CINXE.COM
Search results for: supported decision-making
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: supported decision-making</title> <meta name="description" content="Search results for: supported decision-making"> <meta name="keywords" content="supported decision-making"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="supported decision-making" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="supported decision-making"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2001</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: supported decision-making</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2001</span> Effect of Runup over a Vertical Pile Supported Caisson Breakwater and Quarter Circle Pile Supported Caisson Breakwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20Jemi%20Jeya">T. J. Jemi Jeya</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sriram"> V. Sriram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pile Supported Caisson breakwater is an ecofriendly breakwater very useful in coastal zone protection. The model is developed by considering the advantages of both caisson breakwater and pile supported breakwater, where the top portion is a vertical or quarter circle caisson and the bottom portion consists of a pile supported breakwater defined as Vertical Pile Supported Breakwater (VPSCB) and Quarter-circle Pile Supported Breakwater (QPSCB). The study mainly focuses on comparison of run up over VPSCB and QPSCB under oblique waves. The experiments are carried out in a shallow wave basin under different water depths (d = 0.5 m & 0.55 m) and under different oblique regular waves (0<sup>0</sup>, 15<sup>0</sup>, 30<sup>0</sup>). The run up over the surface is measured by placing two run up probes over the surface at 0.3 m on both sides from the centre of the model. The results show that the non-dimensional shoreward run up shows slight decrease with respect to increase in angle of wave attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caisson%20breakwater" title="Caisson breakwater">Caisson breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20supported%20breakwater" title=" pile supported breakwater"> pile supported breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=quarter%20circle%20breakwater" title=" quarter circle breakwater"> quarter circle breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20breakwater" title=" vertical breakwater"> vertical breakwater</a> </p> <a href="https://publications.waset.org/abstracts/111802/effect-of-runup-over-a-vertical-pile-supported-caisson-breakwater-and-quarter-circle-pile-supported-caisson-breakwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2000</span> Energy and Exergy Analysis of Anode-Supported and Electrolyte–Supported Solid Oxide Fuel Cells Gas Turbine Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrazzak%20Akroot">Abdulrazzak Akroot</a>, <a href="https://publications.waset.org/abstracts/search?q=Lutfu%20Namli"> Lutfu Namli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid oxide fuel cells (SOFCs) are one of the most promising technologies since they can produce electricity directly from fuel and generate a lot of waste heat that is generally used in the gas turbines to promote the general performance of the thermal power plant. In this study, the energy, and exergy analysis of a solid oxide fuel cell/gas turbine hybrid system was proceed in MATLAB to examine the performance characteristics of the hybrid system in two different configurations: anode-supported model and electrolyte-supported model. The obtained results indicate that if the fuel utilization factor reduces from 0.85 to 0.65, the overall efficiency decreases from 64.61 to 59.27% for the anode-supported model whereas it reduces from 58.3 to 56.4% for the electrolyte-supported model. Besides, the overall exergy reduces from 53.86 to 44.06% for the anode-supported model whereas it reduces from 39.96 to 33.94% for the electrolyte-supported model. Furthermore, increasing the air utilization factor has a negative impact on the electrical power output and the efficiencies of the overall system due to the reduction in the O₂ concentration at the cathode-electrolyte interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20oxide%20fuel%20cell" title="solid oxide fuel cell">solid oxide fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=anode-supported%20model" title=" anode-supported model"> anode-supported model</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolyte-supported%20model" title=" electrolyte-supported model"> electrolyte-supported model</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20analysis" title=" energy analysis"> energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis" title=" exergy analysis"> exergy analysis</a> </p> <a href="https://publications.waset.org/abstracts/104800/energy-and-exergy-analysis-of-anode-supported-and-electrolyte-supported-solid-oxide-fuel-cells-gas-turbine-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1999</span> The Development of Supported Employment in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chu%20Shi%20Wei">Chu Shi Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supported employment in Malaysia is in the early stages of development. The development of supported employment in Malaysia is an important step towards the inclusion of individuals with disabilities who have previously lacked the necessary support for employment in the open labour market as they were confined to sheltered workshops. There is a paradigm shift from sheltered to supported employment as the sheltered workshop is based on the medical model of disability, which focuses on the disability of the individual and segregated training institutions. The paradigm shift revolves around the social model of disability, which emphasizes the abilities of the individual and the removal of the barriers in the environment by the provision of support. This study explores the development of supported employment by utilizing a mixed methods approach which consists of collecting quantitative data through a survey and interviewing participants to collect qualitative data. Job coaches from six employment sectors participated in the survey and interview. The findings of the study indicate that the role of job coaches is integral to the development of supported employment. The role of job coaches includes job matching, on-the-job training, and developing natural supports to foster greater diversity and inclusion in the workplace. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supported%20employment" title="supported employment">supported employment</a>, <a href="https://publications.waset.org/abstracts/search?q=disabilities" title=" disabilities"> disabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a> </p> <a href="https://publications.waset.org/abstracts/170644/the-development-of-supported-employment-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1998</span> Retaining Users in a Commercially-Supported Social Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sasiphan%20Nitayaprapha">Sasiphan Nitayaprapha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A commercially-supported social network has become an emerging channel for an organization to communicate with and provide services to customers. The success of the commercially-supported social network depends on the ability of the organization to keep the customers in participating in the network. Drawing from the theories of information adoption, information systems continuance, and web usability, the author develops a model to explore how a commercially-supported social network can encourage customers to continue participating and using the information in the network. The theoretical model will be proved through an online survey of customers using the commercially-supported social networking sites of several high technology companies operating in the same sector. The result will be compared with previous studies to learn about the explanatory power of the research model, and to identify the main factors determining users’ intention to continue using a commercially-supported social network. Theoretical and practical implications, and limitations are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20network" title="social network">social network</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20adoption" title=" information adoption"> information adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20systems%20continuance" title=" information systems continuance"> information systems continuance</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20usability" title=" web usability"> web usability</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20satisfaction" title=" user satisfaction"> user satisfaction</a> </p> <a href="https://publications.waset.org/abstracts/2610/retaining-users-in-a-commercially-supported-social-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1997</span> MATLAB Supported Learning and Students' Conceptual Understanding of Functions of Two Variables: Experiences from Wolkite University</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyasu%20Gemech">Eyasu Gemech</a>, <a href="https://publications.waset.org/abstracts/search?q=Kassa%20Michael"> Kassa Michael</a>, <a href="https://publications.waset.org/abstracts/search?q=Mulugeta%20Atnafu"> Mulugeta Atnafu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A non-equivalent group's quasi-experiment research was conducted at Wolkite University to investigate MATLAB supported learning and students' conceptual understanding in learning Applied Mathematics II using four different comparative instructional approaches: MATLAB supported traditional lecture method, MATLAB supported collaborative method, only collaborative method, and only traditional lecture method. Four intact classes of mechanical engineering groups 1 and 2, garment engineering and textile engineering students were randomly selected out of eight departments. The first three departments were considered as treatment groups and the fourth one 'Textile engineering' was assigned as a comparison group. The departments had 30, 29, 35 and 32 students respectively. The results of the study show that there is a significant mean difference in students' conceptual understanding between groups of students learning through MATLAB supported collaborative method and the other learning approaches. Students who were learned through MATLAB technology-supported learning in combination with collaborative method were found to understand concepts of functions of two variables better than students learning through the other methods of learning. These, hence, are informative of the potential approaches universities would follow for a better students’ understanding of concepts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MATLAB%20supported%20collaborative%20method" title="MATLAB supported collaborative method">MATLAB supported collaborative method</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB%20supported%20learning" title=" MATLAB supported learning"> MATLAB supported learning</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20method" title=" collaborative method"> collaborative method</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20understanding" title=" conceptual understanding"> conceptual understanding</a>, <a href="https://publications.waset.org/abstracts/search?q=functions%20of%20two%20variables" title=" functions of two variables"> functions of two variables</a> </p> <a href="https://publications.waset.org/abstracts/93374/matlab-supported-learning-and-students-conceptual-understanding-of-functions-of-two-variables-experiences-from-wolkite-university" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1996</span> Semiconductor Supported Gold Nanoparticles for Photodegradation of Rhodamine B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Alshammari">Ahmad Alshammari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulaziz%20Bagabas"> Abdulaziz Bagabas</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Assulami"> Muhamad Assulami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rhodamine B (RB) is a toxic dye used extensively in textile industry, which must be remediated before its drainage to the environment. In the present study, supported gold nanoparticles on commercially available titania and zincite were successfully prepared and then their activity on the photodegradation of RB under UV-A light irradiation were evaluated. The synthesized photocatalysts were characterized by ICP, BET, XRD, and TEM. Kinetic results showed that Au/TiO2 was an inferior photocatalyst to Au/ZnO. This observation could be attributed to the strong reflection of UV irradiation by gold nanoparticles over TiO2 support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supported%20AuNPs" title="supported AuNPs">supported AuNPs</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20photocatalyst" title=" semiconductor photocatalyst"> semiconductor photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodamine%20B" title=" rhodamine B "> rhodamine B </a> </p> <a href="https://publications.waset.org/abstracts/20579/semiconductor-supported-gold-nanoparticles-for-photodegradation-of-rhodamine-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1995</span> Khaya Cellulose Supported Copper Nanoparticles for Chemo Selective Aza-Michael Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shaheen%20Sarkar">M. Shaheen Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lutfor%20Rahman"> M. Lutfor Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashitah%20Mohd%20Yusoff"> Mashitah Mohd Yusoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We prepared a highly active Khaya cellulose supported poly(hydroxamic acid) copper nanoparticles by the surface modification of Khaya cellulose through graft co-polymerization and subsequently amidoximation. The Cu-nanoparticle (0.05 mol% to 50 mol ppm) was selectively promoted Aza-Michael reaction of aliphatic amines to give the corresponding alkylated products at room temperature in methanol. The supported nanoparticle was easy to recover and reused seven times without significance loss of its activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aza-Michael" title="Aza-Michael">Aza-Michael</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28hydroxamic%20acid%29" title=" poly(hydroxamic acid)"> poly(hydroxamic acid)</a> </p> <a href="https://publications.waset.org/abstracts/48532/khaya-cellulose-supported-copper-nanoparticles-for-chemo-selective-aza-michael-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1994</span> Carbon Supported Cu and TiO2 Catalysts Applied for Ozone Decomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katya%20Milenova">Katya Milenova</a>, <a href="https://publications.waset.org/abstracts/search?q=Penko%20Nikolov"> Penko Nikolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Stambolova"> Irina Stambolova</a>, <a href="https://publications.waset.org/abstracts/search?q=Plamen%20Nikolov"> Plamen Nikolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Blaskov"> Vladimir Blaskov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent article, a comparison was made between Cu and TiO2 supported catalysts on activated carbon for ozone decomposition reaction. The activated carbon support in the case of TiO2/AC sample was prepared by physicochemical pyrolysis and for Cu/AC samples the supports are chemically modified carbons. The prepared catalysts were synthesized by impregnation method. The samples were annealed in two different regimes-in air and under vacuum. To examine adsorption efficiency of the samples BET method was used. All investigated catalysts supported on chemically modified carbons have higher specific surface area compared to the specific surface area of TiO2 supported catalysts, varying in the range 590÷620 m2/g. The method of synthesis of the precursors had influenced catalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone%20decomposition" title=" ozone decomposition"> ozone decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2 "> TiO2 </a> </p> <a href="https://publications.waset.org/abstracts/19265/carbon-supported-cu-and-tio2-catalysts-applied-for-ozone-decomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1993</span> Technological Advancement of Socratic Supported by Artificial Intelligence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amad%20Nasseef">Amad Nasseef</a>, <a href="https://publications.waset.org/abstracts/search?q=Layan%20Zugail"> Layan Zugail</a>, <a href="https://publications.waset.org/abstracts/search?q=Joud%20Musalli"> Joud Musalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Layan%20Shaikan"> Layan Shaikan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technology has become an essential part of our lives. We have also witnessed the significant emergence of artificial intelligence in so many areas. Throughout this research paper, the following will be discussed: an introduction on AI and Socratic application, we also did an overview on the application’s background and other similar applications, as for the methodology, we conducted a survey to collect results on users experience in using the Socratic application. The results of the survey strongly supported the usefulness and interest of users in the Socratic application. Finally, we concluded that Socratic is a meaningful tool for learning purposes due to it being supported by artificial intelligence, which made the application easy to use and familiar to users to deal with through a click of a button. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Socratic" title="Socratic">Socratic</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a>, <a href="https://publications.waset.org/abstracts/search?q=features" title=" features"> features</a> </p> <a href="https://publications.waset.org/abstracts/139818/technological-advancement-of-socratic-supported-by-artificial-intelligence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1992</span> Axisymmetric Nonlinear Analysis of Point Supported Shallow Spherical Shells </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Altekin">M. Altekin</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20F.%20Y%C3%BCkseler"> R. F. Yükseler </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geometrically nonlinear axisymmetric bending of a shallow spherical shell with a point support at the apex under linearly varying axisymmetric load was investigated numerically. The edge of the shell was assumed to be simply supported or clamped. The solution was obtained by the finite difference and the Newton-Raphson methods. The thickness of the shell was considered to be uniform and the material was assumed to be homogeneous and isotropic. Sensitivity analysis was made for two geometrical parameters. The accuracy of the algorithm was checked by comparing the deflection with the solution of point supported circular plates and good agreement was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bending" title="Bending">Bending</a>, <a href="https://publications.waset.org/abstracts/search?q=Nonlinear" title=" Nonlinear"> Nonlinear</a>, <a href="https://publications.waset.org/abstracts/search?q=Plate" title=" Plate"> Plate</a>, <a href="https://publications.waset.org/abstracts/search?q=Point%20support" title=" Point support"> Point support</a>, <a href="https://publications.waset.org/abstracts/search?q=Shell." title=" Shell."> Shell.</a> </p> <a href="https://publications.waset.org/abstracts/1975/axisymmetric-nonlinear-analysis-of-point-supported-shallow-spherical-shells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1991</span> Postbuckling Analysis of End Supported Rods under Self-Weight Using Intrinsic Coordinate Finite Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Juntarasaid">C. Juntarasaid</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Pulngern"> T. Pulngern</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chucheepsakul"> S. Chucheepsakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A formulation of postbuckling analysis of end supported rods under self-weight has been presented by the variational method. The variational formulation involving the strain energy due to bending and the potential energy of the self-weight, are expressed in terms of the intrinsic coordinates. The variational formulation is accomplished by introducing the Lagrange multiplier technique to impose the boundary conditions. The finite element method is used to derive a system of nonlinear equations resulting from the stationary of the total potential energy and then Newton-Raphson iterative procedure is applied to solve this system of equations. The numerical results demonstrate the postbluckled configurations of end supported rods under self-weight. This finite element method based on variational formulation expressed in term of intrinsic coordinate is highly recommended for postbuckling analysis of end-supported rods under self-weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=postbuckling" title="postbuckling">postbuckling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20method" title=" variational method"> variational method</a>, <a href="https://publications.waset.org/abstracts/search?q=intrinsic%20coordinate" title=" intrinsic coordinate"> intrinsic coordinate</a> </p> <a href="https://publications.waset.org/abstracts/112297/postbuckling-analysis-of-end-supported-rods-under-self-weight-using-intrinsic-coordinate-finite-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1990</span> Current Design Approach for Seismic Resistant Automated Rack Supported Warehouses: Strong Points and Critical Aspects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agnese%20Natali">Agnese Natali</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Morelli"> Francesco Morelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Salvatore"> Walter Salvatore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated Rack Supported Warehouses (ARSWs) are structures currently designed as steel racks. Even if there are common characteristics, there are differences that don’t allow to adopt the same design approach. Aiming to highlight the factors influencing the design and the behavior of ARSWs, a set of 5 structures designed by 5 European companies specialized in this field is used to perform both a critical analysis of the design approaches and the assessment of the seismic performance, which is used to point out the criticalities and the necessity of new design philosophy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20racks" title="steel racks">steel racks</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20rack%20supported%20warehouse" title=" automated rack supported warehouse"> automated rack supported warehouse</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20walled%20cold-formed%20elements" title=" thin walled cold-formed elements"> thin walled cold-formed elements</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20assessment" title=" seismic assessment"> seismic assessment</a> </p> <a href="https://publications.waset.org/abstracts/143717/current-design-approach-for-seismic-resistant-automated-rack-supported-warehouses-strong-points-and-critical-aspects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1989</span> Mathematical Modeling and Analysis of Forced Vibrations in Micro-Scale Microstretch Thermoelastic Simply Supported Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geeta%20Partap">Geeta Partap</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitika%20Chugh"> Nitika Chugh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper deals with the flexural vibrations of homogeneous, isotropic, generalized micropolar microstretch thermoelastic thin Euler-Bernoulli beam resonators, due to Exponential time varying load. Both the axial ends of the beam are assumed to be at simply supported conditions. The governing equations have been solved analytically by using Laplace transforms technique twice with respect to time and space variables respectively. The inversion of Laplace transform in time domain has been performed by using the calculus of residues to obtain deflection.The analytical results have been numerically analyzed with the help of MATLAB software for magnesium like material. The graphical representations and interpretations have been discussed for Deflection of beam under Simply Supported boundary condition and for distinct considered values of time and space as well. The obtained results are easy to implement for engineering analysis and designs of resonators (sensors), modulators, actuators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstretch" title="microstretch">microstretch</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection" title=" deflection"> deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20load" title=" exponential load"> exponential load</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplace%20transforms" title=" Laplace transforms"> Laplace transforms</a>, <a href="https://publications.waset.org/abstracts/search?q=residue%20theorem" title=" residue theorem"> residue theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=simply%20supported" title=" simply supported"> simply supported</a> </p> <a href="https://publications.waset.org/abstracts/73611/mathematical-modeling-and-analysis-of-forced-vibrations-in-micro-scale-microstretch-thermoelastic-simply-supported-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1988</span> Socio-Economic Sustainability for Artists with Cognitive Disability in Creative Space: Case Studies of Supported Studios in Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung%20Hyoung%20Yoon">Jung Hyoung Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines ways of building socio-economic sustainability for artists with cognitive disabilities who pursue professional artistic careers in Australia. It investigates two case studies of supported studios in terms of management, inclusivity and accessibility to facilitate professional development and create socio-economic values for artists with cognitive disabilities. This study uses semi-structured interviews with key art directors and staff of supported studios to unfold their experiences on the professional development of artists with cognitive disability at the individual, organizational and societal levels. It also analyses secondary data collection related to management, business strategic plans and marketing. This paper discusses the potentials of socio-economic sustainability for artists with cognitive disabilities through their art practice and careers, as well as the central role of the supported studio in order to achieve such goals for individual artists. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artists%20with%20cognitive%20disability" title="artists with cognitive disability">artists with cognitive disability</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusive%20management" title=" inclusive management"> inclusive management</a>, <a href="https://publications.waset.org/abstracts/search?q=professional%20development" title=" professional development"> professional development</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic%20sustainability" title=" socio-economic sustainability"> socio-economic sustainability</a> </p> <a href="https://publications.waset.org/abstracts/131287/socio-economic-sustainability-for-artists-with-cognitive-disability-in-creative-space-case-studies-of-supported-studios-in-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1987</span> An Analytical Method for Bending Rectangular Plates with All Edges Clamped Supported</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhong">Yang Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Heng%20Liu"> Heng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decoupling method and the modified Naiver method are combined for accurate bending analysis of rectangular thick plates with all edges clamped supported. The basic governing equations for Mindlin plates are first decoupled into independent partial differential equations which can be solved separately. Using modified Navier method, the analytic solution of rectangular thick plate with all edges clamped supported is then derived. The solution method used in this paper leave out the complicated derivation for calculating coefficients and obtain the solution to problems directly. Numerical comparisons show the correctness and accuracy of the results at last. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mindlin%20plates" title="Mindlin plates">Mindlin plates</a>, <a href="https://publications.waset.org/abstracts/search?q=decoupling%20method" title=" decoupling method"> decoupling method</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Navier%20method" title=" modified Navier method"> modified Navier method</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20rectangular%20plates" title=" bending rectangular plates"> bending rectangular plates</a> </p> <a href="https://publications.waset.org/abstracts/22011/an-analytical-method-for-bending-rectangular-plates-with-all-edges-clamped-supported" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1986</span> Analysis of Simply Supported Beams Using Elastic Beam Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Dce">M. K. Dce</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to investigate the behavior of simply supported beams having rectangular section and subjected to uniformly distributed load (UDL). In this study five beams of span 5m, 6m, 7m and 8m have been considered. The width of all the beams is 400 mm and span to depth ratio has been taken as 12. The superimposed live load has been increased from 10 kN/m to 25 kN/m at the interval of 5 kN/m. The analysis of the beams has been carried out using the elastic beam theory. On the basis of present study it has been concluded that the maximum bending moment as well as deflection occurs at the mid-span of simply supported beam and its magnitude increases in proportion to magnitude of UDL. Moreover, the study suggests that the maximum moment is proportional to square of span and maximum deflection is proportional to fourth power of span. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam" title="beam">beam</a>, <a href="https://publications.waset.org/abstracts/search?q=UDL" title=" UDL"> UDL</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20moment" title=" bending moment"> bending moment</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection" title=" deflection"> deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20beam%20theory" title=" elastic beam theory"> elastic beam theory</a> </p> <a href="https://publications.waset.org/abstracts/31751/analysis-of-simply-supported-beams-using-elastic-beam-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1985</span> Mechanical Behaviour of High Strength Steel Thin-Walled Profiles for Automated Rack Supported Warehouses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agnese%20Natali">Agnese Natali</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Morelli"> Francesco Morelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Salvatore"> Walter Salvatore</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Humberto%20Matias%20de%20Paula%20Filho"> José Humberto Matias de Paula Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Pol"> Patrick Pol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the framework of the evaluation of the applicability of high strength steel to produce thin-walled elements to be used in Automated Rack Supported Warehouses, an experimental campaign is carried outto evaluate the structural performance of typical profile shapes adopted for such purposes and made of high strength steel. Numerical models are developed to fit the observed failure modes, stresses, and deformation patterns, and proper directions are proposed to simplify the numerical simulations to be used in further applications and to evaluate the mechanical behavior and performance of profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Steel%20racks" title="Steel racks">Steel racks</a>, <a href="https://publications.waset.org/abstracts/search?q=Automated%20Rack%20Supported%20Warehouse" title="Automated Rack Supported Warehouse">Automated Rack Supported Warehouse</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20walled%20cold-formed%20elements" title="thin walled cold-formed elements">thin walled cold-formed elements</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20steel." title="high strength steel.">high strength steel.</a> </p> <a href="https://publications.waset.org/abstracts/143757/mechanical-behaviour-of-high-strength-steel-thin-walled-profiles-for-automated-rack-supported-warehouses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1984</span> Pd Supported on Activated Carbon: Effect of Support Texture on the Dispersion of Pd</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Sun%20Kim">Ji Sun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Ho%20Baek"> Jae Ho Baek</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyeong%20Ho%20Kim"> Kyeong Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Hae%20Ha"> Ji Hae Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Soo%20Hong"> Seong Soo Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Wook%20Park"> Jung-Wook Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Sig%20Lee"> Man Sig Lee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon supported palladium catalysts have been used in many industrial reactions, especially for hydrogenation in the fine chemical industry. Porous carbons had been widely used as catalyst supports due to its higher surface area and larger pore volume. The specific surface area, pore structure and surface chemical functional groups of porous carbon affects metal dispersion and particle size. In this paper, we confirm the effect of support texture on the dispersion of Pd. Pd catalyst supported on activated carbon having various specific surface area were characterized by BET, XRD and FE-TEM. Catalyst activity and dispersion of prepared catalyst were evaluated on the basis of the CO adsorption capacity by CO-chemisorption. As concluding remark to this part of our study, let us note that specific area of carbon play important role on the synthesis of Pd/C catalyst/. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon" title="carbon">carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=Pd%2FC" title=" Pd/C"> Pd/C</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20are" title=" specific are"> specific are</a>, <a href="https://publications.waset.org/abstracts/search?q=support" title=" support"> support</a> </p> <a href="https://publications.waset.org/abstracts/40084/pd-supported-on-activated-carbon-effect-of-support-texture-on-the-dispersion-of-pd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1983</span> Pre-Service Mathematics Teachers’ Mental Construction in Solving Equations and Inequalities Using ACE Teaching Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abera%20Kotu">Abera Kotu</a>, <a href="https://publications.waset.org/abstracts/search?q=Girma%20Tesema"> Girma Tesema</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitiku%20Tadesse"> Mitiku Tadesse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated ACE supported instruction and pre-service mathematics teachers’ mental construction in solving equations and inequalities. A mixed approach with concurrent parallel design was employed. It was conducted on two intact groups of regular first-year pre-service mathematics teachers at Fiche College of Teachers’ Education in which one group was assigned as an intervention group and the other group as a comparison group using the lottery method. There were 33 participants in the intervention and 32 participants in the comparison. Six pre-service mathematics teachers were selected for interview using purposive sampling based on pre-test results. An instruction supported with ACE cycle was given to the intervention group for two weeks duration of time. Written tasks, interviews, and observations were used to collect data. Data collected from written tasks were analyzed quantitatively using independent samples t-test and effect size. Data collected from interviews and observations were analyzed narratively. The findings of the study uncovered that ACE-supported instruction has a moderate effect on Pre-service Mathematics Teachers’ levels of conceptualizations of action, process, object, ad schema. Moreover, the ACE supported group out scored and performed better than the usual traditional method supported groups across the levels of conceptualization. The majority of pre-service mathematics teachers’ levels of conceptualizations were at action and process levels and their levels of conceptualization were linked with genetic decomposition more at action and object levels than object and schema. The use of ACE supported instruction is recommended to improve pre-service mathematics teachers’ mental construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ACE%20teaching%20cycle" title="ACE teaching cycle">ACE teaching cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=APOS%20theory" title=" APOS theory"> APOS theory</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20construction" title=" mental construction"> mental construction</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20composition" title=" genetic composition"> genetic composition</a> </p> <a href="https://publications.waset.org/abstracts/192297/pre-service-mathematics-teachers-mental-construction-in-solving-equations-and-inequalities-using-ace-teaching-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1982</span> High Strength Steel Thin-Walled Cold-Formed Profiles Manufactured for Automated Rack Supported Warehouses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Natali">A. Natali</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20V.%20Lippi"> F. V. Lippi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Morelli"> F. Morelli</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Salvatore"> W. Salvatore</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20M.%20De%20Paula%20Filho"> J. H. M. De Paula Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Pol"> P. Pol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated Rack Supported Warehouses (ARSWs) are storage buildings whose load-bearing structure is made of the same steel racks where goods are stocked. These racks are made of cold formed elements, and the main supporting structure is repeated several times along the length of the building, resulting in a huge quantity of steel. The possibility of using high strength steel to manufacture the traditional cold-formed profiles used for ARSWs is numerically investigated, with the aim of reducing the necessary steel quantity but guaranteeing optimal structural performance levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20racks" title="steel racks">steel racks</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20rack%20supported%20warehouse" title=" automated rack supported warehouse"> automated rack supported warehouse</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-walled%20cold-formed%20elements" title=" thin-walled cold-formed elements"> thin-walled cold-formed elements</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20steel" title=" high strength steel"> high strength steel</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title=" structural optimization"> structural optimization</a> </p> <a href="https://publications.waset.org/abstracts/143759/high-strength-steel-thin-walled-cold-formed-profiles-manufactured-for-automated-rack-supported-warehouses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1981</span> Growing Pains and Organizational Development in Growing Enterprises: Conceptual Model and Its Empirical Examination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Czarnecki">Maciej Czarnecki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though growth is one of the most important strategic objectives for many enterprises, we know relatively little about this phenomenon. This research contributes to broaden our knowledge of managerial consequences of growth. Scales for measuring organizational development and growing pains were developed. Conceptual model of connections among growth, organizational development, growing pains, selected development factors and financial performance were examined. The research process contained literature review, 20 interviews with managers, examination of 12 raters’ opinions, pilot research and 7 point Likert scale questionnaire research on 138 Polish enterprises employing 50-249 people which increased their employment at least by 50% within last three years. Factor analysis, Pearson product-moment correlation coefficient, student’s t-test and chi-squared test were used to develop scales. High Cronbach’s alpha coefficients were obtained. The verification of correlations among the constructs was carried out with factor correlations, multiple regressions and path analysis. When the enterprise grows, it is necessary to implement changes in its structure, management practices etc. (organizational development) to meet challenges of growing complexity. In this paper, organizational development was defined as internal changes aiming to improve the quality of existing or to introduce new elements in the areas of processes, organizational structure and culture, operational and management systems. Thus; H1: Growth has positive effects on organizational development. The main thesis of the research is that if organizational development does not catch up with growing complexity of growing enterprise, growing pains will arise (lower work comfort, conflicts, lack of control etc.). They will exert a negative influence on the financial performance and may result in serious organizational crisis or even bankruptcy. Thus; H2: Growth has positive effects on growing pains, H3: Organizational development has negative effects on growing pains, H4: Growing pains have negative effects on financial performance, H5: Organizational development has positive effects on financial performance. Scholars considered long lists of factors having potential influence on organizational development. The development of comprehensive model taking into account all possible variables may be beyond the capacity of any researcher or even statistical software used. After literature review, it was decided to increase the level of abstraction and to include following constructs in the conceptual model: organizational learning (OL), positive organization (PO) and high performance factors (HPF). H1a/b/c: OL/PO/HPF has positive effect on organizational development, H2a/b/c: OL/PO/HPF has negative effect on growing pains. The results of hypothesis testing: H1: partly supported, H1a/b/c: supported/not supported/supported, H2: not supported, H2a/b/c: not supported/partly supported/not supported, H3: supported, H4: partly supported, H5: supported. The research seems to be of a great value for both scholars and practitioners. It proved that OL and HPO matter for organizational development. Scales for measuring organizational development and growing pains were developed. Its main finding, though, is that organizational development is a good way of improving financial performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organizational%20development" title="organizational development">organizational development</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=growing%20pains" title=" growing pains"> growing pains</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20performance" title=" financial performance"> financial performance</a> </p> <a href="https://publications.waset.org/abstracts/30510/growing-pains-and-organizational-development-in-growing-enterprises-conceptual-model-and-its-empirical-examination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1980</span> Stability Enhancement of Supported Ionic Liquid Membranes Using Ion Gels for Gas Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Hwang">Y. H. Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Won"> J. Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Kang"> Y. S. Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supported ionic liquid membranes (SILMs) have attracted due to the negligible vapor pressure of ionic liquids (ILs) as well as the high gas selectivity for specific gases such as CO2 or olefin. 1-ethyl-3-methylimidazolium tricyanomethanide ([EMIM][TCM]), 1-butyl-3-methylimidazolium tricyanomethanide ([BMIM][TCM]), show high CO2 solubility, CO2 absorption, rapid CO2 absorption rate and negligible vapor pressure, SILMs using these ILs have been good candidates as CO2 separation membranes. However, SILM has to be operated at a low differential pressure to prevent the solvent from being expelled from the pores of supported membranes. In this paper, we improve the mechanical strength by forming ion gels which provide the stability while it retains the diffusion properties of the liquid stage which affects the gas separation properties. The ion gel was created by the addition of tri-block copolymer, poly(styrene-ethylene oxide-b-styrene) in RTIL. SILM using five different RTILs, are investigated with and without ion gels. The gas permeance were measured and the gas performance with and without the SEOS were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion%20gel" title="ion gel">ion gel</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a> </p> <a href="https://publications.waset.org/abstracts/15496/stability-enhancement-of-supported-ionic-liquid-membranes-using-ion-gels-for-gas-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1979</span> Cellulose Supported Heterogeneous Pd(II) Catalyst for Synthesis of Biaryls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talat%20Baran">Talat Baran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Suzuki C(sp2)-C(sp2) coupling reaction is considered to be one of the best ways for the synthesis of biaryl compounds. There are many studies reporting the catalytic performance of palladium catalyst in Suzuki coupling reactions. Natural biopolymer (such as zeolite, carbon, silica, and chitosan) supporting catalysts have been lately attracted interest because of their low-cost, nontoxicity, and eco-friendliness. One of the most important natural biopolymer is cellulose, which is widely considered as an eco-friendly biopolymer due to its biodegradable, non-toxic and renewable nature. In this study, (1) cellulose supported Pd(II) catalyst was synthesized (2) its chemical structure was characterized by FT-IR, SEM/EDAX, XRD, TG-DTG, ICP-OES techniques (3) to investigate the performance of the catalyst in Suzuki coupling reactions by using microwave irradiation technique (4) reusability of the catalyst was done under optimum conditions. This cellulose supported Pd(II) catalyst exhibited high selectivity and efficiency in Suzuki coupling reactions under mild conditions (50°C). High TON and TOF values were recorded for the catalyst. Also, the reusability tests showed the catalysts could be used for several times in consequence of reusability tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palladium" title="palladium">palladium</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=Schiff%20base" title=" Schiff base"> Schiff base</a>, <a href="https://publications.waset.org/abstracts/search?q=reusability" title=" reusability"> reusability</a> </p> <a href="https://publications.waset.org/abstracts/54022/cellulose-supported-heterogeneous-pdii-catalyst-for-synthesis-of-biaryls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1978</span> A Ti₃C₂O₂ Supported Single Atom, Trifunctional Catalyst for Electrochemical Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhanzhao%20Fu">Zhanzhao Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chongyi%20Ling"> Chongyi Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinlan%20Wang"> Jinlan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water splitting and rechargeable air-based batteries are emerging as new renewable energy storage and conversion technologies. However, the discovery of suitable catalysts with high activity and low cost remains a great challenge. In this work, we report a single-atom trifunctional catalyst, namely Ti₃C₂O₂ supported single Pd atom (Pd1@Ti₃C₂O₂), for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). This catalyst is selected from 12 candidates and possesses low overpotentials of 0.22 V, 0.31 V and 0.34 V for the HER, OER and ORR, respectively, making it an excellent electrocatalyst for both overall water splitting and rechargeable air-based batteries. The superior OER and ORR performance originates from the optimal d band center of the supported Pd atom. Moreover, the excellent activity can be maintained even if the single Pd atoms aggregate into small clusters. This work offers new opportunities for advancing the renewable energy storage and conversion technologies and paves a new way for the development of multifunctional electrocatalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=SACs" title=" SACs"> SACs</a>, <a href="https://publications.waset.org/abstracts/search?q=OER" title=" OER"> OER</a>, <a href="https://publications.waset.org/abstracts/search?q=ORR" title=" ORR"> ORR</a>, <a href="https://publications.waset.org/abstracts/search?q=HER" title=" HER"> HER</a> </p> <a href="https://publications.waset.org/abstracts/168154/a-ti3c2o2-supported-single-atom-trifunctional-catalyst-for-electrochemical-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1977</span> Ag Nanoparticle/Melamine Sulfonic Acid Supported on Alumina: Efficient Catalytic System in Synthesis of Dihydropyrimidines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parya%20Nasehi">Parya Nasehi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Kazem%20Mohammadi"> Mohammad Kazem Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3,4-dihydropyrimidin-2(1H)-thiones were synthesized in the presence of Ag nanoparticle/melamine sulfonic acid (MSA) supported on alumina. The reaction was carried out at 110 oC for 20 min under solvent free conditions. This method have some advantages such as good yield, mild reaction conditions, ease of operation and work up, short reaction time and high product purity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle%20melamine%20sulfonic%20acid" title="nanoparticle melamine sulfonic acid">nanoparticle melamine sulfonic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=Al2O3" title=" Al2O3"> Al2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=Biginelli%20reaction" title=" Biginelli reaction"> Biginelli reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=3" title=" 3"> 3</a>, <a href="https://publications.waset.org/abstracts/search?q=4-dihydropyrimidin-2%281H" title="4-dihydropyrimidin-2(1H">4-dihydropyrimidin-2(1H</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20free" title=" solvent free"> solvent free</a> </p> <a href="https://publications.waset.org/abstracts/22438/ag-nanoparticlemelamine-sulfonic-acid-supported-on-alumina-efficient-catalytic-system-in-synthesis-of-dihydropyrimidines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1976</span> Anonymous Gel-Fluid Transition of Solid Supported Lipids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Poursoroush">Asma Poursoroush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid-supported lipid bilayers are often used as a simple model for studies of biological membranes. The presence of a solid substrate that interacts attractively with lipid head-groups is expected to affect the phase behavior of the supported bilayer. Molecular dynamics simulations of a coarse-grained model are thus performed to investigate the phase behavior of supported one-component lipid bilayer membranes. Our results show that the attraction of the lipid head groups to the substrate leads to a phase behavior that is different from that of a free standing lipid bilayer. In particular, we found that the phase behaviors of the two leaflets are decoupled in the presence of a substrate. The proximal leaflet undergoes a clear gel-to-fluid phase transition at a temperature lower than that of a free standing bilayer, and that decreases with increasing strength of the substrate-lipid attraction. The distal leaflet, however, undergoes a change from a homogeneous liquid phase at high temperatures to a heterogeneous state consisting of small liquid and gel domains, with the average size of the gel domains that increases with decreasing temperature. While the chain order parameter of the proximal leaflet clearly shows a gel-fluid phase transition, the chain order parameter of the distal leaflet does not exhibit a clear phase transition. The decoupling in the phase behavior of the two leaflets is due to a non-symmteric lipid distribution in the two leaflets resulting from the presence of the substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane" title="membrane">membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate" title=" substrate"> substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/78473/anonymous-gel-fluid-transition-of-solid-supported-lipids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1975</span> Support of Knowledge Sharing in Manufacturing Companies: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuzana%20Crhov%C3%A1">Zuzana Crhová</a>, <a href="https://publications.waset.org/abstracts/search?q=Karel%20Kolman"> Karel Kolman</a>, <a href="https://publications.waset.org/abstracts/search?q=Drahom%C3%ADra%20Pavelkov%C3%A1"> Drahomíra Pavelková</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowledge is considered as an important asset which can help organizations to create competitive advantage. The necessity of taking care of these assets is more important in these days – in days of turbulent changes in business environment. Knowledge could facilitate adaption to constant changes. The aim of this paper is to describe how the knowledge sharing can be supported in the manufacturing companies. The methods of case studies and grounded theory were used to present information gained by carrying out semi-structured interviews. Results show that knowledge sharing is supported in very similar ways in respondent companies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case%20study" title="case study">case study</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20resource%20management" title=" human resource management"> human resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge" title=" knowledge"> knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20sharing" title=" knowledge sharing"> knowledge sharing</a> </p> <a href="https://publications.waset.org/abstracts/19868/support-of-knowledge-sharing-in-manufacturing-companies-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1974</span> Influence of Wall Stiffness and Embedment Depth on Excavations Supported by Cantilever Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naseem%20Baig">Muhammad Naseem Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Qudoos%20Khan"> Abdul Qudoos Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Ali"> Jamal Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ground deformations in deep excavations are affected by wall stiffness and pile embedment ratio. This paper presents the findings of a parametric study of 64ft deep excavation in mixed stiff soil conditions supported by a cantilever pile wall. A series of finite element analyses have been carried out in Plaxis 2D by varying pile embedment ratio and wall stiffness. It has been observed that maximum wall deflections decrease by increasing the embedment ratio up to 1.50; however, any further increase in pile length does not improve the performance of wall. Similarly, increasing wall stiffness reduces the wall deformations and affects the deflection patterns of wall. The finite element analysis results are compared with field data of 25 case studies of cantilever walls. Analysis results fall within the range of normalized wall deflections of 25 case studies. It has been concluded that deep excavations can be supported by cantilever walls provided the system stiffness is increased significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excavations" title="excavations">excavations</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20systems" title=" support systems"> support systems</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20stiffness" title=" wall stiffness"> wall stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=cantilever%20walls" title=" cantilever walls"> cantilever walls</a> </p> <a href="https://publications.waset.org/abstracts/139648/influence-of-wall-stiffness-and-embedment-depth-on-excavations-supported-by-cantilever-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1973</span> Two Dimensional Numerical Analysis for the Seismic Response of the Geosynthetic-Reinforced Soil Integral Abutments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Shen">Dawei Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Xu"> Ming Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengfei%20Liu"> Pengfei Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The joints between simply supported bridge decks and abutments need to be regularly repaired, which would greatly increase the cost during the service life of the bridge. Simply supported girder bridges suffered the most severe damage during earthquakes. Another type of bridge, the integral bridge, of which the superstructure and abutment are rigidly connected, was also used in some European countries. Because no bearings or joints exit in the integral bridge, this type of bridge could significantly reduce maintenance requirements and costs. However, conventional integral bridge usually result in high earth pressure on the abutment and surface settlement in the backfill. To solve these problems, a new type of integral bridge, geosynthetic-reinforced soil (GRS) integral bridge, was come up in recent years. This newly invented bridge has not been used in engineering practices. There was a lack of research on the seismic behavior of the conventional and new type of integral abutments. In addition, no common design code could be found for the calculation of seismic pressure of soil behind the abutment. This paper developed a dynamic constitutive model, which can consider the soil behaviors under cyclic loading. Numerical analyses of the seismic response of a full height integral bridge and GRS integral bridge were carried out using the two-dimensional numerical code, FLAC. A parametric study was also performed to investigate the soil-structure interaction. The results are presented below. The seismic responses of GRS integral bridge together with conventional simply supported bridge, GRS conventional bridge and conventional integral bridge were investigated. The results show that the GRS integral bridge holds the highest seismic stability, followed by conventional integral bridge, GRS simply supported bridge and conventional simply supported bridge. Compared with the integral bridge with 1 m thick abutments, the GRS integral bridge with 0.4 m thick abutments is subjected to a smaller bending moment, and the natural frequency and horizontal displacement remains almost the same. Geosynthetic-reinforcement will be more effective when the abutment becomes thinner or the abutment is higher. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetic-reinforced%20soil%20integral%20bridge" title="geosynthetic-reinforced soil integral bridge">geosynthetic-reinforced soil integral bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20hysteretic%20model" title=" nonlinear hysteretic model"> nonlinear hysteretic model</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a> </p> <a href="https://publications.waset.org/abstracts/66220/two-dimensional-numerical-analysis-for-the-seismic-response-of-the-geosynthetic-reinforced-soil-integral-abutments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1972</span> Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Yamaguchi">T. Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Watanabe"> M. Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sasajima"> M. Sasajima</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Yuan"> C. Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Maruyama"> S. Maruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20B.%20Ibrahim"> T. B. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Tomita"> H. Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title="dynamic response">dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20impact%20response" title=" nonlinear impact response"> nonlinear impact response</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/15947/nonlinear-impact-responses-for-a-damped-frame-supported-by-nonlinear-springs-with-hysteresis-using-fast-fea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supported%20decision-making&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supported%20decision-making&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supported%20decision-making&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supported%20decision-making&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supported%20decision-making&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supported%20decision-making&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supported%20decision-making&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supported%20decision-making&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supported%20decision-making&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supported%20decision-making&page=66">66</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supported%20decision-making&page=67">67</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supported%20decision-making&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>