CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 126 results for author: <span class="mathjax">Klaassen, P</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Klaassen%2C+P">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Klaassen, P"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Klaassen%2C+P&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Klaassen, P"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Klaassen%2C+P&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Klaassen%2C+P&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Klaassen%2C+P&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Klaassen%2C+P&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06697">arXiv:2410.06697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06697">pdf</a>, <a href="https://arxiv.org/format/2410.06697">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> JWST-IPA: Chemical Inventory and Spatial Mapping of Ices in the Protostar HOPS370 -- Evidence for an Opacity Hole and Thermal Processing of Ices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=P.%2C+M">Manoj P.</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S T. Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">Will Robson M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N">Nashanty Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R+A">Robert A. Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">Neal J. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E">Ewine van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Sam Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Neufeld%2C+D+A">David A. Neufeld</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">Pooneh Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yao-Lun Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">Elise Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+J+D">Joel D. Green</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06697v1-abstract-short" style="display: inline;"> The composition of protoplanetary disks, and hence the initial conditions of planet formation, may be strongly influenced by the infall and thermal processing of material during the protostellar phase. Composition of dust and ice in protostellar envelopes, shaped by energetic processes driven by the protostar, serves as the fundamental building material for planets and complex organic molecules. A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06697v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06697v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06697v1-abstract-full" style="display: none;"> The composition of protoplanetary disks, and hence the initial conditions of planet formation, may be strongly influenced by the infall and thermal processing of material during the protostellar phase. Composition of dust and ice in protostellar envelopes, shaped by energetic processes driven by the protostar, serves as the fundamental building material for planets and complex organic molecules. As part of the JWST GO program, &#34;Investigating Protostellar Accretion&#34; (IPA), we observed an intermediate-mass protostar HOPS 370 (OMC2-FIR3) using NIRSpec/IFU and MIRI/MRS. This study presents the gas and ice phase chemical inventory revealed with the JWST in the spectral range of $\sim$2.9 to 28 $渭$m and explores the spatial variation of volatile ice species in the protostellar envelope. We find evidence for thermal processing of ice species throughout the inner envelope. We present the first high-spatial resolution ($\sim 80$ au) maps of key volatile ice species H$_{2}$O, CO$_{2}$, $^{13}$CO$_2$, CO, and OCN$^-$, which reveal a highly structured and inhomogeneous density distribution of the protostellar envelope, with a deficiency of ice column density that coincides with the jet/outflow shocked knots. Further, we observe high relative crystallinity of H$_{2}$O ice around the shocked knot seen in the H$_2$ and OH wind/outflow, which can be explained by a lack of outer colder material in the envelope along the line of sight due to the irregular structure of the envelope. These observations show clear evidence of thermal processing of the ices in the inner envelope, close to the outflow cavity walls, heated by the luminous protostar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06697v1-abstract-full').style.display = 'none'; document.getElementById('2410.06697v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJ. Main text:16 pages with 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02860">arXiv:2410.02860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02860">pdf</a>, <a href="https://arxiv.org/format/2410.02860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Ammonium hydrosulfide (NH4SH) as a potentially significant sulfur sink in interstellar ices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">Katerina Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boogert%2C+A">Adwin Boogert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">Martijn L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Santos%2C+J+C">Julia C. Santos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">Pamela D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">Patrick J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuang%2C+K">Ko-Ju Chuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02860v3-abstract-short" style="display: inline;"> Sulfur is depleted with respect to its cosmic standard abundance in dense star-forming regions. It has been suggested that this depletion is caused by the freeze-out of sulfur on interstellar dust grains, but the observed abundances and upper limits of sulfur-bearing ices remain too low to account for all of the missing sulfur. Toward the same environments, a strong absorption feature at 6.85 $渭$m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02860v3-abstract-full').style.display = 'inline'; document.getElementById('2410.02860v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02860v3-abstract-full" style="display: none;"> Sulfur is depleted with respect to its cosmic standard abundance in dense star-forming regions. It has been suggested that this depletion is caused by the freeze-out of sulfur on interstellar dust grains, but the observed abundances and upper limits of sulfur-bearing ices remain too low to account for all of the missing sulfur. Toward the same environments, a strong absorption feature at 6.85 $渭$m is observed, but its long-standing assignment to the NH4+ cation remains tentative. We investigate the plausibility of NH4SH salt serving as a sulfur reservoir and a carrier of the 6.85 $渭$m band in interstellar ices by characterizing its IR signatures and apparent band strengths in water-rich laboratory ice mixtures and using this laboratory data to constrain NH4SH abundances in observations of 4 protostars and 2 cold dense clouds. The observed 6.85 $渭$m feature is fit well with the laboratory NH4SH:H2O ice spectra. NH4+ column densities obtained from the 6.85 $渭$m band range from 8-23% with respect to H2O toward the sample of protostars and dense clouds. The redshift of the 6.85 $渭$m feature correlates with higher abundances of NH4+ with respect to H2O in both the laboratory data presented here and observational data of dense clouds and protostars. The apparent band strength of the SH- feature is likely too low for the feature to be detectable in the spectrally busy 3.9 $渭$m region, but the 5.3 $渭$m NH4+ $谓_{4}$ + SH- R combination mode may be an alternative means of detection. Its tentative assignment adds to mounting evidence supporting the presence of NH4+ salts in ices and is the first tentative observation of the SH- anion toward interstellar ices. If the majority ($\gtrsim$80-85%) of the NH4+ cations quantified toward the investigated sources in this work are bound to SH- anions, then NH4SH salts could account for up to 17-18% of their sulfur budgets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02860v3-abstract-full').style.display = 'none'; document.getElementById('2410.02860v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A. 20 pages, 14 figures, and 7 tables in the main text; 15 pages, 17 figures, and 10 tables in the appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16061">arXiv:2409.16061</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16061">pdf</a>, <a href="https://arxiv.org/format/2409.16061">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451350">10.1051/0004-6361/202451350 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST Observations of Young protoStars (JOYS). HH 211: the textbook case of a protostellar jet and outflow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ray%2C+T+P">T. P. Ray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McCaughrean%2C+M+J">M. J. McCaughrean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giannini%2C+T">T. Giannini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justtanont%2C+K">K. Justtanont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nisini%2C+B">B. Nisini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Navarro%2C+M+G">M. G. Navarro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devaraj%2C+R">R. Devaraj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reyes%2C+S">S. Reyes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazar%2C+P">P. Nazar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%BCdel%2C+M">M. G眉del</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">Th. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagage%2C+P+O">P. O. Lagage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%96stlin%2C+G">G. 脰stlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vandenbussche%2C+B">B. Vandenbussche</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Waelkens%2C+C">C. Waelkens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wright%2C+G">G. Wright</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16061v1-abstract-short" style="display: inline;"> We use the James Webb Space Telescope (JWST) and its Mid-Infrared Instrument (MIRI) (5-28 um), to study the embedded HH 211 flow. We map a 0.95&#39;x0.22&#39; region, covering the full extent of the blue-shifted lobe, the central protostellar region, and a small portion of the red-shifted lobe. The jet driving source is not detected even at the longest mid-IR wavelengths. The overall morphology of the flo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16061v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16061v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16061v1-abstract-full" style="display: none;"> We use the James Webb Space Telescope (JWST) and its Mid-Infrared Instrument (MIRI) (5-28 um), to study the embedded HH 211 flow. We map a 0.95&#39;x0.22&#39; region, covering the full extent of the blue-shifted lobe, the central protostellar region, and a small portion of the red-shifted lobe. The jet driving source is not detected even at the longest mid-IR wavelengths. The overall morphology of the flow consists of a highly collimated jet, mostly molecular (H2, HD) with an inner atomic ([FeI], [FeII], [SI], [NiII]) structure. The jet shocks the ambient medium, producing several large bow-shocks, rich in forbidden atomic and molecular lines, and is driving an H2 molecular outflow, mostly traced by low-J, v=0 transitions. Moreover, 0-0 S(1) uncollimated emission is also detected down to 2&#34;-3&#34; (~650-1000 au) from the source, tracing a cold (T=200-400 K), less dense and poorly collimated molecular wind. The atomic jet ([FeII] at 26 um) is detected down to ~130 au from source, whereas the lack of H2 emission close to the source is likely due to the large visual extinction. Dust continuum-emission is detected at the terminal bow-shocks, and in the blue- and red-shifted jet, being likely dust lifted from the disk. The jet shows an onion-like structure, with layers of different size, velocity, temperature, and chemical composition. Moreover, moving from the inner jet to the outer bow-shocks, different physical, kinematic and excitation conditions for both molecular and atomic gas are observed. The jet mass-flux rate, momentum, and momentum flux of the warm H2 component are up to one order of magnitude higher than those inferred from the atomic jet component. Our findings indicate that the warm H2 component is the primary mover of the outflow, namely it is the most significant dynamical component of the jet, in contrast to jets from more evolved YSOs, where the atomic component is dominant. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16061v1-abstract-full').style.display = 'none'; document.getElementById('2409.16061v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper accepted in A&amp;A for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 691, A134 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12975">arXiv:2408.12975</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12975">pdf</a>, <a href="https://arxiv.org/format/2408.12975">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The UK Submillimetre and Millimetre Astronomy Roadmap 2024 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pattle%2C+K">K. Pattle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barry%2C+P+S">P. S. Barry</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blain%2C+A+W">A. W. Blain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+M">M. Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+R+A">R. A. Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clements%2C+D+L">D. L. Clements</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Currie%2C+M+J">M. J. Currie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doyle%2C+S">S. Doyle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eden%2C+D">D. Eden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuller%2C+G+A">G. A. Fuller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Griffin%2C+M">M. Griffin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huggard%2C+P+G">P. G. Huggard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ilee%2C+J+D">J. D. Ilee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karoly%2C+J">J. Karoly</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Khan%2C+Z+A">Z. A. Khan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klimovich%2C+N">N. Klimovich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kontar%2C+E">E. Kontar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rigby%2C+A+J">A. J. Rigby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scicluna%2C+P">P. Scicluna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Serjeant%2C+S">S. Serjeant</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tan%2C+B+-">B. -K. Tan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ward-Thompson%2C+D">D. Ward-Thompson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Williams%2C+T+G">T. G. Williams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davis%2C+T+A">T. A. Davis</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12975v3-abstract-short" style="display: inline;"> In this Roadmap, we present a vision for the future of submillimetre and millimetre astronomy in the United Kingdom over the next decade and beyond. This Roadmap has been developed in response to the recommendation of the Astronomy Advisory Panel (AAP) of the STFC in the AAP Astronomy Roadmap 2022. In order to develop our stragetic priorities and recommendations, we surveyed the UK submillimetre a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12975v3-abstract-full').style.display = 'inline'; document.getElementById('2408.12975v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12975v3-abstract-full" style="display: none;"> In this Roadmap, we present a vision for the future of submillimetre and millimetre astronomy in the United Kingdom over the next decade and beyond. This Roadmap has been developed in response to the recommendation of the Astronomy Advisory Panel (AAP) of the STFC in the AAP Astronomy Roadmap 2022. In order to develop our stragetic priorities and recommendations, we surveyed the UK submillimetre and millimetre community to determine their key priorities for both the near-term and long-term future of the field. We further performed detailed reviews of UK leadership in submillimetre/millimetre science and instrumentation. Our key strategic priorities are as follows: 1. The UK must be a key partner in the forthcoming AtLAST telescope, for which it is essential that the UK remains a key partner in the JCMT in the intermediate term. 2. The UK must maintain, and if possible enhance, access to ALMA and aim to lead parts of instrument development for ALMA2040. Our strategic priorities complement one another: AtLAST (a 50m single-dish telescope) and an upgraded ALMA (a large configurable interferometric array) would be in synergy, not competition, with one another. Both have identified and are working towards the same overarching science goals, and both are required in order to fully address these goals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12975v3-abstract-full').style.display = 'none'; document.getElementById('2408.12975v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">91 pages plus cover, 38 figures. Submitted to the Science and Technology Facilities Council, August 2024. One figure corrected (v2); new appendix with STFC Q&amp;A; corrected SMA access statement; updated references, acronyms &amp; author list (v3)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08299">arXiv:2408.08299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08299">pdf</a>, <a href="https://arxiv.org/format/2408.08299">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449794">10.1051/0004-6361/202449794 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical Accretion Flows -- ALMAGAL: Flows along filamentary structures in high-mass star-forming clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Wells%2C+M+R+A">M. R. A. Wells</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Molinari%2C+S">S. Molinari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schilke%2C+P">P. Schilke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battersby%2C+C">C. Battersby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+P">P. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=S%C3%A1nchez-Monge%2C+%C3%81">脕. S谩nchez-Monge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+B">B. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scheuck%2C+M+B">M. B. Scheuck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Syed%2C+J">J. Syed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuiper%2C+R">R. Kuiper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elia%2C+D">D. Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coletta%2C+A">A. Coletta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Traficante%2C+A">A. Traficante</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wallace%2C+J">J. Wallace</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rigby%2C+A+J">A. J. Rigby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klessen%2C+R+S">R. S. Klessen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+Q">Q. Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Walch%2C+S">S. Walch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beltr%C3%A1n%2C+M+T">M. T. Beltr谩n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tang%2C+Y">Y. Tang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuller%2C+G+A">G. A. Fuller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lis%2C+D+C">D. C. Lis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6ller%2C+T">T. M枚ller</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08299v2-abstract-short" style="display: inline;"> We use data from the ALMA Evolutionary Study of High Mass Protocluster Formation in the Galaxy (ALMAGAL) survey to study 100 ALMAGAL regions at $\sim$ 1 arsecond resolution located between $\sim$ 2 and 6 kpc distance. Using ALMAGAL $\sim$ 1.3mm line and continuum data we estimate flow rates onto individual cores. We focus specifically on flow rates along filamentary structures associated with thes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08299v2-abstract-full').style.display = 'inline'; document.getElementById('2408.08299v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08299v2-abstract-full" style="display: none;"> We use data from the ALMA Evolutionary Study of High Mass Protocluster Formation in the Galaxy (ALMAGAL) survey to study 100 ALMAGAL regions at $\sim$ 1 arsecond resolution located between $\sim$ 2 and 6 kpc distance. Using ALMAGAL $\sim$ 1.3mm line and continuum data we estimate flow rates onto individual cores. We focus specifically on flow rates along filamentary structures associated with these cores. Our primary analysis is centered around position velocity cuts in H$_2$CO (3$_{0,3}$ - 2$_{0,2}$) which allow us to measure the velocity fields, surrounding these cores. Combining this work with column density estimates we derive the flow rates along the extended filamentary structures associated with cores in these regions. We select a sample of 100 ALMAGAL regions covering four evolutionary stages from quiescent to protostellar, Young Stellar Objects (YSOs), and HII regions (25 each). Using dendrogram and line analysis, we identify a final sample of 182 cores in 87 regions. In this paper, we present 728 flow rates for our sample (4 per core), analysed in the context of evolutionary stage, distance from the core, and core mass. On average, for the whole sample, we derive flow rates on the order of $\sim$10$^{-4}$ M$_{sun}$yr$^{-1}$ with estimated uncertainties of $\pm$50%. We see increasing differences in the values among evolutionary stages, most notably between the less evolved (quiescent/protostellar) and more evolved (YSO/HII region) sources. We also see an increasing trend as we move further away from the centre of these cores. We also find a clear relationship between the flow rates and core masses $\sim$M$^{2/3}$ which is in line with the result expected from the tidal-lobe accretion mechanism. Overall, we see increasing trends in the relationships between the flow rate and the three investigated parameters; evolutionary stage, distance from the core, and core mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08299v2-abstract-full').style.display = 'none'; document.getElementById('2408.08299v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 690, A185 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20066">arXiv:2407.20066</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20066">pdf</a>, <a href="https://arxiv.org/format/2407.20066">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202450706">10.1051/0004-6361/202450706 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JOYS+: link between ice and gas of complex organic molecules. Comparing JWST and ALMA data of two low-mass protostars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">W. R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">P. Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">K. Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tabone%2C+B">B. Tabone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ressler%2C+M+E">M. E. Ressler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">P. D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boogert%2C+A+C+A">A. C. A. Boogert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perotti%2C+G">G. Perotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gouellec%2C+V+J+M+L">V. J. M. Le Gouellec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Majumdar%2C+L">L. Majumdar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%BCdel%2C+M">M. G眉del</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">Th. Henning</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20066v1-abstract-short" style="display: inline;"> A rich inventory of complex organic molecules (COMs) has been observed in high abundances in the gas phase toward Class 0 protostars. These molecules are suggested to be formed in ices and sublimate in the warm inner envelope close to the protostar. However, only the most abundant COM, methanol (CH3OH), has been firmly detected in ices before the era of James Webb Space Telescope (JWST). Now it is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20066v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20066v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20066v1-abstract-full" style="display: none;"> A rich inventory of complex organic molecules (COMs) has been observed in high abundances in the gas phase toward Class 0 protostars. These molecules are suggested to be formed in ices and sublimate in the warm inner envelope close to the protostar. However, only the most abundant COM, methanol (CH3OH), has been firmly detected in ices before the era of James Webb Space Telescope (JWST). Now it is possible to detect the interstellar ices of other COMs and constrain their ice column densities quantitatively. We aim to determine the column densities of several oxygen-bearing COMs (O-COMs) in both gas and ice for two low-mass protostellar sources, NGC 1333 IRAS 2A and B1-c, as case studies in our JWST Observations of Young protoStars (JOYS+) program. By comparing the column density ratios w.r.t. CH3OH between both phases measured in the same sources, we can probe into the evolution of COMs from ice to gas in the early stages of star formation. We are able to fit the fingerprints range of COM ices between 6.8 and 8.8 um in the JWST/MIRI-MRS spectra of B1-c using similar components as recently used for IRAS 2A. We claim detection of CH4, OCN-, HCOO-, HCOOH, CH3CHO, C2H5OH, CH3OCH3, CH3OCHO, and CH3COCH3 in B1-c, and upper limits are estimated for SO2, CH3COOH, and CH3CN. The comparison of O-COM ratios w.r.t CH3OH between ice and gas shows two different cases. 1) the column density ratios of CH3OCHO and CH3OCH3 match well between the two phases, which may be attributed to a direct inheritance from ice to gas or strong chemical links with CH3OH. 2) the ice ratios of CH3CHO and C2H5OH w.r.t. CH3OH are higher than the gas ratios by 1-2 orders of magnitudes. This difference can be explained by the gas-phase reprocessing following sublimation, or different spatial distributions of COMs in the envelope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20066v1-abstract-full').style.display = 'none'; document.getElementById('2407.20066v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages (22 main text, 20 appendix); 27 figures (12 in main text, 15 in appendix); 5 tables (2 in main text, 3 in appendix) Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 690, A205 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01413">arXiv:2407.01413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01413">pdf</a>, <a href="https://arxiv.org/format/2407.01413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> AtLAST Science Overview Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+M">Mark Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+D">Daizhong Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saintonge%2C+A">Am茅lie Saintonge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+M+W+L">Matthew W. L. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thelen%2C+A">Alexander Thelen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wedemeyer%2C+S">Sven Wedemeyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akiyama%2C+K">Kazunori Akiyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreon%2C+S">Stefano Andreon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bakx%2C+T+J+L+C">Tom J. L. C. Bakx</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bot%2C+C">Caroline Bot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bower%2C+G">Geoffrey Bower</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Braj%C5%A1a%2C+R">Roman Braj拧a</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+C">Chian-Chou Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=da+Cunha%2C+E">Elisabete da Cunha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eden%2C+D">David Eden</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01413v2-abstract-short" style="display: inline;"> Submillimeter and millimeter wavelengths provide a unique view of the Universe, from the gas and dust that fills and surrounds galaxies to the chromosphere of our own Sun. Current single-dish facilities have presented a tantalising view of the brightest (sub-)mm sources, and interferometers have provided the exquisite resolution necessary to analyse the details in small fields, but there are still&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01413v2-abstract-full').style.display = 'inline'; document.getElementById('2407.01413v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01413v2-abstract-full" style="display: none;"> Submillimeter and millimeter wavelengths provide a unique view of the Universe, from the gas and dust that fills and surrounds galaxies to the chromosphere of our own Sun. Current single-dish facilities have presented a tantalising view of the brightest (sub-)mm sources, and interferometers have provided the exquisite resolution necessary to analyse the details in small fields, but there are still many open questions that cannot be answered with current facilities. In this report we summarise the science that is guiding the design of the Atacama Large Aperture Submillimeter Telescope (AtLAST). We demonstrate how tranformational advances in topics including star formation in high redshift galaxies, the diffuse circumgalactic medium, Galactic ecology, cometary compositions and solar flares motivate the need for a 50m, single-dish telescope with a 1-2 degree field of view and a new generation of highly multiplexed continuum and spectral cameras. AtLAST will have the resolution to drastically lower the confusion limit compared to current single-dish facilities, whilst also being able to rapidly map large areas of the sky and detect extended, diffuse structures. Its high sensitivity and large field of view will open up the field of submillimeter transient science by increasing the probability of serendipitous detections. Finally, the science cases listed here motivate the need for a highly flexible operations model capable of short observations of individual targets, large surveys, monitoring programmes, target of opportunity observations and coordinated observations with other observatories. AtLAST aims to be a sustainable, upgradeable, multipurpose facility that will deliver orders of magnitude increases in sensitivity and mapping speeds over current and planned submillimeter observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01413v2-abstract-full').style.display = 'none'; document.getElementById('2407.01413v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 12 figures. For further details on AtLAST see https://atlast.uio.no</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11559">arXiv:2406.11559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.11559">pdf</a>, <a href="https://arxiv.org/format/2406.11559">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449903">10.1051/0004-6361/202449903 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining the physical properties of gas in high-z galaxies with far-infrared and submillimetre line ratios </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Schimek%2C+A">Alice Schimek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shen%2C+S">Sijing Shen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Decataldo%2C+D">Davide Decataldo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mayer%2C+L">Lucio Mayer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11559v2-abstract-short" style="display: inline;"> Optical emission line diagnostics, which are a common tool to constrain the properties of the interstellar medium (ISM) of galaxies, become progressively inaccessible at higher redshifts for ground-based facilities. Far-infrared (FIR) emission lines, which are redshifted into atmospheric windows accessible by ground-based sub-millimeter facilities, could provide alternative ISM diagnostics to opti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11559v2-abstract-full').style.display = 'inline'; document.getElementById('2406.11559v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11559v2-abstract-full" style="display: none;"> Optical emission line diagnostics, which are a common tool to constrain the properties of the interstellar medium (ISM) of galaxies, become progressively inaccessible at higher redshifts for ground-based facilities. Far-infrared (FIR) emission lines, which are redshifted into atmospheric windows accessible by ground-based sub-millimeter facilities, could provide alternative ISM diagnostics to optical emission lines. We investigate FIR line ratios involving [CII]$位158 渭$m, [OIII]$位88 渭$m, [OIII]$位52 渭$m, [NII]$位122 渭$m and [NIII$位57 渭$m, using synthetic emission lines applied to a high-resolution (m$_{\rm gas}$= 883.4 M$_{\odot}$) cosmological zoom-in simulation, including radiative-transfer post processing with KramsesRT at z = 6.5. We find that the [CII]/[NII]122 ratio is sensitive to the temperature and density of photo-dissociation regions, and thus could be a useful tool to trace the properties of this gas phase in galaxies. We also find that [NII]/[NIII] is a good tracer of the temperature and [OIII]52/[OIII]88 a good tracer of the gas density of HII regions. Emission line ratios containing the [OIII]$位88 渭$m line are sensitive to high velocity outflowing gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11559v2-abstract-full').style.display = 'none'; document.getElementById('2406.11559v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication to A&amp;A. 7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 687, L10 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08611">arXiv:2406.08611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08611">pdf</a>, <a href="https://arxiv.org/format/2406.08611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.3018133">10.1117/12.3018133 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Technical requirements flow-down for the concept design of the novel 50-meter Atacama Large Aperture Submm Telescope (AtLAST) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Reichert%2C+M">Matthias Reichert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Timpe%2C+M">Martin Timpe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaercher%2C+H">Hans Kaercher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groh%2C+M">Manuel Groh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiselev%2C+A">Aleksej Kiselev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puddu%2C+R">Roberto Puddu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08611v2-abstract-short" style="display: inline;"> The Atacama Large Aperture Submm Telescope (AtLAST) is a concept for a novel 50-meter class single-dish telescope operating at sub-millimeter and millimeter wavelengths (30-950 GHz). The telescope will provide an unprecedentedly wide field of view (FoV) of 1-2 degree diameter with a large receiver cabin housing six major instruments in Nasmyth and Cassegrain positions. The high observing frequenci&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08611v2-abstract-full').style.display = 'inline'; document.getElementById('2406.08611v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08611v2-abstract-full" style="display: none;"> The Atacama Large Aperture Submm Telescope (AtLAST) is a concept for a novel 50-meter class single-dish telescope operating at sub-millimeter and millimeter wavelengths (30-950 GHz). The telescope will provide an unprecedentedly wide field of view (FoV) of 1-2 degree diameter with a large receiver cabin housing six major instruments in Nasmyth and Cassegrain positions. The high observing frequencies, combined with the scanning operation movements with up to 3 deg/second, place high demands on the accuracy and stability of the optical and structural components. The design features the introduction of a rocking chair type mount with an iso-statically decoupled main reflector backup structure and an active main reflector surface with a high precision metrology system. The planned site location is in the Chilean Atacama Desert at approximately 5050 meters above sea level, near Llano de Chajnantor. This paper gives an overview of the optical, structural, and mechanical design concepts. It explains the flow-down from key science requirements to technical design decisions as well as showing design analogies from other existing large radio, (sub-)mm, and optical telescopes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08611v2-abstract-full').style.display = 'none'; document.getElementById('2406.08611v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages. Submitted to the SPIE proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20140">arXiv:2405.20140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20140">pdf</a>, <a href="https://arxiv.org/format/2405.20140">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The key science drivers for the Atacama Large Aperture Submillimeter Telescope (AtLAST) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+M">Mark Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wedemeyer%2C+S">Sven Wedemeyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akiyama%2C+K">Kazunori Akiyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bower%2C+G">Geoffrey Bower</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+D">Daizhong Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saintonge%2C+A">Am茅lie Saintonge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+M">Matthew Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thelen%2C+A+E">Alexander E. Thelen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20140v1-abstract-short" style="display: inline;"> Sub-mm and mm wavelengths provide a unique view of the Universe, from the gas and dust that fills and surrounds galaxies to the chromosphere of our own Sun. Current single-dish facilities have presented a tantalising view of the brightest (sub-)mm sources, and interferometers have provided the exquisite resolution necessary to analyse the details in small fields, but there are still many open ques&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20140v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20140v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20140v1-abstract-full" style="display: none;"> Sub-mm and mm wavelengths provide a unique view of the Universe, from the gas and dust that fills and surrounds galaxies to the chromosphere of our own Sun. Current single-dish facilities have presented a tantalising view of the brightest (sub-)mm sources, and interferometers have provided the exquisite resolution necessary to analyse the details in small fields, but there are still many open questions that cannot be answered with current facilities: Where are all the baryons? How do structures interact with their environments? What does the time-varying (sub-)mm sky look like? In order to make major advances on these questions and others, what is needed now is a facility capable of rapidly mapping the sky spatially, spectrally, and temporally, which can only be done by a high throughput, single-dish observatory. An extensive design study for this new facility is currently being undertaken. In this paper, we focus on the key science drivers and the requirements they place on the observatory. As a 50m single dish telescope with a 1-2掳 field of view, the strength of the Atacama Large Aperture Submillimeter Telescope (AtLAST) is in science where a large field of view, highly multiplexed instrumentation and sensitivity to faint large-scale structure is important. AtLAST aims to be a sustainable, upgradeable, multipurpose facility that will deliver orders of magnitude increases in sensitivity and mapping speeds over current and planned telescopes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20140v1-abstract-full').style.display = 'none'; document.getElementById('2405.20140v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, Conference proceedings paper for the 2024 SPIE Astronomical Telescopes + Instrumentation meeting</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15816">arXiv:2404.15816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15816">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449198">10.1051/0004-6361/202449198 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST observations of the Horsehead photon-dominated region I. First results from multi-band near- and mid-infrared imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Abergel%2C+A">A. Abergel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Misselt%2C+K">K. Misselt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gordon%2C+K+D">K. D. Gordon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Noriega-Crespo%2C+A">A. Noriega-Crespo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guillard%2C+P">P. Guillard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+De+Putte%2C+D">D. Van De Putte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Witt%2C+A+N">A. N. Witt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ysard%2C+N">N. Ysard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baes%2C+M">M. Baes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouchet%2C+P">P. Bouchet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brandl%2C+B+R">B. R. Brandl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elyajouri%2C+M">M. Elyajouri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kannavou%2C+O">O. Kannavou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kendrew%2C+S">S. Kendrew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klassen%2C+P">P. Klassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trahin%2C+B">B. Trahin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15816v1-abstract-short" style="display: inline;"> The JWST has captured the sharpest IR images ever taken of the Horsehead nebula, a prototypical moderately irradiated PDR that is fully representative of most of the UV-illuminated molecular gas in the Milky Way and star-forming galaxies. We investigate the impact of FUV radiation of a molecular cloud and constrain the structure of the edge of the PDR and its illumination conditions. We used NIRCa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15816v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15816v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15816v1-abstract-full" style="display: none;"> The JWST has captured the sharpest IR images ever taken of the Horsehead nebula, a prototypical moderately irradiated PDR that is fully representative of most of the UV-illuminated molecular gas in the Milky Way and star-forming galaxies. We investigate the impact of FUV radiation of a molecular cloud and constrain the structure of the edge of the PDR and its illumination conditions. We used NIRCam and MIRI to obtain 17 broadband and 6 narrowband maps from 0.7 to 28 $渭$m. We mapped the dust emission, scattered light, and several gas phase lines. We also used HST-WFC3 maps at 1.1 and 1. 6 $渭$m, along with HST-STIS spectroscopic observations of the H$伪$ line. We probed the structure of the edge of the Horsehead and resolved its spatial complexity. We detected a network of faint striated features extending perpendicularly to the PDR front into the H\,II region in filters sensitive to nano-grain emission and light scattered by larger grains. This may indeed figure as the first detection of the entrainment of dust particles in the evaporative flow. The map of the 1-0 S(1) line of H$_2$ presents sharp sub-structures on scales as small as 1.5 arcsec. The ionization and dissociation fronts appear at distances 1-2 arcsec behind the edge of the PDR and seem to spatially coincide, indicating a thickness of the neutral atomic layer below 100 au. All broadband maps present strong color variations which can be explained by dust attenuation. Deviations of the emissions in the H$伪$, Pa$伪,$ and Br$伪$ lines also indicate dust attenuation. With a very simple model, we derive the main features of the extinction curve. A small excess of extinction at 3 $渭$m may be attributed to icy H$_2$O mantles onto grains. In all lines of sight crossing the inner regions of the Horsehead, it appears that dust attenuation is non-negligible over the entire spectral range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15816v1-abstract-full').style.display = 'none'; document.getElementById('2404.15816v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13133">arXiv:2404.13133</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13133">pdf</a>, <a href="https://arxiv.org/format/2404.13133">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope \mbox{(AtLAST)} Science: Probing the Transient and Time-variable Sky </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maccarone%2C+T+J">Thomas J. Maccarone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bright%2C+J">Joe Bright</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaminski%2C+T">Tomasz Kaminski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koss%2C+M">Michael Koss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mohan%2C+A">Atul Mohan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Montenegro-Montes%2C+F+M">Francisco Miguel Montenegro-Montes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=N%C3%A6ss%2C+S+u">Sig urd N忙ss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ricci%2C+C">Claudio Ricci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Severgnini%2C+P">Paola Severgnini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vignali%2C+C">Cristian Vignali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wedemeyer%2C+S">Sven Wedemeyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+M">Mark Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greiner%2C+J">Jochen Greiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hatziminaoglou%2C+E">Evanthia Hatziminaoglou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+D">Daizhong Liu</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13133v1-abstract-short" style="display: inline;"> The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13133v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13133v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13133v1-abstract-full" style="display: none;"> The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which are hard to study in other wavelengths. Submillimeter observations are sensitive to a number of emission mechanisms, from the aforementioned cold dust, to hot free-free emission, and synchrotron emission from energetic particles. Study of these phenomena has been hampered by a lack of prompt, high sensitivity submillimeter follow-up, as well as by a lack of high-sky-coverage submillimeter surveys. In this paper, we describe how the proposed Atacama Large Aperture Submillimeter Telescope (AtLAST) could fill in these gaps in our understanding of the transient universe. We discuss a number of science cases that would benefit from AtLAST observations, and detail how AtLAST is uniquely suited to contributing to them. In particular, AtLAST&#39;s large field of view will enable serendipitous detections of transient events, while its anticipated ability to get on source quickly and observe simultaneously in multiple bands make it also ideally suited for transient follow-up. We make theoretical predictions for the instrumental and observatory properties required to significantly contribute to these science cases, and compare them to the projected AtLAST capabilities. Finally, we consider the unique ways in which transient science cases constrain the observational strategies of AtLAST, and make prescriptions for how AtLAST should observe in order to maximize its transient science output without impinging on other science cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13133v1-abstract-full').style.display = 'none'; document.getElementById('2404.13133v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07299">arXiv:2404.07299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07299">pdf</a>, <a href="https://arxiv.org/ps/2404.07299">ps</a>, <a href="https://arxiv.org/format/2404.07299">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> JWST/MIRI detection of suprathermal OH rotational emissions: probing the dissociation of the water by Lyman alpha photons near the protostar HOPS 370 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Neufeld%2C+D+A">David A. Neufeld</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+Dishoeck%2C+E+F">Ewine F. Van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R+A">Robert A. Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yao-Lun Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">Neal J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+J">Joel Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">Pooneh Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">Lukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wolk%2C+S">Scott Wolk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07299v1-abstract-short" style="display: inline;"> Using the MIRI/MRS spectrometer on JWST, we have detected pure rotational, suprathermal OH emissions from the vicinity of the intermediate-mass protostar HOPS 370 (OMC2/FIR3). These emissions are observed from shocked knots in a jet/outflow, and originate in states of rotational quantum number as high as 46 that possess excitation energies as large as $E_U/k = 4.65 \times 10^4$ K. The relative str&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07299v1-abstract-full').style.display = 'inline'; document.getElementById('2404.07299v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07299v1-abstract-full" style="display: none;"> Using the MIRI/MRS spectrometer on JWST, we have detected pure rotational, suprathermal OH emissions from the vicinity of the intermediate-mass protostar HOPS 370 (OMC2/FIR3). These emissions are observed from shocked knots in a jet/outflow, and originate in states of rotational quantum number as high as 46 that possess excitation energies as large as $E_U/k = 4.65 \times 10^4$ K. The relative strengths of the observed OH lines provide a powerful diagnostic of the ultraviolet radiation field in a heavily-extinguished region ($A_V \sim 10 - 20$) where direct UV observations are impossible. To high precision, the OH line strengths are consistent with a picture in which the suprathermal OH states are populated following the photodissociation of water in its $\tilde B - X$ band by ultraviolet radiation produced by fast ($\sim 80\,\rm km\,s^{-1}$) shocks along the jet. The observed dominance of emission from symmetric ($A^\prime$) OH states over that from antisymmetric ($A^{\prime\prime}$) states provides a distinctive signature of this particular population mechanism. Moreover, the variation of intensity with rotational quantum number suggests specifically that Ly$伪$ radiation is responsible for the photodissociation of water, an alternative model with photodissociation by a 10$^4$ K blackbody being disfavored at a high level of significance. Using measurements of the Br$伪$ flux to estimate the Ly$伪$ production rate, we find that $\sim 4\%$ of the Ly$伪$ photons are absorbed by water. Combined with direct measurements of water emissions in the $谓_2 = 1 -0$ band, the OH observations promise to provide key constraints on future models for the diffusion of Ly$伪$ photons in the vicinity of a shock front. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07299v1-abstract-full').style.display = 'none'; document.getElementById('2404.07299v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 7 figures. Accepted for publication in ApJ Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03111">arXiv:2404.03111</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.03111">pdf</a>, <a href="https://arxiv.org/format/2404.03111">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449295">10.1051/0004-6361/202449295 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PDRs4All VIII: Mid-IR emission line inventory of the Orion Bar </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Van+De+Putte%2C+D">Dries Van De Putte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meshaka%2C+R">Raphael Meshaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trahin%2C+B">Boris Trahin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Habart%2C+E">Emilie Habart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peeters%2C+E">Els Peeters</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bern%C3%A9%2C+O">Olivier Bern茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alarc%C3%B3n%2C+F">Felipe Alarc贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Canin%2C+A">Am茅lie Canin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chown%2C+R">Ryan Chown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schroetter%2C+I">Ilane Schroetter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sidhu%2C+A">Ameek Sidhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boersma%2C+C">Christiaan Boersma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bron%2C+E">Emeric Bron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dartois%2C+E">Emmanuel Dartois</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goicoechea%2C+J+R">Javier R. Goicoechea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gordon%2C+K+D">Karl D. Gordon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Onaka%2C+T">Takashi Onaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tielens%2C+A+G+G+M">Alexander G. G. M. Tielens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Verstraete%2C+L">Laurent Verstraete</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wolfire%2C+M+G">Mark G. Wolfire</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abergel%2C+A">Alain Abergel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bergin%2C+E+A">Edwin A. Bergin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernard-Salas%2C+J">Jeronimo Bernard-Salas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cami%2C+J">Jan Cami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cuadrado%2C+S">Sara Cuadrado</a> , et al. (113 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03111v1-abstract-short" style="display: inline;"> Mid-infrared emission features probe the properties of ionized gas, and hot or warm molecular gas. The Orion Bar is a frequently studied photodissociation region (PDR) containing large amounts of gas under these conditions, and was observed with the MIRI IFU aboard JWST as part of the &#34;PDRs4All&#34; program. The resulting IR spectroscopic images of high angular resolution (0.2&#34;) reveal a rich observat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03111v1-abstract-full').style.display = 'inline'; document.getElementById('2404.03111v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03111v1-abstract-full" style="display: none;"> Mid-infrared emission features probe the properties of ionized gas, and hot or warm molecular gas. The Orion Bar is a frequently studied photodissociation region (PDR) containing large amounts of gas under these conditions, and was observed with the MIRI IFU aboard JWST as part of the &#34;PDRs4All&#34; program. The resulting IR spectroscopic images of high angular resolution (0.2&#34;) reveal a rich observational inventory of mid-IR emission lines, and spatially resolve the substructure of the PDR, with a mosaic cutting perpendicularly across the ionization front and three dissociation fronts. We extracted five spectra that represent the ionized, atomic, and molecular gas layers, and measured the most prominent gas emission lines. An initial analysis summarizes the physical conditions of the gas and the potential of these data. We identified around 100 lines, report an additional 18 lines that remain unidentified, and measured the line intensities and central wavelengths. The H I recombination lines originating from the ionized gas layer bordering the PDR, have intensity ratios that are well matched by emissivity coefficients from H recombination theory, but deviate up to 10% due contamination by He I lines. We report the observed emission lines of various ionization stages of Ne, P, S, Cl, Ar, Fe, and Ni, and show how certain line ratios vary between the five regions. We observe the pure-rotational H$_2$ lines in the vibrational ground state from 0-0 S(1) to 0-0 S(8), and in the first vibrationally excited state from 1-1 S(5) to 1-1 S(9). We derive H$_2$ excitation diagrams, and approximate the excitation with one thermal (~700 K) component representative of an average gas temperature, and one non-thermal component (~2700 K) probing the effect of UV pumping. We compare these results to an existing model for the Orion Bar PDR and highlight the differences with the observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03111v1-abstract-full').style.display = 'none'; document.getElementById('2404.03111v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 12 figures, 3 tables. Submitted to A&amp;A, under review (1st revision)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 687, A86 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16686">arXiv:2403.16686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.16686">pdf</a>, <a href="https://arxiv.org/format/2403.16686">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449451">10.1051/0004-6361/202449451 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST MIRI Flight Performance: Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dicken%2C+D">Dan Dicken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mar%C3%ADn%2C+M+G">Macarena Garc铆a Mar铆n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shivaei%2C+I">Irene Shivaei</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guillard%2C+P">Pierre Guillard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Libralato%2C+M">Mattia Libralato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Glasse%2C+A">Alistair Glasse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gordon%2C+K+D">Karl D. Gordon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cossou%2C+C">Christophe Cossou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P">Patrick Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Temim%2C+T">Tea Temim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Flagey%2C+N">Nicolas Flagey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rieke%2C+G+H">George H. Rieke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wright%2C+G">Gillian Wright</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alberts%2C+S">Stacey Alberts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Azzollini%2C+R">Ruyman Azzollini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%81lvarez-M%C3%A1rquez%2C+J">Javier 脕lvarez-M谩rquez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouchet%2C+P">Patrice Bouchet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bright%2C+S">Stacey Bright</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cracraft%2C+M">Misty Cracraft</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coulais%2C+A">Alain Coulais</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Detre%2C+O+H">Ors Hunor Detre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Engesser%2C+M">Mike Engesser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+O+D">Ori D. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaspar%2C+A">Andras Gaspar</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16686v1-abstract-short" style="display: inline;"> The Mid-Infrared Instrument (MIRI) aboard the James Webb Space Telescope (JWST) provides the observatory with a huge advance in mid-infrared imaging and spectroscopy covering the wavelength range of 5 to 28 microns. This paper describes the performance and characteristics of the MIRI imager as understood during observatory commissioning activities, and through its first year of science operations.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16686v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16686v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16686v1-abstract-full" style="display: none;"> The Mid-Infrared Instrument (MIRI) aboard the James Webb Space Telescope (JWST) provides the observatory with a huge advance in mid-infrared imaging and spectroscopy covering the wavelength range of 5 to 28 microns. This paper describes the performance and characteristics of the MIRI imager as understood during observatory commissioning activities, and through its first year of science operations. We discuss the measurements and results of the imager&#39;s point spread function, flux calibration, background, distortion and flat fields as well as results pertaining to best observing practices for MIRI imaging, and discuss known imaging artefacts that may be seen during or after data processing. Overall, we show that the MIRI imager has met or exceeded all its pre-flight requirements, and we expect it to make a significant contribution to mid-infrared science for the astronomy community for years to come. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16686v1-abstract-full').style.display = 'none'; document.getElementById('2403.16686v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 689, A5 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02806">arXiv:2403.02806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.02806">pdf</a>, <a href="https://arxiv.org/format/2403.02806">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope (AtLAST) Science: Surveying the distant Universe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bakx%2C+T">Tom Bakx</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Breuck%2C+C">Carlos De Breuck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+C">Chian-Chou Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dannerbauer%2C+H">Helmut Dannerbauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Magnelli%2C+B">Benjamin Magnelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Montenegro-Montes%2C+F+M">Francisco Miguel Montenegro-Montes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Okumura%2C+T">Teppei Okumura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pu%2C+S">Sy-Yun Pu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rybak%2C+M">Matus Rybak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saintonge%2C+A">Amelie Saintonge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hatziminaoglou%2C+E">Evanthia Hatziminaoglou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilhorst%2C+J">Juliette Hilhorst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+M">Minju Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lovell%2C+C+C">Christopher C. Lovell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lundgren%2C+A">Andreas Lundgren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sommovigo%2C+L">Laura Sommovigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+M">Mark Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ivison%2C+R">Rob Ivison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02806v1-abstract-short" style="display: inline;"> During the most active period of star formation in galaxies, which occurs in the redshift range 1&lt;z&lt;3, strong bursts of star formation result in significant quantities of dust, which obscures new stars being formed as their UV/optical light is absorbed and then re-emitted in the infrared, which redshifts into the mm/sub-mm bands for these early times. To get a complete picture of the high-z galaxy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02806v1-abstract-full').style.display = 'inline'; document.getElementById('2403.02806v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02806v1-abstract-full" style="display: none;"> During the most active period of star formation in galaxies, which occurs in the redshift range 1&lt;z&lt;3, strong bursts of star formation result in significant quantities of dust, which obscures new stars being formed as their UV/optical light is absorbed and then re-emitted in the infrared, which redshifts into the mm/sub-mm bands for these early times. To get a complete picture of the high-z galaxy population, we need to survey a large patch of the sky in the sub-mm with sufficient angular resolution to resolve all galaxies, but we also need the depth to fully sample their cosmic evolution, and therefore obtain their redshifts using direct mm spectroscopy with a very wide frequency coverage. This requires a large single-dish sub-mm telescope with fast mapping speeds at high sensitivity and angular resolution, a large bandwidth with good spectral resolution and multiplex spectroscopic capabilities. The proposed 50-m Atacama Large Aperture Submillimeter Telescope (AtLAST) will deliver these specifications. We discuss how AtLAST allows us to study the whole population of high-z galaxies, including the dusty star-forming ones which can only be detected and studied in the sub-mm, and obtain a wealth of information for each of these up to z~7: gas content, cooling budget, star formation rate, dust mass, and dust temperature. We present worked examples of surveys that AtLAST can perform, both deep and wide, and also focused on galaxies in proto-clusters. In addition we show how such surveys with AtLAST can measure the growth rate and the Hubble constant with high accuracy, and demonstrate the power of the line-intensity mapping method in the mm/sub-mm wavebands to constrain the cosmic expansion history at high redshifts, as good examples of what can uniquely be done by AtLAST in this research field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02806v1-abstract-full').style.display = 'none'; document.getElementById('2403.02806v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures, submitted to Open Research Europe as part of the AtLAST collection</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02258">arXiv:2403.02258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.02258">pdf</a>, <a href="https://arxiv.org/format/2403.02258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope (AtLAST) Science: Planetary and Cometary Atmospheres </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thelen%2C+A+E">Alexander E. Thelen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cavali%C3%A9%2C+T">Thibault Cavali茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cosentino%2C+R">Richard Cosentino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fletcher%2C+L+N">Leigh N. Fletcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gurwell%2C+M">Mark Gurwell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Kleer%2C+K">Katherine de Kleer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuan%2C+Y">Yi-Jehng Kuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lellouch%2C+E">Emmanuel Lellouch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moullet%2C+A">Arielle Moullet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nixon%2C+C">Conor Nixon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Pater%2C+I">Imke de Pater</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Teanby%2C+N+A">Nicholas A. Teanby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Butler%2C+B">Bryan Butler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Charnley%2C+S">Steven Charnley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moreno%2C+R">Raphael Moreno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+M">Mark Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+D">Daizhong Liu</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02258v2-abstract-short" style="display: inline;"> The study of planets and small bodies within our Solar System is fundamental for understanding the formation and evolution the Earth and other planets. Compositional and meteorological studies of the giant planets provide a foundation for understanding the nature of the most commonly observed exoplanets, while spectroscopic observations of the atmospheres of terrestrial planets, moons, and comets&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02258v2-abstract-full').style.display = 'inline'; document.getElementById('2403.02258v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02258v2-abstract-full" style="display: none;"> The study of planets and small bodies within our Solar System is fundamental for understanding the formation and evolution the Earth and other planets. Compositional and meteorological studies of the giant planets provide a foundation for understanding the nature of the most commonly observed exoplanets, while spectroscopic observations of the atmospheres of terrestrial planets, moons, and comets provide insights into the past and present-day habitability of planetary environments, and the availability of the chemical ingredients for life. While prior and existing (sub)millimeter observations have led to major advances in these areas, progress is hindered by limitations in the dynamic range, spatial and temporal coverage, as well as sensitivity of existing telescopes and interferometers. Here, we summarize some of the key planetary science use cases that factor into the design of the Atacama Large Aperture Submillimeter Telescope (AtLAST), a proposed 50-m class single dish facility: (1) to more fully characterize planetary wind fields and atmospheric thermal structures, (2) to measure the compositions of icy moon atmospheres and plumes, (3) to obtain detections of new, astrobiologically relevant gases and perform isotopic surveys of comets, and (4) to perform synergistic, temporally-resolved measurements in support of dedicated interplanetary space missions. The improved spatial coverage (several arcminutes), resolution ($\sim1.2&#39;&#39;-12&#39;&#39;$), bandwidth (several tens of GHz), dynamic range ($\sim10^5$) and sensitivity ($\sim1$ mK km s$^{-1}$) required by these science cases would enable new insights into the chemistry and physics of planetary environments, the origins of prebiotic molecules and the habitability of planetary systems in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02258v2-abstract-full').style.display = 'none'; document.getElementById('2403.02258v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Open Research Europe (AtLAST collection). 19 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01202">arXiv:2403.01202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01202">pdf</a>, <a href="https://arxiv.org/format/2403.01202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope (AtLAST) science: Gas and dust in nearby galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+D">Daizhong Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saintonge%2C+A">Amelie Saintonge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bot%2C+C">Caroline Bot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kemper%2C+F">Francisca Kemper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lopez-Rodriguez%2C+E">Enrique Lopez-Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+M+W+L">Matthew W. L. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreani%2C+P">Paola Andreani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boselli%2C+A">Alessandro Boselli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davis%2C+T+A">Timothy A. Davis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hagedorn%2C+B">Bendix Hagedorn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lasrado%2C+A">Akhil Lasrado</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mao%2C+A">Ann Mao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Viti%2C+S">Serena Viti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+M">Mark Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigiel%2C+F">Frank Bigiel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chevance%2C+M">Melanie Chevance</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maccarone%2C+T">Thomas Maccarone</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01202v1-abstract-short" style="display: inline;"> Understanding the physical processes that regulate star formation and galaxy evolution are major areas of activity in modern astrophysics. Nearby galaxies offer unique opportunities to inspect interstellar medium (ISM), star formation (SF), radiative, dynamic and magnetic physics in great detail from sub-galactic (kpc) scales to sub-cloud (sub-pc) scales, from quiescent galaxies to starbursts, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01202v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01202v1-abstract-full" style="display: none;"> Understanding the physical processes that regulate star formation and galaxy evolution are major areas of activity in modern astrophysics. Nearby galaxies offer unique opportunities to inspect interstellar medium (ISM), star formation (SF), radiative, dynamic and magnetic physics in great detail from sub-galactic (kpc) scales to sub-cloud (sub-pc) scales, from quiescent galaxies to starbursts, and from field galaxies to overdensities. In this case study, we discuss the major breakthroughs in this area of research that will be enabled by the Atacama Large Aperture Submillimeter Telescope (AtLAST), a proposed 50-m single-dish submillimeter telescope. The new discovery space of AtLAST comes from its exceptional sensitivity, in particular to extended low surface brightness emission, a very large 2 degree field of view, and correspondingly high mapping efficiency. This paper focuses on four themes which will particularly benefit from AtLAST: 1) the LMC and SMC, 2) extragalactic magnetic fields, 3) the physics and chemistry of the interstellar medium, and 4) star formation and galaxy evolution. With ~1000-2000h surveys each, AtLAST could deliver deep dust continuum maps of the entire LMC and SMC fields at parsec-scale resolution, high-resolution maps of the magnetic field structure, gas density, temperature and composition of the dense and diffuse ISM in ~100 nearby galaxies, as well as the first large-scale blind CO survey in the nearby Universe, delivering molecular gas masses for up to 10^6 galaxies (3 orders of magnitude more than current samples). Through such observing campaigns, AtLAST will have a profound impact on our understanding of the baryon cycle and star formation across a wide range of environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01202v1-abstract-full').style.display = 'none'; document.getElementById('2403.01202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 11 figues, submitted to Open Research Europe as part of the AtLAST collection: https://open-research-europe.ec.europa.eu/collections/atlast/about</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00924">arXiv:2403.00924</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00924">pdf</a>, <a href="https://arxiv.org/format/2403.00924">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope (AtLAST) Science: The hidden circumgalactic medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schimek%2C+A">Alice Schimek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreani%2C+P">Paola Andreani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Popping%2C+G">Gerg枚 Popping</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sommovigo%2C+L">Laura Sommovigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appleton%2C+P+N">Philip N. Appleton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bischetti%2C+M">Manuela Bischetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cantalupo%2C+S">Sebastiano Cantalupo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+C">Chian-Chou Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dannerbauer%2C+H">Helmut Dannerbauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Breuck%2C+C">Carlos De Breuck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emonts%2C+B+H+C">Bjorn H. C. Emonts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hatziminaoglou%2C+E">Evanthia Hatziminaoglou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pensabene%2C+A">Antonio Pensabene</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rizzo%2C+F">Francesca Rizzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rybak%2C+M">Matus Rybak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shen%2C+S">Sijing Shen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lundgren%2C+A">Andreas Lundgren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+M">Mark Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00924v1-abstract-short" style="display: inline;"> Our knowledge of galaxy formation and evolution has incredibly progressed through multi-wavelength observational constraints of the interstellar medium (ISM) of galaxies at all cosmic epochs. However, little is known about the physical properties of the more diffuse and lower surface brightness reservoir of gas and dust that extends beyond ISM scales and fills dark matter haloes of galaxies up to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00924v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00924v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00924v1-abstract-full" style="display: none;"> Our knowledge of galaxy formation and evolution has incredibly progressed through multi-wavelength observational constraints of the interstellar medium (ISM) of galaxies at all cosmic epochs. However, little is known about the physical properties of the more diffuse and lower surface brightness reservoir of gas and dust that extends beyond ISM scales and fills dark matter haloes of galaxies up to their virial radii, the circumgalactic medium (CGM). New theoretical studies increasingly stress the relevance of the latter for understanding the feedback and feeding mechanisms that shape galaxies across cosmic times, whose cumulative effects leave clear imprints into the CGM. Recent studies are showing that a -- so far unconstrained -- fraction of the CGM mass may reside in the cold (T &lt; 1e4 K) molecular and atomic phase, especially in high-redshift dense environments. These gas phases, together with the warmer ionised phase, can be studied in galaxies from z ~ 0 to z ~ 10 through bright far-infrared and sub-millimeter emission lines such as [C II] 158$渭$m, [O III] 88 $渭$m, [C I] 609$渭$m, [C I] 370$渭$m, and the rotational transitions of CO. Imaging such hidden cold CGM can lead to a breakthrough in galaxy evolution studies but requires a new facility with the specifications of the proposed Atacama Large Aperture Submillimeter Telescope (AtLAST). In this paper, we use theoretical and empirical arguments to motivate future ambitious CGM observations with AtLAST and describe the technical requirements needed for the telescope and its instrumentation to perform such science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00924v1-abstract-full').style.display = 'none'; document.getElementById('2403.00924v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Open Research Europe as part of the AtLAST collection: https://open-research-europe.ec.europa.eu/collections/atlast/about</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00920">arXiv:2403.00920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00920">pdf</a>, <a href="https://arxiv.org/format/2403.00920">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope (AtLAST) Science: Solar and stellar observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Wedemeyer%2C+S">Sven Wedemeyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barta%2C+M">Miroslav Barta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brajsa%2C+R">Roman Brajsa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chai%2C+Y">Yi Chai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Costa%2C+J">Joaquim Costa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gary%2C+D">Dale Gary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Castro%2C+G+G">Guillermo Gimenez de Castro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gunar%2C+S">Stanislav Gunar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fleishman%2C+G">Gregory Fleishman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hales%2C+A">Antonio Hales</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hudson%2C+H">Hugh Hudson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kirkaune%2C+M">Mats Kirkaune</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mohan%2C+A">Atul Mohan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Motorina%2C+G">Galina Motorina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pellizzoni%2C+A">Alberto Pellizzoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saberi%2C+M">Maryam Saberi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Selhorst%2C+C+L">Caius L. Selhorst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simoes%2C+P+J+A">Paulo J. A. Simoes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shimojo%2C+M">Masumi Shimojo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skokic%2C+I">Ivica Skokic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sudar%2C+D">Davor Sudar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Menezes%2C+F">Fabian Menezes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=White%2C+S">Stephen White</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+M">Mark Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00920v3-abstract-short" style="display: inline;"> Observations at (sub-)millimeter wavelengths offer a complementary perspective on our Sun and other stars, offering significant insights into both the thermal and magnetic composition of their chromospheres. Despite the fundamental progress in (sub-)millimeter observations of the Sun, some important aspects require diagnostic capabilities that are not offered by existing observatories. In particul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00920v3-abstract-full').style.display = 'inline'; document.getElementById('2403.00920v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00920v3-abstract-full" style="display: none;"> Observations at (sub-)millimeter wavelengths offer a complementary perspective on our Sun and other stars, offering significant insights into both the thermal and magnetic composition of their chromospheres. Despite the fundamental progress in (sub-)millimeter observations of the Sun, some important aspects require diagnostic capabilities that are not offered by existing observatories. In particular, simultaneous observations of the radiation continuum across an extended frequency range would facilitate the mapping of different layers and thus ultimately the 3D structure of the solar atmosphere. Mapping large regions on the Sun or even the whole solar disk at a very high temporal cadence would be crucial for systematically detecting and following the temporal evolution of flares, while synoptic observations, i.e., daily maps, over periods of years would provide an unprecedented view of the solar activity cycle in this wavelength regime. As our Sun is a fundamental reference for studying the atmospheres of active main sequence stars, observing the Sun and other stars with the same instrument would unlock the enormous diagnostic potential for understanding stellar activity and its impact on exoplanets. The Atacama Large Aperture Submillimeter Telescope (AtLAST), a single-dish telescope with 50\,m aperture proposed to be built in the Atacama desert in Chile, would be able to provide these observational capabilities. Equipped with a large number of detector elements for probing the radiation continuum across a wide frequency range, AtLAST would address a wide range of scientific topics including the thermal structure and heating of the solar chromosphere, flares and prominences, and the solar activity cycle. In this white paper, the key science cases and their technical requirements for AtLAST are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00920v3-abstract-full').style.display = 'none'; document.getElementById('2403.00920v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures, submitted to Open Research Europe as part of a collection on the Atacama Large Aperture Submillimeter Telescope (AtLAST) -- revised version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00917">arXiv:2403.00917</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00917">pdf</a>, <a href="https://arxiv.org/format/2403.00917">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.12688/openreseurope.17450.1">10.12688/openreseurope.17450.1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope (AtLAST) Science: Our Galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Traficante%2C+A">Alessio Traficante</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beltr%C3%A1n%2C+M+T">Maria T. Beltr谩n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+M">Mark Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lovell%2C+J+B">Joshua B. Lovell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marshall%2C+J+P">Jonathan P. Marshall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hacar%2C+A">Alvaro Hacar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaches%2C+B+A+L">Brandt A. L. Gaches</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bot%2C+C">Caroline Bot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peretto%2C+N">Nicolas Peretto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cabral%2C+A+D">Ana Duarte Cabral</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duch%C3%AAne%2C+G">Gaspard Duch锚ne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eden%2C+D+J">David J. Eden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hales%2C+A">Antonio Hales</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kauffmann%2C+J">Jens Kauffmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luppe%2C+P">Patricia Luppe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marino%2C+S">Sebastian Marino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Redaelli%2C+E">Elena Redaelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rigby%2C+A+J">Andrew J. Rigby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=S%C3%A1nchez-Monge%2C+%C3%81">脕lvaro S谩nchez-Monge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schisano%2C+E">Eugenio Schisano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Semenov%2C+D+A">Dmitry A. Semenov</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00917v1-abstract-short" style="display: inline;"> As we learn more about the multi-scale interstellar medium (ISM) of our Galaxy, we develop a greater understanding for the complex relationships between the large-scale diffuse gas and dust in Giant Molecular Clouds (GMCs), how it moves, how it is affected by the nearby massive stars, and which portions of those GMCs eventually collapse into star forming regions. The complex interactions of those&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00917v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00917v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00917v1-abstract-full" style="display: none;"> As we learn more about the multi-scale interstellar medium (ISM) of our Galaxy, we develop a greater understanding for the complex relationships between the large-scale diffuse gas and dust in Giant Molecular Clouds (GMCs), how it moves, how it is affected by the nearby massive stars, and which portions of those GMCs eventually collapse into star forming regions. The complex interactions of those gas, dust and stellar populations form what has come to be known as the ecology of our Galaxy. Because we are deeply embedded in the plane of our Galaxy, it takes up a significant fraction of the sky, with complex dust lanes scattered throughout the optically recognisable bands of the Milky Way. These bands become bright at (sub-)millimetre wavelengths, where we can study dust thermal emission and the chemical and kinematic signatures of the gas. To properly study such large-scale environments, requires deep, large area surveys that are not possible with current facilities. Moreover, where stars form, so too do planetary systems, growing from the dust and gas in circumstellar discs, to planets and planetesimal belts. Understanding the evolution of these belts requires deep imaging capable of studying belts around young stellar objects to Kuiper belt analogues around the nearest stars. Here we present a plan for observing the Galactic Plane and circumstellar environments to quantify the physical structure, the magnetic fields, the dynamics, chemistry, star formation, and planetary system evolution of the galaxy in which we live with AtLAST; a concept for a new, 50m single-dish sub-mm telescope with a large field of view which is the only type of facility that will allow us to observe our Galaxy deeply and widely enough to make a leap forward in our understanding of our local ecology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00917v1-abstract-full').style.display = 'none'; document.getElementById('2403.00917v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, submitted to Open Research Europe as part of the AtLAST collection: https://open-research-europe.ec.europa.eu/collections/atlast/about</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Open Res Europe 2024, 4:112 [version 1; peer review: 2 approved] </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00909">arXiv:2403.00909</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00909">pdf</a>, <a href="https://arxiv.org/format/2403.00909">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope (AtLAST) Science: Resolving the Hot and Ionized Universe through the Sunyaev-Zeldovich effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perrott%2C+Y">Yvette Perrott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreon%2C+S">Stefano Andreon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ettori%2C+S">Stefano Ettori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simionescu%2C+A">Aurora Simionescu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raghunathan%2C+S">Srinivasan Raghunathan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Marrewijk%2C+J">Joshiwa van Marrewijk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+M">Minju Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nelson%2C+D">Dylan Nelson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sommovigo%2C+L">Laura Sommovigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+M">Mark Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreani%2C+P">Paola Andreani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+D">Daizhong Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maccarone%2C+T+J">Thomas J. Maccarone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morris%2C+T+W">Thomas W. Morris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saintonge%2C+A">Am茅lie Saintonge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+M">Matthew Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thelen%2C+A+E">Alexander E. Thelen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wedemeyer%2C+S">Sven Wedemeyer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00909v1-abstract-short" style="display: inline;"> An omnipresent feature of the multi-phase ``cosmic web&#39;&#39; is that warm/hot (&gt;$10^5$ K) ionized gas pervades it. This gas constitutes a relevant contribution to the overall universal matter budget across multiple scales, from the several tens of Mpc-scale IGM filaments, to the Mpc ICM, all the way down to the CGM surrounding individual galaxies, on scales from ~1 kpc up to their respective virial ra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00909v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00909v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00909v1-abstract-full" style="display: none;"> An omnipresent feature of the multi-phase ``cosmic web&#39;&#39; is that warm/hot (&gt;$10^5$ K) ionized gas pervades it. This gas constitutes a relevant contribution to the overall universal matter budget across multiple scales, from the several tens of Mpc-scale IGM filaments, to the Mpc ICM, all the way down to the CGM surrounding individual galaxies, on scales from ~1 kpc up to their respective virial radii (~100 kpc). The study of the hot baryonic component of cosmic matter density represents a powerful means for constraining the intertwined evolution of galactic populations and large-scale cosmological structures, for tracing the matter assembly in the Universe and its thermal history. To this end, the SZ effect provides the ideal observational tool for measurements out to the beginnings of structure formation. The SZ effect is caused by the scattering of the photons from the cosmic microwave background off the hot electrons embedded within cosmic structures, and provides a redshift-independent perspective on the thermal and kinematic properties of the warm/hot gas. Still, current and future (sub)mm facilities have been providing only a partial view of the SZ Universe due to any combination of: limited angular resolution, spectral coverage, field of view, spatial dynamic range, sensitivity. In this paper, we motivate the development of a wide-field, broad-band, multi-chroic continuum instrument for the Atacama Large Aperture Submillimeter Telescope (AtLAST) by identifying the scientific drivers that will deepen our understanding of the complex thermal evolution of cosmic structures. On a technical side, this will necessarily require efficient multi-wavelength mapping of the SZ signal with an unprecedented spatial dynamic range (from arcsecond to degree scales) and we employ theoretical forecasts to determine the key instrumental constraints for achieving our goals. [abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00909v1-abstract-full').style.display = 'none'; document.getElementById('2403.00909v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 17 figures, 1 table. Submitted to Open Research Europe as part of the AtLAST Design Study collection: https://open-research-europe.ec.europa.eu/collections/atlast/about. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00160">arXiv:2403.00160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00160">pdf</a>, <a href="https://arxiv.org/format/2403.00160">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> A far-ultraviolet-driven photoevaporation flow observed in a protoplanetary disk </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bern%C3%A9%2C+O">Olivier Bern茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Habart%2C+E">Emilie Habart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peeters%2C+E">Els Peeters</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schroetter%2C+I">Ilane Schroetter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Canin%2C+A">Am茅lie Canin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sidhu%2C+A">Ameek Sidhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chown%2C+R">Ryan Chown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bron%2C+E">Emeric Bron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haworth%2C+T+J">Thomas J. Haworth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trahin%2C+B">Boris Trahin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+De+Putte%2C+D">Dries Van De Putte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alarc%C3%B3n%2C+F">Felipe Alarc贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zannese%2C+M">Marion Zannese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abergel%2C+A">Alain Abergel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bergin%2C+E+A">Edwin A. Bergin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernard-Salas%2C+J">Jeronimo Bernard-Salas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boersma%2C+C">Christiaan Boersma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cami%2C+J">Jan Cami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cuadrado%2C+S">Sara Cuadrado</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dartois%2C+E">Emmanuel Dartois</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicken%2C+D">Daniel Dicken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elyajouri%2C+M">Meriem Elyajouri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuente%2C+A">Asunci贸n Fuente</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goicoechea%2C+J+R">Javier R. Goicoechea</a> , et al. (121 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00160v1-abstract-short" style="display: inline;"> Most low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photo-dissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, impacting planet formation within the disks. We report JWST and Atacama Large Millimetere Array observations of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00160v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00160v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00160v1-abstract-full" style="display: none;"> Most low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photo-dissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, impacting planet formation within the disks. We report JWST and Atacama Large Millimetere Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula. Emission lines are detected from the PDR; modelling their kinematics and excitation allows us to constrain the physical conditions within the gas. We quantify the mass-loss rate induced by the FUV irradiation, finding it is sufficient to remove gas from the disk in less than a million years. This is rapid enough to affect giant planet formation in the disk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00160v1-abstract-full').style.display = 'none'; document.getElementById('2403.00160v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science, 383, 6686, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18645">arXiv:2402.18645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18645">pdf</a>, <a href="https://arxiv.org/format/2402.18645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The conceptual design of the 50-meter Atacama Large Aperture Submillimeter Telescope (AtLAST) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Timpe%2C+M">Martin Timpe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiselev%2C+A">Aleksej Kiselev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groh%2C+M">Manuel Groh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaercher%2C+H">Hans Kaercher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reichert%2C+M">Matthias Reichert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puddu%2C+R">Roberto Puddu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dubois-dit-Bonclaude%2C+P">Pierre Dubois-dit-Bonclaude</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bok%2C+D">Daniel Bok</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahl%2C+E">Erik Dahl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macintosh%2C+M">Mike Macintosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Viole%2C+I">Isabelle Viole</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sartori%2C+S">Sabrina Sartori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Venegas%2C+G+A+V">Guillermo Andr茅s Valenzuela Venegas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zeyringer%2C+M">Marianne Zeyringer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M">Michael Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poppi%2C+S">Sergio Poppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Olguin%2C+R">Rodrigo Olguin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hatziminaoglou%2C+E">Evanthia Hatziminaoglou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Breuck%2C+C">Carlos De Breuck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Montenegro-Montes%2C+F+M">Francisco Miguel Montenegro-Montes</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18645v3-abstract-short" style="display: inline;"> The submillimeter and millimeter ((sub-)mm) sky contains a vast wealth of information that is both complementary and inaccessible to other wavelengths. Over half the light we receive is observable at (sub-)mm wavelengths, yet we have mapped only a small portion of the sky at sufficient spatial resolution and sensitivity to detect and resolve distant galaxies or star forming cores within their larg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18645v3-abstract-full').style.display = 'inline'; document.getElementById('2402.18645v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18645v3-abstract-full" style="display: none;"> The submillimeter and millimeter ((sub-)mm) sky contains a vast wealth of information that is both complementary and inaccessible to other wavelengths. Over half the light we receive is observable at (sub-)mm wavelengths, yet we have mapped only a small portion of the sky at sufficient spatial resolution and sensitivity to detect and resolve distant galaxies or star forming cores within their large-scale environments. For decades the astronomical community has highlighted the need for a large, high-throughput (sub-)mm ($位\sim 0.35-10$ mm) single dish. The Atacama Large Aperture Submillimeter Telescope (AtLAST), with its 50-m aperture and $2^\circ$ maximal field of view, aims to be such a facility. We present here the preliminary design concept for AtLAST, developed through an EU Horizon 2020-funded design study. Our design approach begins with a long lineage of (sub-)mm telescopes, relies on calculations and simulations to realize the optics, and uses finite element analysis to optimize the designs for the mechanical structure and subsystems. The demanding technical requirements for AtLAST, set by transformative science goals, have motivated the design effort to combine novel concepts with lessons learned from the past experience of previous efforts. The result is an innovative rocking chair design with six instrument bays, two of which are mounted on Nasmyth platforms, inside a large receiver cabin. Ultimately, AtLAST aims to achieve a surface accuracy of $\leq 20~渭$m root mean square half wavefront error, corresponding a Ruze efficiency $&gt;50\%$ at 950~GHz. We conclude that closed-loop metrology of the active primary surface will likely be required to achieve our surface accuracy goal. In the next phase of the project, we will prototype and test such metrology on existing platforms, with a goal of delivering a mature, construction-ready design by the end of this decade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18645v3-abstract-full').style.display = 'none'; document.getElementById('2402.18645v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version addresses the second round A&amp;A referee reports</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04343">arXiv:2402.04343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04343">pdf</a>, <a href="https://arxiv.org/format/2402.04343">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348889">10.1051/0004-6361/202348889 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST Observations of Young protoStars (JOYS): Linked accretion and ejection in a Class I protobinary system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">Martijn L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">Logan Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">Will R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">Caroline Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justtanont%2C+K">Kay Justtanont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">Harold Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gouellec%2C+V+J+M+L">Valentin J. M. Le Gouellec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perotti%2C+G">Giulia Perotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devaraj%2C+R">R. Devaraj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tabone%2C+B">Beno卯t Tabone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ray%2C+T+P">Thomas P. Ray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N+G+C">Nashanty G. C. Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Yuan Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">Patrick J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">Katerina Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%BCdel%2C+M">Manuel G眉del</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%96stlin%2C+G">Goran 脰stlin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04343v2-abstract-short" style="display: inline;"> Accretion and ejection sets the outcome of the star and planet formation process. The mid-infrared wavelength range offers key tracers of those processes that were difficult to detect and spatially resolve in protostars until now. We aim to characterize the interplay between accretion and ejection in the low-mass Class I protobinary system TMC1, comprising two young stellar objects: TMC1-W and TMC&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04343v2-abstract-full').style.display = 'inline'; document.getElementById('2402.04343v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04343v2-abstract-full" style="display: none;"> Accretion and ejection sets the outcome of the star and planet formation process. The mid-infrared wavelength range offers key tracers of those processes that were difficult to detect and spatially resolve in protostars until now. We aim to characterize the interplay between accretion and ejection in the low-mass Class I protobinary system TMC1, comprising two young stellar objects: TMC1-W and TMC1-E with 85 au separation. With the {\it James Webb} Space Telescope (JWST) - Mid-Infrared Instrument (MIRI) observations in 5 - 28 $渭$m range, we measure intensities of emission lines of H$_2$, atoms and ions, e.g., [Fe II] and [Ne II], and HI recombination lines. We detect H$_2$ outflow coming from TMC1-E, with no significant H$_2$ emission from TMC1-W. The H$_2$ emission from TMC1-E outflow appears narrow and extends to wider opening angles with decreasing E$_{up}$ from S(8) to S(1) rotational transitions, indicating a disk wind origin. The outflow from TMC1-E protostar shows spatially extended emission lines of [Ne II], [Ne III], [Ar II], and [Ar III], with their line ratios consistent with UV radiation as a source of ionization. With ALMA, we detect accretion streamer infalling from $&gt;$ 1000 au scales onto the TMC1-E component. TMC1-W protostar powers a collimated jet, detected with [Fe II] and [Ni II] consistent with energetic flow. A much weaker ionized jet is observed from TMC1-E. TMC1-W is associated with strong emission from hydrogen recombination lines, tracing the accretion onto the young star. Observations of a binary Class I protostellar system show that the two processes are clearly intertwined, with accretion from the envelope onto the disk influencing a wide-angle wind ejected on disk scales, while accretion from the protostellar disk onto the protostar is associated with the source launching a collimated high-velocity jet within the innermost regions of the disk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04343v2-abstract-full').style.display = 'none'; document.getElementById('2402.04343v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 13 figures, accepted for publication in Astronomy and Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 687, A36 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04314">arXiv:2402.04314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04314">pdf</a>, <a href="https://arxiv.org/format/2402.04314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348718">10.1051/0004-6361/202348718 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST observations of $^{13}$CO$_{2}$ ice: Tracing the chemical environment and thermal history of ices in protostellar envelopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N+G+C">Nashanty G. C. Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">Will R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R">Robert Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">Katerina Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">Pooneh Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">Neal J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">Harold Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linz%2C+H">Hendrik Linz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poteet%2C+C+A">Charles A. Poteet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atnagulov%2C+P">Prabhani Atnagulov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04314v2-abstract-short" style="display: inline;"> The structure and composition of simple ices can be modified during stellar evolution by protostellar heating. Key to understanding the involved processes are thermal and chemical tracers that can diagnose the history and environment of the ice. The 15.2 $渭$m bending mode of $^{12}$CO$_2$ has proven to be a valuable tracer of ice heating events but suffers from grain shape and size effects. A viab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04314v2-abstract-full').style.display = 'inline'; document.getElementById('2402.04314v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04314v2-abstract-full" style="display: none;"> The structure and composition of simple ices can be modified during stellar evolution by protostellar heating. Key to understanding the involved processes are thermal and chemical tracers that can diagnose the history and environment of the ice. The 15.2 $渭$m bending mode of $^{12}$CO$_2$ has proven to be a valuable tracer of ice heating events but suffers from grain shape and size effects. A viable alternative tracer is the weaker $^{13}$CO$_2$ isotopologue band at 4.39 $渭$m which has now become accessible at high S/N with the $\textit{James Webb}$ Space Telescope (JWST). We present JWST NIRSpec observations of $^{13}$CO$_2$ ice in five deeply embedded Class 0 sources spanning a wide range in luminosities (0.2 - 10$^4$ L$_{\odot}$ ) taken as part of the Investigating Protostellar Accretion Across the Mass Spectrum (IPA) program. The band profiles vary significantly, with the most luminous sources showing a distinct narrow peak at 4.38 $渭$m. We first apply a phenomenological approach and show that a minimum of 3-4 Gaussian profiles are needed to fit the $^{13}$CO$_2$ absorption feature. We then combine these findings with laboratory data and show that a 15.2 $渭$m $^{12}$CO$_2$ band inspired five-component decomposition can be applied for the isotopologue band where each component is representative of CO$_2$ ice in a specific molecular environment. The final solution consists of cold mixtures of CO$_2$ with CH$_3$OH, H$_2$O and CO as well as segregated heated pure CO$_2$ ice. Our results are in agreement with previous studies of the $^{12}$CO$_2$ ice band, further confirming that $^{13}$CO$_{2}$ is a useful alternative tracer of protostellar heating events. We also propose an alternative solution consisting only of heated CO$_2$:CH$_3$OH and CO$_2$:H$_2$O ices and warm pure CO$_2$ ice for decomposing the ice profiles of the two most luminous sources in our sample. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04314v2-abstract-full').style.display = 'none'; document.getElementById('2402.04314v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 685, A27 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.07901">arXiv:2401.07901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.07901">pdf</a>, <a href="https://arxiv.org/format/2401.07901">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348695">10.1051/0004-6361/202348695 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hunt for complex cyanides in protostellar ices with JWST: Tentative detection of CH$_3$CN and C$_2$H$_5$CN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">P. Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">W. R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">A. E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">K. Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rachid%2C+M+G">M. G. Rachid</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. T. Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R">R. Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">H. Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N">N. Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">M. Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">D. M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">N. J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">S. Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+J+M">J. Muzerolle Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">G. Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">L. W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">M. Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">T. Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y+-">Y. -L. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.07901v1-abstract-short" style="display: inline;"> Nitrogen-bearing complex organic molecules have been commonly detected in the gas phase but not yet in interstellar ices. This has led to the long-standing question of whether these molecules form in the gas phase or in ices. $\textit{James Webb}$ Space Telescope ($\textit{JWST}$) offers the sensitivity, spectral resolution, and wavelength coverage needed to detect them in ices and investigate whe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07901v1-abstract-full').style.display = 'inline'; document.getElementById('2401.07901v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.07901v1-abstract-full" style="display: none;"> Nitrogen-bearing complex organic molecules have been commonly detected in the gas phase but not yet in interstellar ices. This has led to the long-standing question of whether these molecules form in the gas phase or in ices. $\textit{James Webb}$ Space Telescope ($\textit{JWST}$) offers the sensitivity, spectral resolution, and wavelength coverage needed to detect them in ices and investigate whether their abundance ratios are similar in gas and ice. We report the first tentative detection of CH$_3$CN, C$_2$H$_5$CN, and the simple molecule, N$_2$O, based on the CN-stretch band in interstellar ices toward three (HOPS 153, HOPS 370, and IRAS 20126+4104) out of the five protostellar systems observed as part of the Investigating Protostellar Accretion (IPA) GO program with $\textit{JWST}$-NIRSpec. We also provide upper limits for the two other sources with smaller luminosities in the sample. We detect OCN$^-$ in the ices of all sources with typical CH$_3$CN/OCN$^-$ ratios of around 1. Ice and gas column density ratios of the nitrogen-bearing species with respect to each other are better matched than those with respect to methanol, which are a factor of ${\sim}5$ larger in the ices than the gas. We attribute the elevated ice column densities with respect to methanol to the difference in snowline locations of nitrogen-bearing molecules and of methanol, biasing the gas-phase observations toward fewer nitrogen-bearing molecules. Moreover, we find tentative evidence for enhancement of OCN$^-$, CH$_3$CN, and C$_2$H$_5$CN in warmer ices, although formation of these molecules likely starts along with methanol in the cold prestellar phase. Future surveys combining NIRSpec and MIRI, and additional laboratory spectroscopic measurements of C$_2$H$_5$CN ice, are necessary for robust detection and conclusions on the formation history of complex cyanides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07901v1-abstract-full').style.display = 'none'; document.getElementById('2401.07901v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 686, A71 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06880">arXiv:2401.06880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.06880">pdf</a>, <a href="https://arxiv.org/format/2401.06880">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> JOYS: MIRI/MRS spectroscopy of gas-phase molecules from the high-mass star-forming region IRAS 23385+6053 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">L. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perotti%2C+G">G. Perotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ray%2C+T">T. Ray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justtanont%2C+K">K. Justtanont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">H. Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">W. R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">K. Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%BCdel%2C+M">M. G眉del</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">T. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagage%2C+P+O">P. O. Lagage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%96stlin%2C+G">G. 脰stlin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06880v1-abstract-short" style="display: inline;"> Space-based mid-IR spectroscopy provides tracers of warm gas in star-forming regions that are inaccessible from the ground. Past mid-IR spectra of bright high-mass protostars in the hot-core phase typically showed strong absorption features from molecules such as CO$_2$, C$_2$H$_2$, and HCN. However, little is known about their fainter counterparts at earlier stages. We thus aim to characterize th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06880v1-abstract-full').style.display = 'inline'; document.getElementById('2401.06880v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06880v1-abstract-full" style="display: none;"> Space-based mid-IR spectroscopy provides tracers of warm gas in star-forming regions that are inaccessible from the ground. Past mid-IR spectra of bright high-mass protostars in the hot-core phase typically showed strong absorption features from molecules such as CO$_2$, C$_2$H$_2$, and HCN. However, little is known about their fainter counterparts at earlier stages. We thus aim to characterize the gas-phase molecular features in JWST MIRI/MRS observations of the young high-mass star-forming region IRAS 23385+6053. Spectra were extracted from two mid-IR sources and three H$_2$ bright outflow knots in the MIRI/MRS field of view. Rich molecular spectra with emission from CO, H$_2$, HD, H$_2$O, C$_2$H$_2$, HCN, CO$_2$, and OH are detected towards the two mid-IR sources. However, only CO and OH are seen towards the brightest H$_2$ knots, suggesting that the majority of the observed species are associated with disks or hot core regions rather than outflows. Simple Local thermodynamic equilibrium (LTE) slab models were used to fit the observed molecular features. The LTE model fits to $^{12}$CO$_{2}$, C$_{2}$H$_{2}$, and HCN emission suggest warm $120-200$ K emission arising from a disk surface around one or both protostars. Weak $\sim500$ K H$_2$O emission at $\sim$ 6-7 $渭$m is detected towards one mid-IR source, whereas $250-1050$ K H$_2$O absorption is found in the other. The H$_2$O absorption may occur in the disk atmosphere due to strong accretion-heating of the midplane, or in a disk wind viewed at an ideal angle for absorption. CO emission may originate in the hot inner disk or outflow shocks. OH emission is likely excited in a non-LTE manner through water photodissociation or chemical formation. The observations are consistent with disks having already formed in the young IRAS 23385+6053 system, but further observations are needed to disentangle the effects of geometry and evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06880v1-abstract-full').style.display = 'none'; document.getElementById('2401.06880v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 Pages, 16 Figures. Accepted for publication in Astronomy and Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07807">arXiv:2312.07807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07807">pdf</a>, <a href="https://arxiv.org/format/2312.07807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> IPA: Class 0 Protostars Viewed in CO Emission Using JWST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">Neal J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">Pooneh Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R">Robert Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+J+D">Joel D. Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">Will R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N+G+C">Nashanty G. C. Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">Katerina Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+L">Lee Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linz%2C+H">Hendrik Linz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Muzerolle%2C+J">James Muzerolle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07807v2-abstract-short" style="display: inline;"> We investigate the bright CO fundamental emission in the central regions of five protostars in their primary mass assembly phase using new observations from JWST&#39;s Near-Infrared Spectrograph (NIRSpec) and Mid-Infrared Instrument (MIRI). CO line emission images and fluxes are extracted for a forest of $\sim$150 ro-vibrational transitions from two vibrational bands, $v=1-0$ and $v=2-1$. However,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07807v2-abstract-full').style.display = 'inline'; document.getElementById('2312.07807v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07807v2-abstract-full" style="display: none;"> We investigate the bright CO fundamental emission in the central regions of five protostars in their primary mass assembly phase using new observations from JWST&#39;s Near-Infrared Spectrograph (NIRSpec) and Mid-Infrared Instrument (MIRI). CO line emission images and fluxes are extracted for a forest of $\sim$150 ro-vibrational transitions from two vibrational bands, $v=1-0$ and $v=2-1$. However, ${}^{13}$CO is undetected, indicating that ${}^{12}$CO emission is optically thin. We use H$_2$ emission lines to correct fluxes for extinction and then construct rotation diagrams for the CO lines with the highest spectral resolution and sensitivity to estimate rotational temperatures and numbers of CO molecules. Two distinct rotational temperature components are required for $v=1$ ($\sim600$ to 1000 K and 2000 to $\sim 10^4$ K), while one hotter component is required for $v=2$ ($\gtrsim 3500$ K). ${}^{13}$CO is depleted compared to the abundances found in the ISM, indicating selective UV photodissociation of ${}^{13}$CO; therefore, UV radiative pumping may explain the higher rotational temperatures in $v=2$. The average vibrational temperature is $\sim 1000$ K for our sources and is similar to the lowest rotational temperature components. Using the measured rotational and vibrational temperatures to infer a total number of CO molecules, we find that the total gas masses range from lower limits of $\sim10^{22}$ g for the lowest mass protostars to $\sim 10^{26}$ g for the highest mass protostars. Our gas mass lower limits are compatible with those in more evolved systems, which suggest the lowest rotational temperature component comes from the inner disk, scattered into our line of sight, but we also cannot exclude the contribution to the CO emission from disk winds for higher mass targets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07807v2-abstract-full').style.display = 'none'; document.getElementById('2312.07807v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 7 figures, 4 tables, received to ApJ December 10 2023, accepted to ApJ August 4 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06834">arXiv:2312.06834</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06834">pdf</a>, <a href="https://arxiv.org/format/2312.06834">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> JWST Observations of Young protoStars (JOYS+): Detection of icy complex organic molecules and ions. I. CH$_4$, SO$_2$, HCOO$^-$, OCN$^-$, H$_2$CO, HCOOH, CH$_3$CH$_2$OH, CH$_3$CHO, CH$_3$OCHO, CH$_3$COOH </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">W. R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ressler%2C+M+E">M. E. Ressler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">K. Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N+G+C">N. G. C. Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">H. Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ray%2C+T+P">T. P. Ray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Geers%2C+V">V. Geers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">P. D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justannont%2C+K">K. Justannont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perotti%2C+G">G. Perotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barsony%2C+M">M. Barsony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Majumdar%2C+L">L. Majumdar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gouellec%2C+V+J+M+l">V. J. M. le Gouellec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chu%2C+L+E+U">L. E. U. Chu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lew%2C+B+W+P">B. W. P. Lew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">Th. Henning</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06834v1-abstract-short" style="display: inline;"> Complex organic molecules (COMs) detected in the gas phase are thought to be mostly formed on icy grains, but no unambiguous detection of icy COMs larger than CH3OH has been reported so far. Exploring this matter in more detail has become possible with the JWST the critical 5-10 $渭$m range. In the JOYS+ program, more than 30 protostars are being observed with the MIRI/MRS. This study explores the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06834v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06834v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06834v1-abstract-full" style="display: none;"> Complex organic molecules (COMs) detected in the gas phase are thought to be mostly formed on icy grains, but no unambiguous detection of icy COMs larger than CH3OH has been reported so far. Exploring this matter in more detail has become possible with the JWST the critical 5-10 $渭$m range. In the JOYS+ program, more than 30 protostars are being observed with the MIRI/MRS. This study explores the COMs ice signatures in the low and high-mass protostar, IRAS 2A and IRAS 23385, respectively. We fit continuum and silicate subtracted observational data with IR laboratory ice spectra. We use the ENIIGMA fitting tool to find the best fit between the lab data and the observations and to performs statistical analysis of the solutions. We report the best fits for the spectral ranges between 6.8 and 8.6 $渭$m in IRAS 2A and IRAS 23385, originating from simple molecules, COMs, and negative ions. The strongest feature in this range (7.7 $渭$m) is dominated by CH4 and has contributions of SO2 and OCN-. Our results indicate that the 7.2 and 7.4 $渭$m bands are mostly dominated by HCOO-. We find statistically robust detections of COMs based on multiple bands, most notably CH3CHO, CH3CH2OH, and CH3OCHO. The likely detection of CH3COOH is also reported. The ice column density ratios between CH3CH2OH and CH3CHO of IRAS 2A and IRAS 23385, suggests that these COMs are formed on icy grains. Finally, the derived ice abundances for IRAS 2A correlate well with those in comet 67P/GC within a factor of 5. Based on the MIRI/MRS data, we conclude that COMs are present in interstellar ices, thus providing additional proof for a solid-state origin of these species in star-forming regions. The good correlation between the ice abundances in comet 67P and IRAS 2A is in line with the idea that cometary COMs can be inherited from the early protostellar phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06834v1-abstract-full').style.display = 'none'; document.getElementById('2312.06834v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17217">arXiv:2311.17217</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.17217">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06790-2">10.1038/s41586-023-06790-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A probable Keplerian disk feeding an optically revealed massive young star </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=McLeod%2C+A+F">Anna F. McLeod</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">Pamela D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reiter%2C+M">Megan Reiter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henshaw%2C+J">Jonathan Henshaw</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuiper%2C+R">Rolf Kuiper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ginsburg%2C+A">Adam Ginsburg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17217v1-abstract-short" style="display: inline;"> The canonical picture of star formation involves disk-mediated accretion, with Keplerian accretion disks and associated bipolar jets primarily observed in nearby, low-mass young stellar objects (YSOs). Recently, rotating gaseous structures and Keplerian disks have been detected around a number of massive (M &gt; 8 solar masses) YSOs (MYSOs) including several disk-jet systems. All of the known MYSO sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17217v1-abstract-full').style.display = 'inline'; document.getElementById('2311.17217v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17217v1-abstract-full" style="display: none;"> The canonical picture of star formation involves disk-mediated accretion, with Keplerian accretion disks and associated bipolar jets primarily observed in nearby, low-mass young stellar objects (YSOs). Recently, rotating gaseous structures and Keplerian disks have been detected around a number of massive (M &gt; 8 solar masses) YSOs (MYSOs) including several disk-jet systems. All of the known MYSO systems are located in the Milky Way, and all are embedded in their natal material. Here we report the detection of a rotating gaseous structure around an extragalactic MYSO in the Large Magellanic Cloud. The gas motions show radial flow of material falling from larger scales onto a central disk-like structure, the latter exhibiting signs of Keplerian rotation, i.e., a rotating toroid feeding an accretion disk and thus the growth of the central star. The system is in almost all aspects comparable to Milky Way high-mass young stellar objects accreting gas via a Keplerian disk. The key difference between this source and its Galactic counterparts is that it is optically revealed, rather than being deeply embedded in its natal material as is expected of such a young massive star. We suggest that this is the consequence of the star having formed in a low-metallicity and low-dust content environment, thus providing important constraints for models of the formation and evolution of massive stars and their circumstellar disks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17217v1-abstract-full').style.display = 'none'; document.getElementById('2311.17217v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17161">arXiv:2311.17161</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.17161">pdf</a>, <a href="https://arxiv.org/format/2311.17161">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> JOYS+: mid-infrared detection of gas-phase SO$_2$ emission in a low-mass protostar. The case of NGC 1333 IRAS2A: hot core or accretion shock? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ressler%2C+M+E">M. E. Ressler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">P. Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tabone%2C+B">B. Tabone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Black%2C+J+H">J. H. Black</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barsony%2C+M">M. Barsony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gouellec%2C+V+J+M+l">V. J. M. le Gouellec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">P. D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lew%2C+B+W+P">B. W. P. Lew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">H. Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Majumdar%2C+L">L. Majumdar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perotti%2C+G">G. Perotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">W. R. M. Rocha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17161v1-abstract-short" style="display: inline;"> JWST/MIRI has sharpened our infrared eyes toward the star formation process. This paper presents the first mid-infrared detection of gaseous SO$_2$ emission in an embedded low-mass protostellar system. MIRI-MRS observations of the low-mass protostellar binary NGC 1333 IRAS2A are presented from the JWST Observations of Young protoStars (JOYS+) program, revealing emission from the SO$_2~谓_3$ asymmet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17161v1-abstract-full').style.display = 'inline'; document.getElementById('2311.17161v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17161v1-abstract-full" style="display: none;"> JWST/MIRI has sharpened our infrared eyes toward the star formation process. This paper presents the first mid-infrared detection of gaseous SO$_2$ emission in an embedded low-mass protostellar system. MIRI-MRS observations of the low-mass protostellar binary NGC 1333 IRAS2A are presented from the JWST Observations of Young protoStars (JOYS+) program, revealing emission from the SO$_2~谓_3$ asymmetric stretching mode at 7.35 micron. The results are compared to those derived from high-angular resolution SO$_2$ data obtained with ALMA. The SO$_2$ emission from the $谓_3$ band is predominantly located on $\sim50-100$ au scales around the main component of the binary, IRAS2A1. A rotational temperature of $92\pm8$ K is derived from the $谓_3$ lines. This is in good agreement with the rotational temperature derived from pure rotational lines in the vibrational ground state (i.e., $谓=0$) with ALMA ($104\pm5$ K). However, the emission of the $谓_3$ lines is not in LTE given that the total number of molecules predicted by a LTE model is found to be a factor $2\times10^4$ higher than what is derived for the $谓=0$ state. This difference can be explained by a vibrational temperature that is $\sim100$ K higher than the derived rotational temperature of the $谓=0$ state. The brightness temperature derived from the continuum around the $谓_3$ band of SO$_2$ is $\sim180$ K, which confirms that the $谓_3=1$ level is not collisionally populated but rather infrared pumped by scattered radiation. This is also consistent with the non-detection of the $谓_2$ bending mode at 18-20 micron. Given the rotational temperature, the extent of the emission ($\sim100$ au in radius), and the narrow line widths in the ALMA data (3.5 km/s), the SO$_2$ in IRAS2A likely originates from ice sublimation in the central hot core around the protostar rather than from an accretion shock at the disk-envelope boundary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17161v1-abstract-full').style.display = 'none'; document.getElementById('2311.17161v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 17 figures, accepted for publication in A&amp;A, abstract abbreviated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11874">arXiv:2311.11874</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.11874">pdf</a>, <a href="https://arxiv.org/format/2311.11874">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Density distributions, magnetic field structures and fragmentation in high-mass star formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soler%2C+J+D">J. D. Soler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+Q">Q. Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rao%2C+R">R. Rao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Semenov%2C+D">D. Semenov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">Th. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pudritz%2C+R">R. Pudritz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peters%2C+T">T. Peters</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beltran%2C+M+T">M. T. Beltran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palau%2C+A">A. Palau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moeller%2C+T">T. Moeller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnston%2C+K+G">K. G. Johnston</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zinnecker%2C+H">H. Zinnecker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Urquhart%2C+J">J. Urquhart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuiper%2C+R">R. Kuiper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmadi%2C+A">A. Ahmadi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sanchez-Monge%2C+A">A. Sanchez-Monge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feng%2C+S">S. Feng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leurini%2C+S">S. Leurini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ragan%2C+S+E">S. E. Ragan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11874v1-abstract-short" style="display: inline;"> Methods: Observing the large pc-scale Stokes I mm dust continuum emission with the IRAM 30m telescope and the intermediate-scale (&lt;0.1pc) polarized submm dust emission with the Submillimeter Array toward a sample of 20 high-mass star-forming regions allows us to quantify the dependence of the fragmentation behaviour of these regions depending on the density and magnetic field structures. Results&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11874v1-abstract-full').style.display = 'inline'; document.getElementById('2311.11874v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11874v1-abstract-full" style="display: none;"> Methods: Observing the large pc-scale Stokes I mm dust continuum emission with the IRAM 30m telescope and the intermediate-scale (&lt;0.1pc) polarized submm dust emission with the Submillimeter Array toward a sample of 20 high-mass star-forming regions allows us to quantify the dependence of the fragmentation behaviour of these regions depending on the density and magnetic field structures. Results: We infer density distributions n~r^{-p} of the regions with typical power-law slopes p around ~1.5. There is no obvious correlation between the power-law slopes of the density structures on larger clump scales (~1pc) and the number of fragments on smaller core scales (&lt;0.1pc). Comparing the large-scale single-dish density profiles to those derived earlier from interferometric observations at smaller spatial scales, we find that the smaller-scale power-law slopes are steeper, typically around ~2.0. The flattening toward larger scales is consistent with the star-forming regions being embedded in larger cloud structures that do not decrease in density away from a particular core. Regarding the magnetic field, for several regions it appears aligned with filamentary structures leading toward the densest central cores. Furthermore, we find different polarization structures with some regions exhibiting central polarization holes whereas other regions show polarized emission also toward the central peak positions. Nevertheless, the polarized intensities are inversely related to the Stokes I intensities. We estimate magnetic field strengths between ~0.2 and ~4.5mG, and we find no clear correlation between magnetic field strength and the fragmentation level of the regions. Comparison of the turbulent to magnetic energies shows that they are of roughly equal importance in this sample. The mass-to-flux ratios range between ~2 and ~7, consistent with collapsing star-forming regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11874v1-abstract-full').style.display = 'none'; document.getElementById('2311.11874v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for Astronomy &amp; Astrophysics, 14 pages, 14 figures plus appendices, also download option at https://www2.mpia-hd.mpg.de/homes/beuther/papers.html</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16943">arXiv:2310.16943</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16943">pdf</a>, <a href="https://arxiv.org/format/2310.16943">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Illuminating evaporating protostellar outflows: ERIS/SPIFFIER reveals the dissociation and ionization of HH 900 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Reiter%2C+M">Megan Reiter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haworth%2C+T+J">Thomas J. Haworth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manara%2C+C+F">Carlo F. Manara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramsay%2C+S">Suzanne Ramsay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">Pamela D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Itrich%2C+D">Dominika Itrich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McLeod%2C+A+F">Anna F. McLeod</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16943v1-abstract-short" style="display: inline;"> Protostellar jets and outflows are signposts of active star formation. In H II regions, molecular tracers like CO only reveal embedded portions of the outflow. Outside the natal cloud, outflows are dissociated, ionized, and eventually completely ablated, leaving behind only the high-density jet core. Before this process is complete, there should be a phase where the outflow is partially molecular&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16943v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16943v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16943v1-abstract-full" style="display: none;"> Protostellar jets and outflows are signposts of active star formation. In H II regions, molecular tracers like CO only reveal embedded portions of the outflow. Outside the natal cloud, outflows are dissociated, ionized, and eventually completely ablated, leaving behind only the high-density jet core. Before this process is complete, there should be a phase where the outflow is partially molecular and partially ionized. In this paper, we capture the HH 900 outflow while this process is in action. New observations from the ERIS/SPIFFIER near-IR integral field unit (IFU) spectrograph using the K-middle filter ($位$=2.06-2.34 $渭$m) reveal H$_2$ emission from the dissociating outflow and Br-$纬$ tracing its ionized skin. Both lines trace the wide-angle outflow morphology but H$_2$ only extends $\sim$5000 au into the H II region while Br-$纬$ extends the full length of the outflow ($\sim$12,650 au), indicating rapid dissociation of the molecules. H$_2$ has higher velocities further from the driving source, consistent with a jet-driven outflow. Diagnostic line ratios indicate that photoexcitation, not just shocks, contributes to the excitation in the outflow. We argue that HH 900 is the first clear example of an evaporating molecular outflow and predict that a large column of neutral material that may be detectable with ALMA accompanies the dissociating molecules. Results from this study will help guide the interpretation of near-IR images of externally irradiated jets and outflows such as those obtained with the James Webb Space Telescope (JWST) in high-mass star-forming regions where these conditions may be common. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16943v1-abstract-full').style.display = 'none'; document.getElementById('2310.16943v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MNRAS, accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14061">arXiv:2310.14061</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14061">pdf</a>, <a href="https://arxiv.org/format/2310.14061">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a collimated jet from the low luminosity protostar IRAS 16253$-$2429 in a quiescent accretion phase with the JWST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=P.%2C+M">Manoj P.</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R">Robert Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+Dishoeck%2C+E+F">Ewine F. Van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">Neal J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Muzerolle%2C+J">James Muzerolle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yao-Lun Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karnath%2C+N">Nicole Karnath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atnagulov%2C+P">Prabhani Atnagulov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N">Nashanty Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14061v5-abstract-short" style="display: inline;"> Investigating Protostellar Accretion (IPA) is a JWST Cycle~1 GO program that uses NIRSpec IFU and MIRI MRS to obtain 2.9--28~$渭$m spectral cubes of young, deeply embedded protostars with luminosities of 0.2 to 10,000~L$_{\odot}$ and central masses of 0.15 to 12~M$_{\odot}$. In this Letter, we report the discovery of a highly collimated atomic jet from the Class~0 protostar IRAS~16253$-$2429, the l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14061v5-abstract-full').style.display = 'inline'; document.getElementById('2310.14061v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14061v5-abstract-full" style="display: none;"> Investigating Protostellar Accretion (IPA) is a JWST Cycle~1 GO program that uses NIRSpec IFU and MIRI MRS to obtain 2.9--28~$渭$m spectral cubes of young, deeply embedded protostars with luminosities of 0.2 to 10,000~L$_{\odot}$ and central masses of 0.15 to 12~M$_{\odot}$. In this Letter, we report the discovery of a highly collimated atomic jet from the Class~0 protostar IRAS~16253$-$2429, the lowest luminosity source ($L_\mathrm{bol}$ = 0.2 $L_\odot$) in the IPA program. The collimated jet is detected in multiple [Fe~II] lines, [Ne~II], [Ni~II], and H~I lines, but not in molecular emission. The atomic jet has a velocity of about 169~$\pm$~15~km\,s$^{-1}$, after correcting for inclination. The width of the jet increases with distance from the central protostar from 23 to~60 au, corresponding to an opening angle of 2.6~$\pm$~0.5\arcdeg. By comparing the measured flux ratios of various fine structure lines to those predicted by simple shock models, we derive a shock {speed} of 54~km\,s$^{-1}$ and a preshock density of 2.0$\times10^{3}$~cm$^{-3}$ at the base of the jet. {From these quantities and using a suite of jet models and extinction laws we compute a mass loss rate between $0.4 -1.1\times10^{-10}~M_{\odot}$~yr~$^{-1}$.} The low mass loss rate is consistent with simultaneous measurements of low mass accretion rate ($2.4~\pm~0.8~\times~10^{-9}~M_{\odot}$~yr$^{-1}$) for IRAS~16253$-$2429 from JWST observations (Watson et al. in prep), indicating that the protostar is in a quiescent accretion phase. Our results demonstrate that very low-mass protostars can drive highly collimated, atomic jets, even during the quiescent phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14061v5-abstract-full').style.display = 'none'; document.getElementById('2310.14061v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJL. Comments and feedback welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08720">arXiv:2310.08720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.08720">pdf</a>, <a href="https://arxiv.org/format/2310.08720">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348244">10.1051/0004-6361/202348244 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PDRs4All III: JWST&#39;s NIR spectroscopic view of the Orion Bar </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Peeters%2C+E">Els Peeters</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Habart%2C+E">Emilie Habart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berne%2C+O">Olivier Berne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sidhu%2C+A">Ameek Sidhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chown%2C+R">Ryan Chown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+De+Putte%2C+D">Dries Van De Putte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trahin%2C+B">Boris Trahin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schroetter%2C+I">Ilane Schroetter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Canin%2C+A">Amelie Canin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alarcon%2C+F">Felipe Alarcon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schefter%2C+B">Bethany Schefter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Khan%2C+B">Baria Khan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pasquini%2C+S">Sofia Pasquini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tielens%2C+A+G+G+M">Alexander G. G. M. Tielens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wolfire%2C+M+G">Mark G. Wolfire</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dartois%2C+E">Emmanuel Dartois</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goicoechea%2C+J+R">Javier R. Goicoechea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maragkoudakis%2C+A">Alexandros Maragkoudakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Onaka%2C+T">Takashi Onaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pound%2C+M+W">Marc W. Pound</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vicente%2C+S">Silvia Vicente</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abergel%2C+A">Alain Abergel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bergin%2C+E+A">Edwin A. Bergin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernard-Salas%2C+J">Jeronimo Bernard-Salas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boersma%2C+C">Christiaan Boersma</a> , et al. (113 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08720v1-abstract-short" style="display: inline;"> (Abridged) We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the HII region to the atomic PDR (crossing the ionisation front (IF)), and the subsequent transition to the molecular PDR (crossing the dissociation front (DF)). We use high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08720v1-abstract-full').style.display = 'inline'; document.getElementById('2310.08720v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08720v1-abstract-full" style="display: none;"> (Abridged) We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the HII region to the atomic PDR (crossing the ionisation front (IF)), and the subsequent transition to the molecular PDR (crossing the dissociation front (DF)). We use high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science Program. The NIRSpec data reveal a forest of lines including, but not limited to, HeI, HI, and CI recombination lines, ionic lines, OI and NI fluorescence lines, Aromatic Infrared Bands (AIBs including aromatic CH, aliphatic CH, and their CD counterparts), CO2 ice, pure rotational and ro-vibrational lines from H2, and ro-vibrational lines HD, CO, and CH+, most of them detected for the first time towards a PDR. Their spatial distribution resolves the H and He ionisation structure in the Huygens region, gives insight into the geometry of the Bar, and confirms the large-scale stratification of PDRs. We observe numerous smaller scale structures whose typical size decreases with distance from Ori C and IR lines from CI, if solely arising from radiative recombination and cascade, reveal very high gas temperatures consistent with the hot irradiated surface of small-scale dense clumps deep inside the PDR. The H2 lines reveal multiple, prominent filaments which exhibit different characteristics. This leaves the impression of a &#34;terraced&#34; transition from the predominantly atomic surface region to the CO-rich molecular zone deeper in. This study showcases the discovery space created by JWST to further our understanding of the impact radiation from young stars has on their natal molecular cloud and proto-planetary disk, which touches on star- and planet formation as well as galaxy evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08720v1-abstract-full').style.display = 'none'; document.getElementById('2310.08720v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 30 figures, submitted to A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 685, A74 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.03803">arXiv:2310.03803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.03803">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad2fa0">10.3847/1538-4357/ad2fa0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigating Protostellar Accretion-Driven Outflows Across the Mass Spectrum: JWST NIRSpec IFU 3-5~$渭$m Spectral Mapping of Five Young Protostars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R">Robert Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atnagulov%2C+P">Prabhani Atnagulov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N">Nashanty Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">Neal J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">Elise Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+J">Joel Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Habel%2C+N">Nolan Habel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+L">Lee Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karnath%2C+N">Nicole Karnath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linz%2C+H">Hendrik Linz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+J+M">James Muzerolle Page</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.03803v2-abstract-short" style="display: inline;"> Investigating Protostellar Accretion is a Cycle 1 JWST program using the NIRSpec+MIRI integral field units to obtain 2.9--28 $渭$m spectral cubes of five young protostars with luminosities of 0.2-10,000 L$_{\odot}$ in their primary accretion phase. This paper introduces the NIRSpec 2.9--5.3 $渭$m data of the inner 840-9000 au with spatial resolutions from 28-300 au. The spectra show rising continuum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03803v2-abstract-full').style.display = 'inline'; document.getElementById('2310.03803v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.03803v2-abstract-full" style="display: none;"> Investigating Protostellar Accretion is a Cycle 1 JWST program using the NIRSpec+MIRI integral field units to obtain 2.9--28 $渭$m spectral cubes of five young protostars with luminosities of 0.2-10,000 L$_{\odot}$ in their primary accretion phase. This paper introduces the NIRSpec 2.9--5.3 $渭$m data of the inner 840-9000 au with spatial resolutions from 28-300 au. The spectra show rising continuum emission; deep ice absorption; emission from H$_{2}$, H~I, and [Fe~II]; and the CO fundamental series in emission and absorption. Maps of the continuum emission show scattered light cavities for all five protostars. In the cavities, collimated jets are detected in [Fe~II] for the four $&lt; 320$~L$_{\odot}$ protostars, two of which are additionally traced in Br-$伪$. Knots of [Fe~II] emission are detected toward the most luminous protostar, and knots of [FeII] emission with dynamical times of $&lt; 30$~yrs are found in the jets of the others. While only one jet is traced in H$_2$, knots of H$_2$ and CO are detected in the jets of four protostars. H$_2$ is seen extending through the cavities, showing that they are filled by warm molecular gas. Bright H$_2$ emission is seen along the walls of a single cavity, while in three cavities narrow shells of H$_2$ emission are found, one of which has an [Fe~II] knot at its apex. These data show cavities containing collimated jets traced in atomic/ionic gas surrounded by warm molecular gas in a wide-angle wind and/or gas accelerated by bow shocks in the jets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03803v2-abstract-full').style.display = 'none'; document.getElementById('2310.03803v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 966 41 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.10410">arXiv:2309.10410</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.10410">pdf</a>, <a href="https://arxiv.org/format/2309.10410">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202347060">10.1051/0004-6361/202347060 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JOYS: Disentangling the warm and cold material in the high-mass IRAS 23385+6053 cluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">L. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perotti%2C+G">G. Perotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ray%2C+T+P">T. P. Ray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justtanont%2C+K">K. Justtanont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">H. Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">W. R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">K. Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Colina%2C+L">L. Colina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%BCdel%2C+M">M. G眉del</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">Th. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagage%2C+P+-">P. -O. Lagage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%96stlin%2C+G">G. 脰stlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vandenbussche%2C+B">B. Vandenbussche</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Waelkens%2C+C">C. Waelkens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wright%2C+G">G. Wright</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.10410v1-abstract-short" style="display: inline;"> (abridged) We study and compare the warm (&gt;100 K) and cold (&lt;100 K) material toward the high-mass star-forming region IRAS 23385+6053 (IRAS 23385 hereafter) combining high angular resolution observations in the mid-infrared (MIR) with the JWST Observations of Young protoStars (JOYS) project and with the NOEMA at mm wavelengths at angular resolutions of 0.2&#34;-1&#34;. The spatial morphology of atomic a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10410v1-abstract-full').style.display = 'inline'; document.getElementById('2309.10410v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.10410v1-abstract-full" style="display: none;"> (abridged) We study and compare the warm (&gt;100 K) and cold (&lt;100 K) material toward the high-mass star-forming region IRAS 23385+6053 (IRAS 23385 hereafter) combining high angular resolution observations in the mid-infrared (MIR) with the JWST Observations of Young protoStars (JOYS) project and with the NOEMA at mm wavelengths at angular resolutions of 0.2&#34;-1&#34;. The spatial morphology of atomic and molecular species is investigated by line integrated intensity maps. The temperature and column density of different gas components is estimated using H2 transitions (warm and hot component) and a series of CH3CN transitions as well as 3 mm continuum emission (cold component). Toward the central dense core in IRAS 23385 the material consists of relatively cold gas and dust (~50 K), while multiple outflows create heated and/or shocked H2 and show enhanced temperatures (~400 K) along the outflow structures. An energetic outflow with enhanced emission knots of [Fe II] and [Ni II] hints at J-type shocks, while two other outflows have enhanced emission of only H2 and [S I] caused by C-type shocks. The latter two outflows are also more prominent in molecular line emission at mm wavelengths (e.g., SiO, SO, H2CO, and CH3OH). Even higher angular resolution data are needed to unambiguously identify the outflow driving sources given the clustered nature of IRAS 23385. While most of the forbidden fine structure transitions are blueshifted, [Ne II] and [Ne III] peak at the source velocity toward the MIR source A/mmA2 suggesting that the emission is originating from closer to the protostar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10410v1-abstract-full').style.display = 'none'; document.getElementById('2309.10410v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 679, A108 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.06430">arXiv:2309.06430</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.06430">pdf</a>, <a href="https://arxiv.org/format/2309.06430">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Into the Mystic: ALMA ACA observations of the Mystic Mountains in Carina </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Reiter%2C+M">Megan Reiter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">P. D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moser-Fischer%2C+L">L. Moser-Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McLeod%2C+A+F">A. F. McLeod</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Itrich%2C+D">D. Itrich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.06430v1-abstract-short" style="display: inline;"> We present new observations of the Mystic Mountains cloud complex in the Carina Nebula using the ALMA Atacama Compact Array (ACA) to quantify the impact of strong UV radiation on the structure and kinematics of the gas. Our Band~6 observations target CO, $^{13}$CO, and C$^{18}$O; we also detect DCN J=3-2 and $^{13}$CS J=5-4. A dendrogram analysis reveals that the Mystic Mountains are a coherent st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06430v1-abstract-full').style.display = 'inline'; document.getElementById('2309.06430v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.06430v1-abstract-full" style="display: none;"> We present new observations of the Mystic Mountains cloud complex in the Carina Nebula using the ALMA Atacama Compact Array (ACA) to quantify the impact of strong UV radiation on the structure and kinematics of the gas. Our Band~6 observations target CO, $^{13}$CO, and C$^{18}$O; we also detect DCN J=3-2 and $^{13}$CS J=5-4. A dendrogram analysis reveals that the Mystic Mountains are a coherent structure, with continuous emission over $-$10.5 km s$^{-1}$ $&lt;$ v &lt; $-$2 km s$^{-1}$. We perform multiple analyses to isolate non-thermal motions in the Mystic Mountains including computing the turbulent driving parameter, $b$, which indicates whether compressive or solenoidal modes dominate. Each analysis yields values similar to other pillars in Carina that have been observed in a similar way but are subject to an order of magnitude less intense ionizing radiation. We find no clear correlation between the velocity or turbulent structure of the gas and the incident radiation, in contrast to other studies targeting different regions of Carina. This may reflect differences in the initial densities of regions that go on to collapse into pillars and those that still look like clouds or walls in the present day. Pre-existing over-densities that enable pillar formation may also explain why star formation in the pillars appears more evolved (from the presence of jets) than in other heavily-irradiated but non-pillar-like regions. High resolution observations of regions subject to an array of incident radiation are required to test this hypothesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06430v1-abstract-full').style.display = 'none'; document.getElementById('2309.06430v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MNRAS, accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.16733">arXiv:2308.16733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.16733">pdf</a>, <a href="https://arxiv.org/format/2308.16733">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346662">10.1051/0004-6361/202346662 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PDRs4All IV. An embarrassment of riches: Aromatic infrared bands in the Orion Bar </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chown%2C+R">Ryan Chown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sidhu%2C+A">Ameek Sidhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peeters%2C+E">Els Peeters</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tielens%2C+A+G+G+M">Alexander G. G. M. Tielens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cami%2C+J">Jan Cami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bern%C3%A9%2C+O">Olivier Bern茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Habart%2C+E">Emilie Habart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alarc%C3%B3n%2C+F">Felipe Alarc贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Canin%2C+A">Am茅lie Canin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schroetter%2C+I">Ilane Schroetter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trahin%2C+B">Boris Trahin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+De+Putte%2C+D">Dries Van De Putte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abergel%2C+A">Alain Abergel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bergin%2C+E+A">Edwin A. Bergin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernard-Salas%2C+J">Jeronimo Bernard-Salas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boersma%2C+C">Christiaan Boersma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bron%2C+E">Emeric Bron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cuadrado%2C+S">Sara Cuadrado</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dartois%2C+E">Emmanuel Dartois</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicken%2C+D">Daniel Dicken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=El-Yajouri%2C+M">Meriem El-Yajouri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuente%2C+A">Asunci贸n Fuente</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goicoechea%2C+J+R">Javier R. Goicoechea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gordon%2C+K+D">Karl D. Gordon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Issa%2C+L">Lina Issa</a> , et al. (114 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.16733v2-abstract-short" style="display: inline;"> (Abridged) Mid-infrared observations of photodissociation regions (PDRs) are dominated by strong emission features called aromatic infrared bands (AIBs). The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 $渭$m. The most sensitive, highest-resolution infrared spectral imaging data ever taken of the prototypical PDR, the Orion Bar, have been captured by JWST. We provide an inventory o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16733v2-abstract-full').style.display = 'inline'; document.getElementById('2308.16733v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.16733v2-abstract-full" style="display: none;"> (Abridged) Mid-infrared observations of photodissociation regions (PDRs) are dominated by strong emission features called aromatic infrared bands (AIBs). The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 $渭$m. The most sensitive, highest-resolution infrared spectral imaging data ever taken of the prototypical PDR, the Orion Bar, have been captured by JWST. We provide an inventory of the AIBs found in the Orion Bar, along with mid-IR template spectra from five distinct regions in the Bar: the molecular PDR, the atomic PDR, and the HII region. We use JWST NIRSpec IFU and MIRI MRS observations of the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288). We extract five template spectra to represent the morphology and environment of the Orion Bar PDR. The superb sensitivity and the spectral and spatial resolution of these JWST observations reveal many details of the AIB emission and enable an improved characterization of their detailed profile shapes and sub-components. While the spectra are dominated by the well-known AIBs at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 $渭$m, a wealth of weaker features and sub-components are present. We report trends in the widths and relative strengths of AIBs across the five template spectra. These trends yield valuable insight into the photochemical evolution of PAHs, such as the evolution responsible for the shift of 11.2 $渭$m AIB emission from class B$_{11.2}$ in the molecular PDR to class A$_{11.2}$ in the PDR surface layers. This photochemical evolution is driven by the increased importance of FUV processing in the PDR surface layers, resulting in a &#34;weeding out&#34; of the weakest links of the PAH family in these layers. For now, these JWST observations are consistent with a model in which the underlying PAH family is composed of a few species: the so-called &#39;grandPAHs&#39;. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16733v2-abstract-full').style.display = 'none'; document.getElementById('2308.16733v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 10 figures, to appear in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 685, A75 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.16732">arXiv:2308.16732</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.16732">pdf</a>, <a href="https://arxiv.org/format/2308.16732">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346747">10.1051/0004-6361/202346747 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PDRs4All II: JWST&#39;s NIR and MIR imaging view of the Orion Nebula </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Habart%2C+E">Emilie Habart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peeters%2C+E">Els Peeters</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bern%C3%A9%2C+O">Olivier Bern茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trahin%2C+B">Boris Trahin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Canin%2C+A">Am茅lie Canin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chown%2C+R">Ryan Chown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sidhu%2C+A">Ameek Sidhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+De+Putte%2C+D">Dries Van De Putte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alarc%C3%B3n%2C+F">Felipe Alarc贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schroetter%2C+I">Ilane Schroetter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dartois%2C+E">Emmanuel Dartois</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vicente%2C+S">S铆lvia Vicente</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abergel%2C+A">Alain Abergel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bergin%2C+E+A">Edwin A. Bergin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernard-Salas%2C+J">Jeronimo Bernard-Salas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boersma%2C+C">Christiaan Boersma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bron%2C+E">Emeric Bron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cami%2C+J">Jan Cami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cuadrado%2C+S">Sara Cuadrado</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicken%2C+D">Daniel Dicken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elyajouri%2C+M">Meriem Elyajouri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuente%2C+A">Asunci贸n Fuente</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goicoechea%2C+J+R">Javier R. Goicoechea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gordon%2C+K+D">Karl D. Gordon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Issa%2C+L">Lina Issa</a> , et al. (117 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.16732v2-abstract-short" style="display: inline;"> The JWST has captured the most detailed and sharpest infrared images ever taken of the inner region of the Orion Nebula, the nearest massive star formation region, and a prototypical highly irradiated dense photo-dissociation region (PDR). We investigate the fundamental interaction of far-ultraviolet photons with molecular clouds. The transitions across the ionization front (IF), dissociation fron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16732v2-abstract-full').style.display = 'inline'; document.getElementById('2308.16732v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.16732v2-abstract-full" style="display: none;"> The JWST has captured the most detailed and sharpest infrared images ever taken of the inner region of the Orion Nebula, the nearest massive star formation region, and a prototypical highly irradiated dense photo-dissociation region (PDR). We investigate the fundamental interaction of far-ultraviolet photons with molecular clouds. The transitions across the ionization front (IF), dissociation front (DF), and the molecular cloud are studied at high-angular resolution. These transitions are relevant to understanding the effects of radiative feedback from massive stars and the dominant physical and chemical processes that lead to the IR emission that JWST will detect in many Galactic and extragalactic environments. Due to the proximity of the Orion Nebula and the unprecedented angular resolution of JWST, these data reveal that the molecular cloud borders are hyper structured at small angular scales of 0.1-1&#34; (0.0002-0.002 pc or 40-400 au at 414 pc). A diverse set of features are observed such as ridges, waves, globules and photoevaporated protoplanetary disks. At the PDR atomic to molecular transition, several bright features are detected that are associated with the highly irradiated surroundings of the dense molecular condensations and embedded young star. Toward the Orion Bar PDR, a highly sculpted interface is detected with sharp edges and density increases near the IF and DF. This was predicted by previous modeling studies, but the fronts were unresolved in most tracers. A complex, structured, and folded DF surface was traced by the H2 lines. This dataset was used to revisit the commonly adopted 2D PDR structure of the Orion Bar. JWST provides us with a complete view of the PDR, all the way from the PDR edge to the substructured dense region, and this allowed us to determine, in detail, where the emission of the atomic and molecular lines, aromatic bands, and dust originate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16732v2-abstract-full').style.display = 'none'; document.getElementById('2308.16732v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 685, A73 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10952">arXiv:2308.10952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10952">pdf</a>, <a href="https://arxiv.org/format/2308.10952">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.23919/URSIGASS57860.2023.10265372">10.23919/URSIGASS57860.2023.10265372 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Progress in the Design of the Atacama Large Aperture Submillimeter Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reichert%2C+M">Matthias Reichert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P">Patricio Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaercher%2C+H">Hans Kaercher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hills%2C+R">Richard Hills</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bok%2C+D">Daniel Bok</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahl%2C+E">Erik Dahl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dubois-dit-Bonclaude%2C+P">Pierre Dubois-dit-Bonclaude</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiselev%2C+A">Aleksej Kiselev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Timpe%2C+M">Martin Timpe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zimmerer%2C+T">Thomas Zimmerer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macintosh%2C+M">Mike Macintosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M">Michael Niemack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10952v1-abstract-short" style="display: inline;"> The Atacama Large Aperture Submillimeter Telescope (AtLAST) aims to be the premier next generation large diameter (50 meter) single dish observatory capable of observations across the millimeter/submillimeter spectrum, from 30~GHz to 1~THz. AtLAST will be sited in Chile at approximately 5100 meters above sea level, high in the Atacama Desert near Llano de Chajnantor. The novel rocking-chair telesc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10952v1-abstract-full').style.display = 'inline'; document.getElementById('2308.10952v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10952v1-abstract-full" style="display: none;"> The Atacama Large Aperture Submillimeter Telescope (AtLAST) aims to be the premier next generation large diameter (50 meter) single dish observatory capable of observations across the millimeter/submillimeter spectrum, from 30~GHz to 1~THz. AtLAST will be sited in Chile at approximately 5100 meters above sea level, high in the Atacama Desert near Llano de Chajnantor. The novel rocking-chair telescope design allows for a unprecedentedly wide field of view (FoV) of 1-2$^\circ$ diameter, a large receiver cabin housing six major instruments, and high structural stability during fast scanning operations (up to $\sim 3^\circ$ per second in azimuth). Here we describe the current status of, and expected outcomes for, the antenna design study, which will be completed in 2024. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10952v1-abstract-full').style.display = 'none'; document.getElementById('2308.10952v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for the URSI GASS 2023, Sapporo, Japan, 19-26 August 2023. 4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023 XXXVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Sapporo, Japan, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11817">arXiv:2307.11817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.11817">pdf</a>, <a href="https://arxiv.org/format/2307.11817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/d3fd00010a">10.1039/d3fd00010a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The diverse chemistry of protoplanetary disks as revealed by JWST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grant%2C+S">S. Grant</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tabone%2C+B">B. Tabone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M">M. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">L. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bettoni%2C+G">G. Bettoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arabhavi%2C+A+M">A. M. Arabhavi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gasman%2C+D">D. Gasman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">P. Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vlasblom%2C+M">M. Vlasblom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P">P. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christiaens%2C+V">V. Christiaens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">Th. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kamp%2C+I">I. Kamp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11817v1-abstract-short" style="display: inline;"> Early results from the JWST-MIRI guaranteed time programs on protostars (JOYS) and disks (MINDS) are presented. Thanks to the increased sensitivity, spectral and spatial resolution of the MIRI spectrometer, the chemical inventory of the planet-forming zones in disks can be investigated with unprecedented detail across stellar mass range and age. Here data are presented for five disks, four around&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11817v1-abstract-full').style.display = 'inline'; document.getElementById('2307.11817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11817v1-abstract-full" style="display: none;"> Early results from the JWST-MIRI guaranteed time programs on protostars (JOYS) and disks (MINDS) are presented. Thanks to the increased sensitivity, spectral and spatial resolution of the MIRI spectrometer, the chemical inventory of the planet-forming zones in disks can be investigated with unprecedented detail across stellar mass range and age. Here data are presented for five disks, four around low-mass stars and one around a very young high-mass star. The mid-infrared spectra show some similarities but also significant diversity: some sources are rich in CO2, others in H2O or C2H2. In one disk around a very low-mass star, booming C2H2 emission provides evidence for a ``soot&#39;&#39; line at which carbon grains are eroded and sublimated, leading to a rich hydrocarbon chemistry in which even di-acetylene (C4H2) and benzene (C6H6) are detected (Tabone et al. 2023). Together, the data point to an active inner disk gas-phase chemistry that is closely linked to the physical structure (temperature, snowlines, presence of cavities and dust traps) of the entire disk and which may result in varying CO2/H2O abundances and high C/O ratios &gt;1 in some cases. Ultimately, this diversity in disk chemistry will also be reflected in the diversity of the chemical composition of exoplanets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11817v1-abstract-full').style.display = 'none'; document.getElementById('2307.11817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures. Author&#39;s version of paper submitted to Faraday Discussions January 18 2023, Accepted March 16 2023</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Faraday Discussion &#34;Astrochemistry at high resolution&#34;, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01025">arXiv:2307.01025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01025">pdf</a>, <a href="https://arxiv.org/format/2307.01025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Geometric distortion and astrometric calibration of the JWST MIRI Medium Resolution Spectrometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Patapis%2C+P">P. Patapis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Argyriou%2C+I">I. Argyriou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Law%2C+D+R">D. R. Law</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Glauser%2C+A+M">A. M. Glauser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Glasse%2C+A">A. Glasse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Labiano%2C+A">A. Labiano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%81lvarez-M%C3%A1rquez%2C+J">J. 脕lvarez-M谩rquez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gasman%2C+D">D. Gasman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mueller%2C+M">M. Mueller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Larson%2C+K">K. Larson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vandenbussche%2C+B">B. Vandenbussche</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guillard%2C+P">P. Guillard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wright%2C+G+S">G. S. Wright</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01025v1-abstract-short" style="display: inline;"> The Medium-Resolution integral field Spectrometer (MRS) of MIRI on board JWST performs spectroscopy between 5 and 28~$渭$m. The optics of the MRS introduce substantial distortion, and this needs to be rectified in order to reconstruct the observed astrophysical scene. We use data from the JWST/MIRI commissioning and cycle 1 calibration phase, to derive the MRS geometric distortion and astrometric s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01025v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01025v1-abstract-full" style="display: none;"> The Medium-Resolution integral field Spectrometer (MRS) of MIRI on board JWST performs spectroscopy between 5 and 28~$渭$m. The optics of the MRS introduce substantial distortion, and this needs to be rectified in order to reconstruct the observed astrophysical scene. We use data from the JWST/MIRI commissioning and cycle 1 calibration phase, to derive the MRS geometric distortion and astrometric solution, a critical step in the calibration of MRS data. These solutions come in the form of transform matrices that map the detector pixels to spatial coordinates of a local MRS coordinate system called $伪$/$尾$, to the global JWST observatory coordinates V2/V3. For every MRS spectral band and each slice dispersed on the detector, the transform of detector pixels to $伪$/$尾$ is fit by a two-dimensional polynomial, using a raster of point source observations. A polynomial transform is used to map the coordinates from $伪$/$尾$ to V2/V3. We calibrated the distortion of all 198 discrete slices of the MIRI/MRS IFUs, and derived an updated Field of View (FoV) for each MRS spectral band. The precision of the distortion solution is estimated to be better than one tenth of a spatial resolution element, with a root mean square (rms) of 10 milli-arcsecond (mas) at 5 $渭$m, to 23 mas at 27 $渭$m. Finally we find that the wheel positioning repeatability causes an additional astrometric error of rms 30 mas. We have demonstrated the MRS astrometric calibration strategy and analysis enabling the calibration of MRS spectra, a critical step in the data pipeline especially for science with spatially resolved objects. The distortion calibration was folded into the JWST pipeline in Calibration Reference Data System (CRDS) context jwst\_1094.pmap. The distortion calibration precision meets the pre-launch requirement, and the estimated total astrometric uncertainty is 50 mas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01025v1-abstract-full').style.display = 'none'; document.getElementById('2307.01025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 14 figures. Submitted to Astronomy &amp; Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.00583">arXiv:2306.00583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.00583">pdf</a>, <a href="https://arxiv.org/format/2306.00583">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346945">10.1051/0004-6361/202346945 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High resolution modeling of [CII], [CI], [OIII] and CO line emission from the ISM and CGM of a star forming galaxy at z ~ 6.5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Schimek%2C+A">Alice Schimek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Decataldo%2C+D">Davide Decataldo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shen%2C+S">Sijing Shen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baumschlager%2C+B">Bernhard Baumschlager</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madau%2C+P">Piero Madau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mayer%2C+L">Lucio Mayer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arroyave%2C+I+M">Isabel Montoya Arroyave</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Warraich%2C+J+H+K">Jessie Harvir Kaur Warraich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.00583v2-abstract-short" style="display: inline;"> The circumgalactic medium (CGM) is a crucial component of galaxy evolution, but thus far its physical properties are highly unconstrained. As of yet, no cosmological simulation has reached convergence when it comes to constraining the cold and dense gas fraction of the CGM. Such components are also challenging to observe, and require sub-millimeter instruments with a high sensitivity to extended,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00583v2-abstract-full').style.display = 'inline'; document.getElementById('2306.00583v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.00583v2-abstract-full" style="display: none;"> The circumgalactic medium (CGM) is a crucial component of galaxy evolution, but thus far its physical properties are highly unconstrained. As of yet, no cosmological simulation has reached convergence when it comes to constraining the cold and dense gas fraction of the CGM. Such components are also challenging to observe, and require sub-millimeter instruments with a high sensitivity to extended, diffuse emission, like the proposed Atacama Large Aperture Sub-millimetre telescope (AtLAST). We present a state-of-the-art theoretical effort at modeling the [CII], [CI](1-0), [CI](2-1), CO(3-2), and [OIII] line emissions of galaxies. We use the high-resolution cosmological zoom-in simulation Ponos, representing a star forming galaxy system at z = 6.5 ($M_*=2\times10^9~M_{\odot}$), undergoing a major merger. We adopt different modeling approaches based on the photoionisation code Cloudy. Our fiducial model uses radiative transfer post-processing with RamsesRT and Krome to create realistic FUV radiation fields, which we compare to sub-grid modeling approaches adopted in the literature. We find significant differences in the luminosity and in the contribution of different gas phases and galaxy components between the different modeling approaches. [CII] is the least model-dependant gas tracer, while [CI](1-0) and CO(3-2) are very model-sensitive. In all models, we find a significant contribution to the emission of [CII] (up to $\sim$10%) and [OIII] (up to $\sim$20%) from the CGM. [CII] and [OIII] trace different regions of the CGM: [CII] arises from an accreting filament and from tidal tails, while [OIII] traces a puffy halo surrounding the main disc, probably linked to SN feedback. We discuss our results in the context of current and future sub-mm observations with ALMA and AtLAST. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00583v2-abstract-full').style.display = 'none'; document.getElementById('2306.00583v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication to A&amp;A. 25 pages, 19 figures. Significant changes since version 1. Abstract summarised for arXiv submission</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 682, A98 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00020">arXiv:2305.00020</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00020">pdf</a>, <a href="https://arxiv.org/format/2305.00020">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245580">10.1051/0004-6361/202245580 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kinematics and stability of high-mass protostellar disk candidates at sub-arcsecond resolution -- Insights from the IRAM NOEMA large program CORE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ahmadi%2C+A">Aida Ahmadi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bosco%2C+F">F. Bosco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Suri%2C+S">S. Suri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mottram%2C+J+C">J. C. Mottram</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuiper%2C+R">R. Kuiper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">Th. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=S%C3%A1nchez-Monge%2C+%C3%81">脕. S谩nchez-Monge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linz%2C+H">H. Linz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pudritz%2C+R+E">R. E. Pudritz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Semenov%2C+D">D. Semenov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Winters%2C+J+M">J. M. Winters</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6ller%2C+T">T. M枚ller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beltr%C3%A1n%2C+M+T">M. T. Beltr谩n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Csengeri%2C+T">T. Csengeri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galv%C3%A1n-Madrid%2C+R">R. Galv谩n-Madrid</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnston%2C+K+G">K. G. Johnston</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keto%2C+E">E. Keto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">P. D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leurini%2C+S">S. Leurini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Longmore%2C+S+N">S. N. Longmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lumsden%2C+S+L">S. L. Lumsden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maud%2C+L+T">L. T. Maud</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moscadelli%2C+L">L. Moscadelli</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00020v2-abstract-short" style="display: inline;"> The fragmentation mode of high-mass molecular clumps and the accretion processes that form the most massive stars ($M\gtrsim 8M_\odot$) are still not well understood. To this end, we have undertaken a large observational program (CORE) making use of interferometric observations from the Northern Extended Millimetre Array (NOEMA) for a sample of 20 luminous ($L&gt;10^4L_\odot$) protostellar objects in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00020v2-abstract-full').style.display = 'inline'; document.getElementById('2305.00020v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00020v2-abstract-full" style="display: none;"> The fragmentation mode of high-mass molecular clumps and the accretion processes that form the most massive stars ($M\gtrsim 8M_\odot$) are still not well understood. To this end, we have undertaken a large observational program (CORE) making use of interferometric observations from the Northern Extended Millimetre Array (NOEMA) for a sample of 20 luminous ($L&gt;10^4L_\odot$) protostellar objects in the 1.37 mm wavelength regime in both continuum and line emission, reaching $\sim$0.4&#34; resolution (800 au at 2 kpc). Using the dense gas tracer CH$_3$CN, we find velocity gradients across 13 cores perpendicular to the directions of bipolar molecular outflows, making them excellent disk candidates. Specific angular momentum ($j$) radial profiles are on average $\sim10^{-3}$ km /s pc and follow $j \propto r^{1.7}$, consistent with a poorly resolved rotating and infalling envelope/disk model. Fitting the velocity profiles with a Keplerian model, we find protostellar masses in the range of $\sim 10-25$ $M_\odot$. Modelling the level population of CH$_3$CN lines, we present temperature maps and find median gas temperatures in the range $70-210$ K. We create Toomre $Q$ maps to study the stability of the disks and find almost all (11 of 13) disk candidates to be prone to fragmentation due to gravitational instabilities at the scales probed by our observations. In particular, disks with masses greater than $\sim10-20\%$ of the mass of their host (proto)stars are Toomre unstable, and more luminous protostellar objects tend to have disks that are more massive and hence more prone to fragmentation. Our finings show that most disks around high-mass protostars are prone to disk fragmentation early in their formation due to their high disk to stellar mass ratio. This impacts the accretion evolution of high-mass protostars which will have significant implications for the formation of the most massive stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00020v2-abstract-full').style.display = 'none'; document.getElementById('2305.00020v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures, 6 appendices - accepted for publication in Astronomy and Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 677, A171 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.04869">arXiv:2304.04869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.04869">pdf</a>, <a href="https://arxiv.org/format/2304.04869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1538-3873/acd1b5">10.1088/1538-3873/acd1b5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The James Webb Space Telescope Mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gardner%2C+J+P">Jonathan P. Gardner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mather%2C+J+C">John C. Mather</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+R">Randy Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abell%2C+J+S">James S. Abell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abernathy%2C+M">Mark Abernathy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abney%2C+F+E">Faith E. Abney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abraham%2C+J+G">John G. Abraham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abraham%2C+R">Roberto Abraham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abul-Huda%2C+Y+M">Yasin M. Abul-Huda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acton%2C+S">Scott Acton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adams%2C+C+K">Cynthia K. Adams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adams%2C+E">Evan Adams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adler%2C+D+S">David S. Adler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adriaensen%2C+M">Maarten Adriaensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguilar%2C+J+A">Jonathan Albert Aguilar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+M">Mansoor Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+N+S">Nasif S. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+T">Tanjira Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albat%2C+R">R眉deger Albat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albert%2C+L">Lo茂c Albert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alberts%2C+S">Stacey Alberts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aldridge%2C+D">David Aldridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allen%2C+M+M">Mary Marsha Allen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allen%2C+S+S">Shaune S. Allen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Altenburg%2C+M">Martin Altenburg</a> , et al. (983 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.04869v1-abstract-short" style="display: inline;"> Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least $4m$. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the $6.5m$ James Webb Space Telescope. A generation of astrono&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04869v1-abstract-full').style.display = 'inline'; document.getElementById('2304.04869v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.04869v1-abstract-full" style="display: none;"> Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least $4m$. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the $6.5m$ James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04869v1-abstract-full').style.display = 'none'; document.getElementById('2304.04869v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.13172">arXiv:2303.13172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.13172">pdf</a>, <a href="https://arxiv.org/format/2303.13172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346167">10.1051/0004-6361/202346167 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JOYS: JWST Observations of Young protoStars: Outflows and accretion in the high-mass star-forming region IRAS23385+605 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">L. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perotti%2C+G">G. Perotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">W. R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">K. Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ray%2C+T">T. Ray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justtanont%2C+K">K. Justtanont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">H. Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weakens%2C+C">C. Weakens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Colina%2C+L">L. Colina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greve%2C+T">T. Greve</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guedel%2C+M">M. Guedel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">T. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagage%2C+P+O">P. O. Lagage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vandenbussche%2C+B">B. Vandenbussche</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oestlin%2C+G">G. Oestlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wright%2C+G">G. Wright</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.13172v1-abstract-short" style="display: inline;"> Aims: The JWST program JOYS (JWST Observations of Young protoStars) aims at characterizing the physical and chemical properties of young high- and low-mass star-forming regions, in particular the unique mid-infrared diagnostics of the warmer gas and solid-state components. We present early results from the high-mass star formation region IRAS23385+6053. Methods: The JOYS program uses the MIRI MRS&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13172v1-abstract-full').style.display = 'inline'; document.getElementById('2303.13172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.13172v1-abstract-full" style="display: none;"> Aims: The JWST program JOYS (JWST Observations of Young protoStars) aims at characterizing the physical and chemical properties of young high- and low-mass star-forming regions, in particular the unique mid-infrared diagnostics of the warmer gas and solid-state components. We present early results from the high-mass star formation region IRAS23385+6053. Methods: The JOYS program uses the MIRI MRS with its IFU to investigate a sample of high- and low-mass star-forming protostellar systems. Results: The 5 to 28mum MIRI spectrum of IRAS23385+6053 shows a plethora of features. While the general spectrum is typical for an embedded protostar, we see many atomic and molecular gas lines boosted by the higher spectral resolution and sensitivity compared to previous space missions. Furthermore, ice and dust absorption features are also present. Here, we focus on the continuum emission, outflow tracers like the H2, [FeII] and [NeII] lines as well as the potential accretion tracer Humphreys alpha HI(7--6). The short-wavelength MIRI data resolve two continuum sources A and B, where mid-infrared source A is associated with the main mm continuum peak. The combination of mid-infrared and mm data reveals a young cluster in its making. Combining the mid-infrared outflow tracer H2, [FeII] and [NeII] with mm SiO data shows a complex interplay of at least three molecular outflows driven by protostars in the forming cluster. Furthermore, the Humphreys alpha line is detected at a 3-4sigma level towards the mid-infrared sources A and B. Following Rigliaco et al. (2015), one can roughly estimate accretion luminosities and corresponding accretion rates between ~2.6x10^-6 and ~0.9x10^-4 M_sun/yr. This is discussed in the context of the observed outflow rates. Conclusions: The analysis of the MIRI MRS observations for this young high-mass star-forming region reveals connected outflow and accretion signatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13172v1-abstract-full').style.display = 'none'; document.getElementById('2303.13172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures, accepted for Astronomy &amp; Astrophysics, the paper is also available at https://www2.mpia-hd.mpg.de/homes/beuther/papers.html</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 673, A121 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.13233">arXiv:2301.13233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.13233">pdf</a>, <a href="https://arxiv.org/format/2301.13233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1609">10.1093/mnras/stad1609 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observations of the Planetary Nebula SMP LMC 058 with the JWST MIRI Medium Resolution Spectrometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+O+C">O. C. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%81lvarez-M%C3%A1rquez%2C+J">J. 脕lvarez-M谩rquez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sloan%2C+G+C">G. C. Sloan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Argyriou%2C+I">I. Argyriou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Labiano%2C+A">A. Labiano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Law%2C+D+R">D. R. Law</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patapis%2C+P">P. Patapis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mueller%2C+M">Michael Mueller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Larson%2C+K+L">Kirsten L. Larson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bright%2C+S+N">Stacey N. Bright</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">P. D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+O+D">O. D. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gasman%2C+D">Danny Gasman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Geers%2C+V+C">V. C. Geers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Glauser%2C+A+M">Adrian M. Glauser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guillard%2C+P">Pierre Guillard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nayak%2C+O">Omnarayani Nayak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Noriega-Crespo%2C+A">A. Noriega-Crespo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ressler%2C+M+E">Michael E. Ressler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sargent%2C+B">B. Sargent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Temim%2C+T">T. Temim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vandenbussche%2C+B">B. Vandenbussche</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mar%C3%ADn%2C+M+G">Macarena Garc铆a Mar铆n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.13233v3-abstract-short" style="display: inline;"> During the commissioning of {\em JWST}, the Medium-Resolution Spectrometer (MRS) on the Mid-Infrared Instrument (MIRI) observed the planetary nebula SMP LMC 058 in the Large Magellanic Cloud. The MRS was designed to provide medium resolution (R = $位$/$螖位$) 3D spectroscopy in the whole MIRI range. SMP LMC 058 is the only source observed in {\em JWST} commissioning that is both spatially and spectra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13233v3-abstract-full').style.display = 'inline'; document.getElementById('2301.13233v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.13233v3-abstract-full" style="display: none;"> During the commissioning of {\em JWST}, the Medium-Resolution Spectrometer (MRS) on the Mid-Infrared Instrument (MIRI) observed the planetary nebula SMP LMC 058 in the Large Magellanic Cloud. The MRS was designed to provide medium resolution (R = $位$/$螖位$) 3D spectroscopy in the whole MIRI range. SMP LMC 058 is the only source observed in {\em JWST} commissioning that is both spatially and spectrally unresolved by the MRS and is a good test of {\em JWST&#39;s} capabilities. The new MRS spectra reveal a wealth of emission lines not previously detected in this planetary nebula. From these lines, the spectral resolving power ($位$/$螖位$) of the MRS is confirmed to be in the range R $=$ 4000 to 1500, depending on the MRS spectral sub-band. In addition, the spectra confirm that the carbon-rich dust emission is from SiC grains and that there is little to no time evolution of the SiC dust and emission line strengths over a 17-year epoch. These commissioning data reveal the great potential of the MIRI MRS for the study of circumstellar and interstellar material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13233v3-abstract-full').style.display = 'none'; document.getElementById('2301.13233v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures, 3 tables, accepted MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.03596">arXiv:2212.03596</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.03596">pdf</a>, <a href="https://arxiv.org/format/2212.03596">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245633">10.1051/0004-6361/202245633 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST MIRI/MRS in-flight absolute flux calibration and tailored fringe correction for unresolved sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gasman%2C+D">D. Gasman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Argyriou%2C+I">I. Argyriou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sloan%2C+G+C">G. C. Sloan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aringer%2C+B">B. Aringer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%81lvarez-M%C3%A1rquez%2C+J">J. 脕lvarez-M谩rquez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+O">O. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Glasse%2C+A">A. Glasse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Glauser%2C+A">A. Glauser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+O+C">O. C. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justtanont%2C+K">K. Justtanont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Labiano%2C+A">A. Labiano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Larson%2C+K">K. Larson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Law%2C+D+R">D. R. Law</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mueller%2C+M">M. Mueller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nayak%2C+O">O. Nayak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Noriega-Crespo%2C+A">A. Noriega-Crespo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patapis%2C+P">P. Patapis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Royer%2C+P">P. Royer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vandenbussche%2C+B">B. Vandenbussche</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.03596v2-abstract-short" style="display: inline;"> The MRS is one of the four observing modes of JWST/MIRI. Using JWST in-flight data of unresolved (point) sources, we can derive the MRS absolute spectral response function (ASRF) starting from raw data. Spectral fringing plays a critical role in the derivation and interpretation of the MRS ASRF. In this paper, we present an alternative way to calibrate the data. Firstly, we aim to derive a fringe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03596v2-abstract-full').style.display = 'inline'; document.getElementById('2212.03596v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.03596v2-abstract-full" style="display: none;"> The MRS is one of the four observing modes of JWST/MIRI. Using JWST in-flight data of unresolved (point) sources, we can derive the MRS absolute spectral response function (ASRF) starting from raw data. Spectral fringing plays a critical role in the derivation and interpretation of the MRS ASRF. In this paper, we present an alternative way to calibrate the data. Firstly, we aim to derive a fringe correction that accounts for the dependence of the fringe properties on the MIRI pupil illumination and detector pixel sampling of the point spread function. Secondly, we aim to derive the MRS ASRF using an absolute flux calibrator observed across the full 5 to 28 $渭$m wavelength range of the MRS. Thirdly, we aim to apply the new ASRF to the spectrum of a G dwarf and compare with the output of the JWST/MIRI default data reduction pipeline. Finally, we examine the impact of the different fringe corrections on the detectability of molecular features in the G dwarf and K giant. The absolute flux calibrator HD 163466 (A-star) is used to derive tailored point source fringe flats at each of the default dither locations of the MRS. The fringe-corrected point source integrated spectrum of HD 163466 is used to derive the MRS ASRF using a theoretical model for the stellar continuum. A cross-correlation is run to quantify the uncertainty on the detection of CO, SiO, and OH in the K giant and CO in the G dwarf for different fringe corrections. The point-source-tailored fringe correction and ASRF are found to perform at the same level as the current corrections, beating down the fringe contrast to the sub-percent level, whilst mitigating the alteration of real molecular features. The same tailored solutions can be applied to other MRS unresolved targets. A pointing repeatability issue in the MRS limits the effectiveness of the tailored fringe flats is at short wavelengths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03596v2-abstract-full').style.display = 'none'; document.getElementById('2212.03596v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 15 figures, updated to accepted version (results did not change)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 673, A102 (2023) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Klaassen%2C+P&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Klaassen%2C+P&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Klaassen%2C+P&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Klaassen%2C+P&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10