CINXE.COM
Search results for: methyl siloxanes
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: methyl siloxanes</title> <meta name="description" content="Search results for: methyl siloxanes"> <meta name="keywords" content="methyl siloxanes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="methyl siloxanes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="methyl siloxanes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 471</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: methyl siloxanes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">471</span> Penetration Depth Study of Linear Siloxanes through Human Skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Szymkowska">K. Szymkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mojsiewicz-%20Pie%C5%84kowska"> K. Mojsiewicz- Pieńkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Siloxanes are a common ingredients in medicinal products used on the skin, as well as cosmetics. It is widely believed that the silicones are not capable of overcoming the skin barrier. The aim of the study was to verify the possibility of penetration and permeation of linear siloxanes through human skin and determine depth penetration limit of these compounds. Based on the results it was found that human skin is not a barrier for linear siloxanes. PDMS 50 cSt was not identified in the dermis suggests that this molecular size of silicones (3780Da) is safe when it is used in the skin formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20siloxanes" title="linear siloxanes">linear siloxanes</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes" title=" methyl siloxanes"> methyl siloxanes</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20penetration" title=" skin penetration"> skin penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20permeation" title=" skin permeation"> skin permeation</a> </p> <a href="https://publications.waset.org/abstracts/47996/penetration-depth-study-of-linear-siloxanes-through-human-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">470</span> Loss of the Skin Barrier after Dermal Application of the Low Molecular Methyl Siloxanes: Volatile Methyl Siloxanes, VMS Silicones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Glamowska">D. Glamowska</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Szymkowska"> K. Szymkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mojsiewicz-%20Pie%C5%84kowska"> K. Mojsiewicz- Pieńkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Cal"> K. Cal</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Jankowski"> Z. Jankowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The integrity of the outermost layer of skin (stratum corneum) is vital to the penetration of various compounds, including toxic substances. Barrier function of skin depends of its structure. The barrier function of the stratum corneum is provided by patterned lipid lamellae (binlayer). However, a lot of substances, including the low molecular methyl siloxanes (volatile methyl siloxanes, VMS) have an impact on alteration the skin barrier due to damage of stratum corneum structure. VMS belong to silicones. They are widely used in the pharmaceutical as well as cosmetic industry. Silicones fulfill the role of ingredient or excipient in medicinal products and the excipient in personal care products. Due to the significant human exposure to this group of compounds, an important aspect is toxicology of the compounds and safety assessment of products. Silicones in general opinion are considered as a non-toxic substances, but there are some data about their negative effect on living organisms through the inhaled or oral application. However, the transdermal route has not been described in the literature as a possible alternative route of penetration. The aim of the study was to verify the possibility of penetration of the stratum corneum, further permeation into the deeper layers of the skin (epidermis and dermis) as well as to the fluid acceptor by VMS. Methods: Research methodology was developed based on the OECD and WHO guidelines. In ex-vivo study, the fluorescence microscope and ATR FT-IR spectroscopy was used. The Franz- type diffusion cells were used to application of the VMS on the sample of human skin (A=0.65 cm) for 24h. The stratum corneum at the application site was tape-stripped. After separation of epidermis, relevant dyes: fluorescein, sulforhodamine B, rhodamine B hexyl ester were put on and observations were carried in the microscope. To confirm the penetration and permeation of the cyclic or linear VMS and thus the presence of silicone in the individual layers of the skin, spectra ATR FT-IR of the sample after application of silicone and H2O (control sample) were recorded. The research included comparison of the intesity of bands in characteristic positions for silicones (1263 cm-1, 1052 cm-1 and 800 cm-1). Results: and Conclusions The results present that cyclic and linear VMS are able to overcome the barrier of the skin. Influence of them on damage of corneocytes of the stratum corneum was observed. This phenomenon was due to distinct disturbances in the lipid structure of the stratum corneum. The presence of cyclic and linear VMS were identified in the stratum corneum, epidermis as well as in the dermis by both fluorescence microscope and ATR FT-IR spectroscopy. This confirms that the cyclic and linear VMS can penetrate to stratum corneum and permeate through the human skin layers. Apart from this they cause changes in the structure of the skin. Results show to possible absorption into the blood and lymphathic vessels by the VMS with linear and cyclic structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20molecular%20methyl%20siloxanes" title="low molecular methyl siloxanes">low molecular methyl siloxanes</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20methyl%20siloxanes" title=" volatile methyl siloxanes"> volatile methyl siloxanes</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20and%20cyclic%20siloxanes" title=" linear and cyclic siloxanes"> linear and cyclic siloxanes</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20penetration" title=" skin penetration"> skin penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20permeation" title=" skin permeation"> skin permeation</a> </p> <a href="https://publications.waset.org/abstracts/18318/loss-of-the-skin-barrier-after-dermal-application-of-the-low-molecular-methyl-siloxanes-volatile-methyl-siloxanes-vms-silicones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">469</span> Methyl Red Dye Adsorption On PMMA/GO and PMMA/GO-Fe3O4 Nanocomposites: Equilibrium Isotherm Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Rajabi">Mostafa Rajabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazem%20Mahanpoor"> Kazem Mahanpoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performances of the methyl red (MR) dye adsorption on poly(methyl methacrylate)/graphene oxide (PMMA/GO) and poly(methyl methacrylate)/graphene oxide-Fe3O4 (PMMA/GO-Fe3O4) nanocomposites as adsorbents were investigated. Our results showed that for adsorption of MR dye on PMMA/GO-Fe3O4 and PMMA/GO nanocomposites, 80 minutes, 298 K, and pH 2 were the best contact time, temperature and pH value for process, respectively, because the optimum adsorption of the MR dye with both nanocomposite adsorbents were observed in these values of the parameters. The equilibrium study results showed that PMMA/GO-Fe3O4 and PMMA/GO were suitable adsorbents for MR dye removing and were best in agreement with the Langmuir isotherm model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20methacrylate" title=" methyl methacrylate"> methyl methacrylate</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20red" title=" methyl red"> methyl red</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20magnetic%20Fe3O4" title=" nano magnetic Fe3O4"> nano magnetic Fe3O4</a> </p> <a href="https://publications.waset.org/abstracts/140772/methyl-red-dye-adsorption-on-pmmago-and-pmmago-fe3o4-nanocomposites-equilibrium-isotherm-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">468</span> An Association Model to Correlate the Experimentally Determined Mixture Solubilities of Methyl 10-Undecenoate with Methyl Ricinoleate in Supercritical Carbon Dioxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Mani%20Rathnam">V. Mani Rathnam</a>, <a href="https://publications.waset.org/abstracts/search?q=Giridhar%20Madras"> Giridhar Madras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fossil fuels are depleting rapidly as the demand for energy, and its allied chemicals are continuously increasing in the modern world. Therefore, sustainable renewable energy sources based on non-edible oils are being explored as a viable option as they do not compete with the food commodities. Oils such as castor oil are rich in fatty acids and thus can be used for the synthesis of biodiesel, bio-lubricants, and many other fine industrial chemicals. There are several processes available for the synthesis of different chemicals obtained from the castor oil. One such process is the transesterification of castor oil, which results in a mixture of fatty acid methyl esters. The main products in the above reaction are methyl ricinoleate and methyl 10-undecenoate. To separate these compounds, supercritical carbon dioxide (SCCO₂) was used as a green solvent. SCCO₂ was chosen as a solvent due to its easy availability, non-toxic, non-flammable, and low cost. In order to design any separation process, the preliminary requirement is the solubility or phase equilibrium data. Therefore, the solubility of a mixture of methyl ricinoleate with methyl 10-undecenoate in SCCO₂ was determined in the present study. The temperature and pressure range selected for the investigation were T = 313 K to 333 K and P = 10 MPa to 18 MPa. It was observed that the solubility (mol·mol⁻¹) of methyl 10-undecenoate varied from 2.44 x 10⁻³ to 8.42 x 10⁻³ whereas it varied from 0.203 x 10⁻³ to 6.28 x 10⁻³ for methyl ricinoleate within the chosen operating conditions. These solubilities followed a retrograde behavior (characterized by the decrease in the solubility values with the increase in temperature) throughout the range of investigated operating conditions. An association theory model, coupled with regular solution theory for activity coefficients, was developed in the present study. The deviation from the experimental data using this model can be quantified using the average absolute relative deviation (AARD). The AARD% for the present compounds is 4.69 and 8.08 for methyl 10-undecenoate and methyl ricinoleate, respectively in a mixture of methyl ricinoleate and methyl 10-undecenoate. The maximum solubility enhancement of 32% was observed for the methyl ricinoleate in a mixture of methyl ricinoleate and methyl 10-undecenoate. The highest selectivity of SCCO₂ was observed to be 12 for methyl 10-undecenoate in a mixture of methyl ricinoleate and methyl 10-undecenoate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20theory" title="association theory">association theory</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20mixtures" title=" liquid mixtures"> liquid mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilities" title=" solubilities"> solubilities</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20carbon%20dioxide" title=" supercritical carbon dioxide"> supercritical carbon dioxide</a> </p> <a href="https://publications.waset.org/abstracts/107534/an-association-model-to-correlate-the-experimentally-determined-mixture-solubilities-of-methyl-10-undecenoate-with-methyl-ricinoleate-in-supercritical-carbon-dioxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">467</span> Effect of Asymmetric Amphiphilic Dicationic Ionic Liquids as Oil Spill Dispersants in Red Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghda%20El-Nagara">Raghda El-Nagara</a>, <a href="https://publications.waset.org/abstracts/search?q=Maher%20I.%20Nessim"> Maher I. Nessim</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20E.%20Elshafee"> Carmen E. Elshafee</a>, <a href="https://publications.waset.org/abstracts/search?q=Renee%20I.%20Abdallah"> Renee I. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20M.%20Moustafa"> Yasser M. Moustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three asymmetric dicationic ionic liquids (ADILs), 1-(2-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)ethyl)-3-methyl pyridinium bromide (IL₁), 1-(6-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)hexyl)-3-methyl pyridinium bromide (IL₂) and 1-(10-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)decyl)-3-methyl pyridinium bromide (IL₃) were synthesized with yield of 83.54, 84.12 & 83.05% respectively. They were elucidated via conventional tools of analysis (elemental analysis, FT-IR, and 1H-NMR). The thermogravimetric analysis confirmed that the three ADILs possessed high thermal stability (up to 500ᵒC). Their critical micelle concentration (CMC) was investigated and exhibited values of 5.5-1*10⁻³ Mol./L. They were evaluated as oil spill dispersants were at different temperatures (10, 30 & 50ᵒC) with different concentrations (750, 1500, 2000, 3000 ppm). Data reveals that the efficiency is ranked as follows: IL₂ > IL₁ > IL₃, which showed high dispersion efficiency reached to 63% with the concentration of 1500 ppm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title="ionic liquids">ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=amphiphilic" title=" amphiphilic"> amphiphilic</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill%20dispersants" title=" oil spill dispersants"> oil spill dispersants</a>, <a href="https://publications.waset.org/abstracts/search?q=dicationic" title=" dicationic"> dicationic</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20test" title=" efficiency test"> efficiency test</a> </p> <a href="https://publications.waset.org/abstracts/135621/effect-of-asymmetric-amphiphilic-dicationic-ionic-liquids-as-oil-spill-dispersants-in-red-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">466</span> Solar Photocatalysis of Methyl Orange Using Multi-Ion Doped TiO2 Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20R.%20Thulari">Victor R. Thulari</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Akach"> John Akach</a>, <a href="https://publications.waset.org/abstracts/search?q=Haleden%20Chiririwa"> Haleden Chiririwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Aoyi%20Ochieng"> Aoyi Ochieng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar-light activated titanium dioxide photocatalysts were prepared by hydrolysis of titanium (IV) isopropoxide with thiourea, followed by calcinations at 450 °C. The experiments demonstrated that methyl orange in aqueous solutions were successfully degraded under solar light using doped TiO<sub>2</sub>. The photocatalytic oxidation of a mono azo methyl-orange dye has been investigated in multi ion doped TiO<sub>2</sub> and solar light. Solutions were irradiated by solar-light until high removal was achieved. It was found that there was no degradation of methyl orange in the dark and in the absence of TiO<sub>2</sub>. Varieties of laboratory prepared TiO<sub>2</sub> catalysts both un-doped and doped using titanium (IV) isopropoxide and thiourea as a dopant were tested in order to compare their photoreactivity. As a result, it was found that the efficiency of the process strongly depends on the working conditions. The highest degradation rate of methyl orange was obtained at optimum dosage using commercially produced TiO<sub>2</sub>. Our work focused on laboratory synthesized catalyst and the maximum methyl orange removal was achieved at 81% with catalyst loading of 0.04 g/L, initial pH of 3 and methyl orange concentration of 0.005 g/L using multi-ion doped catalyst. The kinetics of photocatalytic methyl orange dye stuff degradation was found to follow a pseudo-first-order rate law. The presence of the multi-ion dopant (thiourea) enhanced the photoefficiency of the titanium dioxide catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20orange" title=" methyl orange"> methyl orange</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a> </p> <a href="https://publications.waset.org/abstracts/59808/solar-photocatalysis-of-methyl-orange-using-multi-ion-doped-tio2-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">465</span> Glycerol-Free Biodiesel Synthesis from Crude Mahua (Madhuca indica) Oil under Supercritical Methyl Acetate Using CO2 as a Co-Solvent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antaram%20Sarve">Antaram Sarve</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Varma"> Mahesh Varma</a>, <a href="https://publications.waset.org/abstracts/search?q=Shriram%20Sonawane"> Shriram Sonawane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional route of producing biodiesel with alcohol produces glycerol as side product which leads to oversupply and devaluation in the world market. Supercritical methyl acetate (SCMA) has been proven to convert triglycerides into fatty acid methyl esters (FAMEs) and triacetin, which is a valuable biodiesel additive as side product rather than glycerol. However, due to the low reactivity of supercritical methyl acetate on triglycerides, high reaction conditions are required to obtained maximum yields. The present study describes the renewable approach for the production of biodiesel from low-cost, high acid value mahua oil under supercritical methyl acetate condition using carbon dioxide (CO2) as a co-solvent. CO2 was employed to decrease high reaction conditions required for supercritical methyl acetate transesterification. The influence of process parameters such as temperature, oil to methyl acetate molar ratio, reaction time, and the CO2 pressure was evaluated. The properties of biodiesel produced were found to be superior compared to conventional biodiesel method. Furthermore, SCMA has a high tolerance towards free fatty acids (FFAs) which is crucial to allow the utilization of inexpensive waste oils as a biodiesel feedstock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supercritical%20methyl%20acetate" title="supercritical methyl acetate">supercritical methyl acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2" title=" CO2"> CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20properties" title=" fuel properties"> fuel properties</a> </p> <a href="https://publications.waset.org/abstracts/34550/glycerol-free-biodiesel-synthesis-from-crude-mahua-madhuca-indica-oil-under-supercritical-methyl-acetate-using-co2-as-a-co-solvent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">464</span> Study of Intermolecular Interactions in Binary Mixtures of 1-Butyl-3-Methyl Imidazolium Bis (Trifluoro Methyl Sulfonyl) Imide and 1-Ethyl-3-Methyl Imidazolium Ethyl Sulphate at Different Temperature from 293.18 to 342.15 K</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Lokesh">V. Lokesh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Manjunathan"> M. Manjunathan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sairam"> S. Sairam</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Saithsh%20Kumar"> K. Saithsh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Anantharaj"> R. Anantharaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The densities of pure and its binary mixtures of 1-Butyl-3-methyl imidazolium bis (trifluoro methyl sulfonyl) imide and 1–Ethyl-3-methyl imidazolium ethyl sulphate at different temperature, over the entire composition range were measured at 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15, 328.15, 33.15, 338.15, 343.15 K. In this study, the liquid-liquid extraction procedure was used. From this experimental data, the excess molar volumes, apparent molar volume, partial molar volumes and the excess partial molar volumes have been calculated for over the whole composition range. Hence, the effect of temperature and composition on all derived thermodynamic properties of this binary mixture will be discussed in terms of intermolecular interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title="ionic liquid">ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20energy" title=" interaction energy"> interaction energy</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20temperature" title=" effect of temperature"> effect of temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20composition" title=" effect of composition"> effect of composition</a> </p> <a href="https://publications.waset.org/abstracts/81348/study-of-intermolecular-interactions-in-binary-mixtures-of-1-butyl-3-methyl-imidazolium-bis-trifluoro-methyl-sulfonyl-imide-and-1-ethyl-3-methyl-imidazolium-ethyl-sulphate-at-different-temperature-from-29318-to-34215-k" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">463</span> GAC Adsorption Modelling of Metsulfuron Methyl from Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nathaporn%20Areerachakul">Nathaporn Areerachakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the adsorption capacity of GAC with metsulfuron methyl was evaluated by using adsorption equilibrium and a fixed bed. Mathematical modelling was also used to simulate the GAC adsorption behavior. Adsorption equilibrium experiment of GAC was conducted using a constant concentration of metsulfuron methyl of 10 mg/L. The purpose of this study was to find the single component equilibrium concentration of herbicide. The adsorption behavior was simulated using the Langmuir, Freundlich, and Sips isotherm. The Sips isotherm fitted the experimental data reasonably well with an error of 6.6 % compared with 15.72 % and 7.07% for the Langmuir isotherm and Freudrich isotherm. Modelling using GAC adsorption theory could not replicate the experimental results in fixed bed column of 10 and 15 cm bed depths after a period more than 10 days of operation. This phenomenon is attributed to the formation of micro-organism (BAC) on the surface of GAC in addition to GAC alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotherm" title="isotherm">isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20equilibrium" title=" adsorption equilibrium"> adsorption equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=GAC" title=" GAC"> GAC</a>, <a href="https://publications.waset.org/abstracts/search?q=metsulfuron%20methyl" title=" metsulfuron methyl"> metsulfuron methyl</a> </p> <a href="https://publications.waset.org/abstracts/8935/gac-adsorption-modelling-of-metsulfuron-methyl-from-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">462</span> Isothermal Crystallization Kinetics of Lauric Acid Methyl Ester from DSC Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charine%20Faith%20H.%20Lagrimas">Charine Faith H. Lagrimas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rommel%20N.%20Galvan"> Rommel N. Galvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizalinda%20L.%20de%20Leon"> Rizalinda L. de Leon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An ongoing study, methyl laurate to be used as a refrigerant in an HVAC system, requires the crystallization kinetics of the said substance. Step-wise and normal forms of Avrami model parameters were used to describe the isothermal crystallization kinetics of methyl laurate at different temperatures from Differential Scanning Calorimetry (DSC) measurements. At 3 °C, parameters showed that methyl laurate exhibits a secondary crystallization. The primary crystallization occurred with instantaneous nuclei and spherulitic growth; followed by a secondary instantaneous nucleation with a lower growth of dimensionality, rod-like. At 4 °C to 6 °C, the exotherms from DSC implied that the system was under the isokinetic range. The kinetics behavior is the same which is instantaneous nucleation with one-dimensional growth. The differences for the isokinetic range temperatures are the activation energies (directly proportional to T) and nucleation rates (inversely proportional to T). From the images obtained during the crystallization of methyl laurate using an optical microscope, it is confirmed that the nucleation and crystal growth modes obtained from the optical microscope are consistent with the parameters from Avrami model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avrami%20model" title="Avrami model">Avrami model</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20crystallization" title=" isothermal crystallization"> isothermal crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids%20kinetics" title=" lipids kinetics"> lipids kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20laurate" title=" methyl laurate"> methyl laurate</a> </p> <a href="https://publications.waset.org/abstracts/27068/isothermal-crystallization-kinetics-of-lauric-acid-methyl-ester-from-dsc-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">461</span> Synthesis and Characterization of New Polyesters Based on Diarylidene-1-Methyl-4-Piperidone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tareg%20M.%20Elsunaki">Tareg M. Elsunaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Suleiman%20A.%20Arafa"> Suleiman A. Arafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Abd-Alla"> Mohamed A. Abd-Alla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New interesting thermal stable polyesters containing 1-methyl-4-piperidone moiety in the main chain have been synthesized. These polyesters were synthesized by interfacial polycondensation technique of 3,5-bis(4-hydroxybenzylidene)-1-methyl-4-piperidone (I) and 3,5-bis(4-hydroxy-3-methoxy benzyli-dene)-1-methyl-4-piperidone (II) with terphthaloyl, isophthaloyl, 4,4'-diphenic, adipoyl and sebacoyl dichlorides. The yield and the values of the reduced viscosity of the produced polyesters were found to be affected by the type of an organic phase. In order to characterize these polymers, the necessary model compounds (A), (B) were prepared from (I), (II) respectively and benzoyl chloride. The structure of monomers (I), (II), model compounds and resulting polyesters were confirmed by IR, elemental analysis and 1HNMR spectroscopy. The various characteristic of the resulting polymers including solubility, thermal properties, viscosity and X-ray analysis were also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthesis" title="synthesis">synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20polyesters" title=" new polyesters"> new polyesters</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry" title=" chemistry"> chemistry</a> </p> <a href="https://publications.waset.org/abstracts/5559/synthesis-and-characterization-of-new-polyesters-based-on-diarylidene-1-methyl-4-piperidone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">460</span> Synthesis and Antimicrobial Profile of Newer Schiff Bases and Thiazolidinone Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Fuloria">N. K. Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Fuloria"> S. Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Gupta"> R. Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Esterification of p-bromo-m-cresol offered 2-(4-bromo-3-methyl phenoxy)acetate (1), which was hydrazinated to yield 2-(4-bromo-3-methyl phenoxy)aceto hydrazide (2). Compound (2) was reacted with different aromatic aldehydes to yield N-(substituted benzylidiene)-2-(4-bromo-3-methyl phenoxy)acetamide(3a-c). Cyclization of compound (3a-c) with thioglycolic acid yielded 2-(4-bromo-3-methylphenoxy)-N-(4-oxo-2-arylthiazolidin-3-yl) acetamide (4a-c). The newly synthesized compounds were characterized on the basis of spectral studies and evaluated for antibacterial and antifungal activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imines" title="imines">imines</a>, <a href="https://publications.waset.org/abstracts/search?q=thiazolidinone" title=" thiazolidinone"> thiazolidinone</a>, <a href="https://publications.waset.org/abstracts/search?q=schiff%20base" title=" schiff base"> schiff base</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a> </p> <a href="https://publications.waset.org/abstracts/17411/synthesis-and-antimicrobial-profile-of-newer-schiff-bases-and-thiazolidinone-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">459</span> Improvement of Thermal Stability in Ethylene Methyl Acrylate Composites for Gasket Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pemika%20Ketsuwan">Pemika Ketsuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Pitt%20Supaphol"> Pitt Supaphol</a>, <a href="https://publications.waset.org/abstracts/search?q=Manit%20Nithitanakul"> Manit Nithitanakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A typical used of ethylene methyl acrylate (EMA) gasket is in the manufacture of optical lens, and often, they are deteriorated rapidly due to high temperature during the process. The objective of this project is to improve the thermal stability of the EMA copolymer gasket by preparing EMA with cellulose and silica composites. Hydroxy propyl methyl cellulose (HPMC) and Carboxy methyl cellulose (CMC) were used in preparing of EMA/cellulose composites and fumed silica (SiO2) was used in preparing EMA/silica composites with different amounts of filler (3, 5, 7, 10, 15 wt.%), using a twin screw extruder at 160 °C and the test specimens were prepared by the injection molding machine. The morphology and dispersion of fillers in the EMA matrix were investigated by field emission scanning electron microscopy (FESEM). The thermal stability of the composite was determined by thermal gravimetric analysis (TGA), and differential scanning calorimeter (DSC). Mechanical properties were evaluated by tensile testing. The developed composites were found to enhance thermal and mechanical properties when compared to that of the EMA copolymer alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethylene%20methyl%20acrylate" title="ethylene methyl acrylate">ethylene methyl acrylate</a>, <a href="https://publications.waset.org/abstracts/search?q=HPMC" title=" HPMC"> HPMC</a>, <a href="https://publications.waset.org/abstracts/search?q=Silica" title=" Silica"> Silica</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20stability" title=" Thermal stability"> Thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/124859/improvement-of-thermal-stability-in-ethylene-methyl-acrylate-composites-for-gasket-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">458</span> Synthesis of Biolubricant Base Stock from Palm Methyl Ester</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Sulihatimarsyila%20Abd%20Wafti">Nur Sulihatimarsyila Abd Wafti</a>, <a href="https://publications.waset.org/abstracts/search?q=Harrison%20Lik%20Nang%20Lau"> Harrison Lik Nang Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabilah%20Kamaliah%20Mustaffa"> Nabilah Kamaliah Mustaffa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Azreena%20Idris"> Nur Azreena Idris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of biolubricant has gained its popularity over the last decade. Base stock produced using methyl ester and trimethylolethane (TME) can be potentially used for biolubricant production due to its biodegradability, non-toxicity and good thermal stability. The synthesis of biolubricant base stock e.g. triester (TE) via transesterification of palm methyl ester and TME in the presence of sodium methoxide as the catalyst was conducted. Factors influencing the reaction conditions were investigated including reaction time, temperature and pressure. The palm-based biolubricant base stock produced was analysed for its monoester (ME), diester (DE) and TE contents using gas chromatography as well as its lubricating properties such as viscosity, viscosity index, oxidation stability, and density. The resulting base stock containing 90 wt% TE was successfully synthesized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biolubricant" title="biolubricant">biolubricant</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20ester" title=" methyl ester"> methyl ester</a>, <a href="https://publications.waset.org/abstracts/search?q=triester%20transesterification" title=" triester transesterification"> triester transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=lubricating%20properties" title=" lubricating properties"> lubricating properties</a> </p> <a href="https://publications.waset.org/abstracts/52775/synthesis-of-biolubricant-base-stock-from-palm-methyl-ester" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">457</span> Effect of Doping Ag and N on the Photo-Catalytic Activity of ZnO/CuO Nanocomposite for Degradation of Methyl Orange under UV and Visible Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Yadav">O. P. Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nano-size Ag-N co-doped ZnO/CuO composite photo-catalyst has been synthesized by chemical method and characterized using XRD, TEM, FTIR, AAS and UV-Vis spectroscopic techniques. Photo-catalytic activity of as-synthesized nanomaterial has been studied using degradation of methyl orange as a probe under UV as well as visible radiations. Ag-N co-doped ZnO/CuO composite showed higher photo-catalytic activity than Ag- or N-doped ZnO and undoped ZnO-CuO composite photo-catalysts. The observed highest activity of Ag-N co-doped ZnO-CuO among the studied photo-catalysts is attributed to the cumulative effects of lowering of band-gap energy and decrease of recombination rate of photo-generated electrons and holes owing to doped N and Ag, respectively. Effects of photo-catalyst load, pH and substrate initial concentration on degradation of methyl orange have also been studied. Photo-catalytic degradation of methyl orange follows pseudo first order kinetics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/18641/effect-of-doping-ag-and-n-on-the-photo-catalytic-activity-of-znocuo-nanocomposite-for-degradation-of-methyl-orange-under-uv-and-visible-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">456</span> Prediction of Corrosion Inhibition Using Methyl Ester Sulfonate Anionic Surfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Asselah">A. Asselah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khalfi"> A. Khalfi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.Toumi"> M. A.Toumi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Tazerouti"> A.Tazerouti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the corrosion inhibition of a standard carbon steel "API 5L grade X70" by two biodegradable anionic surfactants derived from fatty acids by photo sulfochlorination, called sodium lauryl methyl ester sulfonates and sodium palmityl methyl ester sulfonates was carried. A solution at 2.5 g/l NaCl saturated with carbon dioxide is used as a corrosive medium. The gravimetric and electrochemical technics (stationary and transient) were used in order to quantify the rate of corrosion and to evaluate the electrochemical inhibition efficiency, thus the nature of the mode of action of the inhibitor, in addition to a surface characterization by scanning electron microscopy (MEB) coupled to energy dispersive X-ray spectroscopy (EDX). The variation of the concentration and the temperature were examined, and the mode of adsorption of these inhibitors on the surface of the metal was established by assigning it the appropriate isotherm and determining the corresponding thermodynamic parameters. The MEB-EDX allowed the visualization of good adhesion of the protective film formed by the surfactants to the surface of the steel. The corrosion inhibition was evaluated at around 93% for sodium lauryl methyl ester sulfonate surfactant at 20 ppm and 87.2% at 50 ppm for sodium palmityl methyl ester sulfonate surfactant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20steel" title="carbon steel">carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=oilfield" title=" oilfield"> oilfield</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=anionic%20surfactants" title=" anionic surfactants"> anionic surfactants</a> </p> <a href="https://publications.waset.org/abstracts/158305/prediction-of-corrosion-inhibition-using-methyl-ester-sulfonate-anionic-surfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">455</span> Adsorption of Methyl Violet Dye from Aqueous Solution onto Modified Kapok Sawdust : Characteristics and Equilibrium Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Widi%20Astuti">Widi Astuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Triastuti%20Sulistyaningsih"> Triastuti Sulistyaningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Masni%20Maksiola"> Masni Maksiola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kapok sawdust, an inexpensive material, has been utilized as an adsorbent for the removal of methyl violet in aqueous solution. To increase the adsorption capacity, kapok sawdust was reacted with sodium hydroxide (NaOH) solution having various concentrations. Various physico-chemical parameters such as solution pH, contact time and initial dye concentration were studied. Langmuir, Freundlich and Redlich-Peterson isotherm model were used to analyze the equilibrium data. The research shows that the experimental data fitted well with the Redlich-Peterson model, with the value of constants are 41.001 for KR, 0.523 for aR and 0.799 for g. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kapok%20sawdust" title="kapok sawdust">kapok sawdust</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20violet" title=" methyl violet"> methyl violet</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/31072/adsorption-of-methyl-violet-dye-from-aqueous-solution-onto-modified-kapok-sawdust-characteristics-and-equilibrium-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">454</span> Cytotoxic Activity Of Major Iridoids From Barleria Trispinosa (Forssk.) Vahl. Growing In Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Assiry">Hamza Assiry</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamal%20A.%20Mohamed"> Gamal A. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabrin%20R.%20M.%20Ibrahim"> Sabrin R. M. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossam%20M.%20Abdallah"> Hossam M. Abdallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical investigation of the aerial parts of Barleria trispinosa(Forssk.) Vahl. resulted in isolation of four major iridoids that were identified as 6,8-O,O-diacetylshanhiside methyl ester (acetyl barlerin) (1), 8-O-acetylshanzhiside methyl ester (barlerin) (2), shanzhiside methyl ester (3), and 6- ⍺ -L-rhamnopyranosyl-8-O-acetylshanzihiside methyl ester (4). The isolated compounds were confirmed by detailed one and two-dimensional NMR. Isolated compounds were tested for their cytotoxic activity on breast cancer (MCF-7, MDA-MB-231) and colon cancer (LS174T) cell linesusing sulphorhodamine B (SRB) assay. It is noteworthy that compound 1 demonstrated a significant cytotoxic potential towards MDA-MB-231 cell line with IC5016.7 ± 2.7µg / mL compared to doxorubicin whereas compounds 2, showed moderate cytotoxic potential with IC5021.2 ± 1.9µg / mL on MCF-7. The other compounds showed moderate activity on the tested cell lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acanthaceae" title="acanthaceae">acanthaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolites" title=" metabolites"> metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=barleria%20trispinosa" title=" barleria trispinosa"> barleria trispinosa</a> </p> <a href="https://publications.waset.org/abstracts/147131/cytotoxic-activity-of-major-iridoids-from-barleria-trispinosa-forssk-vahl-growing-in-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">453</span> Ketones Emission during Pad Printing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiurski%20S.%20Jelena">Kiurski S. Jelena</a>, <a href="https://publications.waset.org/abstracts/search?q=Aksentijevi%C4%87%20M.%20Sne%C5%BEana"> Aksentijević M. Snežana</a>, <a href="https://publications.waset.org/abstracts/search?q=Oros%20B.%20Ivana"> Oros B. Ivana</a>, <a href="https://publications.waset.org/abstracts/search?q=Keci%C4%87%20S.%20Vesna"> Kecić S. Vesna</a>, <a href="https://publications.waset.org/abstracts/search?q=Djogo%20Z.%20Maja"> Djogo Z. Maja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper investigates the effect of light intensity on the formation of two ketones, acetone and methyl ethyl ketone, in working premises of five pad printing departments in Novi Sad, Serbia. Multiple linear regression analysis examined the form of interdependency concentrations of methyl ethyl ketone, acetone and light intensity in five printing presses at seven sampling points, using Statistica software package version 10th. The results show an average stacking variation investigated variable and can be presented by the general regression model: y = b0 + b1xi1 + b2xi2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetone" title="acetone">acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone" title=" methyl ethyl ketone"> methyl ethyl ketone</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20linear%20regression%20analysis" title=" multiple linear regression analysis"> multiple linear regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pad%20printing" title=" pad printing"> pad printing</a> </p> <a href="https://publications.waset.org/abstracts/4798/ketones-emission-during-pad-printing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">452</span> Comparison Methyl Orange and Malachite Green Dyes Removal by GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH as Adsorbents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Moradi">Omid Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Rajabi"> Mostafa Rajabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene oxide (GO), reduced graphene oxide (rGO), multi-walled carbon nanotubes MWCNT), multi-walled carbon nanotube functionalized carboxyl (MWCNT-COOH), and multi-walled carbon nanotube functionalized thiol (MWCNT-SH) were used as efficient adsorbents for the rapid removal two dyes methyl orange (MO) and malachite green (MG) from the aqueous phase. The impact of several influential parameters such as initial dye concentrations, contact time, temperature, and initial solution pH was well studied and optimized. The optimize time for adsorption process of methyl orange dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were determined at 100, 100, 60, 25, and 60 min, respectively and The optimize time for adsorption process of malachite green dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were determined at 100, 100, 60, 15, and 60 min, respectively. The maximum removal efficiency for methyl orange dye by GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were occurred at optimized pH 3, 3, 6, 2, and 6 of aqueous solutions, respectively and for malachite green dye were occurred at optimized pH 3, 3, 6, 9, and 6 of aqueous solutions, respectively. The effect of temperature showed that adsorption process of malachite green dye on GO, rGO, MWCNT, and MWCNT-SH surfaces were endothermic and for adsorption process of methyl orange dye on GO, rGO, MWCNT, and MWCNT-SH surfaces were endothermic but while adsorption of methyl orange and malachite green dyes on MWCNT-COOH surface were exothermic.On increasing the initial concentration of methyl orange dye adsorption capacity on GO surface was decreased and on rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were increased and with increasing the initial concentration of malachite green dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotubes" title=" multi-walled carbon nanotubes"> multi-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20orange" title=" methyl orange"> methyl orange</a>, <a href="https://publications.waset.org/abstracts/search?q=malachite%20green" title=" malachite green"> malachite green</a>, <a href="https://publications.waset.org/abstracts/search?q=removal" title=" removal"> removal</a> </p> <a href="https://publications.waset.org/abstracts/39808/comparison-methyl-orange-and-malachite-green-dyes-removal-by-go-rgo-mwcnt-mwcnt-cooh-and-mwcnt-sh-as-adsorbents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">451</span> Assesment of Trapping Efficiency of Slow Released Formulations of Methyl Euginol with Carnauba Wax against Bactrocera zonata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Afzal%20Naveed">Waleed Afzal Naveed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammd%20Dildar%20Gogi"> Muhammd Dildar Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sufian"> Muhammad Sufian</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Junaid%20Nisar"> Muhammad Junaid Nisar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubashir%20Iqbal"> Mubashir Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Muhammad%20Waqas%20Amjad"> Hafiz Muhammad Waqas Amjad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hamza%20Khaliq"> Muhammad Hamza Khaliq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present study was carried out to evaluate the performance of Slow-Released Formulations (SRF) of methyl eugenol with Carnauba wax in orchard of University of Agriculture Faisalabad, Pakistan against fruit flies. Carnauba wax was mixed with methyl eugenol in nine ratios (10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 and 90:10). The results revealed that SRFCN-9 trapped 35.3 flies/day/trap, exhibited an attractancy index (AI) of 50.35%, proved strongly attractive SRFCN for B. zonata and was categorized as Class-III slow-released formulation (Attractive Index > 50%). The SRFCN-1, SRFCN-2, SRFCN-3, SRFCN-4, SRFCN-5, SRFCN-6, SRFCN-7 and SRFCN-8 trapped 2.0, 5.3, 3.3, 4.0, 5.7, 12.0, 9.7 and 14.3 flies/day/trap respectively exhibited an attractancy index (AI) of -70.73%, -37.25%, -55.55%, -48.93%, -34.61%, 1.40%, -9.37% and 10.25% Attractive Index respectively, proved little or non attractive slow-released formulation and was categorized as Class-I slow-released formulation for B. zonata (Attractive Index < 11%). Results revealed that the Slow-Released Formulation containing 10% Carnauba wax with 90% methyl eugenol trapped maximum number of flies of over 30 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slow-released%20formulation" title="slow-released formulation">slow-released formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Bactrocera%20zonata" title=" Bactrocera zonata"> Bactrocera zonata</a>, <a href="https://publications.waset.org/abstracts/search?q=Carnauba%20wax" title=" Carnauba wax"> Carnauba wax</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20euginol" title=" methyl euginol"> methyl euginol</a> </p> <a href="https://publications.waset.org/abstracts/97337/assesment-of-trapping-efficiency-of-slow-released-formulations-of-methyl-euginol-with-carnauba-wax-against-bactrocera-zonata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">450</span> The Effect of Oxidation Stability Improvement in Calophyllum Inophyllum Palm Oil Methyl Ester Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalina">Natalina</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwai%20Chyuan%20Onga"> Hwai Chyuan Onga</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20T.%20Chonga"> W. T. Chonga </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxidation stability of biodiesel is very important in fuel handling especially for remote location of biodiesel application. Variety of feedstocks and biodiesel production process resulted many variation of biodiesel oxidation stability. The current study relates to investigation of the impact of fatty acid composition that caused by natural and production process of calophyllum inophyllum palm oil methyl ester that correlated with improvement of biodiesel oxidation stability. Firstly, biodiesel was produced from crude oil of palm oil, calophyllum inophyllum and mixing of calophyllum inophyllum and palm oil. The production process of calophyllum inophyllum palm oil methyl ester (CIPOME) was divided by including washing process and without washing. Secondly, the oxidation stability was measured from the palm oil methyl ester (POME), calophyllum inophyllum methyl ester (CIME), CIPOME with washing process and CIPOME without washing process. Then, in order to find the differences of fatty acid compositions all of the biodiesels were measured by gas chromatography analysis. It was found that mixing calophyllum inophyllum into palm oil increased the oxidation stability. Washing process influenced the CIPOME fatty acid composition, and reduction of washing process during the production process gave significant oxidation stability number of CIPOME (38 h to 114 h). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20stability" title=" oxidation stability"> oxidation stability</a>, <a href="https://publications.waset.org/abstracts/search?q=calophyllum%20inophyllum" title=" calophyllum inophyllum"> calophyllum inophyllum</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20content" title=" water content"> water content</a> </p> <a href="https://publications.waset.org/abstracts/39777/the-effect-of-oxidation-stability-improvement-in-calophyllum-inophyllum-palm-oil-methyl-ester-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">449</span> Evaluation of Trapping Efficiency of Slow Released Formulations of Methyl Eugenol with Lanolin Wax against Bactrocera zonata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Afzal%20Naveed">Waleed Afzal Naveed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammd%20Dildar%20Gogi"> Muhammd Dildar Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sufian"> Muhammad Sufian</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Amjad%20Ali"> Muhammad Amjad Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Junaid%20Nisar"> Muhammad Junaid Nisar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubashar%20Iqbal"> Mubashar Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Amna%20Jalal"> Amna Jalal</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Munir"> Faisal Munir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was carried out to evaluate the performance of Slow-Released Formulations (SRF) of Methyl eugenol with Lanolin wax in orchard of the University of Agriculture Faisalabad, Pakistan against fruit flies. Lanolin wax was mixed with methyl eugenol in nine ratios (10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 and 90:10). The results revealed that SRFₗₗ-7 trapped 42.1 flies /day/trap, exhibited an attractancy index (AI) of 51.71%, proved strongly attractive SRFₗₗ for B. zonata and was categorized as Class-III slow-released formulation (AI > 50%). The SRFₗₗ-2, SRFₗₗ-3, SRFₗₗ-4, SRFₗₗ-5, SRFₗₗ-6, SRFₗₗ-8 and SRFₗₗ-9 trapped 17.7, 27.9, 32.3, 23.8, 28.3, 37.8 and 19.9 flies /day/trap, exhibited an attractancy index (AI) of 20.54%, 41.02%, 26.00%, 34.15%, 43.50%, 49.86% and 46.07% AI respectively, proved moderately attractive slow-released formulations for B. zonata and were categorized as Class-II slow-released formulations (AI = 11-50%). However, SRFₗₗ-1 trapped 14.8 flies /day/trap, exhibited 0.71% AI proved little or nonattractive slow-released formulation and was categorized as Class-I slow-released formulation for B. zonata (AI < 11%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bactrocera%20zonata" title="Bactrocera zonata">Bactrocera zonata</a>, <a href="https://publications.waset.org/abstracts/search?q=slow-released%20formulation" title=" slow-released formulation"> slow-released formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=lenoline%20wax" title=" lenoline wax"> lenoline wax</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20euginol" title=" methyl euginol"> methyl euginol</a> </p> <a href="https://publications.waset.org/abstracts/97291/evaluation-of-trapping-efficiency-of-slow-released-formulations-of-methyl-eugenol-with-lanolin-wax-against-bactrocera-zonata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">448</span> Efficient Photodegradation of Methyl Red Dye by Kaolin Clay Supported Zinc Oxide Nanoparticles with Their Antibacterial and Antioxidant Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Idrees%20Khan">Idrees Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Baoliang"> Zhang Baoliang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kaolin clay (KC) supported Zinc oxide (ZnO/KC) and ZnO nanoparticles (NPs) were prepared by a chemical reduction process and used for the photodegradation of methyl red (MR) as photocatalysts. Due to the interlayered porous structure of KC, we achieved a perfect association between ZnO NPs and KC. SEM image showed the irregular morphology of ZnO NPs, while ZnO/KC NCs were predominately round-shaped. Moreover, in both cases, NPs were present in dispersed and agglomerated forms with an average particle size way below 100 nm. The results acquired from photodegradation analyses showed that ZnO NPs and ZnO/KC NCs degraded about 82% and 99% of MR under UV light in a short irradiation time within 10 min. The recovered and re-recovered ZnO NPs and ZnO/KC NCs were also considerably photodegraded MR in an aqueous medium. The same NPs also exhibit promising bioactivities against two pathogenic bacteria, i.e., Citrobacter and Providencia. ZnO/KC NCs' antioxidant activity reached a reasonable 70% compared to the 88% activity of the standard ascorbic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20red" title=" methyl red"> methyl red</a> </p> <a href="https://publications.waset.org/abstracts/167979/efficient-photodegradation-of-methyl-red-dye-by-kaolin-clay-supported-zinc-oxide-nanoparticles-with-their-antibacterial-and-antioxidant-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">447</span> Efficacy of Methyl Eugenol and Food-Based Lures in Trapping Oriental Fruit Fly Bactrocera dorsalis (Diptera: Tephritidae) on Mango Homestead Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Amaka%20Ugwu">Juliana Amaka Ugwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trapping efficiency of methyl eugenol and three locally made food-based lures were evaluated in three locations for trapping of <em>B. dorsalis</em> on mango homestead trees in Ibadan South west Nigeria. The treatments were methyl eugenol, brewery waste, pineapple juice, orange juice, and control (water). The experiment was laid in a Complete Randomized Block Design (CRBD) and replicated three times in each location. Data collected were subjected to analysis of variance and significant means were separated by Turkey’s test. The results showed that <em>B. dorsalis </em>was recorded in all locations of study. Methyl eugenol significantly (P < 0.05) trapped higher population of <em>B. dorsalis</em> in all the study area. The population density of <em>B. dorsalis </em>was highest during the ripening period of mango in all locations. The percentage trapped flies after 7 weeks were 77.85%-82.38% (methyl eugenol), 7.29%-8.64% (pineapple juice), 5.62-7.62% (brewery waste), 4.41%-5.95% (orange juice), and 0.24-0.47% (control). There were no significance differences (p > 0.05) on the population of <em>B. dorsalis</em> trapped in all locations. Similarly, there were no significant differences (p > 0.05) on the population of flies trapped among the food attractants. However, the three food attractants significantly (p < 0.05) trapped higher flies than control. Methyl eugenol trapped only male flies while brewery waste and other food based attractants trapped both male and female flies<em>.</em> The food baits tested were promising attractants for trapping <em>B. dorsalis </em>on mango homestead tress<em>,</em> hence increased dosage could be considered for monitoring and mass trapping as management strategies against fruit fly infestation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attractants" title="attractants">attractants</a>, <a href="https://publications.waset.org/abstracts/search?q=trapping" title=" trapping"> trapping</a>, <a href="https://publications.waset.org/abstracts/search?q=mango" title=" mango"> mango</a>, <a href="https://publications.waset.org/abstracts/search?q=Bactrocera%20dorsalis" title=" Bactrocera dorsalis"> Bactrocera dorsalis</a> </p> <a href="https://publications.waset.org/abstracts/112983/efficacy-of-methyl-eugenol-and-food-based-lures-in-trapping-oriental-fruit-fly-bactrocera-dorsalis-diptera-tephritidae-on-mango-homestead-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">446</span> Trapping Efficiency of Highly Effective Slow Released Formulations of Biodegradable Waxes with Methyl Eugenol Against Bactrocera zonata </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Afzal%20Naveed">Waleed Afzal Naveed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammd%20Dildar%20Gogi"> Muhammd Dildar Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubashir%20Iqbal"> Mubashir Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Junaid%20Nisar"> Muhammad Junaid Nisar</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hamza%20Khaliq"> Muhammad Hamza Khaliq</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Munir"> Faisal Munir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiment was carried out to evaluate the performance of highly effective Slow-Released Formulations (SRF) of Methyl eugenol with Lanolin wax, Candellila wax, Bee-wax, Carnauba wax and paraffin wax in the orchard of University of Agriculture Faisalabad, Pakistan against fruit flies. The waxes were mixed with methyl eugenol in 1:9 ratio. The results revealed that SRF of Candellila, Paraffin, Bees and Carnauba wax attracted 13.77, 11, 8.15 and 7.23 flies/day/trap which was 2.6, 2, 1.5 and 1.4 times higher than standard respectively and exhibited 41.42%, 32.05%, 20.98% and 12.87% attractive index respectively, proved moderately attractive slow-released formulation to B. zonata and was catagorized as Class-II slow-released formulation (AI = 11-50%). However, SRF of Lanolin wax trapped 1.81 flies/day/trap which was 3 times less than standard and exhibited -61.86% attractive index proved little or non attractive slow-released formulation and was categorized as Class-I slow-released formulation for B. zonata (AI < 11%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20waxes" title="biodegradable waxes">biodegradable waxes</a>, <a href="https://publications.waset.org/abstracts/search?q=slow-released%20formulation" title=" slow-released formulation"> slow-released formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Bactrocera%20zonata" title=" Bactrocera zonata"> Bactrocera zonata</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20euginol" title=" methyl euginol"> methyl euginol</a> </p> <a href="https://publications.waset.org/abstracts/97345/trapping-efficiency-of-highly-effective-slow-released-formulations-of-biodegradable-waxes-with-methyl-eugenol-against-bactrocera-zonata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">445</span> Synthesis, Characterization, Photocatalytic and Photovoltaic Performance of Ag-Doped ZnO2 Loaded on the Pt-Carbon Spheres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mujahid">M. Mujahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20A.%20Al-Hartomy"> Omar A. Al-Hartomy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ag-doped ZnO2 loaded on the Pt-carbon spheres have been synthesized and characterized by standard analytical techniques. i.e., UV-Vis spectroscopy, X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). In order to find the effect of loading of Ag doping on ZnO2, the concentration of Ag was varied from 0-3.5%. The XRD analysis showed that the obtained particles are anatase phase. The SEM images showed Ag-doped ZnO2 are loaded on the surface of the Pt-carbon spheres. The photocatalytic activity of the synthesized particles was tested by studying the degradation of methyl orange dye and 4-chlorophenol as a function of time on irradiation in aqueous suspension. Ag-doped ZnO2@Pt-carbon sphere particle with platinum concentration of 3.0 % showed the highest photocatalytic activity as compared to the other Ag concentrations for the degradation of methyl orange and 4-chlorophenol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ag-ZnO2" title="Ag-ZnO2">Ag-ZnO2</a>, <a href="https://publications.waset.org/abstracts/search?q=Pt-carbon%20spheres" title=" Pt-carbon spheres"> Pt-carbon spheres</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20orange" title=" methyl orange"> methyl orange</a>, <a href="https://publications.waset.org/abstracts/search?q=4-chlorophenol" title=" 4-chlorophenol"> 4-chlorophenol</a> </p> <a href="https://publications.waset.org/abstracts/8264/synthesis-characterization-photocatalytic-and-photovoltaic-performance-of-ag-doped-zno2-loaded-on-the-pt-carbon-spheres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">444</span> Synthesis and Spectrophotometric Study of Omeprazole Charge Transfer Complexes with Bromothymol Blue, Methyl Orange, and Picric Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeeda%20Nadir%20Ali">Saeeda Nadir Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Najma%20Sultana"> Najma Sultana</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Saeed%20Arayne"> Muhammad Saeed Arayne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Charge transfer complexes of omeprazole with bromothymol blue, methyl orange, and picric acid in the Beer’s law ranges 7-56, 6-48, and 10-80 µg mL-1, exhibiting stoichiometric ratio 1:1, and maximum wavelength 400, 420 and 373 nm respectively have been studied in aqueous medium. ICH guidelines were followed for validation study. Spectroscopic parameters including oscillator’s strength, dipole moment, ionization potential, energy of complexes, resonance energy, association constant and Gibb’s free energy changes have also been investigated and Benesi-Hildebrand plot in each case has been obtained. In addition, the methods were fruitfully employed for omeprazole determination in pharmaceutical formulations with no excipients obstruction during analysis. Solid omeprazole complexes with all the acceptors were synthesized and then structure was elucidated by IR and 1H NMR spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=omeprazole" title="omeprazole">omeprazole</a>, <a href="https://publications.waset.org/abstracts/search?q=bromothymol%20blue" title=" bromothymol blue"> bromothymol blue</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20orange%20and%20picric%20acid" title=" methyl orange and picric acid"> methyl orange and picric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20transfer%20complexes" title=" charge transfer complexes"> charge transfer complexes</a> </p> <a href="https://publications.waset.org/abstracts/21749/synthesis-and-spectrophotometric-study-of-omeprazole-charge-transfer-complexes-with-bromothymol-blue-methyl-orange-and-picric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">443</span> Poly(Methyl Methacrylate)/Graphene Microparticles Having a Core/Shell Structure Prepared with Carboxylated Graphene as a Pickering Stabilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gansukh%20Erdenedelger">Gansukh Erdenedelger</a>, <a href="https://publications.waset.org/abstracts/search?q=Doljinsuren%20Sukhbaatar"> Doljinsuren Sukhbaatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Trung%20Dung%20Dao"> Trung Dung Dao</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong-Kyu%20Lee"> Byeong-Kyu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Mo%20Jeong"> Han Mo Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two kinds of carboxylated thermally reduced graphenes (C-TRGs) having different lateral sizes are examined as a Pickering stabilizer in the suspension polymerization of methyl methacrylate. The size and the shape of the prepared composite particles are irregular due to agglomeration, more evidently when the larger C-TRG is used. In addition, C-TRG is distributed not only on the surface but also inside the composite particles. It indicates that the C-TRG alone is not a stable Pickering agent. However, a very small dosage of acrylic acid remedies all these issues, because acrylic acid interacts with C-TRG and synergizes the stabilizing effect. The compression molded composite of the core/shell poly(methyl methacrylate)/C-TRG particles exhibits a very low percolation threshold of electrical conductivity of 0.03 vol%. It demonstrates that the C-TRG shells of the composite particles effectively form a segregated conductive network throughout the composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pickering" title="pickering">pickering</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerization" title=" polymerization"> polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA" title=" PMMA"> PMMA</a> </p> <a href="https://publications.waset.org/abstracts/45928/polymethyl-methacrylategraphene-microparticles-having-a-coreshell-structure-prepared-with-carboxylated-graphene-as-a-pickering-stabilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">442</span> Characterization of Monoclonal Antibodies Specific for Synthetic Cannabinoids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Nakayama">Hiroshi Nakayama</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Ito"> Yuji Ito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic cannabinoids have attracted much public attention recently in Japan. 1-pentyl-3-(1-naphthoyl)-indole (JWH-018), 1-pentyl-2-methyl-3-(1-naphthoyl) indole (JWH-015), 1-(5-fluoropentyl)-3- (1-(2,2,3,3- tetramethylcyclopropyl)) indole (XLR-11) and 1-methyl-3- (1-admantyl) indole (JWH-018 adamantyl analog) are known as synthetic cannabinoids and are also considered dangerous illegal drugs in Japan. It has become necessary to develop sensitive and useful methods for detection of synthetic cannabinoids. We produced two monoclonal antibodies (MAb) against synthetic cannabinoids, named NT1 (IgG1) and NT2 (IgG1), using Hybridoma technology. The cross-reactivity of these produced MAbs was evaluated using a competitive enzyme-linked immunosorbent assay (ELISA). In the results, we found both of these antibodies recognize many kinds of synthetic cannabinoids analog. However, neither of these antibodies recognizes naphtoic acid, 1-methyl-indole and indole known as a raw material of synthetic cannabinoid. Thus, the MAbs produced in this study could be a useful tool for the detection of synthetic cannabinoids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ELISA" title="ELISA">ELISA</a>, <a href="https://publications.waset.org/abstracts/search?q=monoclonal%20antibody" title=" monoclonal antibody"> monoclonal antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20cannabinoid" title=" synthetic cannabinoid"> synthetic cannabinoid</a> </p> <a href="https://publications.waset.org/abstracts/51072/characterization-of-monoclonal-antibodies-specific-for-synthetic-cannabinoids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes&page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes&page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>