type":61},"системах с распределёнными параметрами",{"attrs":11,"content":11,"marks":11,"text":1665,"type":49}," максимальные амплитуды достигаются в случае пространственно-временнóго резонанса, когда не только частота внешнего воздействия, но и его распределение по координатам хорошо «подогнаны» к структуре нормальной моды или когда наступает совмещение не только их частот (резонанс), но и волновых векторов (",{"attrs":11,"content":11,"marks":1667,"text":1673,"type":49},[1668],{"attrs":1669,"content":11,"marks":11,"text":14,"type":63},{"content_id":1670,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1671,"link_type":85,"navigation_value":11,"target":14,"version":46},"30a0efc0-44c6-4ab4-ae27-03523d10a91f",{"slug":1672,"type":61},"sinkhronizm-30a0ef","синхронизм",{"attrs":11,"content":11,"marks":11,"text":1675,"type":49},").",{"attrs":1677,"content":1678,"marks":11,"text":14,"type":138},{"textAlign":11},[1679,1681,1689,1690,1698,1700,1708,1709,1717,1719,1725,1727,1733,1735,1743],{"attrs":11,"content":11,"marks":11,"text":1680,"type":49},"Существует некоторый класс вынужденных колебаний, в котором внешнее воздействие, не являясь чисто колебательным, имеет, однако, настолько богатый частотный спектр, что в нём всегда содержатся резонансные частоты. Например, заряженная частица, пролетающая между двумя плоскостями, возбуждает почти весь набор нормальных волн и колебаний, свойственный этой системе. Сюда же следует отнести ",{"attrs":11,"content":11,"marks":1682,"text":1688,"type":49},[1683],{"attrs":1684,"content":11,"marks":11,"text":14,"type":63},{"content_id":1685,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1686,"link_type":85,"navigation_value":11,"target":14,"version":46},"4e314e8b-b7ec-44b1-b220-ea5fd322760a",{"slug":1687,"type":61},"izluchenie-vavilova-cherenkova-4e314e","излучение Вавилова – Черенкова",{"attrs":11,"content":11,"marks":11,"text":154,"type":49},{"attrs":11,"content":11,"marks":1691,"text":1697,"type":49},[1692],{"attrs":1693,"content":11,"marks":11,"text":14,"type":63},{"content_id":1694,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1695,"link_type":85,"navigation_value":11,"target":14,"version":46},"ec044678-2f91-438e-b464-e96aab0cba1a",{"slug":1696,"type":61},"tormoznoe-izluchenie-ec0446","тормозное излучение",{"attrs":11,"content":11,"marks":11,"text":1699,"type":49}," частицы в однородных средах, когда и спектр внешнего воздействия, и спектр собственных колебаний – сплошные, т. е. в них представлены все возможные частоты. Наконец, есть и совсем аномальный случай вынужденных колебаний в системах с непрерывным спектром собственных частот типа ",{"attrs":11,"content":11,"marks":1701,"text":1707,"type":49},[1702],{"attrs":1703,"content":11,"marks":11,"text":14,"type":63},{"content_id":1704,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1705,"link_type":85,"navigation_value":11,"target":14,"version":46},"38afe6ba-2485-4a18-9708-48fcf7b6e55f",{"slug":1706,"type":61},"rotator-v-tekhnike-38afe6","ротатора",{"attrs":11,"content":11,"marks":11,"text":909,"type":49},{"attrs":11,"content":11,"marks":1710,"text":1716,"type":49},[1711],{"attrs":1712,"content":11,"marks":11,"text":14,"type":63},{"content_id":1713,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1714,"link_type":85,"navigation_value":11,"target":14,"version":46},"79657de8-84ff-4afb-af4f-ccfee1ee6145",{"slug":1715,"type":61},"makhovik-79657d","маховик",{"attrs":11,"content":11,"marks":11,"text":1718,"type":49},", колесо, ",{"attrs":11,"content":11,"marks":1720,"text":1724,"type":49},[1721],{"attrs":1722,"content":11,"marks":11,"text":14,"type":63},{"content_id":113,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1723,"link_type":85,"navigation_value":11,"target":14,"version":46},{"slug":115,"type":61},"электрон",{"attrs":11,"content":11,"marks":11,"text":1726,"type":49}," в ",{"attrs":11,"content":11,"marks":1728,"text":1732,"type":49},[1729],{"attrs":1730,"content":11,"marks":11,"text":14,"type":63},{"content_id":356,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1731,"link_type":85,"navigation_value":11,"target":14,"version":46},{"slug":358,"type":61},"магнитном поле",{"attrs":11,"content":11,"marks":11,"text":1734,"type":49}," и др.), где ",{"attrs":11,"content":11,"marks":1736,"text":1742,"type":49},[1737],{"attrs":1738,"content":11,"marks":11,"text":14,"type":63},{"content_id":1739,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1740,"link_type":280,"navigation_value":11,"target":14,"version":46},"be693b86-4d13-4927-a4eb-b713a317e2e3",{"slug":1741,"type":61},"vrashchatel-noe-dvizhenie-be693b","вращательное движение",{"attrs":11,"content":11,"marks":11,"text":1744,"type":49}," (а следовательно, два ортогональных колебательных движения) может возбуждаться силами, неизменными во времени.",{"attrs":1746,"content":1747,"marks":11,"text":14,"type":138},{"textAlign":11},[1748,1750,1759,1761,1769,1771,1779,1781,1789,1791,1797,1798,1806],{"attrs":11,"content":11,"marks":11,"text":1749,"type":49},"Параметрическое возбуждение колебаний происходит в результате развития т. н. ",{"attrs":11,"content":11,"marks":1751,"text":1758,"type":49},[1752],{"attrs":1753,"content":11,"marks":11,"text":14,"type":63},{"content_id":1754,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1755,"link_type":1757,"navigation_value":11,"target":14,"version":46},"817ed30d-3710-45ee-96ff-36a01f949711",{"slug":1756,"type":61},"parametricheskie-neustoichivosti-817ed3","14","параметрической неустойчивости",{"attrs":11,"content":11,"marks":11,"text":1760,"type":49},", возникающей при периодическом воздействии на те параметры системы, которые определяют величину запасённой колебательной энергии; в электрическом контуре – это ",{"attrs":11,"content":11,"marks":1762,"text":1768,"type":49},[1763],{"attrs":1764,"content":11,"marks":11,"text":14,"type":63},{"content_id":1765,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1766,"link_type":85,"navigation_value":11,"target":14,"version":46},"ba48d225-aa9e-499c-a3fe-6354446e9ced",{"slug":1767,"type":61},"induktivnost-ba48d2","индуктивность",{"attrs":11,"content":11,"marks":11,"text":1770,"type":49}," или ёмкость (но не ",{"attrs":11,"content":11,"marks":1772,"text":1778,"type":49},[1773],{"attrs":1774,"content":11,"marks":11,"text":14,"type":63},{"content_id":1775,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1776,"link_type":85,"navigation_value":11,"target":14,"version":46},"32aba1c9-4237-4496-a6c2-29f92cd0d063",{"slug":1777,"type":61},"elektricheskoe-soprotivlenie-32aba1","сопротивление",{"attrs":11,"content":11,"marks":11,"text":1780,"type":49},"), у маятника – длина нити или масса груза (но не ",{"attrs":11,"content":11,"marks":1782,"text":1788,"type":49},[1783],{"attrs":1784,"content":11,"marks":11,"text":14,"type":63},{"content_id":1785,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1786,"link_type":85,"navigation_value":11,"target":14,"version":46},"8f91b2de-3906-44ec-9969-45280b47f1b4",{"slug":1787,"type":61},"koeffitsient-treniia-8f91b2","коэффициент трения",{"attrs":11,"content":11,"marks":11,"text":1790,"type":49},"). Параметрическое возбуждение колебаний проявляется с наибольшей эффективностью при равенстве частоты изменения параметра удвоенной собственной частоте. Сама же система остаётся линейной (см. также статьи ",{"attrs":11,"content":11,"marks":1792,"text":1796,"type":49},[1793],{"attrs":1794,"content":11,"marks":11,"text":14,"type":63},{"content_id":724,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1795,"link_type":192,"navigation_value":11,"target":14,"version":46},{"slug":726,"type":61},"Параметрическая колебательная система",{"attrs":11,"content":11,"marks":11,"text":118,"type":49},{"attrs":11,"content":11,"marks":1799,"text":1805,"type":49},[1800],{"attrs":1801,"content":11,"marks":11,"text":14,"type":63},{"content_id":1802,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1803,"link_type":85,"navigation_value":11,"target":14,"version":46},"061c21c8-48cd-45ba-9a90-7b0eb3273f57",{"slug":1804,"type":61},"parametricheskii-rezonans-061c21","Параметрический резонанс",{"attrs":11,"content":11,"marks":11,"text":1675,"type":49},{"attrs":1808,"content":1809,"marks":11,"text":14,"type":138},{"textAlign":11},[1810,1812,1820,1822,1830],{"attrs":11,"content":11,"marks":11,"text":1811,"type":49},"В нелинейной диссипативной системе при наличии источника энергии (в том числе неколебательной) могут зарождаться и устойчиво существовать автоколебания. Во многих системах процесс формирования автоколебаний состоит в последовательном самосогласовании движений. Пусть начальное состояние системы неустойчиво – либо по отношению к ничтожно малым ",{"attrs":11,"content":11,"marks":1813,"text":1819,"type":49},[1814],{"attrs":1815,"content":11,"marks":11,"text":14,"type":63},{"content_id":1816,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1817,"link_type":85,"navigation_value":11,"target":14,"version":46},"11e7ba4a-7736-4ac4-b3c7-8edb9b3cbc51",{"slug":1818,"type":61},"fluktuatsii-11e7ba","флуктуациям",{"attrs":11,"content":11,"marks":11,"text":1821,"type":49}," (мягкий режим возбуждения), либо по отношению к определённым конечным возмущениям (жёсткий режим возбуждения). В любом случае спонтанно (случайно) возникшее колебание начнёт увеличиваться по амплитуде (процесс усиления колебаний). Эти усиленные колебания через элемент положительной ",{"attrs":11,"content":11,"marks":1823,"text":1829,"type":49},[1824],{"attrs":1825,"content":11,"marks":11,"text":14,"type":63},{"content_id":1826,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1827,"link_type":85,"navigation_value":11,"target":14,"version":46},"0ad69baa-fb78-49ef-8dd6-49b3060d39eb",{"slug":1828,"type":61},"obratnaia-sviaz-0ad69b","обратной связи",{"attrs":11,"content":11,"marks":11,"text":1831,"type":49},", обеспечивающий самосогласованность фаз, снова «подаются» вместо своего возникновения и снова усиливаются, и т. д. Получается очень быстрый (чаще всего экспоненциальный) рост колебаний. Ограничение наступает из-за конечности энергетических ресурсов, а иногда и раньше – из-за рассогласованности фаз.",{"attrs":1833,"content":1834,"marks":11,"text":14,"type":138},{"textAlign":11},[1835,1837,1845,1846,1854,1855,1863,1865,1873,1875,1880,1882,1890,1892,1900,1902,1910,1911,1919,1921,1929,1931,1938,1940,1948,1950,1956],{"attrs":11,"content":11,"marks":11,"text":1836,"type":49},"Автоколебательные системы обладают большим разнообразием поведения (периодические, многопериодические, хаотические) и широко представлены как в природе, так и в технике: ",{"attrs":11,"content":11,"marks":1838,"text":1844,"type":49},[1839],{"attrs":1840,"content":11,"marks":11,"text":14,"type":63},{"content_id":1841,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1842,"link_type":1101,"navigation_value":11,"target":14,"version":46},"49b955cf-5484-4006-a891-bc37fbfec852",{"slug":1843,"type":61},"radiotekhnika-49b955","радиотехнические",{"attrs":11,"content":11,"marks":11,"text":118,"type":49},{"attrs":11,"content":11,"marks":1847,"text":1853,"type":49},[1848],{"attrs":1849,"content":11,"marks":11,"text":14,"type":63},{"content_id":1850,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1851,"link_type":1101,"navigation_value":11,"target":14,"version":46},"13bf68d7-80ee-4233-809d-bb653ad93662",{"slug":1852,"type":61},"akusticheskaia-sistema-13bf68","акустические",{"attrs":11,"content":11,"marks":11,"text":118,"type":49},{"attrs":11,"content":11,"marks":1856,"text":1862,"type":49},[1857],{"attrs":1858,"content":11,"marks":11,"text":14,"type":63},{"content_id":1859,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1860,"link_type":1101,"navigation_value":11,"target":14,"version":46},"0321c1ec-7f28-4019-9dc7-f7af0ddabe3a",{"slug":1861,"type":61},"opticheskaia-sistema-0321c1","оптические",{"attrs":11,"content":11,"marks":11,"text":1864,"type":49},", квантовые (",{"attrs":11,"content":11,"marks":1866,"text":1872,"type":49},[1867],{"attrs":1868,"content":11,"marks":11,"text":14,"type":63},{"content_id":1869,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1870,"link_type":1101,"navigation_value":11,"target":14,"version":46},"430c3c38-bfcb-4798-9aab-2a5aebae913b",{"slug":1871,"type":61},"lazer-430c3c","лазеры",{"attrs":11,"content":11,"marks":11,"text":1874,"type":49},") генераторы, генераторы с ",{"attrs":11,"content":11,"marks":1876,"text":618,"type":49},[1877],{"attrs":1878,"content":11,"marks":11,"text":14,"type":63},{"content_id":615,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1879,"link_type":1101,"navigation_value":11,"target":14,"version":46},{"slug":617,"type":61},{"attrs":11,"content":11,"marks":11,"text":1881,"type":49}," и распределёнными параметрами, механические автоколебательные системы – часы, ветровые волны на воде, ",{"attrs":11,"content":11,"marks":1883,"text":1889,"type":49},[1884],{"attrs":1885,"content":11,"marks":11,"text":14,"type":63},{"content_id":1886,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1887,"link_type":85,"navigation_value":11,"target":14,"version":46},"fcf2191a-8369-4ee7-bceb-4ea06ed8edf6",{"slug":1888,"type":61},"turbulentnost-fcf219","турбулентные",{"attrs":11,"content":11,"marks":11,"text":1891,"type":49}," процессы в ",{"attrs":11,"content":11,"marks":1893,"text":1899,"type":49},[1894],{"attrs":1895,"content":11,"marks":11,"text":14,"type":63},{"content_id":1896,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1897,"link_type":1101,"navigation_value":11,"target":14,"version":46},"c63b8239-0c6b-4b8e-89b8-8903324052d8",{"slug":1898,"type":61},"aerodinamika-c63b82","аэро",{"attrs":11,"content":11,"marks":11,"text":1901,"type":49},"- и ",{"attrs":11,"content":11,"marks":1903,"text":1909,"type":49},[1904],{"attrs":1905,"content":11,"marks":11,"text":14,"type":63},{"content_id":1906,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1907,"link_type":1101,"navigation_value":11,"target":14,"version":46},"31c37ba2-1822-4bd1-97de-1396d4b6107f",{"slug":1908,"type":61},"gidrodinamika-31c37b","гидродинамике",{"attrs":11,"content":11,"marks":11,"text":118,"type":49},{"attrs":11,"content":11,"marks":1912,"text":1918,"type":49},[1913],{"attrs":1914,"content":11,"marks":11,"text":14,"type":63},{"content_id":1915,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1916,"link_type":85,"navigation_value":11,"target":14,"version":46},"1f529664-9936-409e-9a7b-9b3d215cb0f5",{"slug":1917,"type":61},"flatter-1f5296","флаттер",{"attrs":11,"content":11,"marks":11,"text":1920,"type":49}," крыльев ",{"attrs":11,"content":11,"marks":1922,"text":1928,"type":49},[1923],{"attrs":1924,"content":11,"marks":11,"text":14,"type":63},{"content_id":1925,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1926,"link_type":85,"navigation_value":11,"target":14,"version":46},"ec66cc96-aa64-4aaf-8359-f18b6b63994a",{"slug":1927,"type":61},"samoliot-ec66cc","самолётов",{"attrs":11,"content":11,"marks":11,"text":1930,"type":49}," и др. Часто встречаются более сложные автоколебательные системы, где происходит взаимная ",{"attrs":11,"content":11,"marks":1932,"text":1937,"type":49},[1933],{"attrs":1934,"content":11,"marks":11,"text":14,"type":63},{"content_id":586,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1935,"link_type":1936,"navigation_value":11,"target":14,"version":46},{"slug":588,"type":61},"17","синхронизация колебаний и волн",{"attrs":11,"content":11,"marks":11,"text":1939,"type":49}," или хаотизация колебаний: стимуляция сердца, синхронизация мод в лазерах, индуцированные излучатели электромагнитных волн, переход к турбулентности в гидродинамических течениях ",{"attrs":11,"content":11,"marks":1941,"text":1947,"type":49},[1942],{"attrs":1943,"content":11,"marks":11,"text":14,"type":63},{"content_id":1944,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1945,"link_type":85,"navigation_value":11,"target":14,"version":46},"93be516b-2f50-48d1-9f78-649b42537804",{"slug":1946,"type":61},"viazkost-93be51","вязкой",{"attrs":11,"content":11,"marks":11,"text":1949,"type":49}," жидкости, рождение шума в системах связанных ",{"attrs":11,"content":11,"marks":1951,"text":1955,"type":49},[1952],{"attrs":1953,"content":11,"marks":11,"text":14,"type":63},{"content_id":241,"external":13,"graph_link":7,"href":57,"kind_id":58,"link":1954,"link_type":85,"navigation_value":11,"target":14,"version":46},{"slug":243,"type":61},"генераторов",{"attrs":11,"content":11,"marks":11,"text":1957,"type":49}," и т. д.",{"attrs":1959,"content":11,"marks":11,"text":14,"type":1968},{"list":1960},[1961,1965],{"slug":1962,"type":1963,"value":1964},"ma-miller-ab38cf","portal_author","Миллер Михаил Адольфович",{"slug":1966,"type":1963,"value":1967},"mi-rabinovich-51e8c3","Рабинович Михаил Израилевич","author","doc","Миллер М. А., Рабинович М. И. Колебания // Большая российская энциклопедия: научно-образовательный портал – URL: https://bigenc.ru/c/kolebaniia-ef7a5d/?v=7472794. – Дата публикации: 06.06.2023","Физические процессы, явления",{"descriptionList":1973,"image":1976},[1974],{"kind":49,"label":1975,"value":441},"Области знаний",{"caption":1977,"element":1980},{"text":1978,"title":1979},"Физика. Научно-образовательный портал «Большая российская энциклопедия»","Физика",{"alt":1979,"areaViews":1981,"height":1996,"placeholder":7,"src":1997,"srcset":1998,"title":1979,"width":1999},[1982,1987,1991],{"alias":1983,"height":1984,"srcset":1985,"width":1986},"16/9",394,"https://i.bigenc.ru/resizer/resize?sign=fbrJL5DBtXzyuD39zuzLng&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=QQmcmYSPahUOPaI2cBiJJw&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=q6_COIpLGvskzib5PBFlPA&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=6LCR5nPbEWe_60e6VQ6jtg&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=wCDGPe_MW8FlERMjuk8k8g&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=D30keLkS0kJpWcFpPuLaEg&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=gg19Uiskf4XuV2ps-bnBXA&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=vDmDJKA_LeVaGTULVBfqDA&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=7ikIK_fY-di6ts4e41gTrw&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=3840 3840w",700,{"alias":1988,"height":1989,"srcset":1990,"width":1989},"1/1",228,"https://i.bigenc.ru/resizer/resize?sign=c9Nd2bcHNIcBGUDDFoB4bw&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=7096IM8aEKErJTY2j52KIQ&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=WhtTw6iPRA8XGftLH-N5oQ&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=IhLiYkKd0wANEWJocBcc4A&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=Z-77oV4lExygf2LaDfv2Qg&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=aNcBsUzrP9G51Ce6GUXjrA&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=EE63Vo2oDiWIVVs4KnDydg&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=9pJcSguiuXdEmyNyZwhkyQ&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=ImKWJht9_tEg7ELt976lYw&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=3840 3840w",{"alias":1992,"height":1993,"srcset":1994,"width":1995},"3/4",752,"https://i.bigenc.ru/resizer/resize?sign=qUoTUBWv7V0zJQsB97HS3g&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=eZjwfnRSt4F00M3PgYcLtw&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=Kiktsvq6W3Un8eYZ2o3u-A&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=82VktcLfheVxqPhoTRbrwg&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=_Lu2HKDnjjxdeswxDcWniA&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=Ym1FzzUIYehSsuSO5AgL2g&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=gTr_RmOEaFyDZ_lIL30Zow&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=qO_kluTGLr79oeniPQaF6A&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=dZk1Cmo8cXTrnKowfpLcUA&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=3840 3840w",564,1008,"https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120","https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=Jf8Ovt6NK1CJRMEXmLmu9w&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=9FmjZNIS1_JG-eBy3nkCow&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=W0YAxakNej-ihBYTmKOUhA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=bU5vxPnJKBxMhvgLEjl-uA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=CO7eqX0CglCAJmsuCYDJxQ&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=SNrDJXfJeDUaOjs9TGABPA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=A65s2m2zZF6hgTDDppMoDA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1920 1920w",1528,"Колебания","2023-06-06T11:49:29.000Z","ef7a5d24-4288-4787-bbe8-730110571f67",7472794,{"article:modified_time":2001,"article:section":1971,"article:tag":2005,"description":2007,"keywords":2006,"og:description":2007,"og:image":2008,"og:image:alt":2009,"og:image:height":2010,"og:image:type":2011,"og:image:width":2012,"og:title":2013,"og:type":61,"og:url":2014,"title":2013,"twitter:card":2015},[2006],"Теория колебаний","Колеба́ния, движения или поведение системы, обладающие той или иной степенью повторяемости во времени. Колебания свойственны всем явлениям природы....","https://i.bigenc.ru/resizer/resize?sign=K2mwjNK87zofppSZEffyIw&filename=vault/3cf067030012eb10bb78b0ddf25f3b6b.webp&width=1200","«Большая российская энциклопедия»","792","webp&width=1200","1200","Колебания. Большая российская энциклопедия","https://bigenc.ru/c/kolebaniia-ef7a5d","summary_large_image","kolebaniia-ef7a5d",[2018],{"label":2006,"link":2019},{"slug":2020,"type":2021},"teoriia-kolebanii-440eda","tag",{"createdAt":2001,"tabs":2023,"title":2000,"updatedAt":2001},[61,2024,2025,2026,2027],"annotation","media","references","versions",[2029,2030,2031,2032],{"id":438,"title":441,"type":442},{"id":790,"title":793,"type":442},{"id":1354,"title":1357,"type":442},{"id":1566,"title":1569,"type":442},{},"/content/articles/kolebaniia-ef7a5d",{"get_":2036,"getError":11,"getPending":13,"slideNumber":18,"getCache":2048},{"components":2037,"media":2039,"meta":2046},{"createdAt":2001,"tabs":2038,"title":2000,"updatedAt":2001},[61,2024,2025,2026,2027],{"images":2040},[2041],{"caption":2042,"element":2043},{"copyright":202,"text":201,"title":207},{"alt":207,"height":2044,"src":205,"srcset":206,"title":207,"width":2045},2136,2968,{"article:modified_time":2001,"article:section":1971,"article:tag":2047,"description":2007,"keywords":2006,"og:description":2007,"og:image":2008,"og:image:alt":2009,"og:image:height":2010,"og:image:type":2011,"og:image:width":2012,"og:title":2013,"og:type":61,"og:url":2014,"title":2013,"twitter:card":2015},[2006],"/content/articles/kolebaniia-ef7a5d/media?slider=true",{"isOpened":13},{"get_":11,"getError":11,"getPending":7,"post_":-1,"postError":11,"postPending":7,"count":18,"noteActive":13,"allVersions":13,"rendered":13,"loading":13},{"isOpened":13},{"isOpened":13},{"get_":11,"getError":11,"getPending":7},{"get_":11,"getError":11,"getPending":7},{"get_":11,"getError":11,"getPending":7},{"get_":11,"getError":11,"getPending":7,"post_":-1,"postError":11,"postPending":7},{"get_":2058,"getError":11,"getPending":13,"getCache":2065},{"components":2059,"title":2000,"versions":2061},{"createdAt":2001,"tabs":2060,"title":2000,"updatedAt":2001},[61,2024,2025,2026,2027],[2062],{"createdAt":2001,"id":2063,"isCurrent":7,"title":2064},"7472794","Версия №1 (актуальная)","/content/articles/kolebaniia-ef7a5d/versions",{"show":13},{"text":14}]</script> <script>window.__NUXT__={};window.__NUXT__.config={public:{apiPrefix:"https://api.bigenc.ru",sVault:"",iVault:"",apiContentSubPrefix:"c.",apiUserSubPrefix:"u.",domain:"bigenc.ru",sentryDns:"https://be4279c4bfa0caa49440eefadf8abb1c@sentry.bigenc.ru/2",googleAnalytics:{id:"G-B0B7W0RKMV",allowedEnv:"production",url:"https://www.googletagmanager.com/gtag/js?id=G-B0B7W0RKMV"},mailRuCounter:{id:3400444,allowedEnv:"production",url:"https://top-fwz1.mail.ru/js/code.js"},version:"1.40.12",gnezdo:{id:2904018441,allowedEnv:"production",url:"https://news.gnezdo2.ru/gnezdo_news_tracker_new.js"},clickcloud:{id:"https://r.ccsyncuuid.net/match/1000511/",allowedEnv:"production"},yandexMetrika:{id:88885444,allowedEnv:"production",url:"https://mc.yandex.ru/metrika/tag.js",options:{defer:true,webvisor:true,clickmap:true,trackLinks:true,childIframe:true,accurateTrackBounce:true}},device:{enabled:true,defaultUserAgent:"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false},persistedState:{storage:"cookies",debug:false,cookieOptions:{}}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://s.bigenc.ru/"}}</script></body></html>