CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 77 results for author: <span class="mathjax">Heng, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Heng%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Heng, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Heng%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Heng, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Heng%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Heng%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Heng%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06054">arXiv:2410.06054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06054">pdf</a>, <a href="https://arxiv.org/format/2410.06054">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design and Experimental Application of a Radon Diffusion Chamber for Determining Diffusion Coefficients in Membrane Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+L">Liang-Yu Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Si%2C+L">Lin Si</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yuan Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Z">Zhi-Xing Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yue-Kun Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jiang-Lai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+X">Xiao-Lan Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+F">Fei Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Y">Yue Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+X">Xiao-Hui Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+Z">Zhi-Cheng Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yun%2C+Y">You-Hui Yun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+G">Gao-Feng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jie Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06054v2-abstract-short" style="display: inline;"> In recent years, the issue of radon emanation and diffusion has become a critical concern for rare decay experiments, such as JUNO and PandaX-4T. This paper introduces a detector design featuring a symmetric radon detector cavity for the quantitative assessment of membrane materials&#39; radon blocking capabilities. The performance of this design is evaluated through the application of Fick&#39;s Law and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06054v2-abstract-full').style.display = 'inline'; document.getElementById('2410.06054v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06054v2-abstract-full" style="display: none;"> In recent years, the issue of radon emanation and diffusion has become a critical concern for rare decay experiments, such as JUNO and PandaX-4T. This paper introduces a detector design featuring a symmetric radon detector cavity for the quantitative assessment of membrane materials&#39; radon blocking capabilities. The performance of this design is evaluated through the application of Fick&#39;s Law and the diffusion equation considering material solubility. Our detector has completed measurements of radon diffusion coefficients for four types of membrane materials currently used in experiments, which also confirms the rationality of this detector design. The findings are instrumental in guiding the selection and evaluation of optimal materials for radon shielding to reduce radon background, contributing to boost sensitivities of rare event research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06054v2-abstract-full').style.display = 'none'; document.getElementById('2410.06054v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 10 figures and 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17860">arXiv:2405.17860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17860">pdf</a>, <a href="https://arxiv.org/format/2405.17860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ad83aa">10.1088/1674-1137/ad83aa <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prediction of Energy Resolution in the JUNO Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowicz%2C+K">Kai Adamowicz</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">Marco Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bick%2C+D">Daniel Bick</a> , et al. (629 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17860v2-abstract-short" style="display: inline;"> This paper presents an energy resolution study of the JUNO experiment, incorporating the latest knowledge acquired during the detector construction phase. The determination of neutrino mass ordering in JUNO requires an exceptional energy resolution better than 3\% at 1~MeV. To achieve this ambitious goal, significant efforts have been undertaken in the design and production of the key components o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17860v2-abstract-full').style.display = 'inline'; document.getElementById('2405.17860v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17860v2-abstract-full" style="display: none;"> This paper presents an energy resolution study of the JUNO experiment, incorporating the latest knowledge acquired during the detector construction phase. The determination of neutrino mass ordering in JUNO requires an exceptional energy resolution better than 3\% at 1~MeV. To achieve this ambitious goal, significant efforts have been undertaken in the design and production of the key components of the JUNO detector. Various factors affecting the detection of inverse beta decay signals have an impact on the energy resolution, extending beyond the statistical fluctuations of the detected number of photons, such as the properties of the liquid scintillator, performance of photomultiplier tubes, and the energy reconstruction algorithm. To account for these effects, a full JUNO simulation and reconstruction approach is employed. This enables the modeling of all relevant effects and the evaluation of associated inputs to accurately estimate the energy resolution. The results of study reveal an energy resolution of 2.95\% at 1~MeV. Furthermore, this study assesses the contribution of major effects to the overall energy resolution budget. This analysis serves as a reference for interpreting future measurements of energy resolution during JUNO data collection. Moreover, it provides a guideline for comprehending the energy resolution characteristics of liquid scintillator-based detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17860v2-abstract-full').style.display = 'none'; document.getElementById('2405.17860v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Phys. C 49 013003 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01393">arXiv:2405.01393</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01393">pdf</a>, <a href="https://arxiv.org/format/2405.01393">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Development of the strip LGAD detector with double-end readout for future colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+W">Weiyi Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Mengzhao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+T">Tianyuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+M">Mei Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yunyun Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shuqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+Y">Yuan Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+X">Xinhui Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X">Xuan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Z">Zhijun Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuekun Heng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01393v1-abstract-short" style="display: inline;"> The Low-Gain Avalanche Diode (LGAD) is a new silicon detector and holds wide application prospects in particle physics experiments due to its excellent timing resolution. The LGAD with a pixel size of 1.3 mm $\times$ 1.3 mm was used to construct a High Granularity Timing Detector (HGTD) in ATLAS experiments to solve the pile-up problem. Meanwhile, the Circular Electron Positron Collider (CEPC)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01393v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01393v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01393v1-abstract-full" style="display: none;"> The Low-Gain Avalanche Diode (LGAD) is a new silicon detector and holds wide application prospects in particle physics experiments due to its excellent timing resolution. The LGAD with a pixel size of 1.3 mm $\times$ 1.3 mm was used to construct a High Granularity Timing Detector (HGTD) in ATLAS experiments to solve the pile-up problem. Meanwhile, the Circular Electron Positron Collider (CEPC) also proposes detectors using the LGAD. However, pixel LGAD exhibits higher readout electronics density and cost, which somewhat limits the application of LGADs. To decrease the readout electronics density, the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences has designed strip LGADs with larger areas. These strip LGADs are all 19 mm in length but with different widths of 1.0 mm, 0.5 mm, and 0.3 mm. This article provides a detailed introduction to the design parameters of these strip LGADs and tests their electrical characteristics, including leakage current, break-down voltage, depletion capacitance, etc. The timing resolution and signal-to-noise ratio of the three strip LGAD sensors were investigated using a beta source test system. The position resolution parallel to the strip direction was tested and analyzed for the first time using a pico-second laser test system. Tests have demonstrated that the timing resolution of strip LGADs can reach about 37.5 ps, and position resolution parallel to the strip direction is better than 1 mm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01393v1-abstract-full').style.display = 'none'; document.getElementById('2405.01393v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15104">arXiv:2307.15104</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.15104">pdf</a>, <a href="https://arxiv.org/format/2307.15104">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Dark Count of 20-inch PMTs Generated by Natural Radioactivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhimin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Min Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Caimei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Rodphai%2C+N">Narongkiat Rodphai</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yongpeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jilei Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C">Changgen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuekun Heng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15104v5-abstract-short" style="display: inline;"> The primary objective of the JUNO experiment is to determine the ordering of neutrino masses using a 20-kton liquid-scintillator detector. The 20-inch photomultiplier tube (PMT) plays a crucial role in achieving excellent energy resolution of at least 3% at 1 MeV. Understanding the characteristics and features of the PMT is vital for comprehending the detector&#39;s performance, particularly regarding&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15104v5-abstract-full').style.display = 'inline'; document.getElementById('2307.15104v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15104v5-abstract-full" style="display: none;"> The primary objective of the JUNO experiment is to determine the ordering of neutrino masses using a 20-kton liquid-scintillator detector. The 20-inch photomultiplier tube (PMT) plays a crucial role in achieving excellent energy resolution of at least 3% at 1 MeV. Understanding the characteristics and features of the PMT is vital for comprehending the detector&#39;s performance, particularly regarding the occurrence of large pulses in PMT dark counts. This research paper aims to further investigate the origin of these large pulses in the 20-inch PMT dark count rate through measurements and simulations. The findings confirm that the main sources of the large pulses are natural radioactivity and muons striking the PMT glass. By analyzing the PMT dark count rate spectrum, it becomes possible to roughly estimate the radioactivity levels in the surrounding environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15104v5-abstract-full').style.display = 'none'; document.getElementById('2307.15104v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures, and 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10544">arXiv:2307.10544</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.10544">pdf</a>, <a href="https://arxiv.org/format/2307.10544">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design &amp; Optimization of the HV divider for JUNO 20-inch PMT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luo%2C+F">Feng-Jiao Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhi-Min Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+A">An-Bo Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yue-Kun Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+Z">Zhong-Hua Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+M">Mei-Hang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+S">Sen Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shu-Lin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yi-Fang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Olshevskiy%2C+A">Alexander Olshevskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+G">Guo-Rui Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+Z">Zhen Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+L">Ling Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xing-Chao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Si%2C+S">Shu-Guang Si</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+J">Jian-Ning Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10544v2-abstract-short" style="display: inline;"> The Jiangmen Underground Observatory (JUNO) is a 20-kton liquid scintillator detector that employs 20,000 20-inch photomultiplier tubes (PMTs) as photon sensors, with 5,000 dynode-PMTs from HAMAMATSU Photonics K.K. (HPK), and 15,000 MCP-PMTs from North Night Vision Technology (NNVT) installed in pure water. JUNO aims to provide long-lasting and the best performance operation by utilizing a high-tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10544v2-abstract-full').style.display = 'inline'; document.getElementById('2307.10544v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10544v2-abstract-full" style="display: none;"> The Jiangmen Underground Observatory (JUNO) is a 20-kton liquid scintillator detector that employs 20,000 20-inch photomultiplier tubes (PMTs) as photon sensors, with 5,000 dynode-PMTs from HAMAMATSU Photonics K.K. (HPK), and 15,000 MCP-PMTs from North Night Vision Technology (NNVT) installed in pure water. JUNO aims to provide long-lasting and the best performance operation by utilizing a high-transparency liquid scintillator, high detection efficiency PMTs, and specially designed electronics including water-proof potting for the high voltage (HV) dividers of PMTs. In this paper, we present a summary of the design and optimization of HV dividers for both types of 20-inch PMTs, which includes collection efficiency, charge resolution, HV divider current, pulse shape, and maximum amplitude restriction. We have developed and finalized four schemes of the HV divider for different scenarios, including the final version selected by JUNO. All 20,000 20-inch PMTs have successfully undergone production and burning tests. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10544v2-abstract-full').style.display = 'none'; document.getElementById('2307.10544v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03894">arXiv:2307.03894</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.03894">pdf</a>, <a href="https://arxiv.org/format/2307.03894">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The Performance of AC-coupled Strip LGAD developed by IHEP </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+W">Weiyi Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Mengzhao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Z">Zhijun Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+M">Mei Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiaoxu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+T">Tianyuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+Y">Yuan Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shuqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+X">Xinhui Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yunyun Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+T">Tianya Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X">Xuan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+W+W+Y">Wei Wang. Yuekun Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+G">Gaobo Xu</a>, <a href="/search/physics?searchtype=author&amp;query=da+Costa%2C+J+G">Jo茫o Guimaraes da Costa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03894v3-abstract-short" style="display: inline;"> The AC-coupled Strip LGAD (Strip AC-LGAD) is a novel LGAD design that diminishes the density of readout electronics through the use of strip electrodes, enabling the simultaneous measurement of time and spatial information. The Institute of High Energy Physics has designed a long Strip AC-LGAD prototype with a strip electrode length of 5.7 mm and pitches of 150 $渭m$, 200 $渭m$, and 250 $渭m$. Spatia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03894v3-abstract-full').style.display = 'inline'; document.getElementById('2307.03894v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03894v3-abstract-full" style="display: none;"> The AC-coupled Strip LGAD (Strip AC-LGAD) is a novel LGAD design that diminishes the density of readout electronics through the use of strip electrodes, enabling the simultaneous measurement of time and spatial information. The Institute of High Energy Physics has designed a long Strip AC-LGAD prototype with a strip electrode length of 5.7 mm and pitches of 150 $渭m$, 200 $渭m$, and 250 $渭m$. Spatial and timing resolutions of the long Strip AC-LGAD are studied by pico-second laser test and beta source tests. The laser test demonstrates that spatial resolution improves as the pitch size decreases, with an optimal resolution achieved at 8.3 $渭$m. Furthermore, the Beta source test yields a timing resolution of 37.6 ps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03894v3-abstract-full').style.display = 'none'; document.getElementById('2307.03894v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05172">arXiv:2303.05172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05172">pdf</a>, <a href="https://arxiv.org/format/2303.05172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168680">10.1016/j.nima.2023.168680 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The JUNO experiment Top Tracker </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05172v1-abstract-short" style="display: inline;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05172v1-abstract-full" style="display: none;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector, covering about 60% of the surface above them. The JUNO Top Tracker is constituted by the decommissioned OPERA experiment Target Tracker modules. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multianode photomultiplier tubes. Compared to the OPERA Target Tracker, the JUNO Top Tracker uses new electronics able to cope with the high rate produced by the high rock radioactivity compared to the one in Gran Sasso underground laboratory. This paper will present the new electronics and mechanical structure developed for the Top Tracker of JUNO along with its expected performance based on the current detector simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'none'; document.getElementById('2303.05172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A 1057 (2023) 168680 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03910">arXiv:2303.03910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03910">pdf</a>, <a href="https://arxiv.org/format/2303.03910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> JUNO sensitivity to $^7$Be, $pep$, and CNO solar neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">Marco Beretta</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03910v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03910v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented levels of precision. In this paper, we provide estimation of the JUNO sensitivity to 7Be, pep, and CNO solar neutrinos that can be obtained via a spectral analysis above the 0.45 MeV threshold. This study is performed assuming different scenarios of the liquid scintillator radiopurity, ranging from the most opti mistic one corresponding to the radiopurity levels obtained by the Borexino experiment, up to the minimum requirements needed to perform the neutrino mass ordering determination with reactor antineutrinos - the main goal of JUNO. Our study shows that in most scenarios, JUNO will be able to improve the current best measurements on 7Be, pep, and CNO solar neutrino fluxes. We also perform a study on the JUNO capability to detect periodical time variations in the solar neutrino flux, such as the day-night modulation induced by neutrino flavor regeneration in Earth, and the modulations induced by temperature changes driven by helioseismic waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'none'; document.getElementById('2303.03910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.04902">arXiv:2301.04902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.04902">pdf</a>, <a href="https://arxiv.org/format/2301.04902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/05/P05023">10.1088/1748-0221/18/05/P05023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study on U/Th residual radioactivity in acrylic from surface treatment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yuanxia Li</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+X">Xiaohui Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+X">Xiaolan Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jie Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+G">Gaofeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xiaoyan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuekun Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+L">Liangjian Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Sisti%2C+M">Monica Sisti</a>, <a href="/search/physics?searchtype=author&amp;query=Perrot%2C+F">Fr茅d茅ric Perrot</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+H">Hongqiang Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.04902v1-abstract-short" style="display: inline;"> Acrylic is widely used as material for the target container in low background experiments due to its high light transparency and low intrinsic radioactivity. However, its surface can be easily contaminated during production, so careful treatment of the surface is essential to avoid direct contamination of the target. The Jiangmen Underground Neutrino Observatory will use about 600~t of acrylic to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04902v1-abstract-full').style.display = 'inline'; document.getElementById('2301.04902v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.04902v1-abstract-full" style="display: none;"> Acrylic is widely used as material for the target container in low background experiments due to its high light transparency and low intrinsic radioactivity. However, its surface can be easily contaminated during production, so careful treatment of the surface is essential to avoid direct contamination of the target. The Jiangmen Underground Neutrino Observatory will use about 600~t of acrylic to build the spherical vessel of 35.4~m in diameter for a 20~kt liquid scintillator (LS). Since acrylic will contact the LS directly, the cleanliness of the its surface is quite important for the radiopurity of the LS. A new method for measuring the radioactivity of $^{238}$U and $^{232}$Th in acrylic to sub-ppt ($&lt;10^{-12}$~g/g) was developed, and it is crucial for the acrylic radioactivity screening in this study. We performed many background tests on different surface treatments, and the recommended procedure for the treatment of acrylic to achieve low radioactivity and high light transparency could be applicable to other low background experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04902v1-abstract-full').style.display = 'none'; document.getElementById('2301.04902v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11514">arXiv:2212.11514</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.11514">pdf</a>, <a href="https://arxiv.org/format/2212.11514">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Study on the linearity of 20&#34; dynode and MCP PMTs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+D">Diru Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+F">Fengjiao Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhimin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Min Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jilei Xu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+M">Miao He</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C">Changgen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuekun Heng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11514v1-abstract-short" style="display: inline;"> The linearity of charge response is an important feature of photomultiplier tubes (PMT) for physics measurements, especially the newly developed 20&#34; MCP-PMT. In this paper, in addition to the traditional method of double light sources, we applied another relative method of 20&#34; PMT to 3&#34; PMT to measure the linearity of the 20&#34; dynode and MCP PMTs in pulse mode with a waveform digitizer. The measure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11514v1-abstract-full').style.display = 'inline'; document.getElementById('2212.11514v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11514v1-abstract-full" style="display: none;"> The linearity of charge response is an important feature of photomultiplier tubes (PMT) for physics measurements, especially the newly developed 20&#34; MCP-PMT. In this paper, in addition to the traditional method of double light sources, we applied another relative method of 20&#34; PMT to 3&#34; PMT to measure the linearity of the 20&#34; dynode and MCP PMTs in pulse mode with a waveform digitizer. The measurements show a good linear response of 20&#34; PMTs to 1,000 photoelectrons (p.e.). The correlations of the amplitude, rise-time, fall-time, FWHM, baseline recovery, overshoot, and late-pulse to the output charge of the 20&#34; PMTs derived from the waveform analysis, where the MCP-PMT shows very different features compared to the dynode-PMT in particular. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11514v1-abstract-full').style.display = 'none'; document.getElementById('2212.11514v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.03754">arXiv:2212.03754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.03754">pdf</a>, <a href="https://arxiv.org/format/2212.03754">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TNS.2023.3289032">10.1109/TNS.2023.3289032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The performance of large-pitch AC-LGAD with different N+ dose </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Mengzhao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+W">Weiyi Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Z">Zhijun Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+M">Mei Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiaoxu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+Y">Yuan Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yunyun Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+T">Tianya Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X">Xuan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shuqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Chengjun Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+X">Xinhui Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuekun Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+G">Gaobo Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.03754v3-abstract-short" style="display: inline;"> AC-Coupled LGAD (AC-LGAD) is a new 4D detector developed based on the Low Gain Avalanche Diode (LGAD) technology, which can accurately measure the time and spatial information of particles. The Institute of High Energy Physics (IHEP) designed a large-size AC-LGAD with a pitch of 2000~\SI{}{\micro\metre} and AC pad of 1000~\SI{}{\micro\metre}, and explored the effect of N+ layer dose on the spatial&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03754v3-abstract-full').style.display = 'inline'; document.getElementById('2212.03754v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.03754v3-abstract-full" style="display: none;"> AC-Coupled LGAD (AC-LGAD) is a new 4D detector developed based on the Low Gain Avalanche Diode (LGAD) technology, which can accurately measure the time and spatial information of particles. The Institute of High Energy Physics (IHEP) designed a large-size AC-LGAD with a pitch of 2000~\SI{}{\micro\metre} and AC pad of 1000~\SI{}{\micro\metre}, and explored the effect of N+ layer dose on the spatial resolution and time resolution. The spatial resolution varied from 36~\SI{}{\micro\metre} to 16~\SI{}{\micro\metre} depending on N+ dose for a charge corresponding to about 12 minimum ionizing particles. The jitter component of the time resolution does not change significantly with different N+ doses, and it is about 15-17 ps measured by laser. The AC-LGAD with a low N+ dose has a large attenuation factor and better spatial resolution in the central region between pads. In these specific conditions, large signal attenuation factor and low noise level are beneficial to improve the spatial resolution of the AC-LGAD sensor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03754v3-abstract-full').style.display = 'none'; document.getElementById('2212.03754v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08441">arXiv:2209.08441</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.08441">pdf</a>, <a href="https://arxiv.org/format/2209.08441">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/02/P02013">10.1088/1748-0221/18/02/P02013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design of the PMT underwater cascade implosion protection system for JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+M">Miao He</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+Z">Zhonghua Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+S">Shaojing Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Jing%2C+X">Xiaoping Jing</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hongbang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ke%2C+Z">Zunjian Ke</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+D">Diru Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+W">Wan Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+M">Mehang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+F">Fang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+J">Junguang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuekun Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jiawen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xiaoyan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Z">Zhipeng Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08441v1-abstract-short" style="display: inline;"> Photomultiplier tubes (PMTs) are widely used underwater in large-scale neutrino experiments. As a hollow glass spherelike structure, implosion is unavoidable during long-term operation under large water pressure. There is a possibility of cascade implosion to neighbor PMTs due to shockwave. Jiangmen Underground Neutrino Observatory designed a protection structure for each 20-inch PMT, consisting o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08441v1-abstract-full').style.display = 'inline'; document.getElementById('2209.08441v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08441v1-abstract-full" style="display: none;"> Photomultiplier tubes (PMTs) are widely used underwater in large-scale neutrino experiments. As a hollow glass spherelike structure, implosion is unavoidable during long-term operation under large water pressure. There is a possibility of cascade implosion to neighbor PMTs due to shockwave. Jiangmen Underground Neutrino Observatory designed a protection structure for each 20-inch PMT, consisting of a top cover, a bottom cover, and their connection. This paper introduces the requirement and design of the PMT protection system, including the material selection, investigation of manufacture technology, and prototyping. Optimization and validation by simulation and underwater experiments are also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08441v1-abstract-full').style.display = 'none'; document.getElementById('2209.08441v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.07456">arXiv:2206.07456</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.07456">pdf</a>, <a href="https://arxiv.org/format/2206.07456">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/10/P10048">10.1088/1748-0221/17/10/P10048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of 20-inch PMTs dark count generated large pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhimn Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Min Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yongpeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yaoguang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+Z">Zhaoyuan Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C">Changgen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuekun Heng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.07456v1-abstract-short" style="display: inline;"> The main goal of the JUNO experiment is to determine the neutrino mass ordering with a 20\,kt liquid-scintillator detector. The 20-inch PMT is crucial as one of JUNO key instruments to realize an excellent energy resolution of at least 3\,\% at 1\,MeV. The knowledge on PMT&#39;s characterisation and feature is critical for detector performance understanding. Large pulses from PMT dark count such as fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07456v1-abstract-full').style.display = 'inline'; document.getElementById('2206.07456v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.07456v1-abstract-full" style="display: none;"> The main goal of the JUNO experiment is to determine the neutrino mass ordering with a 20\,kt liquid-scintillator detector. The 20-inch PMT is crucial as one of JUNO key instruments to realize an excellent energy resolution of at least 3\,\% at 1\,MeV. The knowledge on PMT&#39;s characterisation and feature is critical for detector performance understanding. Large pulses from PMT dark count such as from flasher or others are one of the serious concerns for detector noise control. Focusing on the large pulses from 20-inch PMT dark count, this paper is trying to investigate the causes by measurements with a muon tagging system. It is found that the large pules of 20-inch PMT dark count is contributed mainly from muons hitting the PMT glass. A simulation is also realized and achieved a consistent understanding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07456v1-abstract-full').style.display = 'none'; document.getElementById('2206.07456v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.08830">arXiv:2205.08830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.08830">pdf</a>, <a href="https://arxiv.org/format/2205.08830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2022/10/033">10.1088/1475-7516/2022/10/033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a>, <a href="/search/physics?searchtype=author&amp;query=Blin%2C+S">Sylvie Blin</a> , et al. (577 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.08830v2-abstract-short" style="display: inline;"> We present the detection potential for the diffuse supernova neutrino background (DSNB) at the Jiangmen Underground Neutrino Observatory (JUNO), using the inverse-beta-decay (IBD) detection channel on free protons. We employ the latest information on the DSNB flux predictions, and investigate in detail the background and its reduction for the DSNB search at JUNO. The atmospheric neutrino induced n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08830v2-abstract-full').style.display = 'inline'; document.getElementById('2205.08830v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.08830v2-abstract-full" style="display: none;"> We present the detection potential for the diffuse supernova neutrino background (DSNB) at the Jiangmen Underground Neutrino Observatory (JUNO), using the inverse-beta-decay (IBD) detection channel on free protons. We employ the latest information on the DSNB flux predictions, and investigate in detail the background and its reduction for the DSNB search at JUNO. The atmospheric neutrino induced neutral current (NC) background turns out to be the most critical background, whose uncertainty is carefully evaluated from both the spread of model predictions and an envisaged \textit{in situ} measurement. We also make a careful study on the background suppression with the pulse shape discrimination (PSD) and triple coincidence (TC) cuts. With latest DSNB signal predictions, more realistic background evaluation and PSD efficiency optimization, and additional TC cut, JUNO can reach the significance of 3$蟽$ for 3 years of data taking, and achieve better than 5$蟽$ after 10 years for a reference DSNB model. In the pessimistic scenario of non-observation, JUNO would strongly improve the limits and exclude a significant region of the model parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08830v2-abstract-full').style.display = 'none'; document.getElementById('2205.08830v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 11 figures, final published version in JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 10 (2022) 033 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.08629">arXiv:2205.08629</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.08629">pdf</a>, <a href="https://arxiv.org/format/2205.08629">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-11002-8">10.1140/epjc/s10052-022-11002-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mass Testing and Characterization of 20-inch PMTs for JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andre%2C+J+P+A+M">Joao Pedro Athayde Marcondes de Andre</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a> , et al. (541 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.08629v2-abstract-short" style="display: inline;"> Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3 % at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program whic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08629v2-abstract-full').style.display = 'inline'; document.getElementById('2205.08629v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.08629v2-abstract-full" style="display: none;"> Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3 % at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program which began in 2017 and elapsed for about four years. Based on this mass characterization and a set of specific requirements, a good quality of all accepted PMTs could be ascertained. This paper presents the performed testing procedure with the designed testing systems as well as the statistical characteristics of all 20-inch PMTs intended to be used in the JUNO experiment, covering more than fifteen performance parameters including the photocathode uniformity. This constitutes the largest sample of 20-inch PMTs ever produced and studied in detail to date, i.e. 15,000 of the newly developed 20-inch MCP-PMTs from Northern Night Vision Technology Co. (NNVT) and 5,000 of dynode PMTs from Hamamatsu Photonics K. K.(HPK). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08629v2-abstract-full').style.display = 'none'; document.getElementById('2205.08629v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.05025">arXiv:2205.05025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.05025">pdf</a>, <a href="https://arxiv.org/format/2205.05025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167697">10.1016/j.nima.2022.167697 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and testing of LGAD sensor with shallow carbon implantation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+K">Kewei Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+X">Xuewei Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+T">Tao Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Mengzhao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+M">Mei Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Z">Zhijun Liang</a>, <a href="/search/physics?searchtype=author&amp;query=da+Costa%2C+J+G">Joao Guimaraes da Costa</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yunyun Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+H">Han Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Howard%2C+A">Alissa Howard</a>, <a href="/search/physics?searchtype=author&amp;query=Kramberger%2C+G">Gregor Kramberger</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+X">Xin Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuekun Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+Y">Yuhang Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+Y">Yuan Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shuqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Mengran Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Chengjun Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X">Xuan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhai%2C+M">Mingjie Zhai</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+G">Gaobo Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+G">Gangping Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhai%2C+Q">Qionghua Zhai</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.05025v2-abstract-short" style="display: inline;"> The low gain avalanche detectors (LGADs) are thin sensors with fast charge collection which in combination with internal gain deliver an outstanding time resolution of about 30 ps. High collision rates and consequent large particle rates crossing the detectors at the upgraded Large Hadron Collider (LHC) in 2028 will lead to radiation damage and deteriorated performance of the LGADs. The main conse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05025v2-abstract-full').style.display = 'inline'; document.getElementById('2205.05025v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.05025v2-abstract-full" style="display: none;"> The low gain avalanche detectors (LGADs) are thin sensors with fast charge collection which in combination with internal gain deliver an outstanding time resolution of about 30 ps. High collision rates and consequent large particle rates crossing the detectors at the upgraded Large Hadron Collider (LHC) in 2028 will lead to radiation damage and deteriorated performance of the LGADs. The main consequence of radiation damage is loss of gain layer doping (acceptor removal) which requires an increase of bias voltage to compensate for the loss of charge collection efficiency and consequently time resolution. The Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS) has developed a process based on the Institute of Microelectronics (IME), CAS capability to enrich the gain layer with carbon to reduce the acceptor removal effect by radiation. After 1 MeV neutron equivalent fluence of 2.5$\times$10$^{15}$ n$_{eq}$/cm$^{2}$, which is the maximum fluence to which sensors will be exposed at ATLAS High Granularity Timing Detector (HGTD), the IHEP-IME second version (IHEP-IMEv2) 50 $渭$m LGAD sensors already deliver adequate charge collection &gt; 4 fC and time resolution &lt; 50 ps at voltages &lt; 400 V. The operation voltages of these 50 $渭$m devices are well below those at which single event burnout may occur. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05025v2-abstract-full').style.display = 'none'; document.getElementById('2205.05025v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.12632">arXiv:2110.12632</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.12632">pdf</a>, <a href="https://arxiv.org/format/2110.12632">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Effects of shallow carbon and deep N++ layer on the radiation hardness of IHEP-IME LGAD sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Mengzhao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yunyun Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+X">Xuewei Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+H">Han Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Z">Zhijun Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+M">Mei Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+T">Tao Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+K">Kewei Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shuqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Chengjun Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X">Xuan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+Y">Yuhang Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+X">Xin Shi</a>, <a href="/search/physics?searchtype=author&amp;query=da+Costa%2C+J+G">J. G. da Costa</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuekun Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+G">Gaobo Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhai%2C+Q">Qionghua Zhai</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+G">Gangping Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+M">Mingzheng Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+J">Jun Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+H">Huaxiang Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Junfeng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Howard%2C+A">Alissa Howard</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.12632v1-abstract-short" style="display: inline;"> Low Gain Avalanche Diode (LGAD) is applied for the High-Granularity Timing Detector (HGTD), and it will be used to upgrade the ATLAS experiment. The first batch IHEP-IME LGAD sensors were designed by the Institute of High Energy Physics (IHEP) and fabricated by the Institute of Microelectronics (IME). Three IHEP-IME sensors (W1, W7 and W8) were irradiated by the neutrons up to the fluence of 2.5 x&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12632v1-abstract-full').style.display = 'inline'; document.getElementById('2110.12632v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.12632v1-abstract-full" style="display: none;"> Low Gain Avalanche Diode (LGAD) is applied for the High-Granularity Timing Detector (HGTD), and it will be used to upgrade the ATLAS experiment. The first batch IHEP-IME LGAD sensors were designed by the Institute of High Energy Physics (IHEP) and fabricated by the Institute of Microelectronics (IME). Three IHEP-IME sensors (W1, W7 and W8) were irradiated by the neutrons up to the fluence of 2.5 x 10^15 n_eq/cm^2 to study the effect of the shallow carbon and deep N++ layer on the irradiation hardness. Taking W7 as a reference, W1 has an extra shallow carbon applied, and W8 has a deeper N++ layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12632v1-abstract-full').style.display = 'none'; document.getElementById('2110.12632v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This work has been submitted to the IEEE for possible publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03669">arXiv:2107.03669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03669">pdf</a>, <a href="https://arxiv.org/format/2107.03669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2021)102">10.1007/JHEP11(2021)102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radioactivity control strategy for the JUNO detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+collaboration"> JUNO collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a>, <a href="/search/physics?searchtype=author&amp;query=Blin%2C+S">Sylvie Blin</a> , et al. (578 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03669v2-abstract-short" style="display: inline;"> JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03669v2-abstract-full').style.display = 'inline'; document.getElementById('2107.03669v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03669v2-abstract-full" style="display: none;"> JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz in the default fiducial volume, above an energy threshold of 0.7 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03669v2-abstract-full').style.display = 'none'; document.getElementById('2107.03669v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03563">arXiv:2107.03563</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03563">pdf</a>, <a href="https://arxiv.org/format/2107.03563">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/08/P08053">10.1088/1748-0221/16/08/P08053 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The performance of IHEP-NDL LGAD sensors after neutron irradiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Mengzhao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yunyun Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+H">Han Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+X">Xuewei Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shuqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Chengjun Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X">Xuan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhai%2C+M">Mingjie Zhai</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+T">Tao Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+K">Kewei Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+Y">Yuhang Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+S">Suyu Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+M">Mei Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+X">Xin Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Z">Zhijun Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuekun Heng</a>, <a href="/search/physics?searchtype=author&amp;query=da+Costa%2C+J+G">Joao Guimaraes da Costa</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xingan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+D">Dejun Han</a>, <a href="/search/physics?searchtype=author&amp;query=Howard%2C+A">Alissa Howard</a>, <a href="/search/physics?searchtype=author&amp;query=Kramberger%2C+G">Gregor Kramberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03563v1-abstract-short" style="display: inline;"> The performances of Low Gain Avalanche diode (LGAD) sensors from a neutron irradiation campaign with fluences of 0.8 x 10^15, 15 x 10^15 and 2.5 x 10^15 neq/cm2 are reported in this article. These LGAD sensors are developed by the Institute of High Energy Physics, Chinese Academy of Sciences and the Novel Device Laboratory for the High Granularity Timing Detector of the High Luminosity Large Hadro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03563v1-abstract-full').style.display = 'inline'; document.getElementById('2107.03563v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03563v1-abstract-full" style="display: none;"> The performances of Low Gain Avalanche diode (LGAD) sensors from a neutron irradiation campaign with fluences of 0.8 x 10^15, 15 x 10^15 and 2.5 x 10^15 neq/cm2 are reported in this article. These LGAD sensors are developed by the Institute of High Energy Physics, Chinese Academy of Sciences and the Novel Device Laboratory for the High Granularity Timing Detector of the High Luminosity Large Hadron Collider. The timing resolution and collected charge of the LGAD sensors were measured with electrons from a beta source. After irradiation with a fluence of 2.5 x 10^15 neq/cm2, the collected charge decreases from 40 fC to 7 fC, the signal-to-noise ratio deteriorates from 48 to 12, and the timing resolution increases from 29 ps to 39 ps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03563v1-abstract-full').style.display = 'none'; document.getElementById('2107.03563v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10794">arXiv:2104.10794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.10794">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Electrically detected paramagnetic resonance in Ag-paint coated DPPH </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Heng%2C+L+Y">Lee Yong Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+U">Ushnish Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Mahendiran%2C+R">Ramanathan Mahendiran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10794v1-abstract-short" style="display: inline;"> We describe a simple experimental method to detect electron paramagnetic resonance (EPR) in polycrystalline 2,2-diphenyl-1-picrylhydrazyl (DPPH) sample, the standard g-marker for EPR spectroscopy, without using a cavity resonator or a prefabricated waveguide. It is shown that microwave(MW) current injected into a layer of silver paint coated on an insulating DPPH sample is able to excite the param&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10794v1-abstract-full').style.display = 'inline'; document.getElementById('2104.10794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10794v1-abstract-full" style="display: none;"> We describe a simple experimental method to detect electron paramagnetic resonance (EPR) in polycrystalline 2,2-diphenyl-1-picrylhydrazyl (DPPH) sample, the standard g-marker for EPR spectroscopy, without using a cavity resonator or a prefabricated waveguide. It is shown that microwave(MW) current injected into a layer of silver paint coated on an insulating DPPH sample is able to excite the paramagnetic resonance in DPPH. As the applied dc magnetic field H is swept, the high-frequency resistance of the Ag-paint layer, measured at room temperature with a single port impedance analyzer in the MW frequency range 1 to 2.5 GHz, exhibits a sharp peak at a critical value of the dc field (H = Hres) while the reactance exhibits a dispersion-like behavior around the same field value for a given frequency. Hres increases linearly with the frequency of MW current. We interpret the observed features in the impedance to EPR in DPPH driven by the Oersted magnetic field arising from the MW current in the Ag-paint layer. We also confirm the occurrence of EPR in DPPH independently using a coplanar waveguide-based broadband technique. This technique has the potential to investigate other EPR active inorganic and organic compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10794v1-abstract-full').style.display = 'none'; document.getElementById('2104.10794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.16900">arXiv:2103.16900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.16900">pdf</a>, <a href="https://arxiv.org/format/2103.16900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The Design and Sensitivity of JUNO&#39;s scintillator radiopurity pre-detector OSIRIS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a> , et al. (582 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.16900v1-abstract-short" style="display: inline;"> The OSIRIS detector is a subsystem of the liquid scintillator fillling chain of the JUNO reactor neutrino experiment. Its purpose is to validate the radiopurity of the scintillator to assure that all components of the JUNO scintillator system work to specifications and only neutrino-grade scintillator is filled into the JUNO Central Detector. The aspired sensitivity level of $10^{-16}$ g/g of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.16900v1-abstract-full').style.display = 'inline'; document.getElementById('2103.16900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.16900v1-abstract-full" style="display: none;"> The OSIRIS detector is a subsystem of the liquid scintillator fillling chain of the JUNO reactor neutrino experiment. Its purpose is to validate the radiopurity of the scintillator to assure that all components of the JUNO scintillator system work to specifications and only neutrino-grade scintillator is filled into the JUNO Central Detector. The aspired sensitivity level of $10^{-16}$ g/g of $^{238}$U and $^{232}$Th requires a large ($\sim$20 m$^3$) detection volume and ultralow background levels. The present paper reports on the design and major components of the OSIRIS detector, the detector simulation as well as the measuring strategies foreseen and the sensitivity levels to U/Th that can be reached in this setup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.16900v1-abstract-full').style.display = 'none'; document.getElementById('2103.16900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.14822">arXiv:2103.14822</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.14822">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/08/T08009">10.1088/1748-0221/16/08/T08009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gain and charge response of 20 inch MCP and dynode PMTs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H+Q">H. Q. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z+M">Z. M. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+F+J">F. J. Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+A+B">A. B. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+D+R">D. R. Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+C">Y. C. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+Z+H">Z. H. Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C+G">C. G. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y+K">Y. K. Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y+F">Y. F. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.14822v1-abstract-short" style="display: inline;"> JUNO is a 20-kton liquid scintillator detector aiming to determine the neutrino mass ordering, precisely measure the oscillation parameters, detect the astrophysical neutrinos and search for exotic physics. It is designed to reach an energy resolution of 3% at 1 MeV with the highest ever PMT coverage, using two types of 20 inch phototubes: MCP-PMT from NNVT and dynode-PMT from Hamamatsu. In this a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.14822v1-abstract-full').style.display = 'inline'; document.getElementById('2103.14822v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.14822v1-abstract-full" style="display: none;"> JUNO is a 20-kton liquid scintillator detector aiming to determine the neutrino mass ordering, precisely measure the oscillation parameters, detect the astrophysical neutrinos and search for exotic physics. It is designed to reach an energy resolution of 3% at 1 MeV with the highest ever PMT coverage, using two types of 20 inch phototubes: MCP-PMT from NNVT and dynode-PMT from Hamamatsu. In this article, the gain and charge response of the MCP and dynode PMTs are investigated with the study of JUNO Central Detector prototype. The linearity of the MCP-PMT charge output is measured too to check the effect of a long tail on its charge spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.14822v1-abstract-full').style.display = 'none'; document.getElementById('2103.14822v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.11538">arXiv:2102.11538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.11538">pdf</a>, <a href="https://arxiv.org/format/2102.11538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165347">10.1016/j.nima.2021.165347 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mass production and characterization of 3-inch PMTs for the JUNO experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cao%2C+C">Chuanya Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jilei Xu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+M">Miao He</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Bongrand%2C+M">Mathieu Bongrand</a>, <a href="/search/physics?searchtype=author&amp;query=Bordereau%2C+C">Cl茅ment Bordereau</a>, <a href="/search/physics?searchtype=author&amp;query=Breton%2C+D">Dominique Breton</a>, <a href="/search/physics?searchtype=author&amp;query=Cabrera%2C+A">Anatael Cabrera</a>, <a href="/search/physics?searchtype=author&amp;query=Campeny%2C+A">Agustin Campeny</a>, <a href="/search/physics?searchtype=author&amp;query=Cerna%2C+C">C茅dric Cerna</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Haoqiang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+P">Po-An Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Claverie%2C+G">G茅rard Claverie</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Lorenzo%2C+S+C">Selma Conforti Di Lorenzo</a>, <a href="/search/physics?searchtype=author&amp;query=De+La+Taille%2C+C">Christophe De La Taille</a>, <a href="/search/physics?searchtype=author&amp;query=Druillole%2C+F">Fr茅d茅ric Druillole</a>, <a href="/search/physics?searchtype=author&amp;query=Fournier%2C+A">Am茅lie Fournier</a>, <a href="/search/physics?searchtype=author&amp;query=Grassi%2C+M">Marco Grassi</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+X">Xiaofei Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Haacke%2C+M">Michael Haacke</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+Y">Yang Han</a>, <a href="/search/physics?searchtype=author&amp;query=Hellmuth%2C+P">Patrick Hellmuth</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuekun Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Herrera%2C+R">Rafael Herrera</a>, <a href="/search/physics?searchtype=author&amp;query=Hsiung%2C+Y">Yee Hsiung</a> , et al. (42 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.11538v2-abstract-short" style="display: inline;"> 26,000 3-inch photomultiplier tubes (PMTs) have been produced for Jiangmen Underground Neutrino Observatory (JUNO) by the Hainan Zhanchuang Photonics Technology Co., Ltd (HZC) company in China and passed all acceptance tests with only 15 tubes rejected. The mass production began in 2018 and elapsed for about 2 years at a rate of $\sim$1,000~PMTs per month. The characterization of the PMTs was perf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.11538v2-abstract-full').style.display = 'inline'; document.getElementById('2102.11538v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.11538v2-abstract-full" style="display: none;"> 26,000 3-inch photomultiplier tubes (PMTs) have been produced for Jiangmen Underground Neutrino Observatory (JUNO) by the Hainan Zhanchuang Photonics Technology Co., Ltd (HZC) company in China and passed all acceptance tests with only 15 tubes rejected. The mass production began in 2018 and elapsed for about 2 years at a rate of $\sim$1,000~PMTs per month. The characterization of the PMTs was performed in the factory concurrently with production as a joint effort between HZC and JUNO. Fifteen performance parameters were tracked at different sampling rates, and novel working strategies were implemented to improve quality assurance. This constitutes the largest sample of 3-inch PMTs ever produced and studied in detail to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.11538v2-abstract-full').style.display = 'none'; document.getElementById('2102.11538v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.06817">arXiv:2011.06817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.06817">pdf</a>, <a href="https://arxiv.org/format/2011.06817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165377">10.1016/j.nima.2021.165377 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A practical approach of high precision U and Th concentration measurement in acrylic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cao%2C+C">Chuanya Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+N">Nan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X">Xiaoyu Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jie Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yuanxia Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+Z">Zhiyan Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+L">Liangjian Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+X">Xiaolan Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuekun Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yayun Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.06817v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory will build the world&#39;s largest liquid scintillator detector to study neutrinos from various sources. The 20 kt liquid scintillator will be stored in a $\sim$600 t acrylic sphere with 35.4 m diameter due to the good light transparency, chemical compatibility and low radioactivity of acrylic. The concentration of U/Th in acrylic is required to be less th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06817v1-abstract-full').style.display = 'inline'; document.getElementById('2011.06817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.06817v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory will build the world&#39;s largest liquid scintillator detector to study neutrinos from various sources. The 20 kt liquid scintillator will be stored in a $\sim$600 t acrylic sphere with 35.4 m diameter due to the good light transparency, chemical compatibility and low radioactivity of acrylic. The concentration of U/Th in acrylic is required to be less than 1 ppt (10$^{-12}$ g/g) to achieve a low radioactive background in the fiducial volume of the JUNO detector. The mass production of acrylic has started, and the quality control requires a fast and reliable radioassay on U/Th in acrylic. We have developed a practical method of measuring U/Th in acrylic to sub-ppt level using the Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The U/Th in acrylic can be concentrated by vaporizing acrylic in a class 100 environment, and the residue will be collected and sent to ICP-MS for measuring U/Th. All the other chemical operation is done in a class 100 clean room, and the ICP-MS measurement is done in a class 1000 clean room. The recovery efficiency is studied by adding the natural nonexistent nuclei $^{229}$Th and $^{233}$U as the tracers. The resulting method detection limit (MDL) with 99% confidence can reach 0.02/0.06 pg $^{238}$U/$^{232}$Th /g acrylic with $\sim$75% recovery efficiency. This equipment and method can not only be used for the quality control of JUNO acrylic, but also be further optimized for the radioassay on other materials with extremely low radioactivity, such as ultra-pure water and liquid scintillator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06817v1-abstract-full').style.display = 'none'; document.getElementById('2011.06817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.06405">arXiv:2011.06405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.06405">pdf</a>, <a href="https://arxiv.org/format/2011.06405">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2021)004">10.1007/JHEP03(2021)004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibration Strategy of the JUNO Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+collaboration"> JUNO collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bernieri%2C+E">Enrico Bernieri</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a> , et al. (571 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.06405v3-abstract-short" style="display: inline;"> We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06405v3-abstract-full').style.display = 'inline'; document.getElementById('2011.06405v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.06405v3-abstract-full" style="display: none;"> We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06405v3-abstract-full').style.display = 'none'; document.getElementById('2011.06405v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.00954">arXiv:2010.00954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.00954">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimal optical polarization of nitrogen-vacancy center with arbitrary waveform pulse </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jixing%2C+Z">Zhang Jixing</a>, <a href="/search/physics?searchtype=author&amp;query=Tianzheng%2C+L">Liu Tianzheng</a>, <a href="/search/physics?searchtype=author&amp;query=Lixia%2C+X">Xu Lixia</a>, <a href="/search/physics?searchtype=author&amp;query=Guodong%2C+B">Bian Guodong</a>, <a href="/search/physics?searchtype=author&amp;query=Pengcheng%2C+F">Fan Pengcheng</a>, <a href="/search/physics?searchtype=author&amp;query=Mingxin%2C+L">Li Mingxin</a>, <a href="/search/physics?searchtype=author&amp;query=Ning%2C+Z">Zhang Ning</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuan Heng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.00954v1-abstract-short" style="display: inline;"> The current work proposes a method for pulsed-light polarization of nitrogen-vacancy (NV) center electron spin. To evaluate the influence of pulsed spin polarization, we establish a polarization evaluation index based on polarizability and polarization time. Master equation model are utilized to theoretically calculate the spin polarization dynamics under light excitation and the optimal polarizat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00954v1-abstract-full').style.display = 'inline'; document.getElementById('2010.00954v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.00954v1-abstract-full" style="display: none;"> The current work proposes a method for pulsed-light polarization of nitrogen-vacancy (NV) center electron spin. To evaluate the influence of pulsed spin polarization, we establish a polarization evaluation index based on polarizability and polarization time. Master equation model are utilized to theoretically calculate the spin polarization dynamics under light excitation and the optimal polarization conditions for the conventional methods are obtained. A novel pulsed-light polarization method is proposed by changing the optical pumping rate in the master equation from a fixed value to a time variable and an optimal waveform for proposed method is demonstrated through the variational method, which can simultaneously achieve high polarizability and requires a short polarization time. Hence, the polarization evaluation index is improved by ~10%. Moreover, the proposed method is verified by a pulsed-laser experimental system based on an arbitrary waveform generator. The current report shall expand the application horizon of NV center based quantum sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00954v1-abstract-full').style.display = 'none'; document.getElementById('2010.00954v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.01693">arXiv:2009.01693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.01693">pdf</a>, <a href="https://arxiv.org/format/2009.01693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> An Update to the Letter of Intent for MATHUSLA: Search for Long-Lived Particles at the HL-LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Alpigiani%2C+C">Cristiano Alpigiani</a>, <a href="/search/physics?searchtype=author&amp;query=Arteaga-Vel%C3%A1zquez%2C+J+C">Juan Carlos Arteaga-Vel谩zquez</a>, <a href="/search/physics?searchtype=author&amp;query=Ball%2C+A">Austin Ball</a>, <a href="/search/physics?searchtype=author&amp;query=Barak%2C+L">Liron Barak</a>, <a href="/search/physics?searchtype=author&amp;query=Barron%2C+J">Jared Barron</a>, <a href="/search/physics?searchtype=author&amp;query=Batell%2C+B">Brian Batell</a>, <a href="/search/physics?searchtype=author&amp;query=Beacham%2C+J">James Beacham</a>, <a href="/search/physics?searchtype=author&amp;query=Benhammo%2C+Y">Yan Benhammo</a>, <a href="/search/physics?searchtype=author&amp;query=Caballero-Mora%2C+K+S">Karen Salom茅 Caballero-Mora</a>, <a href="/search/physics?searchtype=author&amp;query=Camarri%2C+P">Paolo Camarri</a>, <a href="/search/physics?searchtype=author&amp;query=Cardarelli%2C+R">Roberto Cardarelli</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+J+P">John Paul Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+W">Wentao Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Curtin%2C+D">David Curtin</a>, <a href="/search/physics?searchtype=author&amp;query=Diamond%2C+M">Miriam Diamond</a>, <a href="/search/physics?searchtype=author&amp;query=Dienes%2C+K+R">Keith R. Dienes</a>, <a href="/search/physics?searchtype=author&amp;query=Dougherty%2C+L+A">Liam Andrew Dougherty</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Sciascio%2C+G">Giuseppe Di Sciascio</a>, <a href="/search/physics?searchtype=author&amp;query=Drewes%2C+M">Marco Drewes</a>, <a href="/search/physics?searchtype=author&amp;query=Etzion%2C+E">Erez Etzion</a>, <a href="/search/physics?searchtype=author&amp;query=Essig%2C+R">Rouven Essig</a>, <a href="/search/physics?searchtype=author&amp;query=Evans%2C+J">Jared Evans</a>, <a href="/search/physics?searchtype=author&amp;query=T%C3%A9llez%2C+A+F">Arturo Fern谩ndez T茅llez</a>, <a href="/search/physics?searchtype=author&amp;query=Fischer%2C+O">Oliver Fischer</a>, <a href="/search/physics?searchtype=author&amp;query=Freeman%2C+J">Jim Freeman</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.01693v1-abstract-short" style="display: inline;"> We report on recent progress in the design of the proposed MATHUSLA Long Lived Particle (LLP) detector for the HL-LHC, updating the information in the original Letter of Intent (LoI), see CDS:LHCC-I-031, arXiv:1811.00927. A suitable site has been identified at LHC Point 5 that is closer to the CMS Interaction Point (IP) than assumed in the LoI. The decay volume has been increased from 20 m to 25 m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01693v1-abstract-full').style.display = 'inline'; document.getElementById('2009.01693v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.01693v1-abstract-full" style="display: none;"> We report on recent progress in the design of the proposed MATHUSLA Long Lived Particle (LLP) detector for the HL-LHC, updating the information in the original Letter of Intent (LoI), see CDS:LHCC-I-031, arXiv:1811.00927. A suitable site has been identified at LHC Point 5 that is closer to the CMS Interaction Point (IP) than assumed in the LoI. The decay volume has been increased from 20 m to 25 m in height. Engineering studies have been made in order to locate much of the decay volume below ground, bringing the detector even closer to the IP. With these changes, a 100 m x 100 m detector has the same physics reach for large c$蟿$ as the 200 m x 200 m detector described in the LoI and other studies. The performance for small c$蟿$ is improved because of the proximity to the IP. Detector technology has also evolved while retaining the strip-like sensor geometry in Resistive Plate Chambers (RPC) described in the LoI. The present design uses extruded scintillator bars read out using wavelength shifting fibers and silicon photomultipliers (SiPM). Operations will be simpler and more robust with much lower operating voltages and without the use of greenhouse gases. Manufacturing is straightforward and should result in cost savings. Understanding of backgrounds has also significantly advanced, thanks to new simulation studies and measurements taken at the MATHUSLA test stand operating above ATLAS in 2018. We discuss next steps for the MATHUSLA collaboration, and identify areas where new members can make particularly important contributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01693v1-abstract-full').style.display = 'none'; document.getElementById('2009.01693v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages + references, 12 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-LHCC-2020-014, LHCC-I-031-ADD-1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.00314">arXiv:2007.00314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.00314">pdf</a>, <a href="https://arxiv.org/format/2007.00314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bay%2C+D">Daya Bay</a>, <a href="/search/physics?searchtype=author&amp;query=collaborations%2C+J">JUNO collaborations</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">A. Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">T. Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">S. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">S. Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">M. Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+N">N. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G+P">G. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">G. Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">N. Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">V. Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">T. Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">B. Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">J. P. A. M. de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">A. Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">W. Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Baldoncini%2C+M">M. Baldoncini</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">E. Baussan</a> , et al. (642 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.00314v1-abstract-short" style="display: inline;"> To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00314v1-abstract-full').style.display = 'inline'; document.getElementById('2007.00314v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.00314v1-abstract-full" style="display: none;"> To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and &lt;0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detector size difference between Daya Bay and JUNO, the Daya Bay data were used to tune the parameters of a newly developed optical model. Then, the model and tuned parameters were used in the JUNO simulation. This enabled to determine the optimal composition for the JUNO LS: purified solvent LAB with 2.5 g/L PPO, and 1 to 4 mg/L bis-MSB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00314v1-abstract-full').style.display = 'none'; document.getElementById('2007.00314v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.15386">arXiv:2006.15386</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.15386">pdf</a>, <a href="https://arxiv.org/format/2006.15386">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/abe84b">10.1088/1674-1137/abe84b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search For Electron-Antineutrinos Associated With Gravitational-Wave Events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Dalager%2C+O">O. Dalager</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/physics?searchtype=author&amp;query=Dohnal%2C+T">T. Dohnal</a>, <a href="/search/physics?searchtype=author&amp;query=Dove%2C+J">J. Dove</a>, <a href="/search/physics?searchtype=author&amp;query=Dvorak%2C+M">M. Dvorak</a> , et al. (161 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.15386v4-abstract-short" style="display: inline;"> Providing a possible connection between neutrino emission and gravitational-wave (GW) bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge. In the Daya Bay experiment, using data collected from December 2011 to August 2017, a search has been performed for electron-antineutrino signals coinciding with detected GW events, including GW1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15386v4-abstract-full').style.display = 'inline'; document.getElementById('2006.15386v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.15386v4-abstract-full" style="display: none;"> Providing a possible connection between neutrino emission and gravitational-wave (GW) bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge. In the Daya Bay experiment, using data collected from December 2011 to August 2017, a search has been performed for electron-antineutrino signals coinciding with detected GW events, including GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817. We used three time windows of $\mathrm{\pm 10~s}$, $\mathrm{\pm 500~s}$, and $\mathrm{\pm 1000~s}$ relative to the occurrence of the GW events, and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates. The detected electron-antineutrino candidates are consistent with the expected background rates for all the three time windows. Assuming monochromatic spectra, we found upper limits (90% confidence level) on electron-antineutrino fluence of $(1.13~-~2.44) \times 10^{11}~\rm{cm^{-2}}$ at 5 MeV to $8.0 \times 10^{7}~\rm{cm^{-2}}$ at 100 MeV for the three time windows. Under the assumption of a Fermi-Dirac spectrum, the upper limits were found to be $(5.4~-~7.0)\times 10^{9}~\rm{cm^{-2}}$ for the three time windows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15386v4-abstract-full').style.display = 'none'; document.getElementById('2006.15386v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures, 9 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.11760">arXiv:2006.11760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.11760">pdf</a>, <a href="https://arxiv.org/format/2006.11760">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+collaboration"> JUNO collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+N">Nawab Ali</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bernieri%2C+E">Enrico Bernieri</a>, <a href="/search/physics?searchtype=author&amp;query=Biare%2C+D">David Biare</a> , et al. (572 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.11760v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory~(JUNO) features a 20~kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO&#39;s features make it an excellent experiment for $^8$B solar neutrino measurements, such as its low-energy threshold, its high energy resolution compared to water Cherenkov detectors, and its much large target mass compared to previous liquid s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11760v1-abstract-full').style.display = 'inline'; document.getElementById('2006.11760v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.11760v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory~(JUNO) features a 20~kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO&#39;s features make it an excellent experiment for $^8$B solar neutrino measurements, such as its low-energy threshold, its high energy resolution compared to water Cherenkov detectors, and its much large target mass compared to previous liquid scintillator detectors. In this paper we present a comprehensive assessment of JUNO&#39;s potential for detecting $^8$B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2~MeV threshold on the recoil electron energy is found to be achievable assuming the intrinsic radioactive background $^{238}$U and $^{232}$Th in the liquid scintillator can be controlled to 10$^{-17}$~g/g. With ten years of data taking, about 60,000 signal and 30,000 background events are expected. This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter, which will shed new light on the tension between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework. If $螖m^{2}_{21}=4.8\times10^{-5}~(7.5\times10^{-5})$~eV$^{2}$, JUNO can provide evidence of neutrino oscillation in the Earth at the about 3$蟽$~(2$蟽$) level by measuring the non-zero signal rate variation with respect to the solar zenith angle. Moveover, JUNO can simultaneously measure $螖m^2_{21}$ using $^8$B solar neutrinos to a precision of 20\% or better depending on the central value and to sub-percent precision using reactor antineutrinos. A comparison of these two measurements from the same detector will help elucidate the current tension between the value of $螖m^2_{21}$ reported by solar neutrino experiments and the KamLAND experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11760v1-abstract-full').style.display = 'none'; document.getElementById('2006.11760v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 14 plots, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.08745">arXiv:2005.08745</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.08745">pdf</a>, <a href="https://arxiv.org/format/2005.08745">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+N">Nawab Ali</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bernieri%2C+E">Enrico Bernieri</a>, <a href="/search/physics?searchtype=author&amp;query=Biare%2C+D">David Biare</a> , et al. (568 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.08745v1-abstract-short" style="display: inline;"> The Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). A ton-level liquid scintillator detector will be placed at about 30 m from a core of the Taishan Nuclear Power Plant. The reactor antineutrino spectrum will be measured with sub-percent energy resolution, to provide a reference spectrum for future re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08745v1-abstract-full').style.display = 'inline'; document.getElementById('2005.08745v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.08745v1-abstract-full" style="display: none;"> The Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). A ton-level liquid scintillator detector will be placed at about 30 m from a core of the Taishan Nuclear Power Plant. The reactor antineutrino spectrum will be measured with sub-percent energy resolution, to provide a reference spectrum for future reactor neutrino experiments, and to provide a benchmark measurement to test nuclear databases. A spherical acrylic vessel containing 2.8 ton gadolinium-doped liquid scintillator will be viewed by 10 m^2 Silicon Photomultipliers (SiPMs) of &gt;50% photon detection efficiency with almost full coverage. The photoelectron yield is about 4500 per MeV, an order higher than any existing large-scale liquid scintillator detectors. The detector operates at -50 degree C to lower the dark noise of SiPMs to an acceptable level. The detector will measure about 2000 reactor antineutrinos per day, and is designed to be well shielded from cosmogenic backgrounds and ambient radioactivities to have about 10% background-to-signal ratio. The experiment is expected to start operation in 2022. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08745v1-abstract-full').style.display = 'none'; document.getElementById('2005.08745v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">134 pages, 114 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.03648">arXiv:1905.03648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.03648">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/08/T08002">10.1088/1748-0221/14/08/T08002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparison on PMT Waveform Reconstructions with JUNO Prototype </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H+Q">H. Q. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z+M">Z. M. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y+P">Y. P. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y+B">Y. B. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+F+J">F. J. Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+P">P. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C+C">C. C. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+M+H">M. H. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J+C">J. C. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y+K">Y. K. Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C+G">C. G. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X+S">X. S. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">F. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+M">M. Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.03648v3-abstract-short" style="display: inline;"> JUNO is proposed to determine the neutrino mass hierarchy and rich in many other neutrino topics. A prototype is designed and set up for better understanding sub-systems of future detector. The preliminary results show that its threshold reaches ~0.3MeV with trigger rate ~290 Hz on the ground with cosmic muon rate ~35 Hz. Aiming for a better detector understanding from PMT signal, three reconstruc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03648v3-abstract-full').style.display = 'inline'; document.getElementById('1905.03648v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.03648v3-abstract-full" style="display: none;"> JUNO is proposed to determine the neutrino mass hierarchy and rich in many other neutrino topics. A prototype is designed and set up for better understanding sub-systems of future detector. The preliminary results show that its threshold reaches ~0.3MeV with trigger rate ~290 Hz on the ground with cosmic muon rate ~35 Hz. Aiming for a better detector understanding from PMT signal, three reconstruction algorithms are compared for PMT waveforms with different overshoot ratios, including charge integration, waveform fitting, and deconvolution. It is concluded that the three methods have similar performance on uncertainty and systematic bias while deconvolution algorithm is best to handle larger overshoot and the simplest charge integration could be considered with controlled overshoot for future fast preliminary reconstruction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03648v3-abstract-full').style.display = 'none'; document.getElementById('1905.03648v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.07812">arXiv:1904.07812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.07812">pdf</a>, <a href="https://arxiv.org/format/1904.07812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.111801">10.1103/PhysRevLett.123.111801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extraction of the $^{235}$U and $^{239}$Pu Antineutrino Spectra at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+collaboration"> Daya Bay collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Dash%2C+N">N. Dash</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a> , et al. (171 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.07812v3-abstract-short" style="display: inline;"> This Letter reports the first extraction of individual antineutrino spectra from $^{235}$U and $^{239}$Pu fission and an improved measurement of the prompt energy spectrum of reactor antineutrinos at Daya Bay. The analysis uses $3.5\times 10^6$ inverse beta-decay candidates in four near antineutrino detectors in 1958 days. The individual antineutrino spectra of the two dominant isotopes, $^{235}$U&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07812v3-abstract-full').style.display = 'inline'; document.getElementById('1904.07812v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.07812v3-abstract-full" style="display: none;"> This Letter reports the first extraction of individual antineutrino spectra from $^{235}$U and $^{239}$Pu fission and an improved measurement of the prompt energy spectrum of reactor antineutrinos at Daya Bay. The analysis uses $3.5\times 10^6$ inverse beta-decay candidates in four near antineutrino detectors in 1958 days. The individual antineutrino spectra of the two dominant isotopes, $^{235}$U and $^{239}$Pu, are extracted using the evolution of the prompt spectrum as a function of the isotope fission fractions. In the energy window of 4--6~MeV, a 7\% (9\%) excess of events is observed for the $^{235}$U ($^{239}$Pu) spectrum compared with the normalized Huber-Mueller model prediction. The significance of discrepancy is $4.0蟽$ for $^{235}$U spectral shape compared with the Huber-Mueller model prediction. The shape of the measured inverse beta-decay prompt energy spectrum disagrees with the prediction of the Huber-Mueller model at $5.3蟽$. In the energy range of 4--6~MeV, a maximal local discrepancy of $6.3蟽$ is observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07812v3-abstract-full').style.display = 'none'; document.getElementById('1904.07812v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated title</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 111801 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.12595">arXiv:1903.12595</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.12595">pdf</a>, <a href="https://arxiv.org/ps/1903.12595">ps</a>, <a href="https://arxiv.org/format/1903.12595">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2019.162766">10.1016/j.nima.2019.162766 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A quantitative approach to select PMTs for large detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wen%2C+L">Liang-Jian Wen</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+M">Miao He</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yi-Fang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">Jun Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shu-Lin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yue-Kun Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+Z">Zhong-Hua Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.12595v2-abstract-short" style="display: inline;"> Photomultiplier tubes (PMTs) are widely used in neutrino and other experiments for the detection of weak light. To date PMTs are the most sensitive single photon detector per unit area. In addition to the quantum efficiency for photon detection, there are a number of other specifications, such as rate and amplitude of after-pulses, dark noise rate, transit time spread, radioactive background of gl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.12595v2-abstract-full').style.display = 'inline'; document.getElementById('1903.12595v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.12595v2-abstract-full" style="display: none;"> Photomultiplier tubes (PMTs) are widely used in neutrino and other experiments for the detection of weak light. To date PMTs are the most sensitive single photon detector per unit area. In addition to the quantum efficiency for photon detection, there are a number of other specifications, such as rate and amplitude of after-pulses, dark noise rate, transit time spread, radioactive background of glass, peak-to-valley ratio, etc. All affect the photon detection and hence the physics goals. In addition, cost is another major factor for large experiments. It is important to know how to properly take into account all these parameters and choose the most appropriate PMTs. In this paper, we present an approach to quantify the impact of all parameters on the physics goals, including cost and risk. This method has been successfully used in the JUNO experiment. It can be applied to other experiments with large number of PMTs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.12595v2-abstract-full').style.display = 'none'; document.getElementById('1903.12595v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.08241">arXiv:1902.08241</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.08241">pdf</a>, <a href="https://arxiv.org/format/1902.08241">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A high precision calibration of the nonlinear energy response at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+collaboration"> Daya Bay collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Dash%2C+N">N. Dash</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a> , et al. (173 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.08241v2-abstract-short" style="display: inline;"> A high precision calibration of the nonlinearity in the energy response of the Daya Bay Reactor Neutrino Experiment&#39;s antineutrino detectors is presented in detail. The energy nonlinearity originates from the particle-dependent light yield of the scintillator and charge-dependent electronics response. The nonlinearity model is constrained by $纬$ calibration points from deployed and naturally occur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08241v2-abstract-full').style.display = 'inline'; document.getElementById('1902.08241v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.08241v2-abstract-full" style="display: none;"> A high precision calibration of the nonlinearity in the energy response of the Daya Bay Reactor Neutrino Experiment&#39;s antineutrino detectors is presented in detail. The energy nonlinearity originates from the particle-dependent light yield of the scintillator and charge-dependent electronics response. The nonlinearity model is constrained by $纬$ calibration points from deployed and naturally occurring radioactive sources, the $尾$ spectrum from $^{12}$B decays, and a direct measurement of the electronics nonlinearity with a new flash analog-to-digital converter readout system. Less than 0.5% uncertainty in the energy nonlinearity calibration is achieved for positrons of kinetic energies greater than 1 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08241v2-abstract-full').style.display = 'none'; document.getElementById('1902.08241v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 22 figures, 4 tables. Final version to be published in NIM-A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.00927">arXiv:1811.00927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.00927">pdf</a>, <a href="https://arxiv.org/format/1811.00927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> A Letter of Intent for MATHUSLA: a dedicated displaced vertex detector above ATLAS or CMS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Alpigiani%2C+C">Cristiano Alpigiani</a>, <a href="/search/physics?searchtype=author&amp;query=Ball%2C+A">Austin Ball</a>, <a href="/search/physics?searchtype=author&amp;query=Barak%2C+L">Liron Barak</a>, <a href="/search/physics?searchtype=author&amp;query=Beacham%2C+J">James Beacham</a>, <a href="/search/physics?searchtype=author&amp;query=Benhammo%2C+Y">Yan Benhammo</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+T">Tingting Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Camarri%2C+P">Paolo Camarri</a>, <a href="/search/physics?searchtype=author&amp;query=Cardarelli%2C+R">Roberto Cardarelli</a>, <a href="/search/physics?searchtype=author&amp;query=Rodriguez-Cahuantzi%2C+M">Mario Rodriguez-Cahuantzi</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+J+P">John Paul Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Curtin%2C+D">David Curtin</a>, <a href="/search/physics?searchtype=author&amp;query=Diamond%2C+M">Miriam Diamond</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Sciascio%2C+G">Giuseppe Di Sciascio</a>, <a href="/search/physics?searchtype=author&amp;query=Drewes%2C+M">Marco Drewes</a>, <a href="/search/physics?searchtype=author&amp;query=Eno%2C+S+C">Sarah C. Eno</a>, <a href="/search/physics?searchtype=author&amp;query=Etzion%2C+E">Erez Etzion</a>, <a href="/search/physics?searchtype=author&amp;query=Essig%2C+R">Rouven Essig</a>, <a href="/search/physics?searchtype=author&amp;query=Evans%2C+J">Jared Evans</a>, <a href="/search/physics?searchtype=author&amp;query=Fischer%2C+O">Oliver Fischer</a>, <a href="/search/physics?searchtype=author&amp;query=Giagu%2C+S">Stefano Giagu</a>, <a href="/search/physics?searchtype=author&amp;query=Gomes%2C+B">Brandon Gomes</a>, <a href="/search/physics?searchtype=author&amp;query=Haas%2C+A">Andy Haas</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuekun Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Iaselli%2C+G">Giuseppe Iaselli</a>, <a href="/search/physics?searchtype=author&amp;query=Johns%2C+K">Ken Johns</a> , et al. (39 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.00927v1-abstract-short" style="display: inline;"> In this Letter of Intent (LOI) we propose the construction of MATHUSLA (MAssive Timing Hodoscope for Ultra-Stable neutraL pArticles), a dedicated large-volume displaced vertex detector for the HL-LHC on the surface above ATLAS or CMS. Such a detector, which can be built using existing technologies with a reasonable budget in time for the HL-LHC upgrade, could search for neutral long-lived particle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00927v1-abstract-full').style.display = 'inline'; document.getElementById('1811.00927v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.00927v1-abstract-full" style="display: none;"> In this Letter of Intent (LOI) we propose the construction of MATHUSLA (MAssive Timing Hodoscope for Ultra-Stable neutraL pArticles), a dedicated large-volume displaced vertex detector for the HL-LHC on the surface above ATLAS or CMS. Such a detector, which can be built using existing technologies with a reasonable budget in time for the HL-LHC upgrade, could search for neutral long-lived particles (LLPs) with up to several orders of magnitude better sensitivity than ATLAS or CMS, while also acting as a cutting-edge cosmic ray telescope at CERN to explore many open questions in cosmic ray and astro-particle physics. We review the physics motivations for MATHUSLA and summarize its LLP reach for several different possible detector geometries, as well as outline the cosmic ray physics program. We present several updated background studies for MATHUSLA, which help inform a first detector-design concept utilizing modular construction with Resistive Plate Chambers (RPCs) as the primary tracking technology. We present first efficiency and reconstruction studies to verify the viability of this design concept, and we explore some aspects of its total cost. We end with a summary of recent progress made on the MATHUSLA test stand, a small-scale demonstrator experiment currently taking data at CERN Point 1, and finish with a short comment on future work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00927v1-abstract-full').style.display = 'none'; document.getElementById('1811.00927v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-LHCC-2018-025, LHCC-I-031 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.04550">arXiv:1810.04550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.04550">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Study on Relative Collection Efficiency of PMTs with Point Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hai-qiong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhi-min Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+F">Feng-jiao Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+A">An-bo Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+Z">Zhong-hua Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C">Chang-gen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yue-kun Heng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.04550v2-abstract-short" style="display: inline;"> Photon detection efficiency is a key parameter of PMTs in high-precision neutrino and dark matter experiments, while most of these experiments are focus on quantum efficiency. More and more experiments are trying to know the detection efficiency for the simulation of the detector such as JUNO. In order to have a good understanding on photon detection efficiency of the large-area PMT , we conducted&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.04550v2-abstract-full').style.display = 'inline'; document.getElementById('1810.04550v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.04550v2-abstract-full" style="display: none;"> Photon detection efficiency is a key parameter of PMTs in high-precision neutrino and dark matter experiments, while most of these experiments are focus on quantum efficiency. More and more experiments are trying to know the detection efficiency for the simulation of the detector such as JUNO. In order to have a good understanding on photon detection efficiency of the large-area PMT , we conducted a detailed comparison of the relative collection efficiencies of a series of dynode PMT with different sizes and collector structures. This study is based on the tests of relative quantum efficiency and relative detection efficiency with cross check by several light intensities. The testing and results will be discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.04550v2-abstract-full').style.display = 'none'; document.getElementById('1810.04550v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.02261">arXiv:1809.02261</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.02261">pdf</a>, <a href="https://arxiv.org/format/1809.02261">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.241805">10.1103/PhysRevLett.121.241805 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of electron antineutrino oscillation with 1958 days of operation at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+Collaboration"> Daya Bay Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a> , et al. (180 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.02261v5-abstract-short" style="display: inline;"> We report a measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrino Experiment with nearly 4 million reactor $\overline谓_{e}$ inverse beta decay candidates observed over 1958 days of data collection. The installation of a Flash-ADC readout system and a special calibration campaign using different source enclosures reduce uncertainties in the absolute energy calibration&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02261v5-abstract-full').style.display = 'inline'; document.getElementById('1809.02261v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.02261v5-abstract-full" style="display: none;"> We report a measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrino Experiment with nearly 4 million reactor $\overline谓_{e}$ inverse beta decay candidates observed over 1958 days of data collection. The installation of a Flash-ADC readout system and a special calibration campaign using different source enclosures reduce uncertainties in the absolute energy calibration to less than 0.5% for visible energies larger than 2 MeV. The uncertainty in the cosmogenic $^9$Li and $^8$He background is reduced from 45% to 30% in the near detectors. A detailed investigation of the spent nuclear fuel history improves its uncertainty from 100% to 30%. Analysis of the relative $\overline谓_{e}$ rates and energy spectra among detectors yields $\sin^{2}2胃_{13} = 0.0856\pm 0.0029$ and $螖m^2_{32}=(2.471^{+0.068}_{-0.070})\times 10^{-3}~\mathrm{eV}^2$ assuming the normal hierarchy, and $螖m^2_{32}=-(2.575^{+0.068}_{-0.070})\times 10^{-3}~\mathrm{eV}^2$ assuming the inverted hierarchy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02261v5-abstract-full').style.display = 'none'; document.getElementById('1809.02261v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, and 1 table. v4: the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 241805 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.10836">arXiv:1808.10836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.10836">pdf</a>, <a href="https://arxiv.org/format/1808.10836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.052004">10.1103/PhysRevD.100.052004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved Measurement of the Reactor Antineutrino Flux at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+Collaboration"> Daya Bay Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a> , et al. (178 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.10836v1-abstract-short" style="display: inline;"> This work reports a precise measurement of the reactor antineutrino flux using 2.2 million inverse beta decay (IBD) events collected with the Daya Bay near detectors in 1230 days. The dominant uncertainty on the neutron detection efficiency is reduced by 56% with respect to the previous measurement through a comprehensive neutron calibration and detailed data and simulation analysis. The new avera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10836v1-abstract-full').style.display = 'inline'; document.getElementById('1808.10836v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.10836v1-abstract-full" style="display: none;"> This work reports a precise measurement of the reactor antineutrino flux using 2.2 million inverse beta decay (IBD) events collected with the Daya Bay near detectors in 1230 days. The dominant uncertainty on the neutron detection efficiency is reduced by 56% with respect to the previous measurement through a comprehensive neutron calibration and detailed data and simulation analysis. The new average IBD yield is determined to be $(5.91\pm0.09)\times10^{-43}~\rm{cm}^2/\rm{fission}$ with total uncertainty improved by 29%. The corresponding mean fission fractions from the four main fission isotopes $^{235}$U, $^{238}$U, $^{239}$Pu, and $^{241}$Pu are 0.564, 0.076, 0.304, and 0.056, respectively. The ratio of measured to predicted antineutrino yield is found to be $0.952\pm0.014\pm0.023$ ($1.001\pm0.015\pm0.027$) for the Huber-Mueller (ILL-Vogel) model, where the first and second uncertainty are experimental and theoretical model uncertainty, respectively. This measurement confirms the discrepancy between the world average of reactor antineutrino flux and the Huber-Mueller model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10836v1-abstract-full').style.display = 'none'; document.getElementById('1808.10836v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures, and 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 052004 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.11306">arXiv:1803.11306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.11306">pdf</a>, <a href="https://arxiv.org/ps/1803.11306">ps</a>, <a href="https://arxiv.org/format/1803.11306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Quantum Sensing for High Energy Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alexeev%2C+Y">Yuri Alexeev</a>, <a href="/search/physics?searchtype=author&amp;query=Apollinari%2C+G">Giorgio Apollinari</a>, <a href="/search/physics?searchtype=author&amp;query=Arvanitaki%2C+A">Asimina Arvanitaki</a>, <a href="/search/physics?searchtype=author&amp;query=Awschalom%2C+D">David Awschalom</a>, <a href="/search/physics?searchtype=author&amp;query=Berggren%2C+K+K">Karl K. Berggren</a>, <a href="/search/physics?searchtype=author&amp;query=Van+Bibber%2C+K">Karl Van Bibber</a>, <a href="/search/physics?searchtype=author&amp;query=Bienias%2C+P">Przemyslaw Bienias</a>, <a href="/search/physics?searchtype=author&amp;query=Bodwin%2C+G">Geoffrey Bodwin</a>, <a href="/search/physics?searchtype=author&amp;query=Boshier%2C+M">Malcolm Boshier</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">Daniel Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Braga%2C+D">Davide Braga</a>, <a href="/search/physics?searchtype=author&amp;query=Byrum%2C+K">Karen Byrum</a>, <a href="/search/physics?searchtype=author&amp;query=Cancelo%2C+G">Gustavo Cancelo</a>, <a href="/search/physics?searchtype=author&amp;query=Carosi%2C+G">Gianpaolo Carosi</a>, <a href="/search/physics?searchtype=author&amp;query=Cecil%2C+T">Tom Cecil</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+C">Clarence Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Checchin%2C+M">Mattia Checchin</a>, <a href="/search/physics?searchtype=author&amp;query=Chekanov%2C+S">Sergei Chekanov</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+A">Aaron Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Clerk%2C+A">Aashish Clerk</a>, <a href="/search/physics?searchtype=author&amp;query=Cloet%2C+I">Ian Cloet</a>, <a href="/search/physics?searchtype=author&amp;query=Crisler%2C+M">Michael Crisler</a>, <a href="/search/physics?searchtype=author&amp;query=Demarteau%2C+M">Marcel Demarteau</a>, <a href="/search/physics?searchtype=author&amp;query=Dharmapalan%2C+R">Ranjan Dharmapalan</a> , et al. (91 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.11306v1-abstract-short" style="display: inline;"> Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.11306v1-abstract-full" style="display: none;"> Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.11306v1-abstract-full').style.display = 'none'; document.getElementById('1803.11306v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, report of the first workshop on Quantum Sensing for High Energy Physics, held at Argonne National Laboratory, December 12-14, 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.03746">arXiv:1803.03746</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.03746">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Signal Optimization with HV divider of MCP-PMT for JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luo%2C+F">Fengjiao Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhimin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+Z">Zhonghua Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuekun Heng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.03746v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using a 20 kiloton underground liquid scintillator detector (CD). One of the keys is the energy resolution of the CD to reach &lt;3% at 1 MeV, where totally 15,000 MCP-PMT will be used. The optimization of the 20-inch MCP-PMT is very important for better detection efficiency and stable performanc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.03746v1-abstract-full').style.display = 'inline'; document.getElementById('1803.03746v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.03746v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using a 20 kiloton underground liquid scintillator detector (CD). One of the keys is the energy resolution of the CD to reach &lt;3% at 1 MeV, where totally 15,000 MCP-PMT will be used. The optimization of the 20-inch MCP-PMT is very important for better detection efficiency and stable performance. In this work, we will show the study to optimize the MCP-PMT working configuration for charge measurement. Particularly, the quality of PMT signal is another key for high-precision neutrino experiments while most of these experiments are affected by the overshoot of PMT signal from the positive HV scheme. The overshoot coupled with positive HV which is troubling trigger, dead time and precise charge measurement, we have studied to control it to less than 1% of signal amplitude for a better physics measurement. In this article, on the one hand, the optimized HV divider ratio will be presented here to improve its collection efficiency; on the other hand, we will introduce the method to reduce the ratio of overshoot from 10% to 1%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.03746v1-abstract-full').style.display = 'none'; document.getElementById('1803.03746v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages,6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.02737">arXiv:1801.02737</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.02737">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/02/T02004">10.1088/1748-0221/14/02/T02004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A study of the new hemispherical 9-inch PMT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luo%2C+F">Fengjiao Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yuekun Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhimin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Qina%2C+Z">Zhonghua Qina</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+A">Anbo Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+N">Nan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+G">Gang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+Z">Zhiyan Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Mengzhao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Haiqiong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+M">Meihang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Z">Zhi Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yuanbo Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.02737v1-abstract-short" style="display: inline;"> The new hemispherical photomultiplier tubes (PMTs) with 9 inch diameter from Hainan Zhanchuang Photonics Technology Co.,Ltd (HZC) have been studied. Narrow transit time spread (FWHM=2.35 ns) accompanied by small nonlinearity (750 photoelectrons at 5%) and high gain (1E7 ) with good single photoelectron (PE) resolution have been observed. 11 PMTs of this type are deployed and studied in the prototy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.02737v1-abstract-full').style.display = 'inline'; document.getElementById('1801.02737v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.02737v1-abstract-full" style="display: none;"> The new hemispherical photomultiplier tubes (PMTs) with 9 inch diameter from Hainan Zhanchuang Photonics Technology Co.,Ltd (HZC) have been studied. Narrow transit time spread (FWHM=2.35 ns) accompanied by small nonlinearity (750 photoelectrons at 5%) and high gain (1E7 ) with good single photoelectron (PE) resolution have been observed. 11 PMTs of this type are deployed and studied in the prototype detector for JUNO at IHEP, China. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.02737v1-abstract-full').style.display = 'none'; document.getElementById('1801.02737v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.00588">arXiv:1711.00588</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.00588">pdf</a>, <a href="https://arxiv.org/format/1711.00588">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.052009">10.1103/PhysRevD.97.052009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmogenic neutron production at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+Collaboration"> Daya Bay Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/physics?searchtype=author&amp;query=Dolgareva%2C+M">M. Dolgareva</a> , et al. (177 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.00588v2-abstract-short" style="display: inline;"> Neutrons produced by cosmic ray muons are an important background for underground experiments studying neutrino oscillations, neutrinoless double beta decay, dark matter, and other rare-event signals. A measurement of the neutron yield in the three different experimental halls of the Daya Bay Reactor Neutrino Experiment at varying depth is reported. The neutron yield in Daya Bay&#39;s liquid scintilla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00588v2-abstract-full').style.display = 'inline'; document.getElementById('1711.00588v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.00588v2-abstract-full" style="display: none;"> Neutrons produced by cosmic ray muons are an important background for underground experiments studying neutrino oscillations, neutrinoless double beta decay, dark matter, and other rare-event signals. A measurement of the neutron yield in the three different experimental halls of the Daya Bay Reactor Neutrino Experiment at varying depth is reported. The neutron yield in Daya Bay&#39;s liquid scintillator is measured to be $Y_n=(10.26\pm 0.86)\times 10^{-5}$, $(10.22\pm 0.87)\times 10^{-5}$, and $(17.03\pm 1.22)\times 10^{-5}~渭^{-1}~$g$^{-1}~$cm$^2$ at depths of 250, 265, and 860 meters-water-equivalent. These results are compared to other measurements and the simulated neutron yield in Fluka and Geant4. A global fit including the Daya Bay measurements yields a power law coefficient of $0.77 \pm 0.03$ for the dependence of the neutron yield on muon energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00588v2-abstract-full').style.display = 'none'; document.getElementById('1711.00588v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 052009 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.01265">arXiv:1708.01265</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.01265">pdf</a>, <a href="https://arxiv.org/format/1708.01265">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2018/01/001">10.1088/1475-7516/2018/01/001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Seasonal Variation of the Underground Cosmic Muon Flux Observed at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+Y">Q. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/physics?searchtype=author&amp;query=Dolgareva%2C+M">M. Dolgareva</a> , et al. (179 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.01265v2-abstract-short" style="display: inline;"> The Daya Bay Experiment consists of eight identically designed detectors located in three underground experimental halls named as EH1, EH2, EH3, with 250, 265 and 860 meters of water equivalent vertical overburden, respectively. Cosmic muon events have been recorded over a two-year period. The underground muon rate is observed to be positively correlated with the effective atmospheric temperature&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01265v2-abstract-full').style.display = 'inline'; document.getElementById('1708.01265v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.01265v2-abstract-full" style="display: none;"> The Daya Bay Experiment consists of eight identically designed detectors located in three underground experimental halls named as EH1, EH2, EH3, with 250, 265 and 860 meters of water equivalent vertical overburden, respectively. Cosmic muon events have been recorded over a two-year period. The underground muon rate is observed to be positively correlated with the effective atmospheric temperature and to follow a seasonal modulation pattern. The correlation coefficient $伪$, describing how a variation in the muon rate relates to a variation in the effective atmospheric temperature, is found to be $伪_{\text{EH1}} = 0.362\pm0.031$, $伪_{\text{EH2}} = 0.433\pm0.038$ and $伪_{\text{EH3}} = 0.641\pm0.057$ for each experimental hall. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01265v2-abstract-full').style.display = 'none'; document.getElementById('1708.01265v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated to be identical to the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP01(2018)001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.03207">arXiv:1704.03207</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.03207">pdf</a>, <a href="https://arxiv.org/ps/1704.03207">ps</a>, <a href="https://arxiv.org/format/1704.03207">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2017.11.024">10.1016/j.nima.2017.11.024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A study of aging effects of barrel Time-Of-Flight system in the BESIII experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Huan-Huan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+S">Sheng-Sen Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+S">Shuang-Shi Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Z">Zhi Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+H">Hong-Liang Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Yue-Kun Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+M">Ming Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Zi-Yan Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Huai-Min Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.03207v2-abstract-short" style="display: inline;"> The Time-Of-Flight system consisting of plastic scintillation counters plays an important role for particle identification in the BESIII experiment at the BEPCII double ring $e^+e^-$ collider. Degradation of the detection efficiency of the barrel TOF system has been observed since the start of physical data taking and this effect has triggered intensive and systematic studies about aging effects o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.03207v2-abstract-full').style.display = 'inline'; document.getElementById('1704.03207v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.03207v2-abstract-full" style="display: none;"> The Time-Of-Flight system consisting of plastic scintillation counters plays an important role for particle identification in the BESIII experiment at the BEPCII double ring $e^+e^-$ collider. Degradation of the detection efficiency of the barrel TOF system has been observed since the start of physical data taking and this effect has triggered intensive and systematic studies about aging effects of the detector. The aging rates of the attenuation lengths and relative gains are obtained based on the data acquired in past several years. This study is essential for ensuring an extended operation of the barrel TOF system in optimal conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.03207v2-abstract-full').style.display = 'none'; document.getElementById('1704.03207v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.01082">arXiv:1704.01082</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.01082">pdf</a>, <a href="https://arxiv.org/format/1704.01082">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.251801">10.1103/PhysRevLett.118.251801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+Y">Q. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/physics?searchtype=author&amp;query=Dolgareva%2C+M">M. Dolgareva</a> , et al. (180 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.01082v2-abstract-short" style="display: inline;"> The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW$_{\textrm{th}}$ reactor cores at the Daya Bay and Ling Ao nuclear&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01082v2-abstract-full').style.display = 'inline'; document.getElementById('1704.01082v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.01082v2-abstract-full" style="display: none;"> The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW$_{\textrm{th}}$ reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective $^{239}$Pu fission fractions, $F_{239}$, from 0.25 to 0.35, Daya Bay measures an average IBD yield, $\bar蟽_f$, of $(5.90 \pm 0.13) \times 10^{-43}$ cm$^2$/fission and a fuel-dependent variation in the IBD yield, $d蟽_f/dF_{239}$, of $(-1.86 \pm 0.18) \times 10^{-43}$ cm$^2$/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the $^{239}$Pu fission fraction at 10 standard deviations. The variation in IBD yield was found to be energy-dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1$蟽$. This discrepancy indicates that an overall deficit in measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes $^{235}$U, $^{239}$Pu, $^{238}$U, and $^{241}$Pu. Based on measured IBD yield variations, yields of $(6.17 \pm 0.17)$ and $(4.27 \pm 0.26) \times 10^{-43}$ cm$^2$/fission have been determined for the two dominant fission parent isotopes $^{235}$U and $^{239}$Pu. A 7.8% discrepancy between the observed and predicted $^{235}$U yield suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01082v2-abstract-full').style.display = 'none'; document.getElementById('1704.01082v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 251801 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.04977">arXiv:1702.04977</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.04977">pdf</a>, <a href="https://arxiv.org/ps/1702.04977">ps</a>, <a href="https://arxiv.org/format/1702.04977">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/41/6/063001">10.1088/1674-1137/41/6/063001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Luminosity measurements for the R scan experiment at BESIII </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Albayrak%2C+O">O. Albayrak</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Ambrose%2C+D+J">D. J. Ambrose</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+F">F. F. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+J+Z">J. Z. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bennett%2C+D+W">D. W. Bennett</a>, <a href="/search/physics?searchtype=author&amp;query=Bennett%2C+J+V">J. V. Bennett</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+J+M">J. M. Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Boger%2C+E">E. Boger</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">H. Cai</a> , et al. (405 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.04977v1-abstract-short" style="display: inline;"> By analyzing the large-angle Bhabha scattering events $e^{+}e^{-}$ $\to$ ($纬$)$e^{+}e^{-}$ and diphoton events $e^{+}e^{-}$ $\to$ $纬纬$ for the data sets collected at center-of-mass (c.m.) energies between 2.2324 and 4.5900 GeV (131 energy points in total) with the upgraded Beijing Spectrometer (BESIII) at the Beijing Electron-Positron Collider (BEPCII), the integrated luminosities have been measur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04977v1-abstract-full').style.display = 'inline'; document.getElementById('1702.04977v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.04977v1-abstract-full" style="display: none;"> By analyzing the large-angle Bhabha scattering events $e^{+}e^{-}$ $\to$ ($纬$)$e^{+}e^{-}$ and diphoton events $e^{+}e^{-}$ $\to$ $纬纬$ for the data sets collected at center-of-mass (c.m.) energies between 2.2324 and 4.5900 GeV (131 energy points in total) with the upgraded Beijing Spectrometer (BESIII) at the Beijing Electron-Positron Collider (BEPCII), the integrated luminosities have been measured at the different c.m. energies, individually. The results are the important inputs for R value and $J/蠄$ resonance parameter measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04977v1-abstract-full').style.display = 'none'; document.getElementById('1702.04977v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.04802">arXiv:1610.04802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.04802">pdf</a>, <a href="https://arxiv.org/format/1610.04802">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.072006">10.1103/PhysRevD.95.072006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+Collaboration"> Daya Bay Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cen%2C+W+R">W. R. Cen</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+L+C">L. C. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+Y">Q. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+-">J. -H. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y+P">Y. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a> , et al. (198 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.04802v1-abstract-short" style="display: inline;"> A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GW$_{\rm th}$ nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of $\overline谓_{e}$&#39;s. Comparison of the $\overline谓_{e}$ rate and energy spectrum measured by antineutrino detectors far from the nuclear reactors (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04802v1-abstract-full').style.display = 'inline'; document.getElementById('1610.04802v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.04802v1-abstract-full" style="display: none;"> A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GW$_{\rm th}$ nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of $\overline谓_{e}$&#39;s. Comparison of the $\overline谓_{e}$ rate and energy spectrum measured by antineutrino detectors far from the nuclear reactors ($\sim$1500-1950 m) relative to detectors near the reactors ($\sim$350-600 m) allowed a precise measurement of $\overline谓_{e}$ disappearance. More than 2.5 million $\overline谓_{e}$ inverse beta decay interactions were observed, based on the combination of 217 days of operation of six antineutrino detectors (Dec. 2011--Jul. 2012) with a subsequent 1013 days using the complete configuration of eight detectors (Oct. 2012--Jul. 2015). The $\overline谓_{e}$ rate observed at the far detectors relative to the near detectors showed a significant deficit, $R=0.949 \pm 0.002(\mathrm{stat.}) \pm 0.002(\mathrm{syst.})$. The energy dependence of $\overline谓_{e}$ disappearance showed the distinct variation predicted by neutrino oscillation. Analysis using an approximation for the three-flavor oscillation probability yielded the flavor-mixing angle $\sin^22胃_{13}=0.0841 \pm 0.0027(\mathrm{stat.}) \pm 0.0019(\mathrm{syst.})$ and the effective neutrino mass-squared difference of $\left|螖m^2_{\mathrm{ee}}\right|=(2.50 \pm 0.06(\mathrm{stat.}) \pm 0.06(\mathrm{syst.})) \times 10^{-3}\ {\rm eV}^2$. Analysis using the exact three-flavor probability found $螖m^2_{32}=(2.45 \pm 0.06(\mathrm{stat.}) \pm 0.06(\mathrm{syst.})) \times 10^{-3}\ {\rm eV}^2$ assuming the normal neutrino mass hierarchy and $螖m^2_{32}=(-2.56 \pm 0.06(\mathrm{stat.}) \pm 0.06(\mathrm{syst.})) \times 10^{-3}\ {\rm eV}^2$ for the inverted hierarchy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04802v1-abstract-full').style.display = 'none'; document.getElementById('1610.04802v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 44 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 072006 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.05378">arXiv:1607.05378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.05378">pdf</a>, <a href="https://arxiv.org/format/1607.05378">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/41/1/013002">10.1088/1674-1137/41/1/013002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cen%2C+W+R">W. R. Cen</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+L+C">L. C. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+Y">Q. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+-">J. -H. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y+P">Y. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a> , et al. (197 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.05378v2-abstract-short" style="display: inline;"> A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9~GW$_{\mathrm{th}}$ nuclear reactors and detected by eight antineutrino detectors deployed in two near (560~m and 600~m flux-weighted baselines) and one far (1640~m flux-weighted baseline) underground experimental halls. With 621&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05378v2-abstract-full').style.display = 'inline'; document.getElementById('1607.05378v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.05378v2-abstract-full" style="display: none;"> A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9~GW$_{\mathrm{th}}$ nuclear reactors and detected by eight antineutrino detectors deployed in two near (560~m and 600~m flux-weighted baselines) and one far (1640~m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be $0.946\pm0.020$ ($0.992\pm0.021$) for the Huber+Mueller (ILL+Vogel) model. A 2.9~$蟽$ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6~MeV was found in the measured spectrum, with a local significance of 4.4~$蟽$. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05378v2-abstract-full').style.display = 'none'; document.getElementById('1607.05378v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">version published in Chinese Physics C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics C, 2017, 41(1): 13002-013002 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Heng%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Heng%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Heng%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10