CINXE.COM
Search results for: mobile radiation detection system
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mobile radiation detection system</title> <meta name="description" content="Search results for: mobile radiation detection system"> <meta name="keywords" content="mobile radiation detection system"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mobile radiation detection system" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mobile radiation detection system"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 21984</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mobile radiation detection system</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21984</span> An Architecture for New Generation of Distributed Intrusion Detection System Based on Preventive Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Benmoussa">H. Benmoussa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20El%20Kalam"> A. A. El Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ait%20Ouahman"> A. Ait Ouahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design and implementation of intrusion detection systems (IDS) remain an important area of research in the security of information systems. Despite the importance and reputation of the current intrusion detection systems, their efficiency and effectiveness remain limited as they should include active defense approach to allow anticipating and predicting intrusions before their occurrence. Consequently, they must be readapted. For this purpose we suggest a new generation of distributed intrusion detection system based on preventive detection approach and using intelligent and mobile agents. Our architecture benefits from mobile agent features and addresses some of the issues with centralized and hierarchical models. Also, it presents advantages in terms of increasing scalability and flexibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Intrusion%20Detection%20System%20%28IDS%29" title="Intrusion Detection System (IDS)">Intrusion Detection System (IDS)</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20detection" title=" preventive detection"> preventive detection</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20agents" title=" mobile agents"> mobile agents</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20architecture" title=" distributed architecture"> distributed architecture</a> </p> <a href="https://publications.waset.org/abstracts/18239/an-architecture-for-new-generation-of-distributed-intrusion-detection-system-based-on-preventive-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21983</span> Localization of Radioactive Sources with a Mobile Radiation Detection System using Profit Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20Miguel%20Cabe%C3%A7a%20Marques">Luís Miguel Cabeça Marques</a>, <a href="https://publications.waset.org/abstracts/search?q=Alberto%20Manuel%20Martinho%20Vale"> Alberto Manuel Martinho Vale</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Pedro%20Miragaia%20Trancoso%20Vaz"> José Pedro Miragaia Trancoso Vaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Sofia%20Baptista%20Fernandes"> Ana Sofia Baptista Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Alexandre%20de%20Barros%20Coito"> Rui Alexandre de Barros Coito</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiago%20Miguel%20Prates%20da%20Costa"> Tiago Miguel Prates da Costa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The detection and localization of hidden radioactive sources are of significant importance in countering the illicit traffic of Special Nuclear Materials and other radioactive sources and materials. Radiation portal monitors are commonly used at airports, seaports, and international land borders for inspecting cargo and vehicles. However, these equipment can be expensive and are not available at all checkpoints. Consequently, the localization of SNM and other radioactive sources often relies on handheld equipment, which can be time-consuming. The current study presents the advantages of real-time analysis of gamma-ray count rate data from a mobile radiation detection system based on simulated data and field tests. The incorporation of profit functions and decision criteria to optimize the detection system's path significantly enhances the radiation field information and reduces survey time during cargo inspection. For source position estimation, a maximum likelihood estimation algorithm is employed, and confidence intervals are derived using the Fisher information. The study also explores the impact of uncertainties, baselines, and thresholds on the performance of the profit function. The proposed detection system, utilizing a plastic scintillator with silicon photomultiplier sensors, boasts several benefits, including cost-effectiveness, high geometric efficiency, compactness, and lightweight design. This versatility allows for seamless integration into any mobile platform, be it air, land, maritime, or hybrid, and it can also serve as a handheld device. Furthermore, integration of the detection system into drones, particularly multirotors, and its affordability enable the automation of source search and substantial reduction in survey time, particularly when deploying a fleet of drones. While the primary focus is on inspecting maritime container cargo, the methodologies explored in this research can be applied to the inspection of other infrastructures, such as nuclear facilities or vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plastic%20scintillators" title="plastic scintillators">plastic scintillators</a>, <a href="https://publications.waset.org/abstracts/search?q=profit%20functions" title=" profit functions"> profit functions</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title=" path planning"> path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma-ray%20detection" title=" gamma-ray detection"> gamma-ray detection</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20localization" title=" source localization"> source localization</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20radiation%20detection%20system" title=" mobile radiation detection system"> mobile radiation detection system</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20scenario" title=" security scenario"> security scenario</a> </p> <a href="https://publications.waset.org/abstracts/170854/localization-of-radioactive-sources-with-a-mobile-radiation-detection-system-using-profit-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21982</span> Malware Detection in Mobile Devices by Analyzing Sequences of System Calls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Maestre%20Vidal">Jorge Maestre Vidal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Lucila%20Sandoval%20Orozco"> Ana Lucila Sandoval Orozco</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Javier%20Garc%C3%ADa%20Villalba"> Luis Javier García Villalba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increase in popularity of mobile devices, new and varied forms of malware have emerged. Consequently, the organizations for cyberdefense have echoed the need to deploy more effective defensive schemes adapted to the challenges posed by these recent monitoring environments. In order to contribute to their development, this paper presents a malware detection strategy for mobile devices based on sequence alignment algorithms. Unlike the previous proposals, only the system calls performed during the startup of applications are studied. In this way, it is possible to efficiently study in depth, the sequences of system calls executed by the applications just downloaded from app stores, and initialize them in a secure and isolated environment. As demonstrated in the performed experimentation, most of the analyzed malicious activities were successfully identified in their boot processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=android" title="android">android</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20security" title=" information security"> information security</a>, <a href="https://publications.waset.org/abstracts/search?q=intrusion%20detection%20systems" title=" intrusion detection systems"> intrusion detection systems</a>, <a href="https://publications.waset.org/abstracts/search?q=malware" title=" malware"> malware</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20devices" title=" mobile devices"> mobile devices</a> </p> <a href="https://publications.waset.org/abstracts/70344/malware-detection-in-mobile-devices-by-analyzing-sequences-of-system-calls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21981</span> Effect of Acute Dose of Mobile Phone Radiation on Life Cycle of the Mosquito, Culex univittatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20H.%20Galal">Fatma H. Galal</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaaeddeen%20M.%20Seufi"> Alaaeddeen M. Seufi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the increasing usage of mobile phone, experiments were designed to investigate the effect of acute dose exposure on the mosquito life cycle. 50 tubes (5 ml size) containing 3 ml water and a first instar larva of the mosquito, Culex univittatus were put between two mobile cell phones switched on talking mode for 4 continuous hours. A control group of tubes (unexposed to radiation) were used. Larval and pupal durations were calculated. Furthermore, adult emergence and sex ratio were observed for both treated and control larvae. Results indicated that the employed dose of radiation reduced total larval duration to about half the value of control. 1st, 2nd, 3rd and 4th larval durations were reduced significantly by mobile radiation when compared to controls. Meanwhile pupal duration was elongated significantly by mobile radiation when compared to control. Sex ratio was significantly shifted in favor of females in the case of radiated mosquitoes. Successful adult emergence was decreased significantly in the case of radiated insects when compared to controls. Molecular studies to investigate the effects of mobile radiation on insects and other model organisms are going on. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mosquito" title="mosquito">mosquito</a>, <a href="https://publications.waset.org/abstracts/search?q=mobilr%20radiation" title=" mobilr radiation"> mobilr radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=larval%20and%20pupal%20durations" title=" larval and pupal durations"> larval and pupal durations</a>, <a href="https://publications.waset.org/abstracts/search?q=sex%20ratio" title=" sex ratio"> sex ratio</a> </p> <a href="https://publications.waset.org/abstracts/39685/effect-of-acute-dose-of-mobile-phone-radiation-on-life-cycle-of-the-mosquito-culex-univittatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21980</span> Environmental Impact Assessment of Electromagnetic Fields Emitted from Mobile Base Station in Central Area of KSA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abdullah%20Alrajhi">Mohammed Abdullah Alrajhi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid growth in the number of mobile phone subscribers has resulted in an increased number of mobile base stations all over the world. Generally, mobile base stations are existing in huge numbers in populated areas than in non-populated ones to serve the largest number of users. The total number of mobile subscriptions in the Kingdom of Saudi Arabia reached around 50 million at the end of 2014, with a penetration rate of 165.1% according to the quarterly electronic newsletter issued by the Communications and Information Technology Commission. The current investigation was conducted primarily to measure the level of electromagnetic fields emitted from 400 mobile base stations for the purpose of environmental safety and radiation protection in light of national guidelines for public exposure as well as the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The outcomes of this investigation provide valuable comments and recommendation for safety and protection of electromagnetic fields emitted from mobile base stations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20fields" title="electromagnetic fields">electromagnetic fields</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile" title=" mobile"> mobile</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=protection" title=" protection"> protection</a>, <a href="https://publications.waset.org/abstracts/search?q=ICNIRP" title=" ICNIRP"> ICNIRP</a> </p> <a href="https://publications.waset.org/abstracts/19994/environmental-impact-assessment-of-electromagnetic-fields-emitted-from-mobile-base-station-in-central-area-of-ksa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21979</span> Intrusion Detection Techniques in Mobile Adhoc Networks: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashid%20Mahmood">Rashid Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Junaid%20Sarwar"> Muhammad Junaid Sarwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mobile ad hoc networks (MANETs) use has been well-known from the last few years in the many applications, like mission critical applications. In the (MANETS) prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in (MANETs). The authentication and encryption is considered the first solution of the MANETs problem where as now these are not sufficient as MANET use is increasing. In this paper we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in MANET and aim to comparing in some important fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MANET" title="MANET">MANET</a>, <a href="https://publications.waset.org/abstracts/search?q=IDS" title=" IDS"> IDS</a>, <a href="https://publications.waset.org/abstracts/search?q=intrusions" title=" intrusions"> intrusions</a>, <a href="https://publications.waset.org/abstracts/search?q=signature" title=" signature"> signature</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=prevention" title=" prevention"> prevention</a> </p> <a href="https://publications.waset.org/abstracts/32173/intrusion-detection-techniques-in-mobile-adhoc-networks-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21978</span> Mobile Network Users Amidst Ultra-Dense Networks in 5G Using an Improved Coordinated Multipoint (CoMP) Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johnson%20O.%20Adeogo">Johnson O. Adeogo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayodele%20S.%20Oluwole"> Ayodele S. Oluwole</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Akinsanmi"> O. Akinsanmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olawale%20J.%20Olaluyi"> Olawale J. Olaluyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this 5G network, very high traffic density in densely populated areas, most especially in densely populated areas, is one of the key requirements. Radiation reduction becomes one of the major concerns to secure the future life of mobile network users in ultra-dense network areas using an improved coordinated multipoint technology. Coordinated Multi-Point (CoMP) is based on transmission and/or reception at multiple separated points with improved coordination among them to actively manage the interference for the users. Small cells have two major objectives: one, they provide good coverage and/or performance. Network users can maintain a good quality signal network by directly connecting to the cell. Two is using CoMP, which involves the use of multiple base stations (MBS) to cooperate by transmitting and/or receiving at the same time in order to reduce the possibility of electromagnetic radiation increase. Therefore, the influence of the screen guard with rubber condom on the mobile transceivers as one major piece of equipment radiating electromagnetic radiation was investigated by mobile network users amidst ultra-dense networks in 5g. The results were compared with the same mobile transceivers without screen guards and rubber condoms under the same network conditions. The 5 cm distance from the mobile transceivers was measured with the help of a ruler, and the intensity of Radio Frequency (RF) radiation was measured using an RF meter. The results show that the intensity of radiation from various mobile transceivers without screen guides and condoms was higher than the mobile transceivers with screen guides and condoms when call conversation was on at both ends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra-dense%20networks" title="ultra-dense networks">ultra-dense networks</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20network%20users" title=" mobile network users"> mobile network users</a>, <a href="https://publications.waset.org/abstracts/search?q=5g" title=" 5g"> 5g</a>, <a href="https://publications.waset.org/abstracts/search?q=coordinated%20multi-point." title=" coordinated multi-point."> coordinated multi-point.</a> </p> <a href="https://publications.waset.org/abstracts/177862/mobile-network-users-amidst-ultra-dense-networks-in-5g-using-an-improved-coordinated-multipoint-comp-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21977</span> Effect of Electromagnetic Radiation on Reproductive System of Male Rat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Gautam">Rohit Gautam</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumari%20Vandana%20Singh"> Kumari Vandana Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayprakash%20Nirala"> Jayprakash Nirala</a>, <a href="https://publications.waset.org/abstracts/search?q=Nina%20Nancy%20Murmu"> Nina Nancy Murmu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramovatar%20Meena"> Ramovatar Meena</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulraj%20Rajamani"> Paulraj Rajamani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mobile phones have become a vital part of everyone’s life. Mobile phone and mobile phone towers emit RF-EMR (Radiofrequency Electromagnetic Radiation), which becomes a cause of concern to the general public. The study was designed to evaluate the effect of 3G (RF-EMR) on the reproductive system of male Wistar rats. Adult male Wistar rats were used for the study. Animals were divided into two groups, RF-exposed, and sham-exposed (control). RF-exposed rats were exposed to radio frequency radiation (2100 MHz) for 2 hours/day for 45 days. Emitted power density and specific absorption rate (SAR) values were measured during exposure. At the end of the exposure, testis and epididymis were excised out, and their weights were recorded. Sperm cell count, morphology, viability, and reactive oxygen species (ROS) levels were checked. Lipid peroxidation and sperm mitochondrial activity were measured. Histopathology of testis and ultrastructure analysis of sperm were also checked. Result showed a decrease in organ weight and sperm count with alteration in the sperm morphology in exposed group rats. A significant decrease in sperm viability, membrane integrity, and mitochondrial activity was found. Also, an increase in lipid peroxidation and ROS level were found in exposed group animals as compared to control. It may be concluded that exposure to radiofrequency radiation emits from mobile phones leads to oxidative stress-mediated changes in reproductive parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20radiation" title="electromagnetic radiation">electromagnetic radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a>, <a href="https://publications.waset.org/abstracts/search?q=sperm" title=" sperm"> sperm</a> </p> <a href="https://publications.waset.org/abstracts/117774/effect-of-electromagnetic-radiation-on-reproductive-system-of-male-rat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21976</span> An Investigation on Smartphone-Based Machine Vision System for Inspection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=They%20Shao%20Peng">They Shao Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20visual%20inspection" title="automated visual inspection">automated visual inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20vision" title=" machine vision"> machine vision</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20application" title=" mobile application"> mobile application</a> </p> <a href="https://publications.waset.org/abstracts/151908/an-investigation-on-smartphone-based-machine-vision-system-for-inspection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21975</span> Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruchi%20Makani">Ruchi Makani</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20R.%20%20Reddy"> B. V. R. Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AODV" title="AODV">AODV</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20adhoc%20networks" title=" mobile adhoc networks"> mobile adhoc networks</a>, <a href="https://publications.waset.org/abstracts/search?q=intrusion%20detection" title=" intrusion detection"> intrusion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title=" anomaly detection"> anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20membership%20function" title=" fuzzy membership function"> fuzzy membership function</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20inference%20system" title=" fuzzy inference system"> fuzzy inference system</a> </p> <a href="https://publications.waset.org/abstracts/94205/applicability-of-fuzzy-logic-for-intrusion-detection-in-mobile-adhoc-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21974</span> Mobile Payment over NFC: The M-Check System Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Maazouz">Karima Maazouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Habib%20Benlahmer"> Habib Benlahmer</a>, <a href="https://publications.waset.org/abstracts/search?q=Naceur%20Achtaich"> Naceur Achtaich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The realization of mobile payments will make possible new and unforeseen ways of convenience and m-commerce. Mobile payment today benefit from technology and trends. NFC technology is creating a new era of contactless mobile payment. the “M-check” is a mobile payment system provides a new way facilitating transaction with high valued payment and enable new m-commerce. The objective of the paper is to propose a new solution for m-payment. The proposed combination of m-check system and NFC offers acceptable security for payment mobile, client’s satisfaction, and simplifies the process payment between clients and merchants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=M-payment" title="M-payment">M-payment</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC" title=" NFC"> NFC</a>, <a href="https://publications.waset.org/abstracts/search?q=M-check" title=" M-check"> M-check</a>, <a href="https://publications.waset.org/abstracts/search?q=M-commerce" title=" M-commerce"> M-commerce</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a> </p> <a href="https://publications.waset.org/abstracts/20466/mobile-payment-over-nfc-the-m-check-system-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">596</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21973</span> An Analysis and Design of Mobile Payment System Based on NFC Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shafiq%20ur%20Rehman">Shafiq ur Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Zubair%20Ahmed%20Shaikh"> Zubair Ahmed Shaikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research provides the comparative study of different mobile payment system and proposes an efficient solution of mobile payment system. The research involves discovering how the mobile payment methods can be used and implemented keeping user and system interaction under consideration. The implementation of Nielsen’s heuristic and universal design principles enhanced the user’s interaction design and made the system more appropriate, understandable and visible to the end user. The design of application is greatly affected by the user driven factors. These factors help in the efficiency of the application usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20payment%20system" title="mobile payment system">mobile payment system</a>, <a href="https://publications.waset.org/abstracts/search?q=m-commerce" title=" m-commerce"> m-commerce</a>, <a href="https://publications.waset.org/abstracts/search?q=usability" title=" usability"> usability</a>, <a href="https://publications.waset.org/abstracts/search?q=near%20field%20communication" title=" near field communication"> near field communication</a> </p> <a href="https://publications.waset.org/abstracts/8689/an-analysis-and-design-of-mobile-payment-system-based-on-nfc-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21972</span> An Android Application for ECG Monitoring and Evaluation Using Pan-Tompkins Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cebrail%20%C3%87iflikli">Cebrail Çiflikli</a>, <a href="https://publications.waset.org/abstracts/search?q=Emre%20%C3%96ner%20Tartan"> Emre Öner Tartan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parallel to the fast worldwide increase of elderly population and spreading unhealthy life habits, there is a significant rise in the number of patients and health problems. The supervision of people who have health problems and oversight in detection of people who have potential risks, bring a considerable cost to health system and increase workload of physician. To provide an efficient solution to this problem, in the recent years mobile applications have shown their potential for wide usage in health monitoring. In this paper we present an Android mobile application that records and evaluates ECG signal using Pan-Tompkins algorithm for QRS detection. The application model includes an alarm mechanism that is proposed to be used for sending message including abnormality information and location information to health supervisor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Android%20mobile%20application" title="Android mobile application">Android mobile application</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG%20monitoring" title=" ECG monitoring"> ECG monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=QRS%20detection" title=" QRS detection"> QRS detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Pan-Tompkins%20Algorithm" title=" Pan-Tompkins Algorithm"> Pan-Tompkins Algorithm</a> </p> <a href="https://publications.waset.org/abstracts/76141/an-android-application-for-ecg-monitoring-and-evaluation-using-pan-tompkins-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21971</span> A New DIDS Design Based on a Combination Feature Selection Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Sabry%20Eesa">Adel Sabry Eesa</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Mohsin%20Abdulazeez%20Brifcani"> Adnan Mohsin Abdulazeez Brifcani</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Orman"> Zeynep Orman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original data set. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 data set is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20intrusion%20detection%20system" title="distributed intrusion detection system">distributed intrusion detection system</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20agent" title=" mobile agent"> mobile agent</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=bees%20algorithm" title=" bees algorithm"> bees algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a> </p> <a href="https://publications.waset.org/abstracts/32661/a-new-dids-design-based-on-a-combination-feature-selection-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21970</span> Finite Element Simulation for Preliminary Study on Microorganism Detection System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rosli%20Abdullah">Muhammad Rosli Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Hasmiza%20Harun"> Noor Hasmiza Harun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A microorganism detection system has a potential to be used with the advancement in a biosensor development. The detection system requires an optical sensing system, microfluidic device and biological reagent. Although, the biosensors are available in the market, a label free and a lab-on-chip approach will promote a flexible solution. As a preliminary study of microorganism detection, three mechanisms such as Total Internal Reflection (TIR), Micro Fluidic Channel (MFC) and magnetic-electric field propagation were study and simulated. The objective are to identify the TIR angle, MFC parabolic flow and the wavelength for the microorganism detection. The simulation result indicates that evanescent wave is achieved when TIR angle > 42°, the corner and centre of a parabolic velocity are 0.02 m/s and 0.06 m/s respectively, and a higher energy distribution of a perfect electromagnetic scattering with dipole resonance radiation occurs at 500 nm. This simulation is beneficial to determine the components of the microorganism detection system that does not rely on classical microbiological, immunological and genetic methods which are laborious, time-consuming procedures and confined to specialized laboratories with expensive instrumentation equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microorganism" title="microorganism">microorganism</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic" title=" microfluidic"> microfluidic</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20internal%20reflection" title=" total internal reflection"> total internal reflection</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20on%20chip" title=" lab on chip"> lab on chip</a> </p> <a href="https://publications.waset.org/abstracts/82785/finite-element-simulation-for-preliminary-study-on-microorganism-detection-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21969</span> A Distributed Mobile Agent Based on Intrusion Detection System for MANET</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maad%20Kamal%20Al-Anni">Maad Kamal Al-Anni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Intrusion%20Detection%20System%20%28IDS%29" title="Intrusion Detection System (IDS)">Intrusion Detection System (IDS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Mobile%20Adhoc%20Networks%20%28MANET%29" title=" Mobile Adhoc Networks (MANET)"> Mobile Adhoc Networks (MANET)</a>, <a href="https://publications.waset.org/abstracts/search?q=Back%20Propagation%20Algorithm%20%28BPA%29" title=" Back Propagation Algorithm (BPA)"> Back Propagation Algorithm (BPA)</a>, <a href="https://publications.waset.org/abstracts/search?q=Neural%20Networks%20%28NN%29" title=" Neural Networks (NN)"> Neural Networks (NN)</a> </p> <a href="https://publications.waset.org/abstracts/66010/a-distributed-mobile-agent-based-on-intrusion-detection-system-for-manet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21968</span> A Proposal to Mobile Payment Implementing 2AF+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nael%20Hirzallah">Nael Hirzallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sana%20Nseir"> Sana Nseir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Merchants are competing to offer the use of mobile payment to encourage shopping. many mobile payment systems were made available in various locations worldwide; however, they have various drawbacks. This paper proposes a new mobile payment system that discusses the main drawbacks of these systems, namely security and speed of transaction. The proposal is featured by being simple to use by customers and merchants. Furthermore, the proposed system depends on a new authentication factor that is introduced in this paper and called by Two-Factors Authentication Plus, (2FA+). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20commerce" title="electronic commerce">electronic commerce</a>, <a href="https://publications.waset.org/abstracts/search?q=payment%20schemes" title=" payment schemes"> payment schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20payment" title=" mobile payment"> mobile payment</a>, <a href="https://publications.waset.org/abstracts/search?q=authentication%20factors" title=" authentication factors"> authentication factors</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20applications" title=" mobile applications"> mobile applications</a> </p> <a href="https://publications.waset.org/abstracts/1572/a-proposal-to-mobile-payment-implementing-2af" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21967</span> GA3C for Anomalous Radiation Source Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Yi%20Liu">Chia-Yi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo-Bin%20Xiao"> Bo-Bin Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Bin%20Lin"> Wen-Bin Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiang-Ning%20Wu"> Hsiang-Ning Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Hsun%20Huang"> Liang-Hsun Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title="deep reinforcement learning">deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=GA3C" title=" GA3C"> GA3C</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20searching" title=" source searching"> source searching</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20detection" title=" source detection"> source detection</a> </p> <a href="https://publications.waset.org/abstracts/148264/ga3c-for-anomalous-radiation-source-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21966</span> A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Moeti">Michael Moeti</a>, <a href="https://publications.waset.org/abstracts/search?q=Khuliso%20Sigama"> Khuliso Sigama</a>, <a href="https://publications.waset.org/abstracts/search?q=Thapelo%20Samuel%20Matlala"> Thapelo Samuel Matlala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNN" title="CNN">CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=location%20identification" title=" location identification"> location identification</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=GSM" title=" GSM"> GSM</a> </p> <a href="https://publications.waset.org/abstracts/154066/a-convolutional-neural-network-based-vehicle-theft-detection-location-and-reporting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21965</span> Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Derlis%20Gregor">Derlis Gregor</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Cikel"> Kevin Cikel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20Arzamendia"> Mario Arzamendia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra%C3%BAl%20Gregor"> Raúl Gregor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transportation%20system" title="intelligent transportation system">intelligent transportation system</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20couting" title=" vehicle couting"> vehicle couting</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20classification" title=" vehicle classification"> vehicle classification</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20processing" title=" video processing"> video processing</a> </p> <a href="https://publications.waset.org/abstracts/43870/design-and-implementation-of-a-counting-and-differentiation-system-for-vehicles-through-video-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21964</span> Reliability Evaluation of a Payment Model in Mobile E-Commerce Using Colored Petri Net</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdolghader%20Pourali">Abdolghader Pourali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20V.%20Malakooti"> Mohammad V. Malakooti</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hussein%20Yektaie"> Muhammad Hussein Yektaie </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mobile payment system in mobile e-commerce generally have high security so that the user can trust it for doing business deals, sales, paying financial transactions, etc. in the mobile payment system. Since an architecture or payment model in e-commerce only shows the way of interaction and collaboration among users and mortgagers and does not present any evaluation of effectiveness and confidence about financial transactions to stakeholders. In this paper, we try to present a detailed assessment of the reliability of a mobile payment model in the mobile e-commerce using formal models and colored Petri nets. Finally, we demonstrate that the reliability of this system has high value (case study: a secure payment model in mobile commerce. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=colored%20Petri%20net" title=" colored Petri net"> colored Petri net</a>, <a href="https://publications.waset.org/abstracts/search?q=assessment" title=" assessment"> assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=payment%20models" title=" payment models"> payment models</a>, <a href="https://publications.waset.org/abstracts/search?q=m-commerce" title=" m-commerce "> m-commerce </a> </p> <a href="https://publications.waset.org/abstracts/16315/reliability-evaluation-of-a-payment-model-in-mobile-e-commerce-using-colored-petri-net" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21963</span> Hierarchical Scheme for Detection of Rotating Mimo Visible Light Communication Systems Using Mobile Phone Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shih-Hao%20Chen">Shih-Hao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Wai%20Chow"> Chi-Wai Chow</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple-input and multiple-output (MIMO) scheme can extend the transmission capacity for the light-emitting-diode (LED) visible light communication (VLC) system. The MIMO VLC system using the popular mobile-phone camera as the optical receiver (Rx) to receive MIMO signal from n x n Red-Green-Blue (RGB) LED array is desirable. The key step of decoding the received RGB LED array signals is detecting the direction of received array signals. If the LED transmitter (Tx) is rotated, the signal may not be received correctly and cause an error in the received signal. In this work, we propose and demonstrate a novel hierarchical transmission scheme which can reduce the computation complexity of rotation detection in LED array VLC system. We use the n x n RGB LED array as the MIMO Tx. A novel two dimension Hadamard coding scheme is proposed and demonstrated. The detection correction rate is above 95% in the indoor usage distance. Experimental results confirm the feasibility of the proposed scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Visible%20Light%20Communication%20%28VLC%29" title="Visible Light Communication (VLC)">Visible Light Communication (VLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Multiple-input%20and%20multiple-output%20%28MIMO%29" title=" Multiple-input and multiple-output (MIMO)"> Multiple-input and multiple-output (MIMO)</a>, <a href="https://publications.waset.org/abstracts/search?q=Red-Green-Blue%20%28RGB%29" title=" Red-Green-Blue (RGB)"> Red-Green-Blue (RGB)</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadamard%20coding%20scheme" title=" Hadamard coding scheme"> Hadamard coding scheme</a> </p> <a href="https://publications.waset.org/abstracts/15442/hierarchical-scheme-for-detection-of-rotating-mimo-visible-light-communication-systems-using-mobile-phone-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21962</span> Misleading Node Detection and Response Mechanism in Mobile Ad-Hoc Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Earleen%20Jane%20Fuentes">Earleen Jane Fuentes</a>, <a href="https://publications.waset.org/abstracts/search?q=Regeene%20Melarese%20Lim"> Regeene Melarese Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Franklin%20Benjamin%20Tapia"> Franklin Benjamin Tapia</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexis%20Pantola"> Alexis Pantola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mobile Ad-hoc Network (MANET) is an infrastructure-less network of mobile devices, also known as nodes. These nodes heavily rely on each other’s resources such as memory, computing power, and energy. Thus, some nodes may become selective in forwarding packets so as to conserve their resources. These nodes are called misleading nodes. Several reputation-based techniques (e.g. CORE, CONFIDANT, LARS, SORI, OCEAN) and acknowledgment-based techniques (e.g. TWOACK, S-TWOACK, EAACK) have been proposed to detect such nodes. These techniques do not appropriately punish misleading nodes. Hence, this paper addresses the limitations of these techniques using a system called MINDRA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acknowledgment-based%20techniques" title="acknowledgment-based techniques">acknowledgment-based techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20ad-hoc%20network" title=" mobile ad-hoc network"> mobile ad-hoc network</a>, <a href="https://publications.waset.org/abstracts/search?q=selfish%20nodes" title=" selfish nodes"> selfish nodes</a>, <a href="https://publications.waset.org/abstracts/search?q=reputation-based%20techniques" title=" reputation-based techniques"> reputation-based techniques</a> </p> <a href="https://publications.waset.org/abstracts/49862/misleading-node-detection-and-response-mechanism-in-mobile-ad-hoc-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21961</span> Submarine Topography and Beach Survey of Gang-Neung Port in South Korea, Using Multi-Beam Echo Sounder and Shipborne Mobile Light Detection and Ranging System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Hyuck%20Kim">Won Hyuck Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Hwan%20Kim"> Chang Hwan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Wook%20Kim"> Hyun Wook Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Myoung%20Hoon%20Lee"> Myoung Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Hong%20Park"> Chan Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeon%20Yeong%20Park"> Hyeon Yeong Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We conducted submarine topography & beach survey from December 2015 and January 2016 using multi-beam echo sounder EM3001(Kongsberg corporation) & Shipborne Mobile LiDAR System. Our survey area were the Anmok beach in Gangneung, South Korea. We made Shipborne Mobile LiDAR System for these survey. Shipborne Mobile LiDAR System includes LiDAR (RIEGL LMS-420i), IMU ((Inertial Measurement Unit, MAGUS Inertial+) and RTKGNSS (Real Time Kinematic Global Navigation Satellite System, LEIAC GS 15 GS25) for beach's measurement, LiDAR's motion compensation & precise position. Shipborne Mobile LiDAR System scans beach on the movable vessel using the laser. We mounted Shipborne Mobile LiDAR System on the top of the vessel. Before beach survey, we conducted eight circles IMU calibration survey for stabilizing heading of IMU. This exploration should be as close as possible to the beach. But our vessel could not come closer to the beach because of latency objects in the water. At the same time, we conduct submarine topography survey using multi-beam echo sounder EM3001. A multi-beam echo sounder is a device observing and recording the submarine topography using sound wave. We mounted multi-beam echo sounder on left side of the vessel. We were equipped with a motion sensor, DGNSS (Differential Global Navigation Satellite System), and SV (Sound velocity) sensor for the vessel's motion compensation, vessel's position, and the velocity of sound of seawater. Shipborne Mobile LiDAR System was able to reduce the consuming time of beach survey rather than previous conventional methods of beach survey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anmok" title="Anmok">Anmok</a>, <a href="https://publications.waset.org/abstracts/search?q=beach%20survey" title=" beach survey"> beach survey</a>, <a href="https://publications.waset.org/abstracts/search?q=Shipborne%20Mobile%20LiDAR%20System" title=" Shipborne Mobile LiDAR System"> Shipborne Mobile LiDAR System</a>, <a href="https://publications.waset.org/abstracts/search?q=submarine%20topography" title=" submarine topography"> submarine topography</a> </p> <a href="https://publications.waset.org/abstracts/65092/submarine-topography-and-beach-survey-of-gang-neung-port-in-south-korea-using-multi-beam-echo-sounder-and-shipborne-mobile-light-detection-and-ranging-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21960</span> Reduction of Physician's Radiation Dose during Cardiac Catheterization Procedures Using Lead-Free Sterile Radiation Shields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20O.%20Diab">Mohammad O. Diab</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahera%20A.%20Saleh"> Sahera A. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20M.%20Dichari"> Mustapha M. Dichari</a>, <a href="https://publications.waset.org/abstracts/search?q=Nijez%20Aloulou"> Nijez Aloulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Hamoui"> Omar Hamoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Feras%20Chehade"> Feras Chehade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study sought to evaluate the efficiency of lead-free sterile radiation shield (Radionex) in the reduction of physician's exposure dose during interventional cardiology procedures. Cardiac catheterization procedures are often associated with high radiation doses and high levels of secondary radiation emitted by the patient's body. This study compares physician exposure dose rate during cardiac catheterization procedures done through the femoral artery with sterile radiation shielding to same procedures made without the shielding. The mean operator radiation dose rate without using the shield was found to be 18.4µSv/min compared to a mean dose rate of 5.1 µSv/min when using the shield, rendering a reduction of 72.5% of radiation received by the physician. Sterile radiation shielding is consequently an effective addition to a cardiac catheterization lab radiation protection system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiac%20catheterization" title="cardiac catheterization">cardiac catheterization</a>, <a href="https://publications.waset.org/abstracts/search?q=physician%20exposure%20dose" title=" physician exposure dose"> physician exposure dose</a>, <a href="https://publications.waset.org/abstracts/search?q=sterile%20radiation%20shielding" title=" sterile radiation shielding"> sterile radiation shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=lead-free%20sterile%20radiation%20shields" title=" lead-free sterile radiation shields"> lead-free sterile radiation shields</a> </p> <a href="https://publications.waset.org/abstracts/23700/reduction-of-physicians-radiation-dose-during-cardiac-catheterization-procedures-using-lead-free-sterile-radiation-shields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21959</span> A Design-Based Approach to Developing a Mobile Learning System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martina%20Holenko%20Dlab">Martina Holenko Dlab</a>, <a href="https://publications.waset.org/abstracts/search?q=Natasa%20Hoic-Bozic"> Natasa Hoic-Bozic</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivica%20Boticki"> Ivica Boticki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents technologically innovative and scalable mobile learning solution within the SCOLLAm project (“Opening up education through Seamless and COLLAborative mobile learning on tablet computers”). The main research method applied during the development of the SCOLLAm mobile learning system is design-based research. It assumes iterative refinement of the system guided by collaboration between researches and practitioners. Following the identification of requirements, a multiplatform mobile learning system <em>SCOLLAm [in]Form </em>was developed. Several experiments were designed and conducted in the first and second grade of elementary school. <em>SCOLLAm [in]Form system </em>was used to design learning activities for math classes during which students practice calculation. System refinements were based on experience and interaction data gathered during class observations. In addition to implemented improvements, the data were used to outline possible improvements and deficiencies of the system that should be addressed in the next phase of the <em>SCOLLAm [in]Form</em> development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptation" title="adaptation">adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20learning" title=" collaborative learning"> collaborative learning</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20technology" title=" educational technology"> educational technology</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20learning" title=" mobile learning"> mobile learning</a>, <a href="https://publications.waset.org/abstracts/search?q=tablet%20computers" title=" tablet computers"> tablet computers</a> </p> <a href="https://publications.waset.org/abstracts/64887/a-design-based-approach-to-developing-a-mobile-learning-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21958</span> Verifying the Performance of the Argon-41 Monitoring System from Fluorine-18 Production for Medical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Virgili">Nicole Virgili</a>, <a href="https://publications.waset.org/abstracts/search?q=Romolo%20Remetti"> Romolo Remetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to characterize, from radiation protection point of view, the emission into the environment of air contaminated by argon-41. In this research work, 41Ar is produced by a TR19PET cyclotron, operated at 19 MeV, installed at 'A. Gemelli' University Hospital, Rome, Italy, for fluorine-18 production. The production rate of 41Ar has been calculated on the basis of the scheduled operation cycles of the cyclotron and by utilising proper production algorithms. Then extensive Monte Carlo calculations, carried out by MCNP code, have allowed to determine the absolute detection efficiency to 41Ar gamma rays of a Geiger Muller detector placed in the terminal part of the chimney. Results showed unsatisfactory detection efficiency values and the need for integrating the detection system with more efficient detectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cyclotron" title="Cyclotron">Cyclotron</a>, <a href="https://publications.waset.org/abstracts/search?q=Geiger%20Muller%20detector" title=" Geiger Muller detector"> Geiger Muller detector</a>, <a href="https://publications.waset.org/abstracts/search?q=MCNPX" title=" MCNPX"> MCNPX</a>, <a href="https://publications.waset.org/abstracts/search?q=argon-41" title=" argon-41"> argon-41</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20of%20radioactive%20gas" title=" emission of radioactive gas"> emission of radioactive gas</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20efficiency%20determination" title=" detection efficiency determination"> detection efficiency determination</a> </p> <a href="https://publications.waset.org/abstracts/102623/verifying-the-performance-of-the-argon-41-monitoring-system-from-fluorine-18-production-for-medical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21957</span> The Benefits of Security Culture for Improving Physical Protection Systems at Detection and Radiation Measurement Laboratory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ari%20S.%20Prabowo">Ari S. Prabowo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nia%20Febriyanti"> Nia Febriyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Haryono%20B.%20Santosa"> Haryono B. Santosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Security function that is called as Physical Protection Systems (PPS) has functions to detect, delay and response. Physical Protection Systems (PPS) in Detection and Radiation Measurement Laboratory needs to be improved continually by using internal resources. The nuclear security culture provides some potentials to support this research. The study starts by identifying the security function’s weaknesses and its strengths of security culture as a purpose. Secondly, the strengths of security culture are implemented in the laboratory management. Finally, a simulation was done to measure its effectiveness. Some changes were happened in laboratory personnel behaviors and procedures. All became more prudent. The results showed a good influence of nuclear security culture in laboratory security functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laboratory" title="laboratory">laboratory</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20protection%20system" title=" physical protection system"> physical protection system</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20culture" title=" security culture"> security culture</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20function" title=" security function"> security function</a> </p> <a href="https://publications.waset.org/abstracts/102746/the-benefits-of-security-culture-for-improving-physical-protection-systems-at-detection-and-radiation-measurement-laboratory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21956</span> A Design of Beam-Steerable Antenna Array for Use in Future Mobile Handsets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naser%20Ojaroudi%20Parchin">Naser Ojaroudi Parchin</a>, <a href="https://publications.waset.org/abstracts/search?q=Atta%20Ullah"> Atta Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Haleh%20Jahanbakhsh%20Basherlou"> Haleh Jahanbakhsh Basherlou</a>, <a href="https://publications.waset.org/abstracts/search?q=Raed%20A.%20Abd-Alhameed"> Raed A. Abd-Alhameed</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20S.%20Excell"> Peter S. Excell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A design of beam-steerable antenna array for the future cellular communication (5G) is presented. The proposed design contains eight elements of compact end-fire antennas arranged on the top edge of smartphone printed circuit board (PCB). Configuration of the antenna element consists of the conductive patterns on the top and bottom copper foil layers and a substrate layer with a via-hole. The simulated results including input-impedance and also fundamental radiation properties have been presented and discussed. The impedance bandwidth (S<sub>11</sub> ≤ -10 dB) of the antenna spans from 17.5 to 21 GHz (more than 3 GHz bandwidth) with a resonance at 19 GHz. The antenna exhibits end-fire (directional) radiation beams with wide-angle scanning property and could be used for the future 5G beam-forming. Furthermore, the characteristics of the array design in the vicinity of user-hand are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam-steering" title="beam-steering">beam-steering</a>, <a href="https://publications.waset.org/abstracts/search?q=end-fire%20radiation%20mode" title=" end-fire radiation mode"> end-fire radiation mode</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile-phone%20antenna" title=" mobile-phone antenna"> mobile-phone antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=phased%20array" title=" phased array"> phased array</a> </p> <a href="https://publications.waset.org/abstracts/111489/a-design-of-beam-steerable-antenna-array-for-use-in-future-mobile-handsets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21955</span> Evaluation of a Data Fusion Algorithm for Detecting and Locating a Radioactive Source through Monte Carlo N-Particle Code Simulation and Experimental Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Ardiny">Hadi Ardiny</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Mohammad%20Beigzadeh"> Amir Mohammad Beigzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through the utilization of a combination of various sensors and data fusion methods, the detection of potential nuclear threats can be significantly enhanced by extracting more information from different data. In this research, an experimental and modeling approach was employed to track a radioactive source by combining a surveillance camera and a radiation detector (NaI). To run this experiment, three mobile robots were utilized, with one of them equipped with a radioactive source. An algorithm was developed in identifying the contaminated robot through correlation between camera images and camera data. The computer vision method extracts the movements of all robots in the XY plane coordinate system, and the detector system records the gamma-ray count. The position of the robots and the corresponding count of the moving source were modeled using the MCNPX simulation code while considering the experimental geometry. The results demonstrated a high level of accuracy in finding and locating the target in both the simulation model and experimental measurement. The modeling techniques prove to be valuable in designing different scenarios and intelligent systems before initiating any experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuclear%20threats" title="nuclear threats">nuclear threats</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20detector" title=" radiation detector"> radiation detector</a>, <a href="https://publications.waset.org/abstracts/search?q=MCNPX%20simulation" title=" MCNPX simulation"> MCNPX simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20techniques" title=" modeling techniques"> modeling techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20systems" title=" intelligent systems"> intelligent systems</a> </p> <a href="https://publications.waset.org/abstracts/167591/evaluation-of-a-data-fusion-algorithm-for-detecting-and-locating-a-radioactive-source-through-monte-carlo-n-particle-code-simulation-and-experimental-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mobile%20radiation%20detection%20system&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mobile%20radiation%20detection%20system&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mobile%20radiation%20detection%20system&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mobile%20radiation%20detection%20system&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mobile%20radiation%20detection%20system&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mobile%20radiation%20detection%20system&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mobile%20radiation%20detection%20system&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mobile%20radiation%20detection%20system&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mobile%20radiation%20detection%20system&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mobile%20radiation%20detection%20system&page=732">732</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mobile%20radiation%20detection%20system&page=733">733</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mobile%20radiation%20detection%20system&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>